xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / misc / vmw_vmci / vmci_queue_pair.c
blob0339538c182d20ea6489407e505aff66b0dfec79
1 /*
2 * VMware VMCI Driver
4 * Copyright (C) 2012 VMware, Inc. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation version 2 and no later version.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/uio.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
30 #include <linux/skbuff.h>
32 #include "vmci_handle_array.h"
33 #include "vmci_queue_pair.h"
34 #include "vmci_datagram.h"
35 #include "vmci_resource.h"
36 #include "vmci_context.h"
37 #include "vmci_driver.h"
38 #include "vmci_event.h"
39 #include "vmci_route.h"
42 * In the following, we will distinguish between two kinds of VMX processes -
43 * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
44 * VMCI page files in the VMX and supporting VM to VM communication and the
45 * newer ones that use the guest memory directly. We will in the following
46 * refer to the older VMX versions as old-style VMX'en, and the newer ones as
47 * new-style VMX'en.
49 * The state transition datagram is as follows (the VMCIQPB_ prefix has been
50 * removed for readability) - see below for more details on the transtions:
52 * -------------- NEW -------------
53 * | |
54 * \_/ \_/
55 * CREATED_NO_MEM <-----------------> CREATED_MEM
56 * | | |
57 * | o-----------------------o |
58 * | | |
59 * \_/ \_/ \_/
60 * ATTACHED_NO_MEM <----------------> ATTACHED_MEM
61 * | | |
62 * | o----------------------o |
63 * | | |
64 * \_/ \_/ \_/
65 * SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
66 * | |
67 * | |
68 * -------------> gone <-------------
70 * In more detail. When a VMCI queue pair is first created, it will be in the
71 * VMCIQPB_NEW state. It will then move into one of the following states:
73 * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
75 * - the created was performed by a host endpoint, in which case there is
76 * no backing memory yet.
78 * - the create was initiated by an old-style VMX, that uses
79 * vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
80 * a later point in time. This state can be distinguished from the one
81 * above by the context ID of the creator. A host side is not allowed to
82 * attach until the page store has been set.
84 * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
85 * is created by a VMX using the queue pair device backend that
86 * sets the UVAs of the queue pair immediately and stores the
87 * information for later attachers. At this point, it is ready for
88 * the host side to attach to it.
90 * Once the queue pair is in one of the created states (with the exception of
91 * the case mentioned for older VMX'en above), it is possible to attach to the
92 * queue pair. Again we have two new states possible:
94 * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
95 * paths:
97 * - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
98 * pair, and attaches to a queue pair previously created by the host side.
100 * - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
101 * already created by a guest.
103 * - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
104 * vmci_qp_broker_set_page_store (see below).
106 * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
107 * VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
108 * bring the queue pair into this state. Once vmci_qp_broker_set_page_store
109 * is called to register the user memory, the VMCIQPB_ATTACH_MEM state
110 * will be entered.
112 * From the attached queue pair, the queue pair can enter the shutdown states
113 * when either side of the queue pair detaches. If the guest side detaches
114 * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
115 * the content of the queue pair will no longer be available. If the host
116 * side detaches first, the queue pair will either enter the
117 * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
118 * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
119 * (e.g., the host detaches while a guest is stunned).
121 * New-style VMX'en will also unmap guest memory, if the guest is
122 * quiesced, e.g., during a snapshot operation. In that case, the guest
123 * memory will no longer be available, and the queue pair will transition from
124 * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
125 * in which case the queue pair will transition from the *_NO_MEM state at that
126 * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
127 * since the peer may have either attached or detached in the meantime. The
128 * values are laid out such that ++ on a state will move from a *_NO_MEM to a
129 * *_MEM state, and vice versa.
132 /* The Kernel specific component of the struct vmci_queue structure. */
133 struct vmci_queue_kern_if {
134 struct mutex __mutex; /* Protects the queue. */
135 struct mutex *mutex; /* Shared by producer and consumer queues. */
136 size_t num_pages; /* Number of pages incl. header. */
137 bool host; /* Host or guest? */
138 union {
139 struct {
140 dma_addr_t *pas;
141 void **vas;
142 } g; /* Used by the guest. */
143 struct {
144 struct page **page;
145 struct page **header_page;
146 } h; /* Used by the host. */
147 } u;
151 * This structure is opaque to the clients.
153 struct vmci_qp {
154 struct vmci_handle handle;
155 struct vmci_queue *produce_q;
156 struct vmci_queue *consume_q;
157 u64 produce_q_size;
158 u64 consume_q_size;
159 u32 peer;
160 u32 flags;
161 u32 priv_flags;
162 bool guest_endpoint;
163 unsigned int blocked;
164 unsigned int generation;
165 wait_queue_head_t event;
168 enum qp_broker_state {
169 VMCIQPB_NEW,
170 VMCIQPB_CREATED_NO_MEM,
171 VMCIQPB_CREATED_MEM,
172 VMCIQPB_ATTACHED_NO_MEM,
173 VMCIQPB_ATTACHED_MEM,
174 VMCIQPB_SHUTDOWN_NO_MEM,
175 VMCIQPB_SHUTDOWN_MEM,
176 VMCIQPB_GONE
179 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
180 _qpb->state == VMCIQPB_ATTACHED_MEM || \
181 _qpb->state == VMCIQPB_SHUTDOWN_MEM)
184 * In the queue pair broker, we always use the guest point of view for
185 * the produce and consume queue values and references, e.g., the
186 * produce queue size stored is the guests produce queue size. The
187 * host endpoint will need to swap these around. The only exception is
188 * the local queue pairs on the host, in which case the host endpoint
189 * that creates the queue pair will have the right orientation, and
190 * the attaching host endpoint will need to swap.
192 struct qp_entry {
193 struct list_head list_item;
194 struct vmci_handle handle;
195 u32 peer;
196 u32 flags;
197 u64 produce_size;
198 u64 consume_size;
199 u32 ref_count;
202 struct qp_broker_entry {
203 struct vmci_resource resource;
204 struct qp_entry qp;
205 u32 create_id;
206 u32 attach_id;
207 enum qp_broker_state state;
208 bool require_trusted_attach;
209 bool created_by_trusted;
210 bool vmci_page_files; /* Created by VMX using VMCI page files */
211 struct vmci_queue *produce_q;
212 struct vmci_queue *consume_q;
213 struct vmci_queue_header saved_produce_q;
214 struct vmci_queue_header saved_consume_q;
215 vmci_event_release_cb wakeup_cb;
216 void *client_data;
217 void *local_mem; /* Kernel memory for local queue pair */
220 struct qp_guest_endpoint {
221 struct vmci_resource resource;
222 struct qp_entry qp;
223 u64 num_ppns;
224 void *produce_q;
225 void *consume_q;
226 struct ppn_set ppn_set;
229 struct qp_list {
230 struct list_head head;
231 struct mutex mutex; /* Protect queue list. */
234 static struct qp_list qp_broker_list = {
235 .head = LIST_HEAD_INIT(qp_broker_list.head),
236 .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
239 static struct qp_list qp_guest_endpoints = {
240 .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
241 .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
244 #define INVALID_VMCI_GUEST_MEM_ID 0
245 #define QPE_NUM_PAGES(_QPE) ((u32) \
246 (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
247 DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
251 * Frees kernel VA space for a given queue and its queue header, and
252 * frees physical data pages.
254 static void qp_free_queue(void *q, u64 size)
256 struct vmci_queue *queue = q;
258 if (queue) {
259 u64 i;
261 /* Given size does not include header, so add in a page here. */
262 for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
263 dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
264 queue->kernel_if->u.g.vas[i],
265 queue->kernel_if->u.g.pas[i]);
268 vfree(queue);
273 * Allocates kernel queue pages of specified size with IOMMU mappings,
274 * plus space for the queue structure/kernel interface and the queue
275 * header.
277 static void *qp_alloc_queue(u64 size, u32 flags)
279 u64 i;
280 struct vmci_queue *queue;
281 size_t pas_size;
282 size_t vas_size;
283 size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
284 u64 num_pages;
286 if (size > SIZE_MAX - PAGE_SIZE)
287 return NULL;
288 num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
289 if (num_pages >
290 (SIZE_MAX - queue_size) /
291 (sizeof(*queue->kernel_if->u.g.pas) +
292 sizeof(*queue->kernel_if->u.g.vas)))
293 return NULL;
295 pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
296 vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
297 queue_size += pas_size + vas_size;
299 queue = vmalloc(queue_size);
300 if (!queue)
301 return NULL;
303 queue->q_header = NULL;
304 queue->saved_header = NULL;
305 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
306 queue->kernel_if->mutex = NULL;
307 queue->kernel_if->num_pages = num_pages;
308 queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
309 queue->kernel_if->u.g.vas =
310 (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
311 queue->kernel_if->host = false;
313 for (i = 0; i < num_pages; i++) {
314 queue->kernel_if->u.g.vas[i] =
315 dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
316 &queue->kernel_if->u.g.pas[i],
317 GFP_KERNEL);
318 if (!queue->kernel_if->u.g.vas[i]) {
319 /* Size excl. the header. */
320 qp_free_queue(queue, i * PAGE_SIZE);
321 return NULL;
325 /* Queue header is the first page. */
326 queue->q_header = queue->kernel_if->u.g.vas[0];
328 return queue;
332 * Copies from a given buffer or iovector to a VMCI Queue. Uses
333 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
334 * by traversing the offset -> page translation structure for the queue.
335 * Assumes that offset + size does not wrap around in the queue.
337 static int qp_memcpy_to_queue_iter(struct vmci_queue *queue,
338 u64 queue_offset,
339 struct iov_iter *from,
340 size_t size)
342 struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
343 size_t bytes_copied = 0;
345 while (bytes_copied < size) {
346 const u64 page_index =
347 (queue_offset + bytes_copied) / PAGE_SIZE;
348 const size_t page_offset =
349 (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
350 void *va;
351 size_t to_copy;
353 if (kernel_if->host)
354 va = kmap(kernel_if->u.h.page[page_index]);
355 else
356 va = kernel_if->u.g.vas[page_index + 1];
357 /* Skip header. */
359 if (size - bytes_copied > PAGE_SIZE - page_offset)
360 /* Enough payload to fill up from this page. */
361 to_copy = PAGE_SIZE - page_offset;
362 else
363 to_copy = size - bytes_copied;
365 if (!copy_from_iter_full((u8 *)va + page_offset, to_copy,
366 from)) {
367 if (kernel_if->host)
368 kunmap(kernel_if->u.h.page[page_index]);
369 return VMCI_ERROR_INVALID_ARGS;
371 bytes_copied += to_copy;
372 if (kernel_if->host)
373 kunmap(kernel_if->u.h.page[page_index]);
376 return VMCI_SUCCESS;
380 * Copies to a given buffer or iovector from a VMCI Queue. Uses
381 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
382 * by traversing the offset -> page translation structure for the queue.
383 * Assumes that offset + size does not wrap around in the queue.
385 static int qp_memcpy_from_queue_iter(struct iov_iter *to,
386 const struct vmci_queue *queue,
387 u64 queue_offset, size_t size)
389 struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
390 size_t bytes_copied = 0;
392 while (bytes_copied < size) {
393 const u64 page_index =
394 (queue_offset + bytes_copied) / PAGE_SIZE;
395 const size_t page_offset =
396 (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
397 void *va;
398 size_t to_copy;
399 int err;
401 if (kernel_if->host)
402 va = kmap(kernel_if->u.h.page[page_index]);
403 else
404 va = kernel_if->u.g.vas[page_index + 1];
405 /* Skip header. */
407 if (size - bytes_copied > PAGE_SIZE - page_offset)
408 /* Enough payload to fill up this page. */
409 to_copy = PAGE_SIZE - page_offset;
410 else
411 to_copy = size - bytes_copied;
413 err = copy_to_iter((u8 *)va + page_offset, to_copy, to);
414 if (err != to_copy) {
415 if (kernel_if->host)
416 kunmap(kernel_if->u.h.page[page_index]);
417 return VMCI_ERROR_INVALID_ARGS;
419 bytes_copied += to_copy;
420 if (kernel_if->host)
421 kunmap(kernel_if->u.h.page[page_index]);
424 return VMCI_SUCCESS;
428 * Allocates two list of PPNs --- one for the pages in the produce queue,
429 * and the other for the pages in the consume queue. Intializes the list
430 * of PPNs with the page frame numbers of the KVA for the two queues (and
431 * the queue headers).
