3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2003-2012, Intel Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/pci.h>
19 #include <linux/kthread.h>
20 #include <linux/interrupt.h>
21 #include <linux/pm_runtime.h>
27 #include "hw-me-regs.h"
29 #include "mei-trace.h"
32 * mei_me_reg_read - Reads 32bit data from the mei device
34 * @hw: the me hardware structure
35 * @offset: offset from which to read the data
37 * Return: register value (u32)
39 static inline u32
mei_me_reg_read(const struct mei_me_hw
*hw
,
42 return ioread32(hw
->mem_addr
+ offset
);
47 * mei_me_reg_write - Writes 32bit data to the mei device
49 * @hw: the me hardware structure
50 * @offset: offset from which to write the data
51 * @value: register value to write (u32)
53 static inline void mei_me_reg_write(const struct mei_me_hw
*hw
,
54 unsigned long offset
, u32 value
)
56 iowrite32(value
, hw
->mem_addr
+ offset
);
60 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
61 * read window register
63 * @dev: the device structure
65 * Return: ME_CB_RW register value (u32)
67 static inline u32
mei_me_mecbrw_read(const struct mei_device
*dev
)
69 return mei_me_reg_read(to_me_hw(dev
), ME_CB_RW
);
73 * mei_me_hcbww_write - write 32bit data to the host circular buffer
75 * @dev: the device structure
76 * @data: 32bit data to be written to the host circular buffer
78 static inline void mei_me_hcbww_write(struct mei_device
*dev
, u32 data
)
80 mei_me_reg_write(to_me_hw(dev
), H_CB_WW
, data
);
84 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
86 * @dev: the device structure
88 * Return: ME_CSR_HA register value (u32)
90 static inline u32
mei_me_mecsr_read(const struct mei_device
*dev
)
94 reg
= mei_me_reg_read(to_me_hw(dev
), ME_CSR_HA
);
95 trace_mei_reg_read(dev
->dev
, "ME_CSR_HA", ME_CSR_HA
, reg
);
101 * mei_hcsr_read - Reads 32bit data from the host CSR
103 * @dev: the device structure
105 * Return: H_CSR register value (u32)
107 static inline u32
mei_hcsr_read(const struct mei_device
*dev
)
111 reg
= mei_me_reg_read(to_me_hw(dev
), H_CSR
);
112 trace_mei_reg_read(dev
->dev
, "H_CSR", H_CSR
, reg
);
118 * mei_hcsr_write - writes H_CSR register to the mei device
120 * @dev: the device structure
121 * @reg: new register value
123 static inline void mei_hcsr_write(struct mei_device
*dev
, u32 reg
)
125 trace_mei_reg_write(dev
->dev
, "H_CSR", H_CSR
, reg
);
126 mei_me_reg_write(to_me_hw(dev
), H_CSR
, reg
);
130 * mei_hcsr_set - writes H_CSR register to the mei device,
131 * and ignores the H_IS bit for it is write-one-to-zero.
133 * @dev: the device structure
134 * @reg: new register value
136 static inline void mei_hcsr_set(struct mei_device
*dev
, u32 reg
)
138 reg
&= ~H_CSR_IS_MASK
;
139 mei_hcsr_write(dev
, reg
);
143 * mei_hcsr_set_hig - set host interrupt (set H_IG)
145 * @dev: the device structure
147 static inline void mei_hcsr_set_hig(struct mei_device
*dev
)
151 hcsr
= mei_hcsr_read(dev
) | H_IG
;
152 mei_hcsr_set(dev
, hcsr
);
156 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
158 * @dev: the device structure
160 * Return: H_D0I3C register value (u32)
162 static inline u32
mei_me_d0i3c_read(const struct mei_device
*dev
)
166 reg
= mei_me_reg_read(to_me_hw(dev
), H_D0I3C
);
167 trace_mei_reg_read(dev
->dev
, "H_D0I3C", H_D0I3C
, reg
);
173 * mei_me_d0i3c_write - writes H_D0I3C register to device
175 * @dev: the device structure
176 * @reg: new register value
178 static inline void mei_me_d0i3c_write(struct mei_device
*dev
, u32 reg
)
180 trace_mei_reg_write(dev
->dev
, "H_D0I3C", H_D0I3C
, reg
);
181 mei_me_reg_write(to_me_hw(dev
), H_D0I3C
, reg
);
185 * mei_me_fw_status - read fw status register from pci config space
188 * @fw_status: fw status register values
190 * Return: 0 on success, error otherwise
192 static int mei_me_fw_status(struct mei_device
*dev
,
193 struct mei_fw_status
*fw_status
)
195 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
196 struct mei_me_hw
*hw
= to_me_hw(dev
);
197 const struct mei_fw_status
*fw_src
= &hw
->cfg
->fw_status
;
204 fw_status
->count
= fw_src
->count
;
205 for (i
= 0; i
< fw_src
->count
&& i
< MEI_FW_STATUS_MAX
; i
++) {
206 ret
= pci_read_config_dword(pdev
, fw_src
->status
[i
],
207 &fw_status
->status
[i
]);
208 trace_mei_pci_cfg_read(dev
->dev
, "PCI_CFG_HSF_X",
210 fw_status
->status
[i
]);
219 * mei_me_hw_config - configure hw dependent settings
223 static void mei_me_hw_config(struct mei_device
*dev
)
225 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
226 struct mei_me_hw
*hw
= to_me_hw(dev
);
229 /* Doesn't change in runtime */
230 hcsr
= mei_hcsr_read(dev
);
231 dev
->hbuf_depth
= (hcsr
& H_CBD
) >> 24;
234 pci_read_config_dword(pdev
, PCI_CFG_HFS_1
, ®
);
235 trace_mei_pci_cfg_read(dev
->dev
, "PCI_CFG_HFS_1", PCI_CFG_HFS_1
, reg
);
237 ((reg
& PCI_CFG_HFS_1_D0I3_MSK
) == PCI_CFG_HFS_1_D0I3_MSK
);
239 hw
->pg_state
= MEI_PG_OFF
;
240 if (hw
->d0i3_supported
) {
241 reg
= mei_me_d0i3c_read(dev
);
242 if (reg
& H_D0I3C_I3
)
243 hw
->pg_state
= MEI_PG_ON
;
248 * mei_me_pg_state - translate internal pg state
249 * to the mei power gating state
253 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
255 static inline enum mei_pg_state
mei_me_pg_state(struct mei_device
*dev
)
257 struct mei_me_hw
*hw
= to_me_hw(dev
);
262 static inline u32
me_intr_src(u32 hcsr
)
264 return hcsr
& H_CSR_IS_MASK
;
268 * me_intr_disable - disables mei device interrupts
269 * using supplied hcsr register value.
