2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2007
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Author: Artem Bityutskiy (Битюцкий Артём),
24 * This file includes UBI initialization and building of UBI devices.
26 * When UBI is initialized, it attaches all the MTD devices specified as the
27 * module load parameters or the kernel boot parameters. If MTD devices were
28 * specified, UBI does not attach any MTD device, but it is possible to do
29 * later using the "UBI control device".
32 #include <linux/err.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/stringify.h>
36 #include <linux/namei.h>
37 #include <linux/stat.h>
38 #include <linux/miscdevice.h>
39 #include <linux/mtd/partitions.h>
40 #include <linux/log2.h>
41 #include <linux/kthread.h>
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/major.h>
47 /* Maximum length of the 'mtd=' parameter */
48 #define MTD_PARAM_LEN_MAX 64
50 /* Maximum number of comma-separated items in the 'mtd=' parameter */
51 #define MTD_PARAM_MAX_COUNT 4
53 /* Maximum value for the number of bad PEBs per 1024 PEBs */
54 #define MAX_MTD_UBI_BEB_LIMIT 768
56 #ifdef CONFIG_MTD_UBI_MODULE
57 #define ubi_is_module() 1
59 #define ubi_is_module() 0
63 * struct mtd_dev_param - MTD device parameter description data structure.
64 * @name: MTD character device node path, MTD device name, or MTD device number
66 * @vid_hdr_offs: VID header offset
67 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
69 struct mtd_dev_param
{
70 char name
[MTD_PARAM_LEN_MAX
];
76 /* Numbers of elements set in the @mtd_dev_param array */
79 /* MTD devices specification parameters */
80 static struct mtd_dev_param mtd_dev_param
[UBI_MAX_DEVICES
];
81 #ifdef CONFIG_MTD_UBI_FASTMAP
82 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
83 static bool fm_autoconvert
;
87 /* Slab cache for wear-leveling entries */
88 struct kmem_cache
*ubi_wl_entry_slab
;
90 /* UBI control character device */
91 static struct miscdevice ubi_ctrl_cdev
= {
92 .minor
= MISC_DYNAMIC_MINOR
,
94 .fops
= &ubi_ctrl_cdev_operations
,
97 /* All UBI devices in system */
98 static struct ubi_device
*ubi_devices
[UBI_MAX_DEVICES
];
100 /* Serializes UBI devices creations and removals */
101 DEFINE_MUTEX(ubi_devices_mutex
);
103 /* Protects @ubi_devices and @ubi->ref_count */
104 static DEFINE_SPINLOCK(ubi_devices_lock
);
106 /* "Show" method for files in '/<sysfs>/class/ubi/' */
107 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
108 static ssize_t
version_show(struct class *class, struct class_attribute
*attr
,
111 return sprintf(buf
, "%d\n", UBI_VERSION
);
113 static CLASS_ATTR_RO(version
);
115 static struct attribute
*ubi_class_attrs
[] = {
116 &class_attr_version
.attr
,
119 ATTRIBUTE_GROUPS(ubi_class
);
121 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
122 struct class ubi_class
= {
123 .name
= UBI_NAME_STR
,
124 .owner
= THIS_MODULE
,
125 .class_groups
= ubi_class_groups
,
128 static ssize_t
dev_attribute_show(struct device
*dev
,
129 struct device_attribute
*attr
, char *buf
);
131 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
132 static struct device_attribute dev_eraseblock_size
=
133 __ATTR(eraseblock_size
, S_IRUGO
, dev_attribute_show
, NULL
);
134 static struct device_attribute dev_avail_eraseblocks
=
135 __ATTR(avail_eraseblocks
, S_IRUGO
, dev_attribute_show
, NULL
);
136 static struct device_attribute dev_total_eraseblocks
=
137 __ATTR(total_eraseblocks
, S_IRUGO
, dev_attribute_show
, NULL
);
138 static struct device_attribute dev_volumes_count
=
139 __ATTR(volumes_count
, S_IRUGO
, dev_attribute_show
, NULL
);
140 static struct device_attribute dev_max_ec