433 static int qp_alloc_ppn_set(void *prod_q,
434 u64 num_produce_pages,
435 void *cons_q,
436 u64 num_consume_pages, struct ppn_set *ppn_set)
438 u32 *produce_ppns;
439 u32 *consume_ppns;
440 struct vmci_queue *produce_q = prod_q;
441 struct vmci_queue *consume_q = cons_q;
442 u64 i;
444 if (!produce_q || !num_produce_pages || !consume_q ||
445 !num_consume_pages || !ppn_set)
446 return VMCI_ERROR_INVALID_ARGS;
448 if (ppn_set->initialized)
449 return VMCI_ERROR_ALREADY_EXISTS;
451 produce_ppns =
452 kmalloc(num_produce_pages * sizeof(*produce_ppns), GFP_KERNEL);
453 if (!produce_ppns)
454 return VMCI_ERROR_NO_MEM;
456 consume_ppns =
457 kmalloc(num_consume_pages * sizeof(*consume_ppns), GFP_KERNEL);
458 if (!consume_ppns) {
459 kfree(produce_ppns);
460 return VMCI_ERROR_NO_MEM;
463 for (i = 0; i < num_produce_pages; i++) {
464 unsigned long pfn;
466 produce_ppns[i] =
467 produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
468 pfn = produce_ppns[i];
470 /* Fail allocation if PFN isn't supported by hypervisor. */
471 if (sizeof(pfn) > sizeof(*produce_ppns)
472 && pfn != produce_ppns[i])
473 goto ppn_error;
476 for (i = 0; i < num_consume_pages; i++) {
477 unsigned long pfn;
479 consume_ppns[i] =
480 consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
481 pfn = consume_ppns[i];
483 /* Fail allocation if PFN isn't supported by hypervisor. */
484 if (sizeof(pfn) > sizeof(*consume_ppns)
485 && pfn != consume_ppns[i])
486 goto ppn_error;
489 ppn_set->num_produce_pages = num_produce_pages;
490 ppn_set->num_consume_pages = num_consume_pages;
491 ppn_set->produce_ppns = produce_ppns;
492 ppn_set->consume_ppns = consume_ppns;
493 ppn_set->initialized = true;
494 return VMCI_SUCCESS;
496 ppn_error:
497 kfree(produce_ppns);
498 kfree(consume_ppns);
499 return VMCI_ERROR_INVALID_ARGS;
503 * Frees the two list of PPNs for a queue pair.
505 static void qp_free_ppn_set(struct ppn_set *ppn_set)
507 if (ppn_set->initialized) {
508 /* Do not call these functions on NULL inputs. */
509 kfree(ppn_set->produce_ppns);
510 kfree(ppn_set->consume_ppns);
512 memset(ppn_set, 0, sizeof(*ppn_set));
516 * Populates the list of PPNs in the hypercall structure with the PPNS
517 * of the produce queue and the consume queue.
519 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
521 memcpy(call_buf, ppn_set->produce_ppns,
522 ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns));
523 memcpy(call_buf +
524 ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns),
525 ppn_set->consume_ppns,
526 ppn_set->num_consume_pages * sizeof(*ppn_set->consume_ppns));
528 return VMCI_SUCCESS;
532 * Allocates kernel VA space of specified size plus space for the queue
533 * and kernel interface. This is different from the guest queue allocator,
534 * because we do not allocate our own queue header/data pages here but
535 * share those of the guest.
537 static struct vmci_queue *qp_host_alloc_queue(u64 size)
539 struct vmci_queue *queue;
540 size_t queue_page_size;
541 u64 num_pages;
542 const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
544 if (size > SIZE_MAX - PAGE_SIZE)
545 return NULL;
546 num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
547 if (num_pages > (SIZE_MAX - queue_size) /
548 sizeof(*queue->kernel_if->u.h.page))
549 return NULL;
551 queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
553 queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
554 if (queue) {
555 queue->q_header = NULL;
556 queue->saved_header = NULL;
557 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
558 queue->kernel_if->host = true;
559 queue->kernel_if->mutex = NULL;
560 queue->kernel_if->num_pages = num_pages;
561 queue->kernel_if->u.h.header_page =
562 (struct page **)((u8 *)queue + queue_size);
563 queue->kernel_if->u.h.page =
564 &queue->kernel_if->u.h.header_page[1];
567 return queue;
571 * Frees kernel memory for a given queue (header plus translation
572 * structure).
574 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
576 kfree(queue);
580 * Initialize the mutex for the pair of queues. This mutex is used to
581 * protect the q_header and the buffer from changing out from under any
582 * users of either queue. Of course, it's only any good if the mutexes
583 * are actually acquired. Queue structure must lie on non-paged memory
584 * or we cannot guarantee access to the mutex.
586 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
587 struct vmci_queue *consume_q)
590 * Only the host queue has shared state - the guest queues do not
591 * need to synchronize access using a queue mutex.
594 if (produce_q->kernel_if->host) {
595 produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
596 consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
597 mutex_init(produce_q->kernel_if->mutex);
602 * Cleans up the mutex for the pair of queues.
604 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
605 struct vmci_queue *consume_q)
607 if (produce_q->kernel_if->host) {
608 produce_q->kernel_if->mutex = NULL;
609 consume_q->kernel_if->mutex = NULL;
614 * Acquire the mutex for the queue. Note that the produce_q and
615 * the consume_q share a mutex. So, only one of the two need to
616 * be passed in to this routine. Either will work just fine.
618 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
620 if (queue->kernel_if->host)
621 mutex_lock(queue->kernel_if->mutex);
625 * Release the mutex for the queue. Note that the produce_q and
626 * the consume_q share a mutex. So, only one of the two need to
627 * be passed in to this routine. Either will work just fine.
629 static void qp_release_queue_mutex(struct vmci_queue *queue)
631 if (queue->kernel_if->host)
632 mutex_unlock(queue->kernel_if->mutex);
636 * Helper function to release pages in the PageStoreAttachInfo
637 * previously obtained using get_user_pages.
639 static void qp_release_pages(struct page **pages,
640 u64 num_pages, bool dirty)
642 int i;
644 for (i = 0; i < num_pages; i++) {
645 if (dirty)
646 set_page_dirty(pages[i]);
648 put_page(pages[i]);
649 pages[i] = NULL;
654 * Lock the user pages referenced by the {produce,consume}Buffer
655 * struct into memory and populate the {produce,consume}Pages
656 * arrays in the attach structure with them.
658 static int qp_host_get_user_memory(u64 produce_uva,
659 u64 consume_uva,
660 struct vmci_queue *produce_q,
661 struct vmci_queue *consume_q)
663 int retval;
664 int err = VMCI_SUCCESS;
666 retval = get_user_pages_fast((uintptr_t) produce_uva,
667 produce_q->kernel_if->num_pages, 1,
668 produce_q->kernel_if->u.h.header_page);
669 if (retval < produce_q->kernel_if->num_pages) {
670 pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
671 retval);
672 qp_release_pages(produce_q->kernel_if->u.h.header_page,
673 retval, false);
674 err = VMCI_ERROR_NO_MEM;
675 goto out;
678 retval = get_user_pages_fast((uintptr_t) consume_uva,
679 consume_q->kernel_if->num_pages, 1,
680 consume_q->kernel_if->u.h.header_page);
681 if (retval < consume_q->kernel_if->num_pages) {
682 pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
683 retval);
684 qp_release_pages(consume_q->kernel_if->u.h.header_page,
685 retval, false);
686 qp_release_pages(produce_q->kernel_if->u.h.header_page,
687 produce_q->kernel_if->num_pages, false);
688 err = VMCI_ERROR_NO_MEM;
691 out:
692 return err;
696 * Registers the specification of the user pages used for backing a queue
697 * pair. Enough information to map in pages is stored in the OS specific
698 * part of the struct vmci_queue structure.
700 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
701 struct vmci_queue *produce_q,
702 struct vmci_queue *consume_q)
704 u64 produce_uva;
705 u64 consume_uva;
708 * The new style and the old style mapping only differs in
709 * that we either get a single or two UVAs, so we split the
710 * single UVA range at the appropriate spot.
712 produce_uva = page_store->pages;
713 consume_uva = page_store->pages +
714 produce_q->kernel_if->num_pages * PAGE_SIZE;
715 return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
716 consume_q);
720 * Releases and removes the references to user pages stored in the attach
721 * struct. Pages are released from the page cache and may become
722 * swappable again.
724 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
725 struct vmci_queue *consume_q)
727 qp_release_pages(produce_q->kernel_if->u.h.header_page,
728 produce_q->kernel_if->num_pages, true);
729 memset(produce_q->kernel_if->u.h.header_page, 0,
730 sizeof(*produce_q->kernel_if->u.h.header_page) *
731 produce_q->kernel_if->num_pages);
732 qp_release_pages(consume_q->kernel_if->u.h.header_page,
733 consume_q->kernel_if->num_pages, true);
734 memset(consume_q->kernel_if->u.h.header_page, 0,
735 sizeof(*consume_q->kernel_if->u.h.header_page) *
736 consume_q->kernel_if->num_pages);
740 * Once qp_host_register_user_memory has been performed on a
741 * queue, the queue pair headers can be mapped into the
742 * kernel. Once mapped, they must be unmapped with
743 * qp_host_unmap_queues prior to calling
744 * qp_host_unregister_user_memory.
745 * Pages are pinned.
747 static int qp_host_map_queues(struct vmci_queue *produce_q,
748 struct vmci_queue *consume_q)
750 int result;
752 if (!produce_q->q_header || !consume_q->q_header) {
753 struct page *headers[2];
755 if (produce_q->q_header != consume_q->q_header)
756 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
758 if (produce_q->kernel_if->u.h.header_page == NULL ||
759 *produce_q->kernel_if->u.h.header_page == NULL)
760 return VMCI_ERROR_UNAVAILABLE;
762 headers[0] = *produce_q->kernel_if->u.h.header_page;
763 headers[1] = *consume_q->kernel_if->u.h.header_page;
765 produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
766 if (produce_q->q_header != NULL) {
767 consume_q->q_header =
768 (struct vmci_queue_header *)((u8 *)
769 produce_q->q_header +
770 PAGE_SIZE);
771 result = VMCI_SUCCESS;
772 } else {
773 pr_warn("vmap failed\n");
774 result = VMCI_ERROR_NO_MEM;
776 } else {
777 result = VMCI_SUCCESS;
780 return result;
784 * Unmaps previously mapped queue pair headers from the kernel.
785 * Pages are unpinned.
787 static int qp_host_unmap_queues(u32 gid,
788 struct vmci_queue *produce_q,
789 struct vmci_queue *consume_q)
791 if (produce_q->q_header) {
792 if (produce_q->q_header < consume_q->q_header)
793 vunmap(produce_q->q_header);
794 else
795 vunmap(consume_q->q_header);
797 produce_q->q_header = NULL;
798 consume_q->q_header = NULL;
801 return VMCI_SUCCESS;
805 * Finds the entry in the list corresponding to a given handle. Assumes
806 * that the list is locked.
808 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
809 struct vmci_handle handle)
811 struct qp_entry *entry;
813 if (vmci_handle_is_invalid(handle))
814 return NULL;
816 list_for_each_entry(entry, &qp_list->head, list_item) {
817 if (vmci_handle_is_equal(entry->handle, handle))
818 return entry;
821 return NULL;
825 * Finds the entry in the list corresponding to a given handle.