271 * @dev: the device structure
272 * @hcsr: supplied hcsr register value
274 static inline void me_intr_disable(struct mei_device
*dev
, u32 hcsr
)
276 hcsr
&= ~H_CSR_IE_MASK
;
277 mei_hcsr_set(dev
, hcsr
);
281 * mei_me_intr_clear - clear and stop interrupts
283 * @dev: the device structure
284 * @hcsr: supplied hcsr register value
286 static inline void me_intr_clear(struct mei_device
*dev
, u32 hcsr
)
288 if (me_intr_src(hcsr
))
289 mei_hcsr_write(dev
, hcsr
);
293 * mei_me_intr_clear - clear and stop interrupts
295 * @dev: the device structure
297 static void mei_me_intr_clear(struct mei_device
*dev
)
299 u32 hcsr
= mei_hcsr_read(dev
);
301 me_intr_clear(dev
, hcsr
);
304 * mei_me_intr_enable - enables mei device interrupts
306 * @dev: the device structure
308 static void mei_me_intr_enable(struct mei_device
*dev
)
310 u32 hcsr
= mei_hcsr_read(dev
);
312 hcsr
|= H_CSR_IE_MASK
;
313 mei_hcsr_set(dev
, hcsr
);
317 * mei_me_intr_disable - disables mei device interrupts
319 * @dev: the device structure
321 static void mei_me_intr_disable(struct mei_device
*dev
)
323 u32 hcsr
= mei_hcsr_read(dev
);
325 me_intr_disable(dev
, hcsr
);
329 * mei_me_synchronize_irq - wait for pending IRQ handlers
331 * @dev: the device structure
333 static void mei_me_synchronize_irq(struct mei_device
*dev
)
335 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
337 synchronize_irq(pdev
->irq
);
341 * mei_me_hw_reset_release - release device from the reset
343 * @dev: the device structure
345 static void mei_me_hw_reset_release(struct mei_device
*dev
)
347 u32 hcsr
= mei_hcsr_read(dev
);
351 mei_hcsr_set(dev
, hcsr
);
353 /* complete this write before we set host ready on another CPU */
358 * mei_me_host_set_ready - enable device
362 static void mei_me_host_set_ready(struct mei_device
*dev
)
364 u32 hcsr
= mei_hcsr_read(dev
);
366 hcsr
|= H_CSR_IE_MASK
| H_IG
| H_RDY
;
367 mei_hcsr_set(dev
, hcsr
);
371 * mei_me_host_is_ready - check whether the host has turned ready
376 static bool mei_me_host_is_ready(struct mei_device
*dev
)
378 u32 hcsr
= mei_hcsr_read(dev
);
380 return (hcsr
& H_RDY
) == H_RDY
;
384 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
389 static bool mei_me_hw_is_ready(struct mei_device
*dev
)
391 u32 mecsr
= mei_me_mecsr_read(dev
);
393 return (mecsr
& ME_RDY_HRA
) == ME_RDY_HRA
;
397 * mei_me_hw_is_resetting - check whether the me(hw) is in reset
402 static bool mei_me_hw_is_resetting(struct mei_device
*dev
)
404 u32 mecsr
= mei_me_mecsr_read(dev
);
406 return (mecsr
& ME_RST_HRA
) == ME_RST_HRA
;
410 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
411 * or timeout is reached
414 * Return: 0 on success, error otherwise
416 static int mei_me_hw_ready_wait(struct mei_device
*dev
)
418 mutex_unlock(&dev
->device_lock
);
419 wait_event_timeout(dev
->wait_hw_ready
,
421 mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT
));
422 mutex_lock(&dev
->device_lock
);
423 if (!dev
->recvd_hw_ready
) {
424 dev_err(dev
->dev
, "wait hw ready failed\n");
428 mei_me_hw_reset_release(dev
);
429 dev
->recvd_hw_ready
= false;
434 * mei_me_hw_start - hw start routine
437 * Return: 0 on success, error otherwise
439 static int mei_me_hw_start(struct mei_device
*dev
)
441 int ret
= mei_me_hw_ready_wait(dev
);
445 dev_dbg(dev
->dev
, "hw is ready\n");
447 mei_me_host_set_ready(dev
);
453 * mei_hbuf_filled_slots - gets number of device filled buffer slots
455 * @dev: the device structure
457 * Return: number of filled slots
459 static unsigned char mei_hbuf_filled_slots(struct mei_device
*dev
)
462 char read_ptr
, write_ptr
;
464 hcsr
= mei_hcsr_read(dev
);
466 read_ptr
= (char) ((hcsr
& H_CBRP
) >> 8);
467 write_ptr
= (char) ((hcsr
& H_CBWP
) >> 16);
469 return (unsigned char) (write_ptr
- read_ptr
);
473 * mei_me_hbuf_is_empty - checks if host buffer is empty.