=
141 __ATTR(max_ec
, S_IRUGO
, dev_attribute_show
, NULL
);
142 static struct device_attribute dev_reserved_for_bad
=
143 __ATTR(reserved_for_bad
, S_IRUGO
, dev_attribute_show
, NULL
);
144 static struct device_attribute dev_bad_peb_count
=
145 __ATTR(bad_peb_count
, S_IRUGO
, dev_attribute_show
, NULL
);
146 static struct device_attribute dev_max_vol_count
=
147 __ATTR(max_vol_count
, S_IRUGO
, dev_attribute_show
, NULL
);
148 static struct device_attribute dev_min_io_size
=
149 __ATTR(min_io_size
, S_IRUGO
, dev_attribute_show
, NULL
);
150 static struct device_attribute dev_bgt_enabled
=
151 __ATTR(bgt_enabled
, S_IRUGO
, dev_attribute_show
, NULL
);
152 static struct device_attribute dev_mtd_num
=
153 __ATTR(mtd_num
, S_IRUGO
, dev_attribute_show
, NULL
);
154 static struct device_attribute dev_ro_mode
=
155 __ATTR(ro_mode
, S_IRUGO
, dev_attribute_show
, NULL
);
158 * ubi_volume_notify - send a volume change notification.
159 * @ubi: UBI device description object
160 * @vol: volume description object of the changed volume
161 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
163 * This is a helper function which notifies all subscribers about a volume
164 * change event (creation, removal, re-sizing, re-naming, updating). Returns
165 * zero in case of success and a negative error code in case of failure.
167 int ubi_volume_notify(struct ubi_device
*ubi
, struct ubi_volume
*vol
, int ntype
)
170 struct ubi_notification nt
;
172 ubi_do_get_device_info(ubi
, &nt
.di
);
173 ubi_do_get_volume_info(ubi
, vol
, &nt
.vi
);
176 case UBI_VOLUME_ADDED
:
177 case UBI_VOLUME_REMOVED
:
178 case UBI_VOLUME_RESIZED
:
179 case UBI_VOLUME_RENAMED
:
180 ret
= ubi_update_fastmap(ubi
);
182 ubi_msg(ubi
, "Unable to write a new fastmap: %i", ret
);
185 return blocking_notifier_call_chain(&ubi_notifiers
, ntype
, &nt
);
189 * ubi_notify_all - send a notification to all volumes.
190 * @ubi: UBI device description object
191 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
192 * @nb: the notifier to call
194 * This function walks all volumes of UBI device @ubi and sends the @ntype
195 * notification for each volume. If @nb is %NULL, then all registered notifiers
196 * are called, otherwise only the @nb notifier is called. Returns the number of
197 * sent notifications.
199 int ubi_notify_all(struct ubi_device
*ubi
, int ntype
, struct notifier_block
*nb
)
201 struct ubi_notification nt
;
204 ubi_do_get_device_info(ubi
, &nt
.di
);
206 mutex_lock(&ubi
->device_mutex
);
207 for (i
= 0; i
< ubi
->vtbl_slots
; i
++) {
209 * Since the @ubi->device is locked, and we are not going to
210 * change @ubi->volumes, we do not have to lock
211 * @ubi->volumes_lock.
213 if (!ubi
->volumes
[i
])
216 ubi_do_get_volume_info(ubi
, ubi
->volumes
[i
], &nt
.vi
);
218 nb
->notifier_call(nb
, ntype
, &nt
);
220 blocking_notifier_call_chain(&ubi_notifiers
, ntype
,
224 mutex_unlock(&ubi
->device_mutex
);
230 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
231 * @nb: the notifier to call
233 * This function walks all UBI devices and volumes and sends the
234 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
235 * registered notifiers are called, otherwise only the @nb notifier is called.
236 * Returns the number of sent notifications.
238 int ubi_enumerate_volumes(struct notifier_block
*nb
)
243 * Since the @ubi_devices_mutex is locked, and we are not going to
244 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
246 for (i
= 0; i
< UBI_MAX_DEVICES
; i
++) {
247 struct ubi_device
*ubi
= ubi_devices
[i
];
251 count
+= ubi_notify_all(ubi
, UBI_VOLUME_ADDED
, nb
);
258 * ubi_get_device - get UBI device.