827 static struct qp_guest_endpoint *
828 qp_guest_handle_to_entry(struct vmci_handle handle)
830 struct qp_guest_endpoint *entry;
831 struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
833 entry = qp ? container_of(
834 qp, struct qp_guest_endpoint, qp) : NULL;
835 return entry;
839 * Finds the entry in the list corresponding to a given handle.
841 static struct qp_broker_entry *
842 qp_broker_handle_to_entry(struct vmci_handle handle)
844 struct qp_broker_entry *entry;
845 struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
847 entry = qp ? container_of(
848 qp, struct qp_broker_entry, qp) : NULL;
849 return entry;
853 * Dispatches a queue pair event message directly into the local event
854 * queue.
856 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
858 u32 context_id = vmci_get_context_id();
859 struct vmci_event_qp ev;
861 ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
862 ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
863 VMCI_CONTEXT_RESOURCE_ID);
864 ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
865 ev.msg.event_data.event =
866 attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
867 ev.payload.peer_id = context_id;
868 ev.payload.handle = handle;
870 return vmci_event_dispatch(&ev.msg.hdr);
874 * Allocates and initializes a qp_guest_endpoint structure.
875 * Allocates a queue_pair rid (and handle) iff the given entry has
876 * an invalid handle. 0 through VMCI_RESERVED_RESOURCE_ID_MAX
877 * are reserved handles. Assumes that the QP list mutex is held
878 * by the caller.
880 static struct qp_guest_endpoint *
881 qp_guest_endpoint_create(struct vmci_handle handle,
882 u32 peer,
883 u32 flags,
884 u64 produce_size,
885 u64 consume_size,
886 void *produce_q,
887 void *consume_q)
889 int result;
890 struct qp_guest_endpoint *entry;
891 /* One page each for the queue headers. */
892 const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
893 DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
895 if (vmci_handle_is_invalid(handle)) {
896 u32 context_id = vmci_get_context_id();
898 handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
901 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
902 if (entry) {
903 entry->qp.peer = peer;
904 entry->qp.flags = flags;
905 entry->qp.produce_size = produce_size;
906 entry->qp.consume_size = consume_size;
907 entry->qp.ref_count = 0;
908 entry->num_ppns = num_ppns;
909 entry->produce_q = produce_q;
910 entry->consume_q = consume_q;
911 INIT_LIST_HEAD(&entry->qp.list_item);
913 /* Add resource obj */
914 result = vmci_resource_add(&entry->resource,
915 VMCI_RESOURCE_TYPE_QPAIR_GUEST,
916 handle);
917 entry->qp.handle = vmci_resource_handle(&entry->resource);
918 if ((result != VMCI_SUCCESS) ||
919 qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
920 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
921 handle.context, handle.resource, result);
922 kfree(entry);
923 entry = NULL;
926 return entry;
930 * Frees a qp_guest_endpoint structure.
932 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
934 qp_free_ppn_set(&entry->ppn_set);
935 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
936 qp_free_queue(entry->produce_q, entry->qp.produce_size);
937 qp_free_queue(entry->consume_q, entry->qp.consume_size);
938 /* Unlink from resource hash table and free callback */
939 vmci_resource_remove(&entry->resource);
941 kfree(entry);
945 * Helper to make a queue_pairAlloc hypercall when the driver is
946 * supporting a guest device.
948 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
950 struct vmci_qp_alloc_msg *alloc_msg;
951 size_t msg_size;
952 int result;
954 if (!entry || entry->num_ppns <= 2)
955 return VMCI_ERROR_INVALID_ARGS;
957 msg_size = sizeof(*alloc_msg) +
958 (size_t) entry->num_ppns * sizeof(u32);
959 alloc_msg = kmalloc(msg_size, GFP_KERNEL);
960 if (!alloc_msg)
961 return VMCI_ERROR_NO_MEM;
963 alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
964 VMCI_QUEUEPAIR_ALLOC);
965 alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
966 alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
967 alloc_msg->handle = entry->qp.handle;
968 alloc_msg->peer = entry->qp.peer;
969 alloc_msg->flags = entry->qp.flags;
970 alloc_msg->produce_size = entry->qp.produce_size;
971 alloc_msg->consume_size = entry->qp.consume_size;
972 alloc_msg->num_ppns = entry->num_ppns;
974 result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
975 &entry->ppn_set);
976 if (result == VMCI_SUCCESS)
977 result = vmci_send_datagram(&alloc_msg->hdr);
979 kfree(alloc_msg);
981 return result;
985 * Helper to make a queue_pairDetach hypercall when the driver is
986 * supporting a guest device.
988 static int qp_detatch_hypercall(struct vmci_handle handle)
990 struct vmci_qp_detach_msg detach_msg;
992 detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
993 VMCI_QUEUEPAIR_DETACH);
994 detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
995 detach_msg.hdr.payload_size = sizeof(handle);
996 detach_msg.handle = handle;
998 return vmci_send_datagram(&detach_msg.hdr);
1002 * Adds the given entry to the list. Assumes that the list is locked.
1004 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1006 if (entry)
1007 list_add(&entry->list_item, &qp_list->head);
1011 * Removes the given entry from the list. Assumes that the list is locked.
1013 static void qp_list_remove_entry(struct qp_list *qp_list,
1014 struct qp_entry *entry)
1016 if (entry)
1017 list_del(&entry->list_item);
1021 * Helper for VMCI queue_pair detach interface. Frees the physical
1022 * pages for the queue pair.
1024 static int qp_detatch_guest_work(struct vmci_handle handle)
1026 int result;
1027 struct qp_guest_endpoint *entry;
1028 u32 ref_count = ~0; /* To avoid compiler warning below */
1030 mutex_lock(&qp_guest_endpoints.mutex);
1032 entry = qp_guest_handle_to_entry(handle);
1033 if (!entry) {
1034 mutex_unlock(&qp_guest_endpoints.mutex);
1035 return VMCI_ERROR_NOT_FOUND;
1038 if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1039 result = VMCI_SUCCESS;
1041 if (entry->qp.ref_count > 1) {
1042 result = qp_notify_peer_local(false, handle);
1044 * We can fail to notify a local queuepair
1045 * because we can't allocate. We still want
1046 * to release the entry if that happens, so
1047 * don't bail out yet.
1050 } else {
1051 result = qp_detatch_hypercall(handle);
1052 if (result < VMCI_SUCCESS) {
1054 * We failed to notify a non-local queuepair.
1055 * That other queuepair might still be
1056 * accessing the shared memory, so don't
1057 * release the entry yet. It will get cleaned
1058 * up by VMCIqueue_pair_Exit() if necessary
1059 * (assuming we are going away, otherwise why
1060 * did this fail?).
1063 mutex_unlock(&qp_guest_endpoints.mutex);
1064 return result;
1069 * If we get here then we either failed to notify a local queuepair, or
1070 * we succeeded in all cases. Release the entry if required.
1073 entry->qp.ref_count--;
1074 if (entry->qp.ref_count == 0)
1075 qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1077 /* If we didn't remove the entry, this could change once we unlock. */
1078 if (entry)
1079 ref_count = entry->qp.ref_count;
1081 mutex_unlock(&qp_guest_endpoints.mutex);
1083 if (ref_count == 0)
1084 qp_guest_endpoint_destroy(entry);
1086 return result;
1090 * This functions handles the actual allocation of a VMCI queue
1091 * pair guest endpoint. Allocates physical pages for the queue
1092 * pair. It makes OS dependent calls through generic wrappers.
1094 static int qp_alloc_guest_work(struct vmci_handle *handle,
1095 struct vmci_queue **produce_q,
1096 u64 produce_size,
1097 struct vmci_queue **consume_q,
1098 u64 consume_size,
1099 u32 peer,
1100 u32 flags,
1101 u32 priv_flags)
1103 const u64 num_produce_pages =
1104 DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1105 const u64 num_consume_pages =
1106 DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1107 void *my_produce_q = NULL;
1108 void *my_consume_q = NULL;
1109 int result;
1110 struct qp_guest_endpoint *queue_pair_entry = NULL;
1112 if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1113 return VMCI_ERROR_NO_ACCESS;
1115 mutex_lock(&qp_guest_endpoints.mutex);
1117 queue_pair_entry = qp_guest_handle_to_entry(*handle);
1118 if (queue_pair_entry) {
1119 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1120 /* Local attach case. */
1121 if (queue_pair_entry->qp.ref_count > 1) {
1122 pr_devel("Error attempting to attach more than once\n");
1123 result = VMCI_ERROR_UNAVAILABLE;
1124 goto error_keep_entry;
1127 if (queue_pair_entry->qp.produce_size != consume_size ||
1128 queue_pair_entry->qp.consume_size !=
1129 produce_size ||
1130 queue_pair_entry->qp.flags !=
1131 (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1132 pr_devel("Error mismatched queue pair in local attach\n");
1133 result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1134 goto error_keep_entry;
1138 * Do a local attach. We swap the consume and
1139 * produce queues for the attacher and deliver
1140 * an attach event.
1142 result = qp_notify_peer_local(true, *handle);
1143 if (result < VMCI_SUCCESS)
1144 goto error_keep_entry;
1146 my_produce_q = queue_pair_entry->consume_q;
1147 my_consume_q = queue_pair_entry->produce_q;
1148 goto out;
1151 result = VMCI_ERROR_ALREADY_EXISTS;
1152 goto error_keep_entry;
1155 my_produce_q = qp_alloc_queue(produce_size, flags);
1156 if (!my_produce_q) {
1157 pr_warn("Error allocating pages for produce queue\n");
1158 result = VMCI_ERROR_NO_MEM;
1159 goto error;
1162 my_consume_q = qp_alloc_queue(consume_size, flags);
1163 if (!my_consume_q) {
1164 pr_warn("Error allocating pages for consume queue\n");
1165 result = VMCI_ERROR_NO_MEM;
1166 goto error;
1169 queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1170 produce_size, consume_size,
1171 my_produce_q, my_consume_q);
1172 if (!queue_pair_entry) {
1173 pr_warn("Error allocating memory in %s\n", __func__);
1174 result = VMCI_ERROR_NO_MEM;
1175 goto error;
1178 result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1179 num_consume_pages,
1180 &queue_pair_entry->ppn_set);
1181 if (result < VMCI_SUCCESS) {
1182 pr_warn("qp_alloc_ppn_set failed\n");
1183 goto error;
1187 * It's only necessary to notify the host if this queue pair will be
1188 * attached to from another context.
1190 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1191 /* Local create case. */
1192 u32 context_id = vmci_get_context_id();
1195 * Enforce similar checks on local queue pairs as we
1196 * do for regular ones. The handle's context must
1197 * match the creator or attacher context id (here they
1198 * are both the current context id) and the
1199 * attach-only flag cannot exist during create. We
1200 * also ensure specified peer is this context or an
1201 * invalid one.
1203 if (queue_pair_entry->qp.handle.context != context_id ||
1204 (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1205 queue_pair_entry->qp.peer != context_id)) {
1206 result = VMCI_ERROR_NO_ACCESS;
1207 goto error;
1210 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1211 result = VMCI_ERROR_NOT_FOUND;
1212 goto error;
1214 } else {
1215 result = qp_alloc_hypercall(queue_pair_entry);
1216 if (result < VMCI_SUCCESS) {
1217 pr_warn("qp_alloc_hypercall result = %d\n", result);
1218 goto error;
1222 qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1223 (struct vmci_queue *)my_consume_q);
1225 qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1227 out:
1228 queue_pair_entry->qp.ref_count++;
1229 *handle = queue_pair_entry->qp.handle;
1230 *produce_q = (struct vmci_queue *)my_produce_q;
1231 *consume_q = (struct vmci_queue *)my_consume_q;
1234 * We should initialize the queue pair header pages on a local
1235 * queue pair create. For non-local queue pairs, the
1236 * hypervisor initializes the header pages in the create step.
