xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / mtd / mtdcore.c
blob28553c840d3217bd7dcbc38c4851cc82438e203a
1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/of.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/leds.h>
43 #include <linux/debugfs.h>
45 #include <linux/mtd/mtd.h>
46 #include <linux/mtd/partitions.h>
48 #include "mtdcore.h"
50 struct backing_dev_info *mtd_bdi;
52 #ifdef CONFIG_PM_SLEEP
54 static int mtd_cls_suspend(struct device *dev)
56 struct mtd_info *mtd = dev_get_drvdata(dev);
58 return mtd ? mtd_suspend(mtd) : 0;
61 static int mtd_cls_resume(struct device *dev)
63 struct mtd_info *mtd = dev_get_drvdata(dev);
65 if (mtd)
66 mtd_resume(mtd);
67 return 0;
70 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
71 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
72 #else
73 #define MTD_CLS_PM_OPS NULL
74 #endif
76 static struct class mtd_class = {
77 .name = "mtd",
78 .owner = THIS_MODULE,
79 .pm = MTD_CLS_PM_OPS,
82 static DEFINE_IDR(mtd_idr);
84 /* These are exported solely for the purpose of mtd_blkdevs.c. You
85 should not use them for _anything_ else */
86 DEFINE_MUTEX(mtd_table_mutex);
87 EXPORT_SYMBOL_GPL(mtd_table_mutex);
89 struct mtd_info *__mtd_next_device(int i)
91 return idr_get_next(&mtd_idr, &i);
93 EXPORT_SYMBOL_GPL(__mtd_next_device);
95 static LIST_HEAD(mtd_notifiers);
98 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
100 /* REVISIT once MTD uses the driver model better, whoever allocates
101 * the mtd_info will probably want to use the release() hook...
103 static void mtd_release(struct device *dev)
105 struct mtd_info *mtd = dev_get_drvdata(dev);
106 dev_t index = MTD_DEVT(mtd->index);
108 /* remove /dev/mtdXro node */
109 device_destroy(&mtd_class, index + 1);
112 static ssize_t mtd_type_show(struct device *dev,
113 struct device_attribute *attr, char *buf)
115 struct mtd_info *mtd = dev_get_drvdata(dev);
116 char *type;
118 switch (mtd->type) {
119 case MTD_ABSENT:
120 type = "absent";
121 break;
122 case MTD_RAM:
123 type = "ram";
124 break;
125 case MTD_ROM:
126 type = "rom";
127 break;
128 case MTD_NORFLASH:
129 type = "nor";
130 break;
131 case MTD_NANDFLASH:
132 type = "nand";
133 break;
134 case MTD_DATAFLASH:
135 type = "dataflash";
136 break;
137 case MTD_UBIVOLUME:
138 type = "ubi";
139 break;
140 case MTD_MLCNANDFLASH:
141 type = "mlc-nand";
142 break;
143 default:
144 type = "unknown";
147 return snprintf(buf, PAGE_SIZE, "%s\n", type);
149 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
151 static ssize_t mtd_flags_show(struct device *dev,
152 struct device_attribute *attr, char *buf)
154 struct mtd_info *mtd = dev_get_drvdata(dev);
156 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
161 static ssize_t mtd_size_show(struct device *dev,
162 struct device_attribute *attr, char *buf)
164 struct mtd_info *mtd = dev_get_drvdata(dev);
166 return snprintf(buf, PAGE_SIZE, "%llu\n",
167 (unsigned long long)mtd->size);
170 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
172 static ssize_t mtd_erasesize_show(struct device *dev,
173 struct device_attribute *attr, char *buf)
175 struct mtd_info *mtd = dev_get_drvdata(dev);
177 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
180 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
182 static ssize_t mtd_writesize_show(struct device *dev,
183 struct device_attribute *attr, char *buf)
185 struct mtd_info *mtd = dev_get_drvdata(dev);
187 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
190 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
192 static ssize_t mtd_subpagesize_show(struct device *dev,
193 struct device_attribute *attr, char *buf)
195 struct mtd_info *mtd = dev_get_drvdata(dev);
196 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
198 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
201 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
203 static ssize_t mtd_oobsize_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
206 struct mtd_info *mtd = dev_get_drvdata(dev);
208 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
211 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
213 static ssize_t mtd_numeraseregions_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
216 struct mtd_info *mtd = dev_get_drvdata(dev);
218 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
221 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
222 NULL);
224 static ssize_t mtd_name_show(struct device *dev,
225 struct device_attribute *attr, char *buf)
227 struct mtd_info *mtd = dev_get_drvdata(dev);
229 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
232 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
234 static ssize_t mtd_ecc_strength_show(struct device *dev,
235 struct device_attribute *attr, char *buf)
237 struct mtd_info *mtd = dev_get_drvdata(dev);
239 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
241 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
243 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
244 struct device_attribute *attr,
245 char *buf)
247 struct mtd_info *mtd = dev_get_drvdata(dev);
249 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
252 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
253 struct device_attribute *attr,
254 const char *buf, size_t count)
256 struct mtd_info *mtd = dev_get_drvdata(dev);
257 unsigned int bitflip_threshold;
258 int retval;
260 retval = kstrtouint(buf, 0, &bitflip_threshold);
261 if (retval)
262 return retval;
264 mtd->bitflip_threshold = bitflip_threshold;
265 return count;
267 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
268 mtd_bitflip_threshold_show,
269 mtd_bitflip_threshold_store);
271 static ssize_t mtd_ecc_step_size_show(struct device *dev,
272 struct device_attribute *attr, char *buf)
274 struct mtd_info *mtd = dev_get_drvdata(dev);
276 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
279 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
281 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
284 struct mtd_info *mtd = dev_get_drvdata(dev);
285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
287 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
289 static DEVICE_ATTR(corrected_bits, S_IRUGO,
290 mtd_ecc_stats_corrected_show, NULL);
292 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
293 struct device_attribute *attr, char *buf)
295 struct mtd_info *mtd = dev_get_drvdata(dev);
296 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
298 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
300 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
302 static ssize_t mtd_badblocks_show(struct device *dev,
303 struct device_attribute *attr, char *buf)
305 struct mtd_info *mtd = dev_get_drvdata(dev);
306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
308 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
310 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
312 static ssize_t mtd_bbtblocks_show(struct device *dev,