259 * @ubi_num: UBI device number
261 * This function returns UBI device description object for UBI device number
262 * @ubi_num, or %NULL if the device does not exist. This function increases the
263 * device reference count to prevent removal of the device. In other words, the
264 * device cannot be removed if its reference count is not zero.
266 struct ubi_device
*ubi_get_device(int ubi_num
)
268 struct ubi_device
*ubi
;
270 spin_lock(&ubi_devices_lock
);
271 ubi
= ubi_devices
[ubi_num
];
273 ubi_assert(ubi
->ref_count
>= 0);
275 get_device(&ubi
->dev
);
277 spin_unlock(&ubi_devices_lock
);
283 * ubi_put_device - drop an UBI device reference.
284 * @ubi: UBI device description object
286 void ubi_put_device(struct ubi_device
*ubi
)
288 spin_lock(&ubi_devices_lock
);
290 put_device(&ubi
->dev
);
291 spin_unlock(&ubi_devices_lock
);
295 * ubi_get_by_major - get UBI device by character device major number.
296 * @major: major number
298 * This function is similar to 'ubi_get_device()', but it searches the device
299 * by its major number.
301 struct ubi_device
*ubi_get_by_major(int major
)
304 struct ubi_device
*ubi
;
306 spin_lock(&ubi_devices_lock
);
307 for (i
= 0; i
< UBI_MAX_DEVICES
; i
++) {
308 ubi
= ubi_devices
[i
];
309 if (ubi
&& MAJOR(ubi
->cdev
.dev
) == major
) {
310 ubi_assert(ubi
->ref_count
>= 0);
312 get_device(&ubi
->dev
);
313 spin_unlock(&ubi_devices_lock
);
317 spin_unlock(&ubi_devices_lock
);
323 * ubi_major2num - get UBI device number by character device major number.
324 * @major: major number
326 * This function searches UBI device number object by its major number. If UBI
327 * device was not found, this function returns -ENODEV, otherwise the UBI device
328 * number is returned.
330 int ubi_major2num(int major
)
332 int i
, ubi_num
= -ENODEV
;
334 spin_lock(&ubi_devices_lock
);
335 for (i
= 0; i
< UBI_MAX_DEVICES
; i
++) {
336 struct ubi_device
*ubi
= ubi_devices
[i
];
338 if (ubi
&& MAJOR(ubi
->cdev
.dev
) == major
) {
339 ubi_num
= ubi
->ubi_num
;
343 spin_unlock(&ubi_devices_lock
);
348 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
349 static ssize_t
dev_attribute_show(struct device
*dev
,
350 struct device_attribute
*attr
, char *buf
)
353 struct ubi_device
*ubi
;
356 * The below code looks weird, but it actually makes sense. We get the
357 * UBI device reference from the contained 'struct ubi_device'. But it
358 * is unclear if the device was removed or not yet. Indeed, if the
359 * device was removed before we increased its reference count,
360 * 'ubi_get_device()' will return -ENODEV and we fail.
362 * Remember, 'struct ubi_device' is freed in the release function, so
363 * we still can use 'ubi->ubi_num'.