1238 if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1239 queue_pair_entry->qp.ref_count == 1) {
1240 vmci_q_header_init((*produce_q)->q_header, *handle);
1241 vmci_q_header_init((*consume_q)->q_header, *handle);
1244 mutex_unlock(&qp_guest_endpoints.mutex);
1246 return VMCI_SUCCESS;
1248 error:
1249 mutex_unlock(&qp_guest_endpoints.mutex);
1250 if (queue_pair_entry) {
1251 /* The queues will be freed inside the destroy routine. */
1252 qp_guest_endpoint_destroy(queue_pair_entry);
1253 } else {
1254 qp_free_queue(my_produce_q, produce_size);
1255 qp_free_queue(my_consume_q, consume_size);
1257 return result;
1259 error_keep_entry:
1260 /* This path should only be used when an existing entry was found. */
1261 mutex_unlock(&qp_guest_endpoints.mutex);
1262 return result;
1266 * The first endpoint issuing a queue pair allocation will create the state
1267 * of the queue pair in the queue pair broker.
1269 * If the creator is a guest, it will associate a VMX virtual address range
1270 * with the queue pair as specified by the page_store. For compatibility with
1271 * older VMX'en, that would use a separate step to set the VMX virtual
1272 * address range, the virtual address range can be registered later using
1273 * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1274 * used.
1276 * If the creator is the host, a page_store of NULL should be used as well,
1277 * since the host is not able to supply a page store for the queue pair.
1279 * For older VMX and host callers, the queue pair will be created in the
1280 * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1281 * created in VMCOQPB_CREATED_MEM state.
1283 static int qp_broker_create(struct vmci_handle handle,
1284 u32 peer,
1285 u32 flags,
1286 u32 priv_flags,
1287 u64 produce_size,
1288 u64 consume_size,
1289 struct vmci_qp_page_store *page_store,
1290 struct vmci_ctx *context,
1291 vmci_event_release_cb wakeup_cb,
1292 void *client_data, struct qp_broker_entry **ent)
1294 struct qp_broker_entry *entry = NULL;
1295 const u32 context_id = vmci_ctx_get_id(context);
1296 bool is_local = flags & VMCI_QPFLAG_LOCAL;
1297 int result;
1298 u64 guest_produce_size;
1299 u64 guest_consume_size;
1301 /* Do not create if the caller asked not to. */
1302 if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1303 return VMCI_ERROR_NOT_FOUND;
1306 * Creator's context ID should match handle's context ID or the creator
1307 * must allow the context in handle's context ID as the "peer".
1309 if (handle.context != context_id && handle.context != peer)
1310 return VMCI_ERROR_NO_ACCESS;
1312 if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1313 return VMCI_ERROR_DST_UNREACHABLE;
1316 * Creator's context ID for local queue pairs should match the
1317 * peer, if a peer is specified.
1319 if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1320 return VMCI_ERROR_NO_ACCESS;
1322 entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1323 if (!entry)
1324 return VMCI_ERROR_NO_MEM;
1326 if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1328 * The queue pair broker entry stores values from the guest
1329 * point of view, so a creating host side endpoint should swap
1330 * produce and consume values -- unless it is a local queue
1331 * pair, in which case no swapping is necessary, since the local
1332 * attacher will swap queues.
1335 guest_produce_size = consume_size;
1336 guest_consume_size = produce_size;
1337 } else {
1338 guest_produce_size = produce_size;
1339 guest_consume_size = consume_size;
1342 entry->qp.handle = handle;
1343 entry->qp.peer = peer;
1344 entry->qp.flags = flags;
1345 entry->qp.produce_size = guest_produce_size;
1346 entry->qp.consume_size = guest_consume_size;
1347 entry->qp.ref_count = 1;
1348 entry->create_id = context_id;
1349 entry->attach_id = VMCI_INVALID_ID;
1350 entry->state = VMCIQPB_NEW;
1351 entry->require_trusted_attach =
1352 !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1353 entry->created_by_trusted =
1354 !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1355 entry->vmci_page_files = false;
1356 entry->wakeup_cb = wakeup_cb;
1357 entry->client_data = client_data;
1358 entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1359 if (entry->produce_q == NULL) {
1360 result = VMCI_ERROR_NO_MEM;
1361 goto error;
1363 entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1364 if (entry->consume_q == NULL) {
1365 result = VMCI_ERROR_NO_MEM;
1366 goto error;
1369 qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1371 INIT_LIST_HEAD(&entry->qp.list_item);
1373 if (is_local) {
1374 u8 *tmp;
1376 entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1377 PAGE_SIZE, GFP_KERNEL);
1378 if (entry->local_mem == NULL) {
1379 result = VMCI_ERROR_NO_MEM;
1380 goto error;
1382 entry->state = VMCIQPB_CREATED_MEM;
1383 entry->produce_q->q_header = entry->local_mem;
1384 tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1385 (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1386 entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1387 } else if (page_store) {
1389 * The VMX already initialized the queue pair headers, so no
1390 * need for the kernel side to do that.
1392 result = qp_host_register_user_memory(page_store,
1393 entry->produce_q,
1394 entry->consume_q);
1395 if (result < VMCI_SUCCESS)
1396 goto error;
1398 entry->state = VMCIQPB_CREATED_MEM;
1399 } else {
1401 * A create without a page_store may be either a host
1402 * side create (in which case we are waiting for the
1403 * guest side to supply the memory) or an old style
1404 * queue pair create (in which case we will expect a
1405 * set page store call as the next step).
1407 entry->state = VMCIQPB_CREATED_NO_MEM;
1410 qp_list_add_entry(&qp_broker_list, &entry->qp);
1411 if (ent != NULL)
1412 *ent = entry;
1414 /* Add to resource obj */
1415 result = vmci_resource_add(&entry->resource,
1416 VMCI_RESOURCE_TYPE_QPAIR_HOST,
1417 handle);
1418 if (result != VMCI_SUCCESS) {
1419 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1420 handle.context, handle.resource, result);
1421 goto error;
1424 entry->qp.handle = vmci_resource_handle(&entry->resource);
1425 if (is_local) {
1426 vmci_q_header_init(entry->produce_q->q_header,
1427 entry->qp.handle);
1428 vmci_q_header_init(entry->consume_q->q_header,
1429 entry->qp.handle);
1432 vmci_ctx_qp_create(context, entry->qp.handle);
1434 return VMCI_SUCCESS;
1436 error:
1437 if (entry != NULL) {
1438 qp_host_free_queue(entry->produce_q, guest_produce_size);
1439 qp_host_free_queue(entry->consume_q, guest_consume_size);
1440 kfree(entry);
1443 return result;
1447 * Enqueues an event datagram to notify the peer VM attached to
1448 * the given queue pair handle about attach/detach event by the
1449 * given VM. Returns Payload size of datagram enqueued on
1450 * success, error code otherwise.
1452 static int qp_notify_peer(bool attach,
1453 struct vmci_handle handle,
1454 u32 my_id,
1455 u32 peer_id)
1457 int rv;
1458 struct vmci_event_qp ev;
1460 if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1461 peer_id == VMCI_INVALID_ID)
1462 return VMCI_ERROR_INVALID_ARGS;
1465 * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1466 * number of pending events from the hypervisor to a given VM
1467 * otherwise a rogue VM could do an arbitrary number of attach
1468 * and detach operations causing memory pressure in the host
1469 * kernel.
1472 ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1473 ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1474 VMCI_CONTEXT_RESOURCE_ID);
1475 ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1476 ev.msg.event_data.event = attach ?
1477 VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1478 ev.payload.handle = handle;
1479 ev.payload.peer_id = my_id;
1481 rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1482 &ev.msg.hdr, false);
1483 if (rv < VMCI_SUCCESS)
1484 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1485 attach ? "ATTACH" : "DETACH", peer_id);
1487 return rv;
1491 * The second endpoint issuing a queue pair allocation will attach to
1492 * the queue pair registered with the queue pair broker.
1494 * If the attacher is a guest, it will associate a VMX virtual address
1495 * range with the queue pair as specified by the page_store. At this
1496 * point, the already attach host endpoint may start using the queue
1497 * pair, and an attach event is sent to it. For compatibility with
1498 * older VMX'en, that used a separate step to set the VMX virtual
1499 * address range, the virtual address range can be registered later
1500 * using vmci_qp_broker_set_page_store. In that case, a page_store of
1501 * NULL should be used, and the attach event will be generated once
1502 * the actual page store has been set.
1504 * If the attacher is the host, a page_store of NULL should be used as
1505 * well, since the page store information is already set by the guest.
1507 * For new VMX and host callers, the queue pair will be moved to the
1508 * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1509 * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1511 static int qp_broker_attach(struct qp_broker_entry *entry,
1512 u32 peer,
1513 u32 flags,
1514 u32 priv_flags,
1515 u64 produce_size,
1516 u64 consume_size,
1517 struct vmci_qp_page_store *page_store,
1518 struct vmci_ctx *context,
1519 vmci_event_release_cb wakeup_cb,
1520 void *client_data,
1521 struct qp_broker_entry **ent)
1523 const u32 context_id = vmci_ctx_get_id(context);
1524 bool is_local = flags & VMCI_QPFLAG_LOCAL;
1525 int result;
1527 if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1528 entry->state != VMCIQPB_CREATED_MEM)
1529 return VMCI_ERROR_UNAVAILABLE;
1531 if (is_local) {
1532 if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1533 context_id != entry->create_id) {
1534 return VMCI_ERROR_INVALID_ARGS;
1536 } else if (context_id == entry->create_id ||
1537 context_id == entry->attach_id) {
1538 return VMCI_ERROR_ALREADY_EXISTS;
1541 if (VMCI_CONTEXT_IS_VM(context_id) &&
1542 VMCI_CONTEXT_IS_VM(entry->create_id))
1543 return VMCI_ERROR_DST_UNREACHABLE;
1546 * If we are attaching from a restricted context then the queuepair
1547 * must have been created by a trusted endpoint.
1549 if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1550 !entry->created_by_trusted)
1551 return VMCI_ERROR_NO_ACCESS;
1554 * If we are attaching to a queuepair that was created by a restricted
1555 * context then we must be trusted.
1557 if (entry->require_trusted_attach &&
1558 (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1559 return VMCI_ERROR_NO_ACCESS;
1562 * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1563 * control check is not performed.
1565 if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1566 return VMCI_ERROR_NO_ACCESS;
1568 if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1570 * Do not attach if the caller doesn't support Host Queue Pairs
1571 * and a host created this queue pair.
1574 if (!vmci_ctx_supports_host_qp(context))
1575 return VMCI_ERROR_INVALID_RESOURCE;
1577 } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1578 struct vmci_ctx *create_context;
1579 bool supports_host_qp;
1582 * Do not attach a host to a user created queue pair if that
1583 * user doesn't support host queue pair end points.
1586 create_context = vmci_ctx_get(entry->create_id);
1587 supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1588 vmci_ctx_put(create_context);
1590 if (!supports_host_qp)
1591 return VMCI_ERROR_INVALID_RESOURCE;
1594 if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1595 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1597 if (context_id != VMCI_HOST_CONTEXT_ID) {
1599 * The queue pair broker entry stores values from the guest
1600 * point of view, so an attaching guest should match the values
1601 * stored in the entry.
1604 if (entry->qp.produce_size != produce_size ||
1605 entry->qp.consume_size != consume_size) {
1606 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1608 } else if (entry->qp.produce_size != consume_size ||
1609 entry->qp.consume_size != produce_size) {
1610 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1613 if (context_id != VMCI_HOST_CONTEXT_ID) {
1615 * If a guest attached to a queue pair, it will supply
1616 * the backing memory. If this is a pre NOVMVM vmx,
1617 * the backing memory will be supplied by calling
1618 * vmci_qp_broker_set_page_store() following the
1619 * return of the vmci_qp_broker_alloc() call. If it is
1620 * a vmx of version NOVMVM or later, the page store
1621 * must be supplied as part of the
1622 * vmci_qp_broker_alloc call. Under all circumstances
1623 * must the initially created queue pair not have any
1624 * memory associated with it already.