475 * @dev: the device structure
477 * Return: true if empty, false - otherwise.
479 static bool mei_me_hbuf_is_empty(struct mei_device
*dev
)
481 return mei_hbuf_filled_slots(dev
) == 0;
485 * mei_me_hbuf_empty_slots - counts write empty slots.
487 * @dev: the device structure
489 * Return: -EOVERFLOW if overflow, otherwise empty slots count
491 static int mei_me_hbuf_empty_slots(struct mei_device
*dev
)
493 unsigned char filled_slots
, empty_slots
;
495 filled_slots
= mei_hbuf_filled_slots(dev
);
496 empty_slots
= dev
->hbuf_depth
- filled_slots
;
498 /* check for overflow */
499 if (filled_slots
> dev
->hbuf_depth
)
506 * mei_me_hbuf_max_len - returns size of hw buffer.
508 * @dev: the device structure
510 * Return: size of hw buffer in bytes
512 static size_t mei_me_hbuf_max_len(const struct mei_device
*dev
)
514 return dev
->hbuf_depth
* sizeof(u32
) - sizeof(struct mei_msg_hdr
);
519 * mei_me_hbuf_write - writes a message to host hw buffer.
521 * @dev: the device structure
522 * @header: mei HECI header of message
523 * @buf: message payload will be written
525 * Return: -EIO if write has failed
527 static int mei_me_hbuf_write(struct mei_device
*dev
,
528 struct mei_msg_hdr
*header
,
529 const unsigned char *buf
)
532 unsigned long length
= header
->length
;
533 u32
*reg_buf
= (u32
*)buf
;
538 dev_dbg(dev
->dev
, MEI_HDR_FMT
, MEI_HDR_PRM(header
));
540 empty_slots
= mei_hbuf_empty_slots(dev
);
541 dev_dbg(dev
->dev
, "empty slots = %hu.\n", empty_slots
);
543 dw_cnt
= mei_data2slots(length
);
544 if (empty_slots
< 0 || dw_cnt
> empty_slots
)
547 mei_me_hcbww_write(dev
, *((u32
*) header
));
549 for (i
= 0; i
< length
/ 4; i
++)
550 mei_me_hcbww_write(dev
, reg_buf
[i
]);
556 memcpy(®
, &buf
[length
- rem
], rem
);
557 mei_me_hcbww_write(dev
, reg
);
560 mei_hcsr_set_hig(dev
);
561 if (!mei_me_hw_is_ready(dev
))
568 * mei_me_count_full_read_slots - counts read full slots.
570 * @dev: the device structure
572 * Return: -EOVERFLOW if overflow, otherwise filled slots count
574 static int mei_me_count_full_read_slots(struct mei_device
*dev
)
577 char read_ptr
, write_ptr
;
578 unsigned char buffer_depth
, filled_slots
;
580 me_csr
= mei_me_mecsr_read(dev
);
581 buffer_depth
= (unsigned char)((me_csr
& ME_CBD_HRA
) >> 24);
582 read_ptr
= (char) ((me_csr
& ME_CBRP_HRA
) >> 8);
583 write_ptr
= (char) ((me_csr
& ME_CBWP_HRA
) >> 16);
584 filled_slots
= (unsigned char) (write_ptr
- read_ptr
);
586 /* check for overflow */
587 if (filled_slots
> buffer_depth
)
590 dev_dbg(dev
->dev
, "filled_slots =%08x\n", filled_slots
);
591 return (int)filled_slots
;
595 * mei_me_read_slots - reads a message from mei device.