365 ubi
= container_of(dev
, struct ubi_device
, dev
);
366 ubi
= ubi_get_device(ubi
->ubi_num
);
370 if (attr
== &dev_eraseblock_size
)
371 ret
= sprintf(buf
, "%d\n", ubi
->leb_size
);
372 else if (attr
== &dev_avail_eraseblocks
)
373 ret
= sprintf(buf
, "%d\n", ubi
->avail_pebs
);
374 else if (attr
== &dev_total_eraseblocks
)
375 ret
= sprintf(buf
, "%d\n", ubi
->good_peb_count
);
376 else if (attr
== &dev_volumes_count
)
377 ret
= sprintf(buf
, "%d\n", ubi
->vol_count
- UBI_INT_VOL_COUNT
);
378 else if (attr
== &dev_max_ec
)
379 ret
= sprintf(buf
, "%d\n", ubi
->max_ec
);
380 else if (attr
== &dev_reserved_for_bad
)
381 ret
= sprintf(buf
, "%d\n", ubi
->beb_rsvd_pebs
);
382 else if (attr
== &dev_bad_peb_count
)
383 ret
= sprintf(buf
, "%d\n", ubi
->bad_peb_count
);
384 else if (attr
== &dev_max_vol_count
)
385 ret
= sprintf(buf
, "%d\n", ubi
->vtbl_slots
);
386 else if (attr
== &dev_min_io_size
)
387 ret
= sprintf(buf
, "%d\n", ubi
->min_io_size
);
388 else if (attr
== &dev_bgt_enabled
)
389 ret
= sprintf(buf
, "%d\n", ubi
->thread_enabled
);
390 else if (attr
== &dev_mtd_num
)
391 ret
= sprintf(buf
, "%d\n", ubi
->mtd
->index
);
392 else if (attr
== &dev_ro_mode
)
393 ret
= sprintf(buf
, "%d\n", ubi
->ro_mode
);
401 static struct attribute
*ubi_dev_attrs
[] = {
402 &dev_eraseblock_size
.attr
,
403 &dev_avail_eraseblocks
.attr
,
404 &dev_total_eraseblocks
.attr
,
405 &dev_volumes_count
.attr
,
407 &dev_reserved_for_bad
.attr
,
408 &dev_bad_peb_count
.attr
,
409 &dev_max_vol_count
.attr
,
410 &dev_min_io_size
.attr
,
411 &dev_bgt_enabled
.attr
,
416 ATTRIBUTE_GROUPS(ubi_dev
);
418 static void dev_release(struct device
*dev
)
420 struct ubi_device
*ubi
= container_of(dev
, struct ubi_device
, dev
);
426 * kill_volumes - destroy all user volumes.
427 * @ubi: UBI device description object
429 static void kill_volumes(struct ubi_device
*ubi
)
433 for (i
= 0; i
< ubi
->vtbl_slots
; i
++)
435 ubi_free_volume(ubi
, ubi
->volumes
[i
]);
439 * uif_init - initialize user interfaces for an UBI device.
440 * @ubi: UBI device description object
442 * This function initializes various user interfaces for an UBI device. If the
443 * initialization fails at an early stage, this function frees all the
444 * resources it allocated, returns an error.
446 * This function returns zero in case of success and a negative error code in
449 static int uif_init(struct ubi_device
*ubi
)
454 sprintf(ubi
->ubi_name
, UBI_NAME_STR
"%d", ubi
->ubi_num
);
457 * Major numbers for the UBI character devices are allocated
458 * dynamically. Major numbers of volume character devices are
459 * equivalent to ones of the corresponding UBI character device. Minor
460 * numbers of UBI character devices are 0, while minor numbers of
461 * volume character devices start from 1. Thus, we allocate one major
462 * number and ubi->vtbl_slots + 1 minor numbers.
464 err
= alloc_chrdev_region(&dev
, 0, ubi
->vtbl_slots
+ 1, ubi
->ubi_name
);
466 ubi_err(ubi
, "cannot register UBI character devices");
472 ubi_assert(MINOR(dev
) == 0);
473 cdev_init(&ubi
->cdev
, &ubi_cdev_operations
);
474 dbg_gen("%s major is %u", ubi
->ubi_name
, MAJOR(dev
));
475 ubi
->cdev
.owner
= THIS_MODULE
;
477 dev_set_name(&ubi
->dev
, UBI_NAME_STR
"%d", ubi
->ubi_num
);
478 err
= cdev_device_add(&ubi
->cdev
, &ubi
->dev
);
482 for (i
= 0; i
< ubi
->vtbl_slots
; i
++)
483 if (ubi
->volumes
[i
]) {
484 err
= ubi_add_volume(ubi
, ubi
->volumes
[i
]);
486 ubi_err(ubi
, "cannot add volume %d", i
);
495 cdev_device_del(&ubi
->cdev
, &ubi
->dev
);
497 unregister_chrdev_region(ubi
->cdev
.dev
, ubi
->vtbl_slots
+ 1);
498 ubi_err(ubi
, "cannot initialize UBI %s, error %d",
504 * uif_close - close user interfaces for an UBI device.