313 struct device_attribute *attr, char *buf)
315 struct mtd_info *mtd = dev_get_drvdata(dev);
316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
318 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
320 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
322 static struct attribute *mtd_attrs[] = {
323 &dev_attr_type.attr,
324 &dev_attr_flags.attr,
325 &dev_attr_size.attr,
326 &dev_attr_erasesize.attr,
327 &dev_attr_writesize.attr,
328 &dev_attr_subpagesize.attr,
329 &dev_attr_oobsize.attr,
330 &dev_attr_numeraseregions.attr,
331 &dev_attr_name.attr,
332 &dev_attr_ecc_strength.attr,
333 &dev_attr_ecc_step_size.attr,
334 &dev_attr_corrected_bits.attr,
335 &dev_attr_ecc_failures.attr,
336 &dev_attr_bad_blocks.attr,
337 &dev_attr_bbt_blocks.attr,
338 &dev_attr_bitflip_threshold.attr,
339 NULL,
341 ATTRIBUTE_GROUPS(mtd);
343 static const struct device_type mtd_devtype = {
344 .name = "mtd",
345 .groups = mtd_groups,
346 .release = mtd_release,
349 #ifndef CONFIG_MMU
350 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
352 switch (mtd->type) {
353 case MTD_RAM:
354 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
355 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
356 case MTD_ROM:
357 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
358 NOMMU_MAP_READ;
359 default:
360 return NOMMU_MAP_COPY;
363 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
364 #endif
366 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
367 void *cmd)
369 struct mtd_info *mtd;
371 mtd = container_of(n, struct mtd_info, reboot_notifier);
372 mtd->_reboot(mtd);
374 return NOTIFY_DONE;
378 * mtd_wunit_to_pairing_info - get pairing information of a wunit
379 * @mtd: pointer to new MTD device info structure
380 * @wunit: write unit we are interested in
381 * @info: returned pairing information
383 * Retrieve pairing information associated to the wunit.
384 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
385 * paired together, and where programming a page may influence the page it is
386 * paired with.
387 * The notion of page is replaced by the term wunit (write-unit) to stay
388 * consistent with the ->writesize field.
390 * The @wunit argument can be extracted from an absolute offset using
391 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
392 * to @wunit.
394 * From the pairing info the MTD user can find all the wunits paired with
395 * @wunit using the following loop:
397 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
398 * info.pair = i;
399 * mtd_pairing_info_to_wunit(mtd, &info);
400 * ...
403 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
404 struct mtd_pairing_info *info)
406 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
408 if (wunit < 0 || wunit >= npairs)
409 return -EINVAL;
411 if (mtd->pairing && mtd->pairing->get_info)
412 return mtd->pairing->get_info(mtd, wunit, info);
414 info->group = 0;
415 info->pair = wunit;
417 return 0;
419 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
422 * mtd_wunit_to_pairing_info - get wunit from pairing information
423 * @mtd: pointer to new MTD device info structure
424 * @info: pairing information struct
426 * Returns a positive number representing the wunit associated to the info
427 * struct, or a negative error code.
429 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
430 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
431 * doc).
433 * It can also be used to only program the first page of each pair (i.e.
434 * page attached to group 0), which allows one to use an MLC NAND in
435 * software-emulated SLC mode:
437 * info.group = 0;
438 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
439 * for (info.pair = 0; info.pair < npairs; info.pair++) {
440 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
441 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
442 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
445 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
446 const struct mtd_pairing_info *info)
448 int ngroups = mtd_pairing_groups(mtd);
449 int npairs = mtd_wunit_per_eb(mtd) / ngroups;
451 if (!info || info->pair < 0 || info->pair >= npairs ||
452 info->group < 0 || info->group >= ngroups)
453 return -EINVAL;
455 if (mtd->pairing && mtd->pairing->get_wunit)
456 return mtd->pairing->get_wunit(mtd, info);
458 return info->pair;
460 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
463 * mtd_pairing_groups - get the number of pairing groups
464 * @mtd: pointer to new MTD device info structure
466 * Returns the number of pairing groups.
468 * This number is usually equal to the number of bits exposed by a single
469 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
470 * to iterate over all pages of a given pair.
472 int mtd_pairing_groups(struct mtd_info *mtd)
474 if (!mtd->pairing || !mtd->pairing->ngroups)
475 return 1;
477 return mtd->pairing->ngroups;
479 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
481 static struct dentry *dfs_dir_mtd;
484 * add_mtd_device - register an MTD device
485 * @mtd: pointer to new MTD device info structure
487 * Add a device to the list of MTD devices present in the system, and
488 * notify each currently active MTD 'user' of its arrival. Returns
489 * zero on success or non-zero on failure.
492 int add_mtd_device(struct mtd_info *mtd)
494 struct mtd_notifier *not;
495 int i, error;
498 * May occur, for instance, on buggy drivers which call
499 * mtd_device_parse_register() multiple times on the same master MTD,
500 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
502 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
503 return -EEXIST;
505 BUG_ON(mtd->writesize == 0);
507 if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
508 !(mtd->flags & MTD_NO_ERASE)))
509 return -EINVAL;
511 mutex_lock(&mtd_table_mutex);
513 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
514 if (i < 0) {
515 error = i;
516 goto fail_locked;
519 mtd->index = i;
520 mtd->usecount = 0;
522 /* default value if not set by driver */
523 if (mtd->bitflip_threshold == 0)
524 mtd->bitflip_threshold = mtd->ecc_strength;
526 if (is_power_of_2(mtd->erasesize))
527 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
528 else
529 mtd->erasesize_shift = 0;
531 if (is_power_of_2(mtd->writesize))
532 mtd->writesize_shift = ffs(mtd->writesize) - 1;
533 else
534 mtd->writesize_shift = 0;
536 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
537 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
539 /* Some chips always power up locked. Unlock them now */
540 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
541 error = mtd_unlock(mtd, 0, mtd->size);
542 if (error && error != -EOPNOTSUPP)
543 printk(KERN_WARNING
544 "%s: unlock failed, writes may not work\n",
545 mtd->name);
546 /* Ignore unlock failures? */
547 error = 0;
550 /* Caller should have set dev.parent to match the
551 * physical device, if appropriate.