1627 if (entry->state != VMCIQPB_CREATED_NO_MEM)
1628 return VMCI_ERROR_INVALID_ARGS;
1630 if (page_store != NULL) {
1632 * Patch up host state to point to guest
1633 * supplied memory. The VMX already
1634 * initialized the queue pair headers, so no
1635 * need for the kernel side to do that.
1638 result = qp_host_register_user_memory(page_store,
1639 entry->produce_q,
1640 entry->consume_q);
1641 if (result < VMCI_SUCCESS)
1642 return result;
1644 entry->state = VMCIQPB_ATTACHED_MEM;
1645 } else {
1646 entry->state = VMCIQPB_ATTACHED_NO_MEM;
1648 } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1650 * The host side is attempting to attach to a queue
1651 * pair that doesn't have any memory associated with
1652 * it. This must be a pre NOVMVM vmx that hasn't set
1653 * the page store information yet, or a quiesced VM.
1656 return VMCI_ERROR_UNAVAILABLE;
1657 } else {
1658 /* The host side has successfully attached to a queue pair. */
1659 entry->state = VMCIQPB_ATTACHED_MEM;
1662 if (entry->state == VMCIQPB_ATTACHED_MEM) {
1663 result =
1664 qp_notify_peer(true, entry->qp.handle, context_id,
1665 entry->create_id);
1666 if (result < VMCI_SUCCESS)
1667 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1668 entry->create_id, entry->qp.handle.context,
1669 entry->qp.handle.resource);
1672 entry->attach_id = context_id;
1673 entry->qp.ref_count++;
1674 if (wakeup_cb) {
1675 entry->wakeup_cb = wakeup_cb;
1676 entry->client_data = client_data;
1680 * When attaching to local queue pairs, the context already has
1681 * an entry tracking the queue pair, so don't add another one.
1683 if (!is_local)
1684 vmci_ctx_qp_create(context, entry->qp.handle);
1686 if (ent != NULL)
1687 *ent = entry;
1689 return VMCI_SUCCESS;
1693 * queue_pair_Alloc for use when setting up queue pair endpoints
1694 * on the host.
1696 static int qp_broker_alloc(struct vmci_handle handle,
1697 u32 peer,
1698 u32 flags,
1699 u32 priv_flags,
1700 u64 produce_size,
1701 u64 consume_size,
1702 struct vmci_qp_page_store *page_store,
1703 struct vmci_ctx *context,
1704 vmci_event_release_cb wakeup_cb,
1705 void *client_data,
1706 struct qp_broker_entry **ent,
1707 bool *swap)
1709 const u32 context_id = vmci_ctx_get_id(context);
1710 bool create;
1711 struct qp_broker_entry *entry = NULL;
1712 bool is_local = flags & VMCI_QPFLAG_LOCAL;
1713 int result;
1715 if (vmci_handle_is_invalid(handle) ||
1716 (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1717 !(produce_size || consume_size) ||
1718 !context || context_id == VMCI_INVALID_ID ||
1719 handle.context == VMCI_INVALID_ID) {
1720 return VMCI_ERROR_INVALID_ARGS;
1723 if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1724 return VMCI_ERROR_INVALID_ARGS;
1727 * In the initial argument check, we ensure that non-vmkernel hosts
1728 * are not allowed to create local queue pairs.
1731 mutex_lock(&qp_broker_list.mutex);
1733 if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1734 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1735 context_id, handle.context, handle.resource);
1736 mutex_unlock(&qp_broker_list.mutex);
1737 return VMCI_ERROR_ALREADY_EXISTS;
1740 if (handle.resource != VMCI_INVALID_ID)
1741 entry = qp_broker_handle_to_entry(handle);
1743 if (!entry) {
1744 create = true;
1745 result =
1746 qp_broker_create(handle, peer, flags, priv_flags,
1747 produce_size, consume_size, page_store,
1748 context, wakeup_cb, client_data, ent);
1749 } else {
1750 create = false;
1751 result =
1752 qp_broker_attach(entry, peer, flags, priv_flags,
1753 produce_size, consume_size, page_store,
1754 context, wakeup_cb, client_data, ent);
1757 mutex_unlock(&qp_broker_list.mutex);
1759 if (swap)
1760 *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1761 !(create && is_local);
1763 return result;
1767 * This function implements the kernel API for allocating a queue
1768 * pair.
1770 static int qp_alloc_host_work(struct vmci_handle *handle,
1771 struct vmci_queue **produce_q,
1772 u64 produce_size,
1773 struct vmci_queue **consume_q,
1774 u64 consume_size,
1775 u32 peer,
1776 u32 flags,
1777 u32 priv_flags,
1778 vmci_event_release_cb wakeup_cb,
1779 void *client_data)
1781 struct vmci_handle new_handle;
1782 struct vmci_ctx *context;
1783 struct qp_broker_entry *entry;
1784 int result;
1785 bool swap;
1787 if (vmci_handle_is_invalid(*handle)) {
1788 new_handle = vmci_make_handle(
1789 VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1790 } else
1791 new_handle = *handle;
1793 context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1794 entry = NULL;
1795 result =
1796 qp_broker_alloc(new_handle, peer, flags, priv_flags,
1797 produce_size, consume_size, NULL, context,
1798 wakeup_cb, client_data, &entry, &swap);
1799 if (result == VMCI_SUCCESS) {
1800 if (swap) {
1802 * If this is a local queue pair, the attacher
1803 * will swap around produce and consume
1804 * queues.
1807 *produce_q = entry->consume_q;
1808 *consume_q = entry->produce_q;
1809 } else {
1810 *produce_q = entry->produce_q;
1811 *consume_q = entry->consume_q;
1814 *handle = vmci_resource_handle(&entry->resource);
1815 } else {
1816 *handle = VMCI_INVALID_HANDLE;
1817 pr_devel("queue pair broker failed to alloc (result=%d)\n",
1818 result);
1820 vmci_ctx_put(context);
1821 return result;
1825 * Allocates a VMCI queue_pair. Only checks validity of input
1826 * arguments. The real work is done in the host or guest
1827 * specific function.
1829 int vmci_qp_alloc(struct vmci_handle *handle,
1830 struct vmci_queue **produce_q,
1831 u64 produce_size,
1832 struct vmci_queue **consume_q,
1833 u64 consume_size,
1834 u32 peer,
1835 u32 flags,
1836 u32 priv_flags,
1837 bool guest_endpoint,
1838 vmci_event_release_cb wakeup_cb,
1839 void *client_data)
1841 if (!handle || !produce_q || !consume_q ||
1842 (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1843 return VMCI_ERROR_INVALID_ARGS;
1845 if (guest_endpoint) {
1846 return qp_alloc_guest_work(handle, produce_q,
1847 produce_size, consume_q,
1848 consume_size, peer,
1849 flags, priv_flags);
1850 } else {
1851 return qp_alloc_host_work(handle, produce_q,
1852 produce_size, consume_q,
1853 consume_size, peer, flags,
1854 priv_flags, wakeup_cb, client_data);
1859 * This function implements the host kernel API for detaching from
1860 * a queue pair.
1862 static int qp_detatch_host_work(struct vmci_handle handle)
1864 int result;
1865 struct vmci_ctx *context;
1867 context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1869 result = vmci_qp_broker_detach(handle, context);
1871 vmci_ctx_put(context);
1872 return result;
1876 * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1877 * Real work is done in the host or guest specific function.
1879 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1881 if (vmci_handle_is_invalid(handle))
1882 return VMCI_ERROR_INVALID_ARGS;
1884 if (guest_endpoint)
1885 return qp_detatch_guest_work(handle);
1886 else
1887 return qp_detatch_host_work(handle);
1891 * Returns the entry from the head of the list. Assumes that the list is
1892 * locked.
1894 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1896 if (!list_empty(&qp_list->head)) {
1897 struct qp_entry *entry =
1898 list_first_entry(&qp_list->head, struct qp_entry,
1899 list_item);
1900 return entry;
1903 return NULL;
1906 void vmci_qp_broker_exit(void)
1908 struct qp_entry *entry;
1909 struct qp_broker_entry *be;
1911 mutex_lock(&qp_broker_list.mutex);
1913 while ((entry = qp_list_get_head(&qp_broker_list))) {
1914 be = (struct qp_broker_entry *)entry;
1916 qp_list_remove_entry(&qp_broker_list, entry);
1917 kfree(be);
1920 mutex_unlock(&qp_broker_list.mutex);
1924 * Requests that a queue pair be allocated with the VMCI queue
1925 * pair broker. Allocates a queue pair entry if one does not
1926 * exist. Attaches to one if it exists, and retrieves the page
1927 * files backing that queue_pair. Assumes that the queue pair
1928 * broker lock is held.
1930 int vmci_qp_broker_alloc(struct vmci_handle handle,
1931 u32 peer,
1932 u32 flags,
1933 u32 priv_flags,
1934 u64 produce_size,
1935 u64 consume_size,
1936 struct vmci_qp_page_store *page_store,
1937 struct vmci_ctx *context)
1939 return qp_broker_alloc(handle, peer, flags, priv_flags,
1940 produce_size, consume_size,
1941 page_store, context, NULL, NULL, NULL, NULL);
1945 * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
1946 * step to add the UVAs of the VMX mapping of the queue pair. This function
1947 * provides backwards compatibility with such VMX'en, and takes care of
1948 * registering the page store for a queue pair previously allocated by the
1949 * VMX during create or attach. This function will move the queue pair state
1950 * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
1951 * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
1952 * attached state with memory, the queue pair is ready to be used by the
1953 * host peer, and an attached event will be generated.
1955 * Assumes that the queue pair broker lock is held.
1957 * This function is only used by the hosted platform, since there is no
1958 * issue with backwards compatibility for vmkernel.
1960 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
1961 u64 produce_uva,
1962 u64 consume_uva,
1963 struct vmci_ctx *context)
1965 struct qp_broker_entry *entry;
1966 int result;
1967 const u32 context_id = vmci_ctx_get_id(context);
1969 if (vmci_handle_is_invalid(handle) || !context ||
1970 context_id == VMCI_INVALID_ID)
1971 return VMCI_ERROR_INVALID_ARGS;
1974 * We only support guest to host queue pairs, so the VMX must
1975 * supply UVAs for the mapped page files.
1978 if (produce_uva == 0 || consume_uva == 0)
1979 return VMCI_ERROR_INVALID_ARGS;
1981 mutex_lock(&qp_broker_list.mutex);
1983 if (!vmci_ctx_qp_exists(context, handle)) {
1984 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
1985 context_id, handle.context, handle.resource);
1986 result = VMCI_ERROR_NOT_FOUND;
1987 goto out;
1990 entry = qp_broker_handle_to_entry(handle);
1991 if (!entry) {
1992 result = VMCI_ERROR_NOT_FOUND;
1993 goto out;
1997 * If I'm the owner then I can set the page store.
1999 * Or, if a host created the queue_pair and I'm the attached peer
2000 * then I can set the page store.
2002 if (entry->create_id != context_id &&
2003 (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2004 entry->attach_id != context_id)) {
2005 result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2006 goto out;
2009 if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2010 entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2011 result = VMCI_ERROR_UNAVAILABLE;
2012 goto out;
2015 result = qp_host_get_user_memory(produce_uva, consume_uva,
2016 entry->produce_q, entry->consume_q);
2017 if (result < VMCI_SUCCESS)
2018 goto out;
2020 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2021 if (result < VMCI_SUCCESS) {
2022 qp_host_unregister_user_memory(entry->produce_q,
2023 entry->consume_q);
2024 goto out;
2027 if (entry->state == VMCIQPB_CREATED_NO_MEM)
2028 entry->state = VMCIQPB_CREATED_MEM;
2029 else
2030 entry->state = VMCIQPB_ATTACHED_MEM;
2032 entry->vmci_page_files = true;
2034 if (entry->state == VMCIQPB_ATTACHED_MEM) {
2035 result =
2036 qp_notify_peer(true, handle, context_id, entry->create_id);
2037 if (result < VMCI_SUCCESS) {
2038 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2039 entry->create_id, entry->qp.handle.context,
2040 entry->qp.handle.resource);
2044 result = VMCI_SUCCESS;
2045 out:
2046 mutex_unlock(&qp_broker_list.mutex);
2047 return result;
2051 * Resets saved queue headers for the given QP broker
2052 * entry. Should be used when guest memory becomes available
2053 * again, or the guest detaches.