597 * @dev: the device structure
598 * @buffer: message buffer will be written
599 * @buffer_length: message size will be read
603 static int mei_me_read_slots(struct mei_device
*dev
, unsigned char *buffer
,
604 unsigned long buffer_length
)
606 u32
*reg_buf
= (u32
*)buffer
;
608 for (; buffer_length
>= sizeof(u32
); buffer_length
-= sizeof(u32
))
609 *reg_buf
++ = mei_me_mecbrw_read(dev
);
611 if (buffer_length
> 0) {
612 u32 reg
= mei_me_mecbrw_read(dev
);
614 memcpy(reg_buf
, ®
, buffer_length
);
617 mei_hcsr_set_hig(dev
);
622 * mei_me_pg_set - write pg enter register
624 * @dev: the device structure
626 static void mei_me_pg_set(struct mei_device
*dev
)
628 struct mei_me_hw
*hw
= to_me_hw(dev
);
631 reg
= mei_me_reg_read(hw
, H_HPG_CSR
);
632 trace_mei_reg_read(dev
->dev
, "H_HPG_CSR", H_HPG_CSR
, reg
);
634 reg
|= H_HPG_CSR_PGI
;
636 trace_mei_reg_write(dev
->dev
, "H_HPG_CSR", H_HPG_CSR
, reg
);
637 mei_me_reg_write(hw
, H_HPG_CSR
, reg
);
641 * mei_me_pg_unset - write pg exit register
643 * @dev: the device structure
645 static void mei_me_pg_unset(struct mei_device
*dev
)
647 struct mei_me_hw
*hw
= to_me_hw(dev
);
650 reg
= mei_me_reg_read(hw
, H_HPG_CSR
);
651 trace_mei_reg_read(dev
->dev
, "H_HPG_CSR", H_HPG_CSR
, reg
);
653 WARN(!(reg
& H_HPG_CSR_PGI
), "PGI is not set\n");
655 reg
|= H_HPG_CSR_PGIHEXR
;
657 trace_mei_reg_write(dev
->dev
, "H_HPG_CSR", H_HPG_CSR
, reg
);
658 mei_me_reg_write(hw
, H_HPG_CSR
, reg
);
662 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
664 * @dev: the device structure
666 * Return: 0 on success an error code otherwise
668 static int mei_me_pg_legacy_enter_sync(struct mei_device
*dev
)
670 struct mei_me_hw
*hw
= to_me_hw(dev
);
671 unsigned long timeout
= mei_secs_to_jiffies(MEI_PGI_TIMEOUT
);
674 dev
->pg_event
= MEI_PG_EVENT_WAIT
;
676 ret
= mei_hbm_pg(dev
, MEI_PG_ISOLATION_ENTRY_REQ_CMD
);
680 mutex_unlock(&dev
->device_lock
);
681 wait_event_timeout(dev
->wait_pg
,
682 dev
->pg_event
== MEI_PG_EVENT_RECEIVED
, timeout
);
683 mutex_lock(&dev
->device_lock
);
685 if (dev
->pg_event
== MEI_PG_EVENT_RECEIVED
) {
692 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
693 hw
->pg_state
= MEI_PG_ON
;
699 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
701 * @dev: the device structure
703 * Return: 0 on success an error code otherwise
705 static int mei_me_pg_legacy_exit_sync(struct mei_device
*dev
)
707 struct mei_me_hw
*hw
= to_me_hw(dev
);
708 unsigned long timeout
= mei_secs_to_jiffies(MEI_PGI_TIMEOUT
);
711 if (dev
->pg_event
== MEI_PG_EVENT_RECEIVED
)
714 dev
->pg_event
= MEI_PG_EVENT_WAIT
;
716 mei_me_pg_unset(dev
);
718 mutex_unlock(&dev
->device_lock
);
719 wait_event_timeout(dev
->wait_pg
,
720 dev
->pg_event
== MEI_PG_EVENT_RECEIVED
, timeout
);
721 mutex_lock(&dev
->device_lock
);
724 if (dev
->pg_event
!= MEI_PG_EVENT_RECEIVED
) {
729 dev
->pg_event
= MEI_PG_EVENT_INTR_WAIT
;
730 ret
= mei_hbm_pg(dev
, MEI_PG_ISOLATION_EXIT_RES_CMD
);
734 mutex_unlock(&dev
->device_lock
);
735 wait_event_timeout(dev
->wait_pg
,
736 dev
->pg_event
== MEI_PG_EVENT_INTR_RECEIVED
, timeout
);
737 mutex_lock(&dev
->device_lock
);
739 if (dev
->pg_event
== MEI_PG_EVENT_INTR_RECEIVED
)
745 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
746 hw
->pg_state
= MEI_PG_OFF
;
752 * mei_me_pg_in_transition - is device now in pg transition
754 * @dev: the device structure
756 * Return: true if in pg transition, false otherwise
758 static bool mei_me_pg_in_transition(struct mei_device
*dev
)
760 return dev
->pg_event
>= MEI_PG_EVENT_WAIT
&&
761 dev
->pg_event
<= MEI_PG_EVENT_INTR_WAIT
;
765 * mei_me_pg_is_enabled - detect if PG is supported by HW
767 * @dev: the device structure
769 * Return: true is pg supported, false otherwise
771 static bool mei_me_pg_is_enabled(struct mei_device
*dev
)
773 struct mei_me_hw
*hw
= to_me_hw(dev
);
774 u32 reg
= mei_me_mecsr_read(dev
);
776 if (hw
->d0i3_supported
)
779 if ((reg
& ME_PGIC_HRA
) == 0)
782 if (!dev
->hbm_f_pg_supported
)
788 dev_dbg(dev
->dev
, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
790 !!(reg
& ME_PGIC_HRA
),
791 dev
->version
.major_version
,
792 dev
->version
.minor_version
,
793 HBM_MAJOR_VERSION_PGI
,
794 HBM_MINOR_VERSION_PGI
);
800 * mei_me_d0i3_set - write d0i3 register bit on mei device.