553 mtd->dev.type = &mtd_devtype;
554 mtd->dev.class = &mtd_class;
555 mtd->dev.devt = MTD_DEVT(i);
556 dev_set_name(&mtd->dev, "mtd%d", i);
557 dev_set_drvdata(&mtd->dev, mtd);
558 of_node_get(mtd_get_of_node(mtd));
559 error = device_register(&mtd->dev);
560 if (error)
561 goto fail_added;
563 if (!IS_ERR_OR_NULL(dfs_dir_mtd)) {
564 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd);
565 if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) {
566 pr_debug("mtd device %s won't show data in debugfs\n",
567 dev_name(&mtd->dev));
571 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
572 "mtd%dro", i);
574 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
575 /* No need to get a refcount on the module containing
576 the notifier, since we hold the mtd_table_mutex */
577 list_for_each_entry(not, &mtd_notifiers, list)
578 not->add(mtd);
580 mutex_unlock(&mtd_table_mutex);
581 /* We _know_ we aren't being removed, because
582 our caller is still holding us here. So none
583 of this try_ nonsense, and no bitching about it
584 either. :) */
585 __module_get(THIS_MODULE);
586 return 0;
588 fail_added:
589 of_node_put(mtd_get_of_node(mtd));
590 idr_remove(&mtd_idr, i);
591 fail_locked:
592 mutex_unlock(&mtd_table_mutex);
593 return error;
597 * del_mtd_device - unregister an MTD device
598 * @mtd: pointer to MTD device info structure
600 * Remove a device from the list of MTD devices present in the system,
601 * and notify each currently active MTD 'user' of its departure.
602 * Returns zero on success or 1 on failure, which currently will happen
603 * if the requested device does not appear to be present in the list.
606 int del_mtd_device(struct mtd_info *mtd)
608 int ret;
609 struct mtd_notifier *not;
611 mutex_lock(&mtd_table_mutex);
613 debugfs_remove_recursive(mtd->dbg.dfs_dir);
615 if (idr_find(&mtd_idr, mtd->index) != mtd) {
616 ret = -ENODEV;
617 goto out_error;
620 /* No need to get a refcount on the module containing
621 the notifier, since we hold the mtd_table_mutex */
622 list_for_each_entry(not, &mtd_notifiers, list)
623 not->remove(mtd);
625 if (mtd->usecount) {
626 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
627 mtd->index, mtd->name, mtd->usecount);
628 ret = -EBUSY;
629 } else {
630 device_unregister(&mtd->dev);
632 idr_remove(&mtd_idr, mtd->index);
633 of_node_put(mtd_get_of_node(mtd));
635 module_put(THIS_MODULE);
636 ret = 0;
639 out_error:
640 mutex_unlock(&mtd_table_mutex);
641 return ret;
644 static int mtd_add_device_partitions(struct mtd_info *mtd,
645 struct mtd_partitions *parts)
647 const struct mtd_partition *real_parts = parts->parts;
648 int nbparts = parts->nr_parts;
649 int ret;
651 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
652 ret = add_mtd_device(mtd);
653 if (ret)
654 return ret;
657 if (nbparts > 0) {
658 ret = add_mtd_partitions(mtd, real_parts, nbparts);
659 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
660 del_mtd_device(mtd);
661 return ret;
664 return 0;
668 * Set a few defaults based on the parent devices, if not provided by the
669 * driver
671 static void mtd_set_dev_defaults(struct mtd_info *mtd)
673 if (mtd->dev.parent) {
674 if (!mtd->owner && mtd->dev.parent->driver)
675 mtd->owner = mtd->dev.parent->driver->owner;
676 if (!mtd->name)
677 mtd->name = dev_name(mtd->dev.parent);
678 } else {
679 pr_debug("mtd device won't show a device symlink in sysfs\n");
684 * mtd_device_parse_register - parse partitions and register an MTD device.
686 * @mtd: the MTD device to register
687 * @types: the list of MTD partition probes to try, see
688 * 'parse_mtd_partitions()' for more information
689 * @parser_data: MTD partition parser-specific data
690 * @parts: fallback partition information to register, if parsing fails;
691 * only valid if %nr_parts > %0
692 * @nr_parts: the number of partitions in parts, if zero then the full
693 * MTD device is registered if no partition info is found
695 * This function aggregates MTD partitions parsing (done by
696 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
697 * basically follows the most common pattern found in many MTD drivers:
699 * * It first tries to probe partitions on MTD device @mtd using parsers
700 * specified in @types (if @types is %NULL, then the default list of parsers
701 * is used, see 'parse_mtd_partitions()' for more information). If none are
702 * found this functions tries to fallback to information specified in
703 * @parts/@nr_parts.
704 * * If any partitioning info was found, this function registers the found
705 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
706 * as a whole is registered first.
707 * * If no partitions were found this function just registers the MTD device
708 * @mtd and exits.
710 * Returns zero in case of success and a negative error code in case of failure.
712 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
713 struct mtd_part_parser_data *parser_data,
714 const struct mtd_partition *parts,
715 int nr_parts)
717 struct mtd_partitions parsed;
718 int ret;
720 mtd_set_dev_defaults(mtd);
722 memset(&parsed, 0, sizeof(parsed));
724 ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
725 if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) {
726 /* Fall back to driver-provided partitions */
727 parsed = (struct mtd_partitions){
728 .parts = parts,
729 .nr_parts = nr_parts,
731 } else if (ret < 0) {
732 /* Didn't come up with parsed OR fallback partitions */
733 pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
734 ret);
735 /* Don't abort on errors; we can still use unpartitioned MTD */
736 memset(&parsed, 0, sizeof(parsed));
739 ret = mtd_add_device_partitions(mtd, &parsed);
740 if (ret)
741 goto out;
744 * FIXME: some drivers unfortunately call this function more than once.
745 * So we have to check if we've already assigned the reboot notifier.