505 * @ubi: UBI device description object
507 * Note, since this function un-registers UBI volume device objects (@vol->dev),
508 * the memory allocated voe the volumes is freed as well (in the release
511 static void uif_close(struct ubi_device
*ubi
)
514 cdev_device_del(&ubi
->cdev
, &ubi
->dev
);
515 unregister_chrdev_region(ubi
->cdev
.dev
, ubi
->vtbl_slots
+ 1);
519 * ubi_free_internal_volumes - free internal volumes.
520 * @ubi: UBI device description object
522 void ubi_free_internal_volumes(struct ubi_device
*ubi
)
526 for (i
= ubi
->vtbl_slots
;
527 i
< ubi
->vtbl_slots
+ UBI_INT_VOL_COUNT
; i
++) {
528 ubi_eba_replace_table(ubi
->volumes
[i
], NULL
);
529 kfree(ubi
->volumes
[i
]);
533 static int get_bad_peb_limit(const struct ubi_device
*ubi
, int max_beb_per1024
)
535 int limit
, device_pebs
;
536 uint64_t device_size
;
538 if (!max_beb_per1024
) {
540 * Since max_beb_per1024 has not been set by the user in either
541 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the
542 * limit if it is supported by the device.
544 limit
= mtd_max_bad_blocks(ubi
->mtd
, 0, ubi
->mtd
->size
);
551 * Here we are using size of the entire flash chip and
552 * not just the MTD partition size because the maximum
553 * number of bad eraseblocks is a percentage of the
554 * whole device and bad eraseblocks are not fairly
555 * distributed over the flash chip. So the worst case
556 * is that all the bad eraseblocks of the chip are in
557 * the MTD partition we are attaching (ubi->mtd).
559 device_size
= mtd_get_device_size(ubi
->mtd
);
560 device_pebs
= mtd_div_by_eb(device_size
, ubi
->mtd
);
561 limit
= mult_frac(device_pebs
, max_beb_per1024
, 1024);
564 if (mult_frac(limit
, 1024, max_beb_per1024
) < device_pebs
)
571 * io_init - initialize I/O sub-system for a given UBI device.
572 * @ubi: UBI device description object
573 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
575 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
577 * o EC header is always at offset zero - this cannot be changed;
578 * o VID header starts just after the EC header at the closest address
579 * aligned to @io->hdrs_min_io_size;
580 * o data starts just after the VID header at the closest address aligned to
583 * This function returns zero in case of success and a negative error code in
586 static int io_init(struct ubi_device
*ubi
, int max_beb_per1024
)
588 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb
));
589 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry
));
591 if (ubi
->mtd
->numeraseregions
!= 0) {
593 * Some flashes have several erase regions. Different regions
594 * may have different eraseblock size and other
595 * characteristics. It looks like mostly multi-region flashes
596 * have one "main" region and one or more small regions to
597 * store boot loader code or boot parameters or whatever. I
598 * guess we should just pick the largest region. But this is
601 ubi_err(ubi
, "multiple regions, not implemented");
605 if (ubi
->vid_hdr_offset
< 0)
609 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
610 * physical eraseblocks maximum.
613 ubi
->peb_size
= ubi
->mtd
->erasesize
;
614 ubi
->peb_count
= mtd_div_by_eb(ubi
->mtd
->size
, ubi
->mtd
);
615 ubi
->flash_size
= ubi
->mtd
->size
;
617 if (mtd_can_have_bb(ubi
->mtd
)) {
618 ubi
->bad_allowed
= 1;
619 ubi
->bad_peb_limit
= get_bad_peb_limit(ubi
, max_beb_per1024
);
622 if (ubi
->mtd
->type
== MTD_NORFLASH
) {
623 ubi_assert(ubi
->mtd
->writesize
== 1);
627 ubi
->min_io_size
= ubi
->mtd
->writesize
;
628 ubi
->hdrs_min_io_size
= ubi
->mtd
->writesize
>> ubi
->mtd
->subpage_sft
;
631 * Make sure minimal I/O unit is power of 2. Note, there is no
632 * fundamental reason for this assumption. It is just an optimization
633 * which allows us to avoid costly division operations.