802 * @dev: the device structure
803 * @intr: ask for interrupt
805 * Return: D0I3C register value
807 static u32
mei_me_d0i3_set(struct mei_device
*dev
, bool intr
)
809 u32 reg
= mei_me_d0i3c_read(dev
);
816 mei_me_d0i3c_write(dev
, reg
);
817 /* read it to ensure HW consistency */
818 reg
= mei_me_d0i3c_read(dev
);
823 * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
825 * @dev: the device structure
827 * Return: D0I3C register value
829 static u32
mei_me_d0i3_unset(struct mei_device
*dev
)
831 u32 reg
= mei_me_d0i3c_read(dev
);
835 mei_me_d0i3c_write(dev
, reg
);
836 /* read it to ensure HW consistency */
837 reg
= mei_me_d0i3c_read(dev
);
842 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
844 * @dev: the device structure
846 * Return: 0 on success an error code otherwise
848 static int mei_me_d0i3_enter_sync(struct mei_device
*dev
)
850 struct mei_me_hw
*hw
= to_me_hw(dev
);
851 unsigned long d0i3_timeout
= mei_secs_to_jiffies(MEI_D0I3_TIMEOUT
);
852 unsigned long pgi_timeout
= mei_secs_to_jiffies(MEI_PGI_TIMEOUT
);
856 reg
= mei_me_d0i3c_read(dev
);
857 if (reg
& H_D0I3C_I3
) {
858 /* we are in d0i3, nothing to do */
859 dev_dbg(dev
->dev
, "d0i3 set not needed\n");
864 /* PGI entry procedure */
865 dev
->pg_event
= MEI_PG_EVENT_WAIT
;
867 ret
= mei_hbm_pg(dev
, MEI_PG_ISOLATION_ENTRY_REQ_CMD
);
869 /* FIXME: should we reset here? */
872 mutex_unlock(&dev
->device_lock
);
873 wait_event_timeout(dev
->wait_pg
,
874 dev
->pg_event
== MEI_PG_EVENT_RECEIVED
, pgi_timeout
);
875 mutex_lock(&dev
->device_lock
);
877 if (dev
->pg_event
!= MEI_PG_EVENT_RECEIVED
) {
881 /* end PGI entry procedure */
883 dev
->pg_event
= MEI_PG_EVENT_INTR_WAIT
;
885 reg
= mei_me_d0i3_set(dev
, true);
886 if (!(reg
& H_D0I3C_CIP
)) {
887 dev_dbg(dev
->dev
, "d0i3 enter wait not needed\n");
892 mutex_unlock(&dev
->device_lock
);
893 wait_event_timeout(dev
->wait_pg
,
894 dev
->pg_event
== MEI_PG_EVENT_INTR_RECEIVED
, d0i3_timeout
);
895 mutex_lock(&dev
->device_lock
);
897 if (dev
->pg_event
!= MEI_PG_EVENT_INTR_RECEIVED
) {
898 reg
= mei_me_d0i3c_read(dev
);
899 if (!(reg
& H_D0I3C_I3
)) {
907 hw
->pg_state
= MEI_PG_ON
;
909 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
910 dev_dbg(dev
->dev
, "d0i3 enter ret = %d\n", ret
);
915 * mei_me_d0i3_enter - perform d0i3 entry procedure
916 * no hbm PG handshake
917 * no waiting for confirmation; runs with interrupts
920 * @dev: the device structure
922 * Return: 0 on success an error code otherwise
924 static int mei_me_d0i3_enter(struct mei_device
*dev
)
926 struct mei_me_hw
*hw
= to_me_hw(dev
);
929 reg
= mei_me_d0i3c_read(dev
);
930 if (reg
& H_D0I3C_I3
) {
931 /* we are in d0i3, nothing to do */
932 dev_dbg(dev
->dev
, "already d0i3 : set not needed\n");
936 mei_me_d0i3_set(dev
, false);
938 hw
->pg_state
= MEI_PG_ON
;
939 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
940 dev_dbg(dev
->dev
, "d0i3 enter\n");
945 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
947 * @dev: the device structure
949 * Return: 0 on success an error code otherwise
951 static int mei_me_d0i3_exit_sync(struct mei_device
*dev
)
953 struct mei_me_hw
*hw
= to_me_hw(dev
);
954 unsigned long timeout
= mei_secs_to_jiffies(MEI_D0I3_TIMEOUT
);
958 dev
->pg_event
= MEI_PG_EVENT_INTR_WAIT
;
960 reg
= mei_me_d0i3c_read(dev
);
961 if (!(reg
& H_D0I3C_I3
)) {
962 /* we are not in d0i3, nothing to do */
963 dev_dbg(dev
->dev
, "d0i3 exit not needed\n");
968 reg
= mei_me_d0i3_unset(dev
);
969 if (!(reg
& H_D0I3C_CIP
)) {
970 dev_dbg(dev
->dev
, "d0i3 exit wait not needed\n");
975 mutex_unlock(&dev
->device_lock
);
976 wait_event_timeout(dev
->wait_pg
,
977 dev
->pg_event
== MEI_PG_EVENT_INTR_RECEIVED
, timeout
);
978 mutex_lock(&dev
->device_lock
);
980 if (dev
->pg_event
!= MEI_PG_EVENT_INTR_RECEIVED
) {
981 reg
= mei_me_d0i3c_read(dev
);
982 if (reg
& H_D0I3C_I3
) {
990 hw
->pg_state