747 * Generally, we can make multiple calls work for most cases, but it
748 * does cause problems with parse_mtd_partitions() above (e.g.,
749 * cmdlineparts will register partitions more than once).
751 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
752 "MTD already registered\n");
753 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
754 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
755 register_reboot_notifier(&mtd->reboot_notifier);
758 out:
759 /* Cleanup any parsed partitions */
760 mtd_part_parser_cleanup(&parsed);
761 return ret;
763 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
766 * mtd_device_unregister - unregister an existing MTD device.
768 * @master: the MTD device to unregister. This will unregister both the master
769 * and any partitions if registered.
771 int mtd_device_unregister(struct mtd_info *master)
773 int err;
775 if (master->_reboot)
776 unregister_reboot_notifier(&master->reboot_notifier);
778 err = del_mtd_partitions(master);
779 if (err)
780 return err;
782 if (!device_is_registered(&master->dev))
783 return 0;
785 return del_mtd_device(master);
787 EXPORT_SYMBOL_GPL(mtd_device_unregister);
790 * register_mtd_user - register a 'user' of MTD devices.
791 * @new: pointer to notifier info structure
793 * Registers a pair of callbacks function to be called upon addition
794 * or removal of MTD devices. Causes the 'add' callback to be immediately
795 * invoked for each MTD device currently present in the system.
797 void register_mtd_user (struct mtd_notifier *new)
799 struct mtd_info *mtd;
801 mutex_lock(&mtd_table_mutex);
803 list_add(&new->list, &mtd_notifiers);
805 __module_get(THIS_MODULE);
807 mtd_for_each_device(mtd)
808 new->add(mtd);
810 mutex_unlock(&mtd_table_mutex);
812 EXPORT_SYMBOL_GPL(register_mtd_user);
815 * unregister_mtd_user - unregister a 'user' of MTD devices.
816 * @old: pointer to notifier info structure
818 * Removes a callback function pair from the list of 'users' to be
819 * notified upon addition or removal of MTD devices. Causes the
820 * 'remove' callback to be immediately invoked for each MTD device
821 * currently present in the system.
823 int unregister_mtd_user (struct mtd_notifier *old)
825 struct mtd_info *mtd;
827 mutex_lock(&mtd_table_mutex);
829 module_put(THIS_MODULE);
831 mtd_for_each_device(mtd)
832 old->remove(mtd);
834 list_del(&old->list);
835 mutex_unlock(&mtd_table_mutex);
836 return 0;
838 EXPORT_SYMBOL_GPL(unregister_mtd_user);
841 * get_mtd_device - obtain a validated handle for an MTD device
842 * @mtd: last known address of the required MTD device
843 * @num: internal device number of the required MTD device
845 * Given a number and NULL address, return the num'th entry in the device
846 * table, if any. Given an address and num == -1, search the device table
847 * for a device with that address and return if it's still present. Given
848 * both, return the num'th driver only if its address matches. Return
849 * error code if not.
851 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
853 struct mtd_info *ret = NULL, *other;
854 int err = -ENODEV;
856 mutex_lock(&mtd_table_mutex);
858 if (num == -1) {
859 mtd_for_each_device(other) {
860 if (other == mtd) {
861 ret = mtd;
862 break;
865 } else if (num >= 0) {
866 ret = idr_find(&mtd_idr, num);
867 if (mtd && mtd != ret)
868 ret = NULL;
871 if (!ret) {
872 ret = ERR_PTR(err);
873 goto out;
876 err = __get_mtd_device(ret);
877 if (err)
878 ret = ERR_PTR(err);
879 out:
880 mutex_unlock(&mtd_table_mutex);
881 return ret;
883 EXPORT_SYMBOL_GPL(get_mtd_device);
886 int __get_mtd_device(struct mtd_info *mtd)
888 int err;
890 if (!try_module_get(mtd->owner))
891 return -ENODEV;
893 if (mtd->_get_device) {
894 err = mtd->_get_device(mtd);
896 if (err) {
897 module_put(mtd->owner);
898 return err;
901 mtd->usecount++;
902 return 0;
904 EXPORT_SYMBOL_GPL(__get_mtd_device);
907 * get_mtd_device_nm - obtain a validated handle for an MTD device by
908 * device name
909 * @name: MTD device name to open
911 * This function returns MTD device description structure in case of
912 * success and an error code in case of failure.
914 struct mtd_info *get_mtd_device_nm(const char *name)
916 int err = -ENODEV;
917 struct mtd_info *mtd = NULL, *other;
919 mutex_lock(&mtd_table_mutex);
921 mtd_for_each_device(other) {
922 if (!strcmp(name, other->name)) {
923 mtd = other;
924 break;
928 if (!mtd)
929 goto out_unlock;
931 err = __get_mtd_device(mtd);
932 if (err)
933 goto out_unlock;
935 mutex_unlock(&mtd_table_mutex);
936 return mtd;
938 out_unlock:
939 mutex_unlock(&mtd_table_mutex);
940 return ERR_PTR(err);
942 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
944 void put_mtd_device(struct mtd_info *mtd)
946 mutex_lock(&mtd_table_mutex);
947 __put_mtd_device(mtd);
948 mutex_unlock(&mtd_table_mutex);
951 EXPORT_SYMBOL_GPL(put_mtd_device);
953 void __put_mtd_device(struct mtd_info *mtd)
955 --mtd->usecount;
956 BUG_ON(mtd->usecount < 0);
958 if (mtd->_put_device)
959 mtd->_put_device(mtd);
961 module_put(mtd->owner);
963 EXPORT_SYMBOL_GPL(__put_mtd_device);
966 * Erase is an asynchronous operation. Device drivers are supposed
967 * to call instr->callback() whenever the operation completes, even
968 * if it completes with a failure.
969 * Callers are supposed to pass a callback function and wait for it
970 * to be called before writing to the block.