635 if (!is_power_of_2(ubi
->min_io_size
)) {
636 ubi_err(ubi
, "min. I/O unit (%d) is not power of 2",
641 ubi_assert(ubi
->hdrs_min_io_size
> 0);
642 ubi_assert(ubi
->hdrs_min_io_size
<= ubi
->min_io_size
);
643 ubi_assert(ubi
->min_io_size
% ubi
->hdrs_min_io_size
== 0);
645 ubi
->max_write_size
= ubi
->mtd
->writebufsize
;
647 * Maximum write size has to be greater or equivalent to min. I/O
648 * size, and be multiple of min. I/O size.
650 if (ubi
->max_write_size
< ubi
->min_io_size
||
651 ubi
->max_write_size
% ubi
->min_io_size
||
652 !is_power_of_2(ubi
->max_write_size
)) {
653 ubi_err(ubi
, "bad write buffer size %d for %d min. I/O unit",
654 ubi
->max_write_size
, ubi
->min_io_size
);
658 /* Calculate default aligned sizes of EC and VID headers */
659 ubi
->ec_hdr_alsize
= ALIGN(UBI_EC_HDR_SIZE
, ubi
->hdrs_min_io_size
);
660 ubi
->vid_hdr_alsize
= ALIGN(UBI_VID_HDR_SIZE
, ubi
->hdrs_min_io_size
);
662 dbg_gen("min_io_size %d", ubi
->min_io_size
);
663 dbg_gen("max_write_size %d", ubi
->max_write_size
);
664 dbg_gen("hdrs_min_io_size %d", ubi
->hdrs_min_io_size
);
665 dbg_gen("ec_hdr_alsize %d", ubi
->ec_hdr_alsize
);
666 dbg_gen("vid_hdr_alsize %d", ubi
->vid_hdr_alsize
);
668 if (ubi
->vid_hdr_offset
== 0)
670 ubi
->vid_hdr_offset
= ubi
->vid_hdr_aloffset
=
673 ubi
->vid_hdr_aloffset
= ubi
->vid_hdr_offset
&
674 ~(ubi
->hdrs_min_io_size
- 1);
675 ubi
->vid_hdr_shift
= ubi
->vid_hdr_offset
-
676 ubi
->vid_hdr_aloffset
;
679 /* Similar for the data offset */
680 ubi
->leb_start
= ubi
->vid_hdr_offset
+ UBI_VID_HDR_SIZE
;
681 ubi
->leb_start
= ALIGN(ubi
->leb_start
, ubi
->min_io_size
);
683 dbg_gen("vid_hdr_offset %d", ubi
->vid_hdr_offset
);
684 dbg_gen("vid_hdr_aloffset %d", ubi
->vid_hdr_aloffset
);
685 dbg_gen("vid_hdr_shift %d", ubi
->vid_hdr_shift
);
686 dbg_gen("leb_start %d", ubi
->leb_start
);
688 /* The shift must be aligned to 32-bit boundary */
689 if (ubi
->vid_hdr_shift
% 4) {
690 ubi_err(ubi
, "unaligned VID header shift %d",
696 if (ubi
->vid_hdr_offset
< UBI_EC_HDR_SIZE
||
697 ubi
->leb_start
< ubi
->vid_hdr_offset
+ UBI_VID_HDR_SIZE
||
698 ubi
->leb_start
> ubi
->peb_size
- UBI_VID_HDR_SIZE
||
699 ubi
->leb_start
& (ubi
->min_io_size
- 1)) {
700 ubi_err(ubi
, "bad VID header (%d) or data offsets (%d)",
701 ubi
->vid_hdr_offset
, ubi
->leb_start
);
706 * Set maximum amount of physical erroneous eraseblocks to be 10%.