= MEI_PG_OFF
;
992 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
994 dev_dbg(dev
->dev
, "d0i3 exit ret = %d\n", ret
);
999 * mei_me_pg_legacy_intr - perform legacy pg processing
1000 * in interrupt thread handler
1002 * @dev: the device structure
1004 static void mei_me_pg_legacy_intr(struct mei_device
*dev
)
1006 struct mei_me_hw
*hw
= to_me_hw(dev
);
1008 if (dev
->pg_event
!= MEI_PG_EVENT_INTR_WAIT
)
1011 dev
->pg_event
= MEI_PG_EVENT_INTR_RECEIVED
;
1012 hw
->pg_state
= MEI_PG_OFF
;
1013 if (waitqueue_active(&dev
->wait_pg
))
1014 wake_up(&dev
->wait_pg
);
1018 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
1020 * @dev: the device structure
1021 * @intr_source: interrupt source
1023 static void mei_me_d0i3_intr(struct mei_device
*dev
, u32 intr_source
)
1025 struct mei_me_hw
*hw
= to_me_hw(dev
);
1027 if (dev
->pg_event
== MEI_PG_EVENT_INTR_WAIT
&&
1028 (intr_source
& H_D0I3C_IS
)) {
1029 dev
->pg_event
= MEI_PG_EVENT_INTR_RECEIVED
;
1030 if (hw
->pg_state
== MEI_PG_ON
) {
1031 hw
->pg_state
= MEI_PG_OFF
;
1032 if (dev
->hbm_state
!= MEI_HBM_IDLE
) {
1034 * force H_RDY because it could be
1035 * wiped off during PG
1037 dev_dbg(dev
->dev
, "d0i3 set host ready\n");
1038 mei_me_host_set_ready(dev
);
1041 hw
->pg_state
= MEI_PG_ON
;
1044 wake_up(&dev
->wait_pg
);
1047 if (hw
->pg_state
== MEI_PG_ON
&& (intr_source
& H_IS
)) {
1049 * HW sent some data and we are in D0i3, so
1050 * we got here because of HW initiated exit from D0i3.
1051 * Start runtime pm resume sequence to exit low power state.
1053 dev_dbg(dev
->dev
, "d0i3 want resume\n");
1054 mei_hbm_pg_resume(dev
);
1059 * mei_me_pg_intr - perform pg processing in interrupt thread handler
1061 * @dev: the device structure
1062 * @intr_source: interrupt source
1064 static void mei_me_pg_intr(struct mei_device
*dev
, u32 intr_source
)
1066 struct mei_me_hw
*hw
= to_me_hw(dev
);
1068 if (hw
->d0i3_supported
)
1069 mei_me_d0i3_intr(dev
, intr_source
);
1071 mei_me_pg_legacy_intr(dev
);
1075 * mei_me_pg_enter_sync - perform runtime pm entry procedure
1077 * @dev: the device structure
1079 * Return: 0 on success an error code otherwise
1081 int mei_me_pg_enter_sync(struct mei_device
*dev
)
1083 struct mei_me_hw
*hw
= to_me_hw(dev
);
1085 if (hw
->d0i3_supported
)
1086 return mei_me_d0i3_enter_sync(dev
);
1088 return mei_me_pg_legacy_enter_sync(dev
);
1092 * mei_me_pg_exit_sync - perform runtime pm exit procedure
1094 * @dev: the device structure
1096 * Return: 0 on success an error code otherwise
1098 int mei_me_pg_exit_sync(struct mei_device
*dev
)
1100 struct mei_me_hw
*hw
= to_me_hw(dev
);
1102 if (hw
->d0i3_supported
)
1103 return mei_me_d0i3_exit_sync(dev
);
1105 return mei_me_pg_legacy_exit_sync(dev
);
1109 * mei_me_hw_reset - resets fw via mei csr register.
1111 * @dev: the device structure
1112 * @intr_enable: if interrupt should be enabled after reset.
1114 * Return: 0 on success an error code otherwise
1116 static int mei_me_hw_reset(struct mei_device
*dev
, bool intr_enable
)
1118 struct mei_me_hw
*hw
= to_me_hw(dev
);
1123 mei_me_intr_enable(dev
);
1124 if (hw
->d0i3_supported
) {
1125 ret
= mei_me_d0i3_exit_sync(dev
);
1131 pm_runtime_set_active(dev
->dev
);
1133 hcsr
= mei_hcsr_read(dev
);
1134 /* H_RST may be found lit before reset is started,
1135 * for example if preceding reset flow hasn't completed.
1136 * In that case asserting H_RST will be ignored, therefore
1137 * we need to clean H_RST bit to start a successful reset sequence.
1139 if ((hcsr
& H_RST
) == H_RST
) {
1140 dev_warn(dev
->dev
, "H_RST is set = 0x%08X", hcsr
);
1142 mei_hcsr_set(dev
, hcsr
);
1143 hcsr
= mei_hcsr_read(dev
);
1146 hcsr
|= H_RST
| H_IG
| H_CSR_IS_MASK
;
1149 hcsr
&= ~H_CSR_IE_MASK
;
1151 dev
->recvd_hw_ready
= false;
1152 mei_hcsr_write(dev
, hcsr
);
1155 * Host reads the H_CSR once to ensure that the
1156 * posted write to H_CSR completes.
