xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / media / tuners / mt2060.c
blob3d3c6815b6a7f565ea1baba3343923750ddcbd88
1 /*
2 * Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
4 * Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 /* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
20 #include <linux/module.h>
21 #include <linux/delay.h>
22 #include <linux/dvb/frontend.h>
23 #include <linux/i2c.h>
24 #include <linux/slab.h>
26 #include <media/dvb_frontend.h>
28 #include "mt2060.h"
29 #include "mt2060_priv.h"
31 static int debug;
32 module_param(debug, int, 0644);
33 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
35 #define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2060: " args); printk("\n"); }} while (0)
37 // Reads a single register
38 static int mt2060_readreg(struct mt2060_priv *priv, u8 reg, u8 *val)
40 struct i2c_msg msg[2] = {
41 { .addr = priv->cfg->i2c_address, .flags = 0, .len = 1 },
42 { .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .len = 1 },
44 int rc = 0;
45 u8 *b;
47 b = kmalloc(2, GFP_KERNEL);
48 if (!b)
49 return -ENOMEM;
51 b[0] = reg;
52 b[1] = 0;
54 msg[0].buf = b;
55 msg[1].buf = b + 1;
57 if (i2c_transfer(priv->i2c, msg, 2) != 2) {
58 printk(KERN_WARNING "mt2060 I2C read failed\n");
59 rc = -EREMOTEIO;
61 *val = b[1];
62 kfree(b);
64 return rc;
67 // Writes a single register
68 static int mt2060_writereg(struct mt2060_priv *priv, u8 reg, u8 val)
70 struct i2c_msg msg = {
71 .addr = priv->cfg->i2c_address, .flags = 0, .len = 2
73 u8 *buf;
74 int rc = 0;
76 buf = kmalloc(2, GFP_KERNEL);
77 if (!buf)
78 return -ENOMEM;
80 buf[0] = reg;
81 buf[1] = val;
83 msg.buf = buf;
85 if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
86 printk(KERN_WARNING "mt2060 I2C write failed\n");
87 rc = -EREMOTEIO;
89 kfree(buf);
90 return rc;
93 // Writes a set of consecutive registers
94 static int mt2060_writeregs(struct mt2060_priv *priv,u8 *buf, u8 len)
96 int rem, val_len;
97 u8 *xfer_buf;
98 int rc = 0;
99 struct i2c_msg msg = {
100 .addr = priv->cfg->i2c_address, .flags = 0
103 xfer_buf = kmalloc(16, GFP_KERNEL);
104 if (!xfer_buf)
105 return -ENOMEM;
107 msg.buf = xfer_buf;
109 for (rem = len - 1; rem > 0; rem -= priv->i2c_max_regs) {
110 val_len = min_t(int, rem, priv->i2c_max_regs);
111 msg.len = 1 + val_len;
112 xfer_buf[0] = buf[0] + len - 1 - rem;
113 memcpy(&xfer_buf[1], &buf[1 + len - 1 - rem], val_len);
115 if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
116 printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n", val_len);
117 rc = -EREMOTEIO;
118 break;
122 kfree(xfer_buf);
123 return rc;
126 // Initialisation sequences
127 // LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
128 static u8 mt2060_config1[] = {
129 REG_LO1C1,
130 0x3F, 0x74, 0x00, 0x08, 0x93
133 // FMCG=2, GP2=0, GP1=0
134 static u8 mt2060_config2[] = {
135 REG_MISC_CTRL,
136 0x20, 0x1E, 0x30, 0xff, 0x80, 0xff, 0x00, 0x2c, 0x42
139 // VGAG=3, V1CSE=1
141 #ifdef MT2060_SPURCHECK
142 /* The function below calculates the frequency offset between the output frequency if2
143 and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
144 static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
146 int I,J;
147 int dia,diamin,diff;
148 diamin=1000000;