707 * Erroneous PEB are those which have read errors.
709 ubi
->max_erroneous
= ubi
->peb_count
/ 10;
710 if (ubi
->max_erroneous
< 16)
711 ubi
->max_erroneous
= 16;
712 dbg_gen("max_erroneous %d", ubi
->max_erroneous
);
715 * It may happen that EC and VID headers are situated in one minimal
716 * I/O unit. In this case we can only accept this UBI image in
719 if (ubi
->vid_hdr_offset
+ UBI_VID_HDR_SIZE
<= ubi
->hdrs_min_io_size
) {
720 ubi_warn(ubi
, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
724 ubi
->leb_size
= ubi
->peb_size
- ubi
->leb_start
;
726 if (!(ubi
->mtd
->flags
& MTD_WRITEABLE
)) {
727 ubi_msg(ubi
, "MTD device %d is write-protected, attach in read-only mode",
733 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
734 * unfortunately, MTD does not provide this information. We should loop
735 * over all physical eraseblocks and invoke mtd->block_is_bad() for
736 * each physical eraseblock. So, we leave @ubi->bad_peb_count
737 * uninitialized so far.
744 * autoresize - re-size the volume which has the "auto-resize" flag set.
745 * @ubi: UBI device description object
746 * @vol_id: ID of the volume to re-size
748 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
749 * the volume table to the largest possible size. See comments in ubi-header.h
750 * for more description of the flag. Returns zero in case of success and a
751 * negative error code in case of failure.
753 static int autoresize(struct ubi_device
*ubi
, int vol_id
)
755 struct ubi_volume_desc desc
;
756 struct ubi_volume
*vol
= ubi
->volumes
[vol_id
];
757 int err
, old_reserved_pebs
= vol
->reserved_pebs
;
760 ubi_warn(ubi
, "skip auto-resize because of R/O mode");
765 * Clear the auto-resize flag in the volume in-memory copy of the
766 * volume table, and 'ubi_resize_volume()' will propagate this change
769 ubi
->vtbl
[vol_id
].flags
&= ~UBI_VTBL_AUTORESIZE_FLG
;
771 if (ubi
->avail_pebs
== 0) {
772 struct ubi_vtbl_record vtbl_rec
;
775 * No available PEBs to re-size the volume, clear the flag on
778 vtbl_rec
= ubi
->vtbl
[vol_id
];
779 err
= ubi_change_vtbl_record(ubi
, vol_id
, &vtbl_rec
);
781 ubi_err(ubi
, "cannot clean auto-resize flag for volume %d",
785 err
= ubi_resize_volume(&desc
,
786 old_reserved_pebs
+ ubi
->avail_pebs
);
788 ubi_err(ubi
, "cannot auto-resize volume %d",
795 ubi_msg(ubi
, "volume %d (\"%s\") re-sized from %d to %d LEBs",
796 vol_id
, vol
->name
, old_reserved_pebs
, vol
->reserved_pebs
);
801 * ubi_attach_mtd_dev - attach an MTD device.
802 * @mtd: MTD device description object
803 * @ubi_num: number to assign to the new UBI device
804 * @vid_hdr_offset: VID header offset
805 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
807 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
808 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
809 * which case this function finds a vacant device number and assigns it
810 * automatically. Returns the new UBI device number in case of success and a
811 * negative error code in case of failure.
813 * Note, the invocations of this function has to be serialized by the
814 * @ubi_devices_mutex.
816 int ubi_attach_mtd_dev(struct mtd_info
*mtd
, int ubi_num
,
817 int vid_hdr_offset
, int max_beb_per1024
)
819 struct ubi_device
*ubi
;
822 if (max_beb_per1024
< 0 || max_beb_per1024
> MAX_MTD_UBI_BEB_LIMIT
)
825 if (!max_beb_per1024
)
826 max_beb_per1024
= CONFIG_MTD_UBI_BEB_LIMIT
;
829 * Check if we already have the same MTD device attached.