1158 hcsr
= mei_hcsr_read(dev
);
1160 if ((hcsr
& H_RST
) == 0)
1161 dev_warn(dev
->dev
, "H_RST is not set = 0x%08X", hcsr
);
1163 if ((hcsr
& H_RDY
) == H_RDY
)
1164 dev_warn(dev
->dev
, "H_RDY is not cleared 0x%08X", hcsr
);
1167 mei_me_hw_reset_release(dev
);
1168 if (hw
->d0i3_supported
) {
1169 ret
= mei_me_d0i3_enter(dev
);
1178 * mei_me_irq_quick_handler - The ISR of the MEI device
1180 * @irq: The irq number
1181 * @dev_id: pointer to the device structure
1183 * Return: irqreturn_t
1185 irqreturn_t
mei_me_irq_quick_handler(int irq
, void *dev_id
)
1187 struct mei_device
*dev
= (struct mei_device
*)dev_id
;
1190 hcsr
= mei_hcsr_read(dev
);
1191 if (!me_intr_src(hcsr
))
1194 dev_dbg(dev
->dev
, "interrupt source 0x%08X\n", me_intr_src(hcsr
));
1196 /* disable interrupts on device */
1197 me_intr_disable(dev
, hcsr
);
1198 return IRQ_WAKE_THREAD
;
1202 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
1205 * @irq: The irq number
1206 * @dev_id: pointer to the device structure
1208 * Return: irqreturn_t
1211 irqreturn_t
mei_me_irq_thread_handler(int irq
, void *dev_id
)
1213 struct mei_device
*dev
= (struct mei_device
*) dev_id
;
1214 struct list_head cmpl_list
;
1219 dev_dbg(dev
->dev
, "function called after ISR to handle the interrupt processing.\n");
1220 /* initialize our complete list */
1221 mutex_lock(&dev
->device_lock
);
1223 hcsr
= mei_hcsr_read(dev
);
1224 me_intr_clear(dev
, hcsr
);
1226 INIT_LIST_HEAD(&cmpl_list
);
1228 /* check if ME wants a reset */
1229 if (!mei_hw_is_ready(dev
) && dev
->dev_state
!= MEI_DEV_RESETTING
) {
1230 dev_warn(dev
->dev
, "FW not ready: resetting.\n");
1231 schedule_work(&dev
->reset_work
);
1235 if (mei_me_hw_is_resetting(dev
))
1236 mei_hcsr_set_hig(dev
);
1238 mei_me_pg_intr(dev
, me_intr_src(hcsr
));
1240 /* check if we need to start the dev */
1241 if (!mei_host_is_ready(dev
)) {
1242 if (mei_hw_is_ready(dev
)) {
1243 dev_dbg(dev
->dev
, "we need to start the dev.\n");
1244 dev
->recvd_hw_ready
= true;
1245 wake_up(&dev
->wait_hw_ready
);
1247 dev_dbg(dev
->dev
, "Spurious Interrupt\n");
1251 /* check slots available for reading */
1252 slots
= mei_count_full_read_slots(dev
);
1254 dev_dbg(dev
->dev
, "slots to read = %08x\n", slots
);
1255 rets
= mei_irq_read_handler(dev
, &cmpl_list
, &slots
);
1256 /* There is a race between ME write and interrupt delivery:
1257 * Not all data is always available immediately after the
1258 * interrupt, so try to read again on the next interrupt.
1260 if (rets
== -ENODATA
)
1264 (dev
->dev_state
!= MEI_DEV_RESETTING
&&
1265 dev
->dev_state
!= MEI_DEV_POWER_DOWN
)) {
1266 dev_err(dev
->dev
, "mei_irq_read_handler ret = %d.\n",
1268 schedule_work(&dev
->reset_work
);
1273 dev
->hbuf_is_ready
= mei_hbuf_is_ready(dev
);
1276 * During PG handshake only allowed write is the replay to the
1277 * PG exit message, so block calling write function
1278 * if the pg event is in PG handshake
1280 if (dev
->pg_event
!= MEI_PG_EVENT_WAIT
&&
1281 dev
->pg_event
!= MEI_PG_EVENT_RECEIVED
) {
1282 rets
= mei_irq_write_handler(dev
, &cmpl_list
);
1283 dev
->hbuf_is_ready
= mei_hbuf_is_ready(dev
);
1286 mei_irq_compl_handler(dev
, &cmpl_list
);
1289 dev_dbg(dev
->dev
, "interrupt thread end ret = %d\n", rets
);
1290 mei_me_intr_enable(dev
);
1291 mutex_unlock(&dev
->device_lock
);
1295 static const struct mei_hw_ops mei_me_hw_ops
= {
1297 .fw_status
= mei_me_fw_status
,
1298 .pg_state
= mei_me_pg_state
,
1300 .host_is_ready
= mei_me_host_is_ready
,
1302 .hw_is_ready
= mei_me_hw_is_ready
,
1303 .hw_reset
= mei_me_hw_reset
,
1304 .hw_config
= mei_me_hw_config
,
1305 .hw_start
= mei_me_hw_start
,
1307 .pg_in_transition
= mei_me_pg_in_transition
,
1308 .pg_is_enabled
= mei_me_pg_is_enabled
,
1310 .intr_clear
= mei_me_intr_clear