972 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
974 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
975 return -EINVAL;
976 if (!(mtd->flags & MTD_WRITEABLE))
977 return -EROFS;
978 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
979 if (!instr->len) {
980 instr->state = MTD_ERASE_DONE;
981 mtd_erase_callback(instr);
982 return 0;
984 ledtrig_mtd_activity();
985 return mtd->_erase(mtd, instr);
987 EXPORT_SYMBOL_GPL(mtd_erase);
990 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
992 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
993 void **virt, resource_size_t *phys)
995 *retlen = 0;
996 *virt = NULL;
997 if (phys)
998 *phys = 0;
999 if (!mtd->_point)
1000 return -EOPNOTSUPP;
1001 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1002 return -EINVAL;
1003 if (!len)
1004 return 0;
1005 return mtd->_point(mtd, from, len, retlen, virt, phys);
1007 EXPORT_SYMBOL_GPL(mtd_point);
1009 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1010 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1012 if (!mtd->_unpoint)
1013 return -EOPNOTSUPP;
1014 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1015 return -EINVAL;
1016 if (!len)
1017 return 0;
1018 return mtd->_unpoint(mtd, from, len);
1020 EXPORT_SYMBOL_GPL(mtd_unpoint);
1023 * Allow NOMMU mmap() to directly map the device (if not NULL)
1024 * - return the address to which the offset maps
1025 * - return -ENOSYS to indicate refusal to do the mapping
1027 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1028 unsigned long offset, unsigned long flags)
1030 size_t retlen;
1031 void *virt;
1032 int ret;
1034 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1035 if (ret)
1036 return ret;
1037 if (retlen != len) {
1038 mtd_unpoint(mtd, offset, retlen);
1039 return -ENOSYS;
1041 return (unsigned long)virt;
1043 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1045 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1046 u_char *buf)
1048 int ret_code;
1049 *retlen = 0;
1050 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1051 return -EINVAL;
1052 if (!len)
1053 return 0;
1055 ledtrig_mtd_activity();
1057 * In the absence of an error, drivers return a non-negative integer
1058 * representing the maximum number of bitflips that were corrected on
1059 * any one ecc region (if applicable; zero otherwise).
1061 if (mtd->_read) {
1062 ret_code = mtd->_read(mtd, from, len, retlen, buf);
1063 } else if (mtd->_read_oob) {
1064 struct mtd_oob_ops ops = {
1065 .len = len,
1066 .datbuf = buf,
1069 ret_code = mtd->_read_oob(mtd, from, &ops);
1070 *retlen = ops.retlen;
1071 } else {
1072 return -ENOTSUPP;
1075 if (unlikely(ret_code < 0))
1076 return ret_code;
1077 if (mtd->ecc_strength == 0)
1078 return 0; /* device lacks ecc */
1079 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1081 EXPORT_SYMBOL_GPL(mtd_read);
1083 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1084 const u_char *buf)
1086 *retlen = 0;
1087 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1088 return -EINVAL;
1089 if ((!mtd->_write && !mtd->_write_oob) ||
1090 !(mtd->flags & MTD_WRITEABLE))
1091 return -EROFS;
1092 if (!len)
1093 return 0;
1094 ledtrig_mtd_activity();
1096 if (!mtd->_write) {
1097 struct mtd_oob_ops ops = {
1098 .len = len,
1099 .datbuf = (u8 *)buf,
1101 int ret;
1103 ret = mtd->_write_oob(mtd, to, &ops);
1104 *retlen = ops.retlen;
1105 return ret;
1108 return mtd->_write(mtd, to, len, retlen, buf);
1110 EXPORT_SYMBOL_GPL(mtd_write);
1113 * In blackbox flight recorder like scenarios we want to make successful writes
1114 * in interrupt context. panic_write() is only intended to be called when its
1115 * known the kernel is about to panic and we need the write to succeed. Since
1116 * the kernel is not going to be running for much longer, this function can
1117 * break locks and delay to ensure the write succeeds (but not sleep).
1119 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1120 const u_char *buf)
1122 *retlen = 0;
1123 if (!mtd->_panic_write)
1124 return -EOPNOTSUPP;
1125 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1126 return -EINVAL;
1127 if (!(mtd->flags & MTD_WRITEABLE))
1128 return -EROFS;
1129 if (!len)
1130 return 0;
1131 return mtd->_panic_write(mtd, to, len, retlen, buf);
1133 EXPORT_SYMBOL_GPL(mtd_panic_write);
1135 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1136 struct mtd_oob_ops *ops)
1139 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1140 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1141 * this case.
1143 if (!ops->datbuf)
1144 ops->len = 0;
1146 if (!ops->oobbuf)
1147 ops->ooblen = 0;
1149 if (offs < 0 || offs + ops->len > mtd->size)
1150 return -EINVAL;
1152 if (ops->ooblen) {
1153 u64 maxooblen;
1155 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1156 return -EINVAL;
1158 maxooblen = ((mtd_div_by_ws(mtd->size, mtd) -
1159 mtd_div_by_ws(offs, mtd)) *
1160 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1161 if (ops->ooblen > maxooblen)
1162 return -EINVAL;
1165 return 0;
1168 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1170 int ret_code;
1171 ops->retlen = ops->oobretlen = 0;
1172 if (!mtd->_read_oob)
1173 return -EOPNOTSUPP;
1175 ret_code = mtd_check_oob_ops(mtd, from, ops);
1176 if (ret_code)
1177 return ret_code;
1179 ledtrig_mtd_activity();
1181 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1182 * similar to mtd->_read(), returning a non-negative integer
1183 * representing max bitflips. In other cases, mtd->_read_oob() may
1184 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1186 ret_code = mtd->_read_oob(mtd, from, ops);
1187 if (unlikely(ret_code < 0))
1188 return ret_code;
1189 if (mtd->ecc_strength == 0)
1190 return 0; /* device lacks ecc */
1191 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1193 EXPORT_SYMBOL_GPL(mtd_read_oob);
1195 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1196 struct mtd_oob_ops *ops)
1198 int ret;
1200 ops->retlen = ops->oobretlen = 0;
1201 if (!mtd->_write_oob)
1202 return -EOPNOTSUPP;
1203 if (!(mtd->flags & MTD_WRITEABLE))
1204 return -EROFS;
1206 ret = mtd_check_oob_ops(mtd, to, ops);
1207 if (ret)
1208 return ret;
1210 ledtrig_mtd_activity();
1211 return mtd->_write_oob(mtd, to, ops);
1213 EXPORT_SYMBOL_GPL(mtd_write_oob);
1216 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1217 * @mtd: MTD device structure
1218 * @section: ECC section. Depending on the layout you may have all the ECC
1219 * bytes stored in a single contiguous section, or one section
1220 * per ECC chunk (and sometime several sections for a single ECC
1221 * ECC chunk)
1222 * @oobecc: OOB region struct filled with the appropriate ECC position
1223 * information
1225 * This function returns ECC section information in the OOB area. If you want
1226 * to get all the ECC bytes information, then you should call
1227 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1229 * Returns zero on success, a negative error code otherwise.