149 for (I = 1; I < 10; I++) {
150 J = ((2*I*lo1)/lo2+1)/2;
151 diff = I*(int)lo1-J*(int)lo2;
152 if (diff < 0) diff=-diff;
153 dia = (diff-(int)if2);
154 if (dia < 0) dia=-dia;
155 if (diamin > dia) diamin=dia;
157 return diamin;
160 #define BANDWIDTH 4000 // kHz
162 /* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
163 static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
165 u32 Spur,Sp1,Sp2;
166 int I,J;
167 I=0;
168 J=1000;
170 Spur=mt2060_spurcalc(lo1,lo2,if2);
171 if (Spur < BANDWIDTH) {
172 /* Potential spurs detected */
173 dprintk("Spurs before : f_lo1: %d f_lo2: %d (kHz)",
174 (int)lo1,(int)lo2);
175 I=1000;
176 Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
177 Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);
179 if (Sp1 < Sp2) {
180 J=-J; I=-I; Spur=Sp2;
181 } else
182 Spur=Sp1;
184 while (Spur < BANDWIDTH) {
185 I += J;
186 Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
188 dprintk("Spurs after : f_lo1: %d f_lo2: %d (kHz)",
189 (int)(lo1+I),(int)(lo2+I));
191 return I;
193 #endif
195 #define IF2 36150 // IF2 frequency = 36.150 MHz
196 #define FREF 16000 // Quartz oscillator 16 MHz
198 static int mt2060_set_params(struct dvb_frontend *fe)
200 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
201 struct mt2060_priv *priv;
202 int i=0;
203 u32 freq;
204 u8 lnaband;
205 u32 f_lo1,f_lo2;
206 u32 div1,num1,div2,num2;
207 u8 b[8];
208 u32 if1;
210 priv = fe->tuner_priv;
212 if1 = priv->if1_freq;
213 b[0] = REG_LO1B1;
214 b[1] = 0xFF;
216 if (fe->ops.i2c_gate_ctrl)
217 fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
219 mt2060_writeregs(priv,b,2);
221 freq = c->frequency / 1000; /* Hz -> kHz */
223 f_lo1 = freq + if1 * 1000;
224 f_lo1 = (f_lo1 / 250) * 250;
225 f_lo2 = f_lo1 - freq - IF2;
226 // From the Comtech datasheet, the step used is 50kHz. The tuner chip could be more precise
227 f_lo2 = ((f_lo2 + 25) / 50) * 50;
228 priv->frequency = (f_lo1 - f_lo2 - IF2) * 1000,
230 #ifdef MT2060_SPURCHECK
231 // LO-related spurs detection and correction
232 num1 = mt2060_spurcheck(f_lo1,f_lo2,IF2);
233 f_lo1 += num1;
234 f_lo2 += num1;
235 #endif
236 //Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
237 num1 = f_lo1 / (FREF / 64);
238 div1 = num1 / 64;
239 num1 &= 0x3f;
241 // Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
242 num2 = f_lo2 * 64 / (FREF / 128);
243 div2 = num2 / 8192;
244 num2 &= 0x1fff;
246 if (freq <= 95000) lnaband = 0xB0; else
247 if (freq <= 180000) lnaband = 0xA0; else
248 if (freq <= 260000) lnaband = 0x90; else
249 if (freq <= 335000) lnaband = 0x80; else
250 if (freq <= 425000) lnaband = 0x70; else
251 if (freq <= 480000) lnaband = 0x60; else
252 if (freq <= 570000) lnaband = 0x50; else
253 if (freq <= 645000) lnaband = 0x40; else
254 if (freq <= 730000) lnaband = 0x30; else
255 if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;
257 b[0] = REG_LO1C1;
258 b[1] = lnaband | ((num1 >>2) & 0x0F);
259 b[2] = div1;
260 b[3] = (num2 & 0x0F) | ((num1 & 3) << 4);
261 b[4] = num2 >> 4;
262 b[5] = ((num2 >>12) & 1) | (div2 << 1);
264 dprintk("IF1: %dMHz",(int)if1);
265 dprintk("PLL freq=%dkHz f_lo1=%dkHz f_lo2=%dkHz",(int)freq,(int)f_lo1,(int)f_lo2);
266 dprintk("PLL div1=%d num1=%d div2=%d num2=%d",(int)div1,(int)num1,(int)div2,(int)num2);