,
1311 .intr_enable
= mei_me_intr_enable
,
1312 .intr_disable
= mei_me_intr_disable
,
1313 .synchronize_irq
= mei_me_synchronize_irq
,
1315 .hbuf_free_slots
= mei_me_hbuf_empty_slots
,
1316 .hbuf_is_ready
= mei_me_hbuf_is_empty
,
1317 .hbuf_max_len
= mei_me_hbuf_max_len
,
1319 .write
= mei_me_hbuf_write
,
1321 .rdbuf_full_slots
= mei_me_count_full_read_slots
,
1322 .read_hdr
= mei_me_mecbrw_read
,
1323 .read
= mei_me_read_slots
1326 static bool mei_me_fw_type_nm(struct pci_dev
*pdev
)
1330 pci_read_config_dword(pdev
, PCI_CFG_HFS_2
, ®
);
1331 trace_mei_pci_cfg_read(&pdev
->dev
, "PCI_CFG_HFS_2", PCI_CFG_HFS_2
, reg
);
1332 /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
1333 return (reg
& 0x600) == 0x200;
1336 #define MEI_CFG_FW_NM \
1337 .quirk_probe = mei_me_fw_type_nm
1339 static bool mei_me_fw_type_sps(struct pci_dev
*pdev
)
1345 * Read ME FW Status register to check for SPS Firmware
1346 * The SPS FW is only signaled in pci function 0
1348 devfn
= PCI_DEVFN(PCI_SLOT(pdev
->devfn
), 0);
1349 pci_bus_read_config_dword(pdev
->bus
, devfn
, PCI_CFG_HFS_1
, ®
);
1350 trace_mei_pci_cfg_read(&pdev
->dev
, "PCI_CFG_HFS_1", PCI_CFG_HFS_1
, reg
);
1351 /* if bits [19:16] = 15, running SPS Firmware */
1352 return (reg
& 0xf0000) == 0xf0000;
1355 #define MEI_CFG_FW_SPS \
1356 .quirk_probe = mei_me_fw_type_sps
1359 #define MEI_CFG_ICH_HFS \
1360 .fw_status.count = 0
1362 #define MEI_CFG_ICH10_HFS \
1363 .fw_status.count = 1, \
1364 .fw_status.status[0] = PCI_CFG_HFS_1
1366 #define MEI_CFG_PCH_HFS \
1367 .fw_status.count = 2, \
1368 .fw_status.status[0] = PCI_CFG_HFS_1, \
1369 .fw_status.status[1] = PCI_CFG_HFS_2
1371 #define MEI_CFG_PCH8_HFS \
1372 .fw_status.count = 6, \
1373 .fw_status.status[0] = PCI_CFG_HFS_1, \
1374 .fw_status.status[1] = PCI_CFG_HFS_2, \
1375 .fw_status.status[2] = PCI_CFG_HFS_3, \
1376 .fw_status.status[3] = PCI_CFG_HFS_4, \
1377 .fw_status.status[4] = PCI_CFG_HFS_5, \
1378 .fw_status.status[5] = PCI_CFG_HFS_6
1380 /* ICH Legacy devices */
1381 static const struct mei_cfg mei_me_ich_cfg
= {
1386 static const struct mei_cfg mei_me_ich10_cfg
= {
1391 static const struct mei_cfg mei_me_pch_cfg
= {
1395 /* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
1396 static const struct mei_cfg mei_me_pch_cpt_pbg_cfg
= {
1401 /* PCH8 Lynx Point and newer devices */
1402 static const struct mei_cfg mei_me_pch8_cfg
= {
1406 /* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
1407 static const struct mei_cfg mei_me_pch8_sps_cfg
= {
1413 * mei_cfg_list - A list of platform platform specific configurations.
1414 * Note: has to be synchronized with enum mei_cfg_idx.
1416 static const struct mei_cfg
*const mei_cfg_list
[] = {
1417 [MEI_ME_UNDEF_CFG
] = NULL
,
1418 [MEI_ME_ICH_CFG
] = &mei_me_ich_cfg
,
1419 [MEI_ME_ICH10_CFG
] = &mei_me_ich10_cfg
,
1420 [MEI_ME_PCH_CFG
] = &mei_me_pch_cfg
,
1421 [MEI_ME_PCH_CPT_PBG_CFG
] = &mei_me_pch_cpt_pbg_cfg
,
1422 [MEI_ME_PCH8_CFG
] = &mei_me_pch8_cfg
,
1423 [MEI_ME_PCH8_SPS_CFG
] = &mei_me_pch8_sps_cfg
,
1426 const struct mei_cfg
*mei_me_get_cfg(kernel_ulong_t idx
)
1428 BUILD_BUG_ON(ARRAY_SIZE(mei_cfg_list
) != MEI_ME_NUM_CFG
);
1430 if (idx
>= MEI_ME_NUM_CFG
)
1433 return mei_cfg_list
[idx
];
1437 * mei_me_dev_init - allocates and initializes the mei device structure
1439 * @pdev: The pci device structure
1440 * @cfg: per device generation config
1442 * Return: The mei_device pointer on success, NULL on failure.
1444 struct mei_device
*mei_me_dev_init(struct pci_dev
*pdev
,
1445 const struct mei_cfg
*cfg
)
1447 struct mei_device
*dev
;
1448 struct mei_me_hw
*hw
;
1450 dev
= devm_kzalloc(&pdev
->dev
, sizeof(struct mei_device
) +
1451 sizeof(struct mei_me_hw
), GFP_KERNEL
);
1456 mei_device_init(dev
, &pdev
->dev
, &mei_me_hw_ops
);