1231 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1232 struct mtd_oob_region *oobecc)
1234 memset(oobecc, 0, sizeof(*oobecc));
1236 if (!mtd || section < 0)
1237 return -EINVAL;
1239 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1240 return -ENOTSUPP;
1242 return mtd->ooblayout->ecc(mtd, section, oobecc);
1244 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1247 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1248 * section
1249 * @mtd: MTD device structure
1250 * @section: Free section you are interested in. Depending on the layout
1251 * you may have all the free bytes stored in a single contiguous
1252 * section, or one section per ECC chunk plus an extra section
1253 * for the remaining bytes (or other funky layout).
1254 * @oobfree: OOB region struct filled with the appropriate free position
1255 * information
1257 * This function returns free bytes position in the OOB area. If you want
1258 * to get all the free bytes information, then you should call
1259 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1261 * Returns zero on success, a negative error code otherwise.
1263 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1264 struct mtd_oob_region *oobfree)
1266 memset(oobfree, 0, sizeof(*oobfree));
1268 if (!mtd || section < 0)
1269 return -EINVAL;
1271 if (!mtd->ooblayout || !mtd->ooblayout->free)
1272 return -ENOTSUPP;
1274 return mtd->ooblayout->free(mtd, section, oobfree);
1276 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1279 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1280 * @mtd: mtd info structure
1281 * @byte: the byte we are searching for
1282 * @sectionp: pointer where the section id will be stored
1283 * @oobregion: used to retrieve the ECC position
1284 * @iter: iterator function. Should be either mtd_ooblayout_free or
1285 * mtd_ooblayout_ecc depending on the region type you're searching for
1287 * This function returns the section id and oobregion information of a
1288 * specific byte. For example, say you want to know where the 4th ECC byte is
1289 * stored, you'll use:
1291 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1293 * Returns zero on success, a negative error code otherwise.
1295 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1296 int *sectionp, struct mtd_oob_region *oobregion,
1297 int (*iter)(struct mtd_info *,
1298 int section,
1299 struct mtd_oob_region *oobregion))
1301 int pos = 0, ret, section = 0;
1303 memset(oobregion, 0, sizeof(*oobregion));
1305 while (1) {
1306 ret = iter(mtd, section, oobregion);
1307 if (ret)
1308 return ret;
1310 if (pos + oobregion->length > byte)
1311 break;
1313 pos += oobregion->length;
1314 section++;
1318 * Adjust region info to make it start at the beginning at the
1319 * 'start' ECC byte.
1321 oobregion->offset += byte - pos;
1322 oobregion->length -= byte - pos;
1323 *sectionp = section;
1325 return 0;
1329 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1330 * ECC byte
1331 * @mtd: mtd info structure
1332 * @eccbyte: the byte we are searching for
1333 * @sectionp: pointer where the section id will be stored
1334 * @oobregion: OOB region information
1336 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1337 * byte.
1339 * Returns zero on success, a negative error code otherwise.
1341 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1342 int *section,
1343 struct mtd_oob_region *oobregion)
1345 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1346 mtd_ooblayout_ecc);
1348 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1351 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1352 * @mtd: mtd info structure
1353 * @buf: destination buffer to store OOB bytes
1354 * @oobbuf: OOB buffer
1355 * @start: first byte to retrieve
1356 * @nbytes: number of bytes to retrieve
1357 * @iter: section iterator
1359 * Extract bytes attached to a specific category (ECC or free)
1360 * from the OOB buffer and copy them into buf.
1362 * Returns zero on success, a negative error code otherwise.
1364 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1365 const u8 *oobbuf, int start, int nbytes,
1366 int (*iter)(struct mtd_info *,
1367 int section,
1368 struct mtd_oob_region *oobregion))
1370 struct mtd_oob_region oobregion;
1371 int section, ret;
1373 ret = mtd_ooblayout_find_region(mtd, start, &section,
1374 &oobregion, iter);
1376 while (!ret) {
1377 int cnt;
1379 cnt = min_t(int, nbytes, oobregion.length);
1380 memcpy(buf, oobbuf + oobregion.offset, cnt);
1381 buf += cnt;
1382 nbytes -= cnt;
1384 if (!nbytes)
1385 break;
1387 ret = iter(mtd, ++section, &oobregion);
1390 return ret;
1394 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1395 * @mtd: mtd info structure
1396 * @buf: source buffer to get OOB bytes from
1397 * @oobbuf: OOB buffer
1398 * @start: first OOB byte to set
1399 * @nbytes: number of OOB bytes to set
1400 * @iter: section iterator
1402 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1403 * is selected by passing the appropriate iterator.
1405 * Returns zero on success, a negative error code otherwise.
1407 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1408 u8 *oobbuf, int start, int nbytes,
1409 int (*iter)(struct mtd_info *,
1410 int section,
1411 struct mtd_oob_region *oobregion))
1413 struct mtd_oob_region oobregion;
1414 int section, ret;
1416 ret = mtd_ooblayout_find_region(mtd, start, &section,
1417 &oobregion, iter);
1419 while (!ret) {
1420 int cnt;
1422 cnt = min_t(int, nbytes, oobregion.length);
1423 memcpy(oobbuf + oobregion.offset, buf, cnt);
1424 buf += cnt;
1425 nbytes -= cnt;
1427 if (!nbytes)
1428 break;
1430 ret = iter(mtd, ++section, &oobregion);
1433 return ret;
1437 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1438 * @mtd: mtd info structure
1439 * @iter: category iterator
1441 * Count the number of bytes in a given category.