2055 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2057 entry->produce_q->saved_header = NULL;
2058 entry->consume_q->saved_header = NULL;
2062 * The main entry point for detaching from a queue pair registered with the
2063 * queue pair broker. If more than one endpoint is attached to the queue
2064 * pair, the first endpoint will mainly decrement a reference count and
2065 * generate a notification to its peer. The last endpoint will clean up
2066 * the queue pair state registered with the broker.
2068 * When a guest endpoint detaches, it will unmap and unregister the guest
2069 * memory backing the queue pair. If the host is still attached, it will
2070 * no longer be able to access the queue pair content.
2072 * If the queue pair is already in a state where there is no memory
2073 * registered for the queue pair (any *_NO_MEM state), it will transition to
2074 * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2075 * endpoint is the first of two endpoints to detach. If the host endpoint is
2076 * the first out of two to detach, the queue pair will move to the
2077 * VMCIQPB_SHUTDOWN_MEM state.
2079 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2081 struct qp_broker_entry *entry;
2082 const u32 context_id = vmci_ctx_get_id(context);
2083 u32 peer_id;
2084 bool is_local = false;
2085 int result;
2087 if (vmci_handle_is_invalid(handle) || !context ||
2088 context_id == VMCI_INVALID_ID) {
2089 return VMCI_ERROR_INVALID_ARGS;
2092 mutex_lock(&qp_broker_list.mutex);
2094 if (!vmci_ctx_qp_exists(context, handle)) {
2095 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2096 context_id, handle.context, handle.resource);
2097 result = VMCI_ERROR_NOT_FOUND;
2098 goto out;
2101 entry = qp_broker_handle_to_entry(handle);
2102 if (!entry) {
2103 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2104 context_id, handle.context, handle.resource);
2105 result = VMCI_ERROR_NOT_FOUND;
2106 goto out;
2109 if (context_id != entry->create_id && context_id != entry->attach_id) {
2110 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2111 goto out;
2114 if (context_id == entry->create_id) {
2115 peer_id = entry->attach_id;
2116 entry->create_id = VMCI_INVALID_ID;
2117 } else {
2118 peer_id = entry->create_id;
2119 entry->attach_id = VMCI_INVALID_ID;
2121 entry->qp.ref_count--;
2123 is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2125 if (context_id != VMCI_HOST_CONTEXT_ID) {
2126 bool headers_mapped;
2129 * Pre NOVMVM vmx'en may detach from a queue pair
2130 * before setting the page store, and in that case
2131 * there is no user memory to detach from. Also, more
2132 * recent VMX'en may detach from a queue pair in the
2133 * quiesced state.
2136 qp_acquire_queue_mutex(entry->produce_q);
2137 headers_mapped = entry->produce_q->q_header ||
2138 entry->consume_q->q_header;
2139 if (QPBROKERSTATE_HAS_MEM(entry)) {
2140 result =
2141 qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2142 entry->produce_q,
2143 entry->consume_q);
2144 if (result < VMCI_SUCCESS)
2145 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2146 handle.context, handle.resource,
2147 result);
2149 qp_host_unregister_user_memory(entry->produce_q,
2150 entry->consume_q);
2154 if (!headers_mapped)
2155 qp_reset_saved_headers(entry);
2157 qp_release_queue_mutex(entry->produce_q);
2159 if (!headers_mapped && entry->wakeup_cb)
2160 entry->wakeup_cb(entry->client_data);
2162 } else {
2163 if (entry->wakeup_cb) {
2164 entry->wakeup_cb = NULL;
2165 entry->client_data = NULL;
2169 if (entry->qp.ref_count == 0) {
2170 qp_list_remove_entry(&qp_broker_list, &entry->qp);
2172 if (is_local)
2173 kfree(entry->local_mem);
2175 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2176 qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2177 qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2178 /* Unlink from resource hash table and free callback */
2179 vmci_resource_remove(&entry->resource);
2181 kfree(entry);
2183 vmci_ctx_qp_destroy(context, handle);
2184 } else {
2185 qp_notify_peer(false, handle, context_id, peer_id);
2186 if (context_id == VMCI_HOST_CONTEXT_ID &&
2187 QPBROKERSTATE_HAS_MEM(entry)) {
2188 entry->state = VMCIQPB_SHUTDOWN_MEM;
2189 } else {
2190 entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2193 if (!is_local)
2194 vmci_ctx_qp_destroy(context, handle);
2197 result = VMCI_SUCCESS;
2198 out:
2199 mutex_unlock(&qp_broker_list.mutex);
2200 return result;
2204 * Establishes the necessary mappings for a queue pair given a
2205 * reference to the queue pair guest memory. This is usually
2206 * called when a guest is unquiesced and the VMX is allowed to
2207 * map guest memory once again.
2209 int vmci_qp_broker_map(struct vmci_handle handle,
2210 struct vmci_ctx *context,
2211 u64 guest_mem)
2213 struct qp_broker_entry *entry;
2214 const u32 context_id = vmci_ctx_get_id(context);
2215 bool is_local = false;
2216 int result;
2218 if (vmci_handle_is_invalid(handle) || !context ||
2219 context_id == VMCI_INVALID_ID)
2220 return VMCI_ERROR_INVALID_ARGS;
2222 mutex_lock(&qp_broker_list.mutex);
2224 if (!vmci_ctx_qp_exists(context, handle)) {
2225 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2226 context_id, handle.context, handle.resource);
2227 result = VMCI_ERROR_NOT_FOUND;
2228 goto out;
2231 entry = qp_broker_handle_to_entry(handle);
2232 if (!entry) {
2233 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2234 context_id, handle.context, handle.resource);
2235 result = VMCI_ERROR_NOT_FOUND;
2236 goto out;
2239 if (context_id != entry->create_id && context_id != entry->attach_id) {
2240 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2241 goto out;
2244 is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2245 result = VMCI_SUCCESS;
2247 if (context_id != VMCI_HOST_CONTEXT_ID) {
2248 struct vmci_qp_page_store page_store;
2250 page_store.pages = guest_mem;
2251 page_store.len = QPE_NUM_PAGES(entry->qp);
2253 qp_acquire_queue_mutex(entry->produce_q);
2254 qp_reset_saved_headers(entry);
2255 result =
2256 qp_host_register_user_memory(&page_store,
2257 entry->produce_q,
2258 entry->consume_q);
2259 qp_release_queue_mutex(entry->produce_q);
2260 if (result == VMCI_SUCCESS) {
2261 /* Move state from *_NO_MEM to *_MEM */
2263 entry->state++;
2265 if (entry->wakeup_cb)
2266 entry->wakeup_cb(entry->client_data);
2270 out:
2271 mutex_unlock(&qp_broker_list.mutex);
2272 return result;
2276 * Saves a snapshot of the queue headers for the given QP broker
2277 * entry. Should be used when guest memory is unmapped.
2278 * Results:
2279 * VMCI_SUCCESS on success, appropriate error code if guest memory
2280 * can't be accessed..
2282 static int qp_save_headers(struct qp_broker_entry *entry)
2284 int result;
2286 if (entry->produce_q->saved_header != NULL &&
2287 entry->consume_q->saved_header != NULL) {
2289 * If the headers have already been saved, we don't need to do
2290 * it again, and we don't want to map in the headers
2291 * unnecessarily.
2294 return VMCI_SUCCESS;
2297 if (NULL == entry->produce_q->q_header ||
2298 NULL == entry->consume_q->q_header) {
2299 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2300 if (result < VMCI_SUCCESS)
2301 return result;
2304 memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2305 sizeof(entry->saved_produce_q));
2306 entry->produce_q->saved_header = &entry->saved_produce_q;
2307 memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2308 sizeof(entry->saved_consume_q));
2309 entry->consume_q->saved_header = &entry->saved_consume_q;
2311 return VMCI_SUCCESS;
2315 * Removes all references to the guest memory of a given queue pair, and
2316 * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2317 * called when a VM is being quiesced where access to guest memory should
2318 * avoided.
2320 int vmci_qp_broker_unmap(struct vmci_handle handle,
2321 struct vmci_ctx *context,
2322 u32 gid)
2324 struct qp_broker_entry *entry;
2325 const u32 context_id = vmci_ctx_get_id(context);
2326 bool is_local = false;
2327 int result;
2329 if (vmci_handle_is_invalid(handle) || !context ||
2330 context_id == VMCI_INVALID_ID)
2331 return VMCI_ERROR_INVALID_ARGS;
2333 mutex_lock(&qp_broker_list.mutex);
2335 if (!vmci_ctx_qp_exists(context, handle)) {
2336 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2337 context_id, handle.context, handle.resource);
2338 result = VMCI_ERROR_NOT_FOUND;
2339 goto out;
2342 entry = qp_broker_handle_to_entry(handle);
2343 if (!entry) {
2344 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2345 context_id, handle.context, handle.resource);
2346 result = VMCI_ERROR_NOT_FOUND;
2347 goto out;
2350 if (context_id != entry->create_id && context_id != entry->attach_id) {
2351 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2352 goto out;
2355 is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2357 if (context_id != VMCI_HOST_CONTEXT_ID) {
2358 qp_acquire_queue_mutex(entry->produce_q);
2359 result = qp_save_headers(entry);
2360 if (result < VMCI_SUCCESS)
2361 pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2362 handle.context, handle.resource, result);
2364 qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2367 * On hosted, when we unmap queue pairs, the VMX will also
2368 * unmap the guest memory, so we invalidate the previously
2369 * registered memory. If the queue pair is mapped again at a
2370 * later point in time, we will need to reregister the user
2371 * memory with a possibly new user VA.
2373 qp_host_unregister_user_memory(entry->produce_q,
2374 entry->consume_q);
2377 * Move state from *_MEM to *_NO_MEM.
2379 entry->state--;
2381 qp_release_queue_mutex(entry->produce_q);
2384 result = VMCI_SUCCESS;
2386 out:
2387 mutex_unlock(&qp_broker_list.mutex);
2388 return result;
2392 * Destroys all guest queue pair endpoints. If active guest queue
2393 * pairs still exist, hypercalls to attempt detach from these
2394 * queue pairs will be made. Any failure to detach is silently
2395 * ignored.
2397 void vmci_qp_guest_endpoints_exit(void)
2399 struct qp_entry *entry;
2400 struct qp_guest_endpoint *ep;
2402 mutex_lock(&qp_guest_endpoints.mutex);
2404 while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2405 ep = (struct qp_guest_endpoint *)entry;
2407 /* Don't make a hypercall for local queue_pairs. */
2408 if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2409 qp_detatch_hypercall(entry->handle);
2411 /* We cannot fail the exit, so let's reset ref_count. */
2412 entry->ref_count = 0;
2413 qp_list_remove_entry(&qp_guest_endpoints, entry);
2415 qp_guest_endpoint_destroy(ep);
2418 mutex_unlock(&qp_guest_endpoints.mutex);
2422 * Helper routine that will lock the queue pair before subsequent
2423 * operations.
2424 * Note: Non-blocking on the host side is currently only implemented in ESX.
2425 * Since non-blocking isn't yet implemented on the host personality we
2426 * have no reason to acquire a spin lock. So to avoid the use of an
2427 * unnecessary lock only acquire the mutex if we can block.
2429 static void qp_lock(const struct vmci_qp *qpair)
2431 qp_acquire_queue_mutex(qpair->produce_q);
2435 * Helper routine that unlocks the queue pair after calling
2436 * qp_lock.