267 dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
269 mt2060_writeregs(priv,b,6);
271 //Waits for pll lock or timeout
272 i = 0;
273 do {
274 mt2060_readreg(priv,REG_LO_STATUS,b);
275 if ((b[0] & 0x88)==0x88)
276 break;
277 msleep(4);
278 i++;
279 } while (i<10);
281 if (fe->ops.i2c_gate_ctrl)
282 fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
284 return 0;
287 static void mt2060_calibrate(struct mt2060_priv *priv)
289 u8 b = 0;
290 int i = 0;
292 if (mt2060_writeregs(priv,mt2060_config1,sizeof(mt2060_config1)))
293 return;
294 if (mt2060_writeregs(priv,mt2060_config2,sizeof(mt2060_config2)))
295 return;
297 /* initialize the clock output */
298 mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30);
300 do {
301 b |= (1 << 6); // FM1SS;
302 mt2060_writereg(priv, REG_LO2C1,b);
303 msleep(20);
305 if (i == 0) {
306 b |= (1 << 7); // FM1CA;
307 mt2060_writereg(priv, REG_LO2C1,b);
308 b &= ~(1 << 7); // FM1CA;
309 msleep(20);
312 b &= ~(1 << 6); // FM1SS
313 mt2060_writereg(priv, REG_LO2C1,b);
315 msleep(20);
316 i++;
317 } while (i < 9);
319 i = 0;
320 while (i++ < 10 && mt2060_readreg(priv, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
321 msleep(20);
323 if (i <= 10) {
324 mt2060_readreg(priv, REG_FM_FREQ, &priv->fmfreq); // now find out, what is fmreq used for :)
325 dprintk("calibration was successful: %d", (int)priv->fmfreq);
326 } else
327 dprintk("FMCAL timed out");
330 static int mt2060_get_frequency(struct dvb_frontend *fe, u32 *frequency)
332 struct mt2060_priv *priv = fe->tuner_priv;
333 *frequency = priv->frequency;
334 return 0;
337 static int mt2060_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
339 *frequency = IF2 * 1000;
340 return 0;
343 static int mt2060_init(struct dvb_frontend *fe)
345 struct mt2060_priv *priv = fe->tuner_priv;
346 int ret;
348 if (fe->ops.i2c_gate_ctrl)
349 fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
351 if (priv->sleep) {
352 ret = mt2060_writereg(priv, REG_MISC_CTRL, 0x20);
353 if (ret)
354 goto err_i2c_gate_ctrl;
357 ret = mt2060_writereg(priv, REG_VGAG,
358 (priv->cfg->clock_out << 6) | 0x33);
360 err_i2c_gate_ctrl:
361 if (fe->ops.i2c_gate_ctrl)
362 fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
364 return ret;
367 static int mt2060_sleep(struct dvb_frontend *fe)
369 struct mt2060_priv *priv = fe->tuner_priv;
370 int ret;
372 if (fe->ops.i2c_gate_ctrl)
373 fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
375 ret = mt2060_writereg(priv, REG_VGAG,
376 (priv->cfg->clock_out << 6) | 0x30);
377 if (ret)
378 goto err_i2c_gate_ctrl;
380 if (priv->sleep)
381 ret = mt2060_writereg(priv, REG_MISC_CTRL, 0xe8);
383 err_i2c_gate_ctrl:
384 if (fe->ops.i2c_gate_ctrl)
385 fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
387 return ret;
390 static void mt2060_release(struct dvb_frontend *fe)
392 kfree(fe->tuner_priv);
393 fe->tuner_priv = NULL;
396 static const struct dvb_tuner_ops mt2060_tuner_ops = {
397 .info = {
398 .name = "Microtune MT2060",
399 .frequency_min = 48000000,
400 .frequency_max = 860000000,
401 .frequency_step = 50000,
404 .release = mt2060_release,
406 .init = mt2060_init,
407 .sleep = mt2060_sleep,
409 .set_params = mt2060_set_params,
410 .get_frequency = mt2060_get_frequency,