1443 * Returns a positive value on success, a negative error code otherwise.
1445 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1446 int (*iter)(struct mtd_info *,
1447 int section,
1448 struct mtd_oob_region *oobregion))
1450 struct mtd_oob_region oobregion;
1451 int section = 0, ret, nbytes = 0;
1453 while (1) {
1454 ret = iter(mtd, section++, &oobregion);
1455 if (ret) {
1456 if (ret == -ERANGE)
1457 ret = nbytes;
1458 break;
1461 nbytes += oobregion.length;
1464 return ret;
1468 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1469 * @mtd: mtd info structure
1470 * @eccbuf: destination buffer to store ECC bytes
1471 * @oobbuf: OOB buffer
1472 * @start: first ECC byte to retrieve
1473 * @nbytes: number of ECC bytes to retrieve
1475 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1477 * Returns zero on success, a negative error code otherwise.
1479 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1480 const u8 *oobbuf, int start, int nbytes)
1482 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1483 mtd_ooblayout_ecc);
1485 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1488 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1489 * @mtd: mtd info structure
1490 * @eccbuf: source buffer to get ECC bytes from
1491 * @oobbuf: OOB buffer
1492 * @start: first ECC byte to set
1493 * @nbytes: number of ECC bytes to set
1495 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1497 * Returns zero on success, a negative error code otherwise.
1499 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1500 u8 *oobbuf, int start, int nbytes)
1502 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1503 mtd_ooblayout_ecc);
1505 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1508 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1509 * @mtd: mtd info structure
1510 * @databuf: destination buffer to store ECC bytes
1511 * @oobbuf: OOB buffer
1512 * @start: first ECC byte to retrieve
1513 * @nbytes: number of ECC bytes to retrieve
1515 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1517 * Returns zero on success, a negative error code otherwise.
1519 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1520 const u8 *oobbuf, int start, int nbytes)
1522 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1523 mtd_ooblayout_free);
1525 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1528 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1529 * @mtd: mtd info structure
1530 * @eccbuf: source buffer to get data bytes from
1531 * @oobbuf: OOB buffer
1532 * @start: first ECC byte to set
1533 * @nbytes: number of ECC bytes to set
1535 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1537 * Returns zero on success, a negative error code otherwise.
1539 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1540 u8 *oobbuf, int start, int nbytes)
1542 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1543 mtd_ooblayout_free);
1545 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1548 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1549 * @mtd: mtd info structure
1551 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1553 * Returns zero on success, a negative error code otherwise.
1555 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1557 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1559 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1562 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1563 * @mtd: mtd info structure
1565 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1567 * Returns zero on success, a negative error code otherwise.
1569 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1571 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1573 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1576 * Method to access the protection register area, present in some flash
1577 * devices. The user data is one time programmable but the factory data is read
1578 * only.
1580 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1581 struct otp_info *buf)
1583 if (!mtd->_get_fact_prot_info)
1584 return -EOPNOTSUPP;
1585 if (!len)
1586 return 0;
1587 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1589 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1591 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1592 size_t *retlen, u_char *buf)
1594 *retlen = 0;
1595 if (!mtd->_read_fact_prot_reg)
1596 return -EOPNOTSUPP;
1597 if (!len)
1598 return 0;
1599 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1601 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1603 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1604 struct otp_info *buf)
1606 if (!mtd->_get_user_prot_info)
1607 return -EOPNOTSUPP;
1608 if (!len)
1609 return 0;
1610 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1612 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1614 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1615 size_t *retlen, u_char *buf)
1617 *retlen = 0;
1618 if (!mtd->_read_user_prot_reg)
1619 return -EOPNOTSUPP;
1620 if (!len)
1621 return 0;
1622 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1624 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1626 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1627 size_t *retlen, u_char *buf)
1629 int ret;
1631 *retlen = 0;
1632 if (!mtd->_write_user_prot_reg)
1633 return -EOPNOTSUPP;
1634 if (!len)
1635 return 0;
1636 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1637 if (ret)
1638 return ret;
1641 * If no data could be written at all, we are out of memory and
1642 * must return -ENOSPC.
1644 return (*retlen) ? 0 : -ENOSPC;
1646 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1648 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1650 if (!mtd->_lock_user_prot_reg)
1651 return -EOPNOTSUPP;
1652 if (!len)
1653 return 0;
1654 return mtd->_lock_user_prot_reg(mtd, from, len);
1656 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1658 /* Chip-supported device locking */
1659 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1661 if (!mtd->_lock)
1662 return -EOPNOTSUPP;
1663 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1664 return -EINVAL;
1665 if (!len)
1666 return 0;
1667 return mtd->_lock(mtd, ofs, len);
1669 EXPORT_SYMBOL_GPL(mtd_lock);
1671 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1673 if (!mtd->_unlock)
1674 return -EOPNOTSUPP;
1675 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1676 return -EINVAL;
1677 if (!len)
1678 return 0;
1679 return mtd->_unlock(mtd, ofs, len);
1681 EXPORT_SYMBOL_GPL(mtd_unlock);
1683 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1685 if (!mtd->_is_locked)
1686 return -EOPNOTSUPP;
1687 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1688 return -EINVAL;
1689 if (!len)
1690 return 0;
1691 return mtd->_is_locked(mtd, ofs, len);
1693 EXPORT_SYMBOL_GPL(mtd_is_locked);
1695 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1697 if (ofs < 0 || ofs >= mtd->size)
1698 return -EINVAL;
1699 if (!mtd->_block_isreserved)
1700 return 0;
1701 return mtd->_block_isreserved(mtd, ofs);
1703 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1705 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1707 if (ofs < 0 || ofs >= mtd->size)
1708 return -EINVAL;
1709 if (!mtd->_block_isbad)
1710 return 0;
1711 return mtd->_block_isbad(mtd, ofs);
1713 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1715 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1717 if (!mtd->_block_markbad)
1718 return -EOPNOTSUPP;
1719 if (ofs < 0 || ofs >= mtd->size)
1720 return -EINVAL;
1721 if (!(mtd->flags & MTD_WRITEABLE))
1722 return -EROFS;
1723 return mtd->_block_markbad(mtd, ofs);
1725 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1728 * default_mtd_writev - the default writev method
1729 * @mtd: mtd device description object pointer
1730 * @vecs: the vectors to write
1731 * @count: count of vectors in @vecs
1732 * @to: the MTD device offset to write to
1733 * @retlen: on exit contains the count of bytes written to the MTD device.