831 * Note, this function assumes that UBI devices creations and deletions
832 * are serialized, so it does not take the &ubi_devices_lock.
834 for (i
= 0; i
< UBI_MAX_DEVICES
; i
++) {
835 ubi
= ubi_devices
[i
];
836 if (ubi
&& mtd
->index
== ubi
->mtd
->index
) {
837 pr_err("ubi: mtd%d is already attached to ubi%d\n",
844 * Make sure this MTD device is not emulated on top of an UBI volume
845 * already. Well, generally this recursion works fine, but there are
846 * different problems like the UBI module takes a reference to itself
847 * by attaching (and thus, opening) the emulated MTD device. This
848 * results in inability to unload the module. And in general it makes
849 * no sense to attach emulated MTD devices, so we prohibit this.
851 if (mtd
->type
== MTD_UBIVOLUME
) {
852 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n",
857 if (ubi_num
== UBI_DEV_NUM_AUTO
) {
858 /* Search for an empty slot in the @ubi_devices array */
859 for (ubi_num
= 0; ubi_num
< UBI_MAX_DEVICES
; ubi_num
++)
860 if (!ubi_devices
[ubi_num
])
862 if (ubi_num
== UBI_MAX_DEVICES
) {
863 pr_err("ubi: only %d UBI devices may be created\n",
868 if (ubi_num
>= UBI_MAX_DEVICES
)
871 /* Make sure ubi_num is not busy */
872 if (ubi_devices
[ubi_num
]) {
873 pr_err("ubi: ubi%i already exists\n", ubi_num
);
878 ubi
= kzalloc(sizeof(struct ubi_device
), GFP_KERNEL
);
882 device_initialize(&ubi
->dev
);
883 ubi
->dev
.release
= dev_release
;
884 ubi
->dev
.class = &ubi_class
;
885 ubi
->dev
.groups
= ubi_dev_groups
;
888 ubi
->ubi_num
= ubi_num
;
889 ubi
->vid_hdr_offset
= vid_hdr_offset
;
890 ubi
->autoresize_vol_id
= -1;
892 #ifdef CONFIG_MTD_UBI_FASTMAP
893 ubi
->fm_pool
.used
= ubi
->fm_pool
.size
= 0;
894 ubi
->fm_wl_pool
.used
= ubi
->fm_wl_pool
.size
= 0;
897 * fm_pool.max_size is 5% of the total number of PEBs but it's also
898 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
900 ubi
->fm_pool
.max_size
= min(((int)mtd_div_by_eb(ubi
->mtd
->size
,
901 ubi
->mtd
) / 100) * 5, UBI_FM_MAX_POOL_SIZE
);
902 ubi
->fm_pool
.max_size
= max(ubi
->fm_pool
.max_size
,
903 UBI_FM_MIN_POOL_SIZE
);
905 ubi
->fm_wl_pool
.max_size
= ubi
->fm_pool
.max_size
/ 2;
906 ubi
->fm_disabled
= !fm_autoconvert
;
908 ubi_enable_dbg_chk_fastmap(ubi
);
910 if (!ubi
->fm_disabled
&& (int)mtd_div_by_eb(ubi
->mtd
->size
, ubi
->mtd
)
911 <= UBI_FM_MAX_START
) {
912 ubi_err(ubi
, "More than %i PEBs are needed for fastmap, sorry.",
914 ubi
->fm_disabled
= 1;
917 ubi_msg(ubi
, "default fastmap pool size: %d", ubi
->fm_pool
.max_size
);
918 ubi_msg(ubi
, "default fastmap WL pool size: %d",
919 ubi
->fm_wl_pool
.max_size
);
921 ubi
->fm_disabled
= 1;
923 mutex_init(&ubi
->buf_mutex
);
924 mutex_init(&ubi
->ckvol_mutex
);
925 mutex_init(&ubi
->device_mutex
);
926 spin_lock_init(&ubi
->volumes_lock
);
927 init_rwsem(&ubi
->fm_protect
);
928 init_rwsem(&ubi
->fm_eba_sem
);
930 ubi_msg(ubi
, "attaching mtd%d