411 .get_if_frequency = mt2060_get_if_frequency,
414 /* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
415 struct dvb_frontend * mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1)
417 struct mt2060_priv *priv = NULL;
418 u8 id = 0;
420 priv = kzalloc(sizeof(struct mt2060_priv), GFP_KERNEL);
421 if (priv == NULL)
422 return NULL;
424 priv->cfg = cfg;
425 priv->i2c = i2c;
426 priv->if1_freq = if1;
427 priv->i2c_max_regs = ~0;
429 if (fe->ops.i2c_gate_ctrl)
430 fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
432 if (mt2060_readreg(priv,REG_PART_REV,&id) != 0) {
433 kfree(priv);
434 return NULL;
437 if (id != PART_REV) {
438 kfree(priv);
439 return NULL;
441 printk(KERN_INFO "MT2060: successfully identified (IF1 = %d)\n", if1);
442 memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(struct dvb_tuner_ops));
444 fe->tuner_priv = priv;
446 mt2060_calibrate(priv);
448 if (fe->ops.i2c_gate_ctrl)
449 fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
451 return fe;
453 EXPORT_SYMBOL(mt2060_attach);
455 static int mt2060_probe(struct i2c_client *client,
456 const struct i2c_device_id *id)
458 struct mt2060_platform_data *pdata = client->dev.platform_data;
459 struct dvb_frontend *fe;
460 struct mt2060_priv *dev;
461 int ret;
462 u8 chip_id;
464 dev_dbg(&client->dev, "\n");
466 if (!pdata) {
467 dev_err(&client->dev, "Cannot proceed without platform data\n");
468 ret = -EINVAL;
469 goto err;
472 dev = devm_kzalloc(&client->dev, sizeof(*dev), GFP_KERNEL);
473 if (!dev) {
474 ret = -ENOMEM;
475 goto err;
478 fe = pdata->dvb_frontend;
479 dev->config.i2c_address = client->addr;
480 dev->config.clock_out = pdata->clock_out;
481 dev->cfg = &dev->config;
482 dev->i2c = client->adapter;
483 dev->if1_freq = pdata->if1 ? pdata->if1 : 1220;
484 dev->client = client;
485 dev->i2c_max_regs = pdata->i2c_write_max ? pdata->i2c_write_max - 1 : ~0;
486 dev->sleep = true;
488 ret = mt2060_readreg(dev, REG_PART_REV, &chip_id);
489 if (ret) {
490 ret = -ENODEV;
491 goto err;
494 dev_dbg(&client->dev, "chip id=%02x\n", chip_id);
496 if (chip_id != PART_REV) {
497 ret = -ENODEV;
498 goto err;
501 /* Power on, calibrate, sleep */
502 ret = mt2060_writereg(dev, REG_MISC_CTRL, 0x20);
503 if (ret)
504 goto err;
505 mt2060_calibrate(dev);
506 ret = mt2060_writereg(dev, REG_MISC_CTRL, 0xe8);
507 if (ret)
508 goto err;
510 dev_info(&client->dev, "Microtune MT2060 successfully identified\n");
511 memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(fe->ops.tuner_ops));
512 fe->ops.tuner_ops.release = NULL;
513 fe->tuner_priv = dev;
514 i2c_set_clientdata(client, dev);
516 return 0;
517 err:
518 dev_dbg(&client->dev, "failed=%d\n", ret);
519 return ret;
522 static int mt2060_remove(struct i2c_client *client)
524 dev_dbg(&client->dev, "\n");
526 return 0;
529 static const struct i2c_device_id mt2060_id_table[] = {
530 {"mt2060", 0},
533 MODULE_DEVICE_TABLE(i2c, mt2060_id_table);
535 static struct i2c_driver mt2060_driver = {
536 .driver = {
537 .name = "mt2060",
538 .suppress_bind_attrs = true,
540 .probe = mt2060_probe,
541 .remove = mt2060_remove,
542 .id_table = mt2060_id_table,
545 module_i2c_driver(mt2060_driver);
547 MODULE_AUTHOR("Olivier DANET");
548 MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
549 MODULE_LICENSE("GPL");