1735 * This function returns zero in case of success and a negative error code in
1736 * case of failure.
1738 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1739 unsigned long count, loff_t to, size_t *retlen)
1741 unsigned long i;
1742 size_t totlen = 0, thislen;
1743 int ret = 0;
1745 for (i = 0; i < count; i++) {
1746 if (!vecs[i].iov_len)
1747 continue;
1748 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1749 vecs[i].iov_base);
1750 totlen += thislen;
1751 if (ret || thislen != vecs[i].iov_len)
1752 break;
1753 to += vecs[i].iov_len;
1755 *retlen = totlen;
1756 return ret;
1760 * mtd_writev - the vector-based MTD write method
1761 * @mtd: mtd device description object pointer
1762 * @vecs: the vectors to write
1763 * @count: count of vectors in @vecs
1764 * @to: the MTD device offset to write to
1765 * @retlen: on exit contains the count of bytes written to the MTD device.
1767 * This function returns zero in case of success and a negative error code in
1768 * case of failure.
1770 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1771 unsigned long count, loff_t to, size_t *retlen)
1773 *retlen = 0;
1774 if (!(mtd->flags & MTD_WRITEABLE))
1775 return -EROFS;
1776 if (!mtd->_writev)
1777 return default_mtd_writev(mtd, vecs, count, to, retlen);
1778 return mtd->_writev(mtd, vecs, count, to, retlen);
1780 EXPORT_SYMBOL_GPL(mtd_writev);
1783 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1784 * @mtd: mtd device description object pointer
1785 * @size: a pointer to the ideal or maximum size of the allocation, points
1786 * to the actual allocation size on success.
1788 * This routine attempts to allocate a contiguous kernel buffer up to
1789 * the specified size, backing off the size of the request exponentially
1790 * until the request succeeds or until the allocation size falls below
1791 * the system page size. This attempts to make sure it does not adversely
1792 * impact system performance, so when allocating more than one page, we
1793 * ask the memory allocator to avoid re-trying, swapping, writing back
1794 * or performing I/O.
1796 * Note, this function also makes sure that the allocated buffer is aligned to
1797 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1799 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1800 * to handle smaller (i.e. degraded) buffer allocations under low- or
1801 * fragmented-memory situations where such reduced allocations, from a
1802 * requested ideal, are allowed.
1804 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1806 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1808 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1809 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1810 void *kbuf;
1812 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1814 while (*size > min_alloc) {
1815 kbuf = kmalloc(*size, flags);
1816 if (kbuf)
1817 return kbuf;
1819 *size >>= 1;
1820 *size = ALIGN(*size, mtd->writesize);
1824 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1825 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1827 return kmalloc(*size, GFP_KERNEL);
1829 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1831 #ifdef CONFIG_PROC_FS
1833 /*====================================================================*/
1834 /* Support for /proc/mtd */
1836 static int mtd_proc_show(struct seq_file *m, void *v)
1838 struct mtd_info *mtd;
1840 seq_puts(m, "dev: size erasesize name\n");
1841 mutex_lock(&mtd_table_mutex);
1842 mtd_for_each_device(mtd) {
1843 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1844 mtd->index, (unsigned long long)mtd->size,
1845 mtd->erasesize, mtd->name);
1847 mutex_unlock(&mtd_table_mutex);
1848 return 0;
1851 static int mtd_proc_open(struct inode *inode, struct file *file)
1853 return single_open(file, mtd_proc_show, NULL);
1856 static const struct file_operations mtd_proc_ops = {
1857 .open = mtd_proc_open,
1858 .read = seq_read,
1859 .llseek = seq_lseek,
1860 .release = single_release,
1862 #endif /* CONFIG_PROC_FS */
1864 /*====================================================================*/
1865 /* Init code */
1867 static struct backing_dev_info * __init mtd_bdi_init(char *name)
1869 struct backing_dev_info *bdi;
1870 int ret;
1872 bdi = bdi_alloc(GFP_KERNEL);
1873 if (!bdi)
1874 return ERR_PTR(-ENOMEM);
1876 bdi->name = name;
1878 * We put '-0' suffix to the name to get the same name format as we
1879 * used to get. Since this is called only once, we get a unique name.
1881 ret = bdi_register(bdi, "%.28s-0", name);
1882 if (ret)
1883 bdi_put(bdi);
1885 return ret ? ERR_PTR(ret) : bdi;
1888 static struct proc_dir_entry *proc_mtd;
1890 static int __init init_mtd(void)
1892 int ret;
1894 ret = class_register(&mtd_class);
1895 if (ret)
1896 goto err_reg;
1898 mtd_bdi = mtd_bdi_init("mtd");
1899 if (IS_ERR(mtd_bdi)) {
1900 ret = PTR_ERR(mtd_bdi);
1901 goto err_bdi;
1904 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1906 ret = init_mtdchar();
1907 if (ret)
1908 goto out_procfs;
1910 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1912 return 0;
1914 out_procfs:
1915 if (proc_mtd)
1916 remove_proc_entry("mtd", NULL);
1917 bdi_put(mtd_bdi);
1918 err_bdi:
1919 class_unregister(&mtd_class);
1920 err_reg:
1921 pr_err("Error registering mtd class or bdi: %d\n", ret);
1922 return ret;
1925 static void __exit cleanup_mtd(void)
1927 debugfs_remove_recursive(dfs_dir_mtd);
1928 cleanup_mtdchar();
1929 if (proc_mtd)
1930 remove_proc_entry("mtd", NULL);
1931 class_unregister(&mtd_class);
1932 bdi_put(mtd_bdi);
1933 idr_destroy(&mtd_idr);
1936 module_init(init_mtd);
1937 module_exit(cleanup_mtd);
1939 MODULE_LICENSE("GPL");
1940 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1941 MODULE_DESCRIPTION("Core MTD registration and access routines");