2438 static void qp_unlock(const struct vmci_qp *qpair)
2440 qp_release_queue_mutex(qpair->produce_q);
2444 * The queue headers may not be mapped at all times. If a queue is
2445 * currently not mapped, it will be attempted to do so.
2447 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2448 struct vmci_queue *consume_q)
2450 int result;
2452 if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2453 result = qp_host_map_queues(produce_q, consume_q);
2454 if (result < VMCI_SUCCESS)
2455 return (produce_q->saved_header &&
2456 consume_q->saved_header) ?
2457 VMCI_ERROR_QUEUEPAIR_NOT_READY :
2458 VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2461 return VMCI_SUCCESS;
2465 * Helper routine that will retrieve the produce and consume
2466 * headers of a given queue pair. If the guest memory of the
2467 * queue pair is currently not available, the saved queue headers
2468 * will be returned, if these are available.
2470 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2471 struct vmci_queue_header **produce_q_header,
2472 struct vmci_queue_header **consume_q_header)
2474 int result;
2476 result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2477 if (result == VMCI_SUCCESS) {
2478 *produce_q_header = qpair->produce_q->q_header;
2479 *consume_q_header = qpair->consume_q->q_header;
2480 } else if (qpair->produce_q->saved_header &&
2481 qpair->consume_q->saved_header) {
2482 *produce_q_header = qpair->produce_q->saved_header;
2483 *consume_q_header = qpair->consume_q->saved_header;
2484 result = VMCI_SUCCESS;
2487 return result;
2491 * Callback from VMCI queue pair broker indicating that a queue
2492 * pair that was previously not ready, now either is ready or
2493 * gone forever.
2495 static int qp_wakeup_cb(void *client_data)
2497 struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2499 qp_lock(qpair);
2500 while (qpair->blocked > 0) {
2501 qpair->blocked--;
2502 qpair->generation++;
2503 wake_up(&qpair->event);
2505 qp_unlock(qpair);
2507 return VMCI_SUCCESS;
2511 * Makes the calling thread wait for the queue pair to become
2512 * ready for host side access. Returns true when thread is
2513 * woken up after queue pair state change, false otherwise.
2515 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2517 unsigned int generation;
2519 qpair->blocked++;
2520 generation = qpair->generation;
2521 qp_unlock(qpair);
2522 wait_event(qpair->event, generation != qpair->generation);
2523 qp_lock(qpair);
2525 return true;
2529 * Enqueues a given buffer to the produce queue using the provided
2530 * function. As many bytes as possible (space available in the queue)
2531 * are enqueued. Assumes the queue->mutex has been acquired. Returns
2532 * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2533 * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2534 * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2535 * an error occured when accessing the buffer,
2536 * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2537 * available. Otherwise, the number of bytes written to the queue is
2538 * returned. Updates the tail pointer of the produce queue.
2540 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2541 struct vmci_queue *consume_q,
2542 const u64 produce_q_size,
2543 struct iov_iter *from)
2545 s64 free_space;
2546 u64 tail;
2547 size_t buf_size = iov_iter_count(from);
2548 size_t written;
2549 ssize_t result;
2551 result = qp_map_queue_headers(produce_q, consume_q);
2552 if (unlikely(result != VMCI_SUCCESS))
2553 return result;
2555 free_space = vmci_q_header_free_space(produce_q->q_header,
2556 consume_q->q_header,
2557 produce_q_size);
2558 if (free_space == 0)
2559 return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2561 if (free_space < VMCI_SUCCESS)
2562 return (ssize_t) free_space;
2564 written = (size_t) (free_space > buf_size ? buf_size : free_space);
2565 tail = vmci_q_header_producer_tail(produce_q->q_header);
2566 if (likely(tail + written < produce_q_size)) {
2567 result = qp_memcpy_to_queue_iter(produce_q, tail, from, written);
2568 } else {
2569 /* Tail pointer wraps around. */
2571 const size_t tmp = (size_t) (produce_q_size - tail);
2573 result = qp_memcpy_to_queue_iter(produce_q, tail, from, tmp);
2574 if (result >= VMCI_SUCCESS)
2575 result = qp_memcpy_to_queue_iter(produce_q, 0, from,
2576 written - tmp);
2579 if (result < VMCI_SUCCESS)
2580 return result;
2582 vmci_q_header_add_producer_tail(produce_q->q_header, written,
2583 produce_q_size);
2584 return written;
2588 * Dequeues data (if available) from the given consume queue. Writes data
2589 * to the user provided buffer using the provided function.
2590 * Assumes the queue->mutex has been acquired.
2591 * Results:
2592 * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2593 * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2594 * (as defined by the queue size).
2595 * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2596 * Otherwise the number of bytes dequeued is returned.
2597 * Side effects:
2598 * Updates the head pointer of the consume queue.
2600 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2601 struct vmci_queue *consume_q,
2602 const u64 consume_q_size,
2603 struct iov_iter *to,
2604 bool update_consumer)
2606 size_t buf_size = iov_iter_count(to);
2607 s64 buf_ready;
2608 u64 head;
2609 size_t read;
2610 ssize_t result;
2612 result = qp_map_queue_headers(produce_q, consume_q);
2613 if (unlikely(result != VMCI_SUCCESS))
2614 return result;
2616 buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2617 produce_q->q_header,
2618 consume_q_size);
2619 if (buf_ready == 0)
2620 return VMCI_ERROR_QUEUEPAIR_NODATA;
2622 if (buf_ready < VMCI_SUCCESS)
2623 return (ssize_t) buf_ready;
2625 read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2626 head = vmci_q_header_consumer_head(produce_q->q_header);
2627 if (likely(head + read < consume_q_size)) {
2628 result = qp_memcpy_from_queue_iter(to, consume_q, head, read);
2629 } else {
2630 /* Head pointer wraps around. */
2632 const size_t tmp = (size_t) (consume_q_size - head);
2634 result = qp_memcpy_from_queue_iter(to, consume_q, head, tmp);
2635 if (result >= VMCI_SUCCESS)
2636 result = qp_memcpy_from_queue_iter(to, consume_q, 0,
2637 read - tmp);
2641 if (result < VMCI_SUCCESS)
2642 return result;
2644 if (update_consumer)
2645 vmci_q_header_add_consumer_head(produce_q->q_header,
2646 read, consume_q_size);
2648 return read;
2652 * vmci_qpair_alloc() - Allocates a queue pair.
2653 * @qpair: Pointer for the new vmci_qp struct.
2654 * @handle: Handle to track the resource.
2655 * @produce_qsize: Desired size of the producer queue.
2656 * @consume_qsize: Desired size of the consumer queue.
2657 * @peer: ContextID of the peer.
2658 * @flags: VMCI flags.
2659 * @priv_flags: VMCI priviledge flags.
2661 * This is the client interface for allocating the memory for a
2662 * vmci_qp structure and then attaching to the underlying
2663 * queue. If an error occurs allocating the memory for the
2664 * vmci_qp structure no attempt is made to attach. If an
2665 * error occurs attaching, then the structure is freed.
2667 int vmci_qpair_alloc(struct vmci_qp **qpair,
2668 struct vmci_handle *handle,
2669 u64 produce_qsize,
2670 u64 consume_qsize,
2671 u32 peer,
2672 u32 flags,
2673 u32 priv_flags)
2675 struct vmci_qp *my_qpair;
2676 int retval;
2677 struct vmci_handle src = VMCI_INVALID_HANDLE;
2678 struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2679 enum vmci_route route;
2680 vmci_event_release_cb wakeup_cb;
2681 void *client_data;
2684 * Restrict the size of a queuepair. The device already
2685 * enforces a limit on the total amount of memory that can be
2686 * allocated to queuepairs for a guest. However, we try to
2687 * allocate this memory before we make the queuepair
2688 * allocation hypercall. On Linux, we allocate each page
2689 * separately, which means rather than fail, the guest will
2690 * thrash while it tries to allocate, and will become
2691 * increasingly unresponsive to the point where it appears to
2692 * be hung. So we place a limit on the size of an individual
2693 * queuepair here, and leave the device to enforce the
2694 * restriction on total queuepair memory. (Note that this
2695 * doesn't prevent all cases; a user with only this much
2696 * physical memory could still get into trouble.) The error
2697 * used by the device is NO_RESOURCES, so use that here too.
2700 if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2701 produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2702 return VMCI_ERROR_NO_RESOURCES;
2704 retval = vmci_route(&src, &dst, false, &route);
2705 if (retval < VMCI_SUCCESS)
2706 route = vmci_guest_code_active() ?
2707 VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2709 if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2710 pr_devel("NONBLOCK OR PINNED set");
2711 return VMCI_ERROR_INVALID_ARGS;
2714 my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2715 if (!my_qpair)
2716 return VMCI_ERROR_NO_MEM;
2718 my_qpair->produce_q_size = produce_qsize;
2719 my_qpair->consume_q_size = consume_qsize;
2720 my_qpair->peer = peer;
2721 my_qpair->flags = flags;
2722 my_qpair->priv_flags = priv_flags;
2724 wakeup_cb = NULL;
2725 client_data = NULL;
2727 if (VMCI_ROUTE_AS_HOST == route) {
2728 my_qpair->guest_endpoint = false;
2729 if (!(flags & VMCI_QPFLAG_LOCAL)) {
2730 my_qpair->blocked = 0;
2731 my_qpair->generation = 0;
2732 init_waitqueue_head(&my_qpair->event);
2733 wakeup_cb = qp_wakeup_cb;
2734 client_data = (void *)my_qpair;
2736 } else {
2737 my_qpair->guest_endpoint = true;
2740 retval = vmci_qp_alloc(handle,
2741 &my_qpair->produce_q,
2742 my_qpair->produce_q_size,
2743 &my_qpair->consume_q,
2744 my_qpair->consume_q_size,
2745 my_qpair->peer,
2746 my_qpair->flags,
2747 my_qpair->priv_flags,
2748 my_qpair->guest_endpoint,
2749 wakeup_cb, client_data);
2751 if (retval < VMCI_SUCCESS) {
2752 kfree(my_qpair);
2753 return retval;
2756 *qpair = my_qpair;
2757 my_qpair->handle = *handle;
2759 return retval;
2761 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2764 * vmci_qpair_detach() - Detatches the client from a queue pair.
2765 * @qpair: Reference of a pointer to the qpair struct.
2767 * This is the client interface for detaching from a VMCIQPair.
2768 * Note that this routine will free the memory allocated for the
2769 * vmci_qp structure too.
2771 int vmci_qpair_detach(struct vmci_qp **qpair)
2773 int result;
2774 struct vmci_qp *old_qpair;
2776 if (!qpair || !(*qpair))
2777 return VMCI_ERROR_INVALID_ARGS;
2779 old_qpair = *qpair;
2780 result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2783 * The guest can fail to detach for a number of reasons, and
2784 * if it does so, it will cleanup the entry (if there is one).
2785 * The host can fail too, but it won't cleanup the entry
2786 * immediately, it will do that later when the context is
2787 * freed. Either way, we need to release the qpair struct
2788 * here; there isn't much the caller can do, and we don't want
2789 * to leak.
2792 memset(old_qpair, 0, sizeof(*old_qpair));
2793 old_qpair->handle = VMCI_INVALID_HANDLE;
2794 old_qpair->peer = VMCI_INVALID_ID;
2795 kfree(old_qpair);
2796 *qpair = NULL;
2798 return result;
2800 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2803 * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2804 * @qpair: Pointer to the queue pair struct.
2805 * @producer_tail: Reference used for storing producer tail index.
2806 * @consumer_head: Reference used for storing the consumer head index.
2808 * This is the client interface for getting the current indexes of the
2809 * QPair from the point of the view of the caller as the producer.
2811 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2812 u64 *producer_tail,
2813 u64 *consumer_head)
2815 struct vmci_queue_header *produce_q_header;
2816 struct vmci_queue_header *consume_q_header;
2817 int result;
2819 if (!qpair)
2820 return VMCI_ERROR_INVALID_ARGS;
2822 qp_lock(qpair);
2823 result =
2824 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2825 if (result == VMCI_SUCCESS)
2826 vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2827 producer_tail, consumer_head);
2828 qp_unlock(qpair);
2830 if (result == VMCI_SUCCESS &&
2831 ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2832 (consumer_head && *consumer_head >= qpair->produce_q_size)))
2833 return VMCI_ERROR_INVALID_SIZE;
2835 return result;
2837 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2840 * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2841 * @qpair: Pointer to the queue pair struct.
2842 * @consumer_tail: Reference used for storing consumer tail index.
2843 * @producer_head: Reference used for storing the producer head index.
2845 * This is the client interface for getting the current indexes of the
2846 * QPair from the point of the view of the caller as the consumer.
2848 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2849 u64 *consumer_tail,
2850 u64 *producer_head)
2852 struct vmci_queue_header *produce_q_header;
2853 struct vmci_queue_header *consume_q_header;
2854 int result;
2856 if (!qpair)
2857 return VMCI_ERROR_INVALID_ARGS;
2859 qp_lock(qpair);
2860 result =
2861 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2862 if (result == VMCI_SUCCESS)
2863 vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2864 consumer_tail, producer_head);
2865 qp_unlock(qpair);
2867 if (result == VMCI_SUCCESS &&
2868 ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2869 (producer_head && *producer_head >= qpair->consume_q_size)))
2870 return VMCI_ERROR_INVALID_SIZE;
2872 return result;
2874 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2877 * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2878 * @qpair: Pointer to the queue pair struct.
2880 * This is the client interface for getting the amount of free
2881 * space in the QPair from the point of the view of the caller as
2882 * the producer which is the common case. Returns < 0 if err, else
2883 * available bytes into which data can be enqueued if > 0.
2885 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2887 struct vmci_queue_header *produce_q_header;
2888 struct vmci_queue_header *consume_q_header;
2889 s64 result;
2891 if (!qpair)
2892 return VMCI_ERROR_INVALID_ARGS;
2894 qp_lock(qpair);
2895 result =
2896 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2897 if (result == VMCI_SUCCESS)
2898 result = vmci_q_header_free_space(produce_q_header,
2899 consume_q_header,
2900 qpair->produce_q_size);
2901 else
2902 result = 0;
2904 qp_unlock(qpair);
2906 return result;
2908 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2911 * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2912 * @qpair: Pointer to the queue pair struct.
2914 * This is the client interface for getting the amount of free
2915 * space in the QPair from the point of the view of the caller as
2916 * the consumer which is not the common case. Returns < 0 if err, else
2917 * available bytes into which data can be enqueued if > 0.
2919 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2921 struct vmci_queue_header *produce_q_header;
2922 struct vmci_queue_header *consume_q_header;
2923 s64 result;
2925 if (!qpair)
2926 return VMCI_ERROR_INVALID_ARGS;
2928 qp_lock(qpair);
2929 result =
2930 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2931 if (result == VMCI_SUCCESS)
2932 result = vmci_q_header_free_space(consume_q_header,
2933 produce_q_header,
2934 qpair->consume_q_size);
2935 else
2936 result = 0;
2938 qp_unlock(qpair);
2940 return result;
2942 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
2945 * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
2946 * producer queue.
2947 * @qpair: Pointer to the queue pair struct.
2949 * This is the client interface for getting the amount of
2950 * enqueued data in the QPair from the point of the view of the
2951 * caller as the producer which is not the common case. Returns < 0 if err,
2952 * else available bytes that may be read.
2954 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
2956 struct vmci_queue_header *produce_q_header;
2957 struct vmci_queue_header *consume_q_header;
2958 s64 result;
2960 if (!qpair)
2961 return VMCI_ERROR_INVALID_ARGS;
2963 qp_lock(qpair);
2964 result =
2965 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2966 if (result == VMCI_SUCCESS)
2967 result = vmci_q_header_buf_ready(produce_q_header,
2968 consume_q_header,
2969 qpair->produce_q_size);
2970 else
2971 result = 0;
2973 qp_unlock(qpair);
2975 return result;
2977 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
2980 * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
2981 * consumer queue.
2982 * @qpair: Pointer to the queue pair struct.
2984 * This is the client interface for getting the amount of
2985 * enqueued data in the QPair from the point of the view of the
2986 * caller as the consumer which is the normal case. Returns < 0 if err,
2987 * else available bytes that may be read.
2989 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
2991 struct vmci_queue_header *produce_q_header;
2992 struct vmci_queue_header *consume_q_header;
2993 s64 result;
2995 if (!qpair)
2996 return VMCI_ERROR_INVALID_ARGS;
2998 qp_lock(qpair);
2999 result =
3000 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3001 if (result == VMCI_SUCCESS)
3002 result = vmci_q_header_buf_ready(consume_q_header,
3003 produce_q_header,
3004 qpair->consume_q_size);
3005 else
3006 result = 0;
3008 qp_unlock(qpair);
3010 return result;
3012 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3015 * vmci_qpair_enqueue() - Throw data on the queue.
3016 * @qpair: Pointer to the queue pair struct.
3017 * @buf: Pointer to buffer containing data
3018 * @buf_size: Length of buffer.
3019 * @buf_type: Buffer type (Unused).
3021 * This is the client interface for enqueueing data into the queue.
3022 * Returns number of bytes enqueued or < 0 on error.
3024 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3025 const void *buf,
3026 size_t buf_size,
3027 int buf_type)
3029 ssize_t result;
3030 struct iov_iter from;
3031 struct kvec v = {.iov_base = (void *)buf, .iov_len = buf_size};
3033 if (!qpair || !buf)
3034 return VMCI_ERROR_INVALID_ARGS;
3036 iov_iter_kvec(&from, WRITE | ITER_KVEC, &v, 1, buf_size);
3038 qp_lock(qpair);
3040 do {
3041 result = qp_enqueue_locked(qpair->produce_q,
3042 qpair->consume_q,
3043 qpair->produce_q_size,
3044 &from);
3046 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3047 !qp_wait_for_ready_queue(qpair))
3048 result = VMCI_ERROR_WOULD_BLOCK;
3050 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3052 qp_unlock(qpair);
3054 return result;
3056 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3059 * vmci_qpair_dequeue() - Get data from the queue.
3060 * @qpair: Pointer to the queue pair struct.
3061 * @buf: Pointer to buffer for the data
3062 * @buf_size: Length of buffer.
3063 * @buf_type: Buffer type (Unused).
3065 * This is the client interface for dequeueing data from the queue.
3066 * Returns number of bytes dequeued or < 0 on error.
3068 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3069 void *buf,
3070 size_t buf_size,
3071 int buf_type)
3073 ssize_t result;
3074 struct iov_iter to;
3075 struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3077 if (!qpair || !buf)
3078 return VMCI_ERROR_INVALID_ARGS;
3080 iov_iter_kvec(&to, READ | ITER_KVEC, &v, 1, buf_size);
3082 qp_lock(qpair);
3084 do {
3085 result = qp_dequeue_locked(qpair->produce_q,
3086 qpair->consume_q,
3087 qpair->consume_q_size,
3088 &to, true);
3090 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3091 !qp_wait_for_ready_queue(qpair))
3092 result = VMCI_ERROR_WOULD_BLOCK;
3094 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3096 qp_unlock(qpair);
3098 return result;
3100 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3103 * vmci_qpair_peek() - Peek at the data in the queue.
3104 * @qpair: Pointer to the queue pair struct.
3105 * @buf: Pointer to buffer for the data
3106 * @buf_size: Length of buffer.
3107 * @buf_type: Buffer type (Unused on Linux).
3109 * This is the client interface for peeking into a queue. (I.e.,
3110 * copy data from the queue without updating the head pointer.)
3111 * Returns number of bytes dequeued or < 0 on error.
3113 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3114 void *buf,
3115 size_t buf_size,
3116 int buf_type)
3118 struct iov_iter to;
3119 struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3120 ssize_t result;
3122 if (!qpair || !buf)
3123 return VMCI_ERROR_INVALID_ARGS;
3125 iov_iter_kvec(&to, READ | ITER_KVEC, &v, 1, buf_size);
3127 qp_lock(qpair);
3129 do {
3130 result = qp_dequeue_locked(qpair->produce_q,
3131 qpair->consume_q,
3132 qpair->consume_q_size,
3133 &to, false);
3135 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3136 !qp_wait_for_ready_queue(qpair))
3137 result = VMCI_ERROR_WOULD_BLOCK;
3139 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3141 qp_unlock(qpair);
3143 return result;
3145 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3148 * vmci_qpair_enquev() - Throw data on the queue using iov.
3149 * @qpair: Pointer to the queue pair struct.
3150 * @iov: Pointer to buffer containing data
3151 * @iov_size: Length of buffer.
3152 * @buf_type: Buffer type (Unused).
3154 * This is the client interface for enqueueing data into the queue.
3155 * This function uses IO vectors to handle the work. Returns number
3156 * of bytes enqueued or < 0 on error.
3158 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3159 struct msghdr *msg,
3160 size_t iov_size,
3161 int buf_type)
3163 ssize_t result;
3165 if (!qpair)
3166 return VMCI_ERROR_INVALID_ARGS;
3168 qp_lock(qpair);
3170 do {
3171 result = qp_enqueue_locked(qpair->produce_q,
3172 qpair->consume_q,
3173 qpair->produce_q_size,
3174 &msg->msg_iter);
3176 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3177 !qp_wait_for_ready_queue(qpair))
3178 result = VMCI_ERROR_WOULD_BLOCK;
3180 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3182 qp_unlock(qpair);
3184 return result;
3186 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3189 * vmci_qpair_dequev() - Get data from the queue using iov.
3190 * @qpair: Pointer to the queue pair struct.
3191 * @iov: Pointer to buffer for the data
3192 * @iov_size: Length of buffer.
3193 * @buf_type: Buffer type (Unused).
3195 * This is the client interface for dequeueing data from the queue.
3196 * This function uses IO vectors to handle the work. Returns number
3197 * of bytes dequeued or < 0 on error.
3199 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3200 struct msghdr *msg,
3201 size_t iov_size,
3202 int buf_type)
3204 ssize_t result;
3206 if (!qpair)
3207 return VMCI_ERROR_INVALID_ARGS;
3209 qp_lock(qpair);
3211 do {
3212 result = qp_dequeue_locked(qpair->produce_q,
3213 qpair->consume_q,
3214 qpair->consume_q_size,
3215 &msg->msg_iter, true);
3217 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3218 !qp_wait_for_ready_queue(qpair))
3219 result = VMCI_ERROR_WOULD_BLOCK;
3221 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3223 qp_unlock(qpair);
3225 return result;
3227 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3230 * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3231 * @qpair: Pointer to the queue pair struct.
3232 * @iov: Pointer to buffer for the data
3233 * @iov_size: Length of buffer.
3234 * @buf_type: Buffer type (Unused on Linux).
3236 * This is the client interface for peeking into a queue. (I.e.,
3237 * copy data from the queue without updating the head pointer.)
3238 * This function uses IO vectors to handle the work. Returns number
3239 * of bytes peeked or < 0 on error.
3241 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3242 struct msghdr *msg,
3243 size_t iov_size,
3244 int buf_type)
3246 ssize_t result;
3248 if (!qpair)
3249 return VMCI_ERROR_INVALID_ARGS;
3251 qp_lock(qpair);
3253 do {
3254 result = qp_dequeue_locked(qpair->produce_q,
3255 qpair->consume_q,
3256 qpair->consume_q_size,
3257 &msg->msg_iter, false);
3259 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3260 !qp_wait_for_ready_queue(qpair))
3261 result = VMCI_ERROR_WOULD_BLOCK;
3263 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3265 qp_unlock(qpair);
3266 return result;
3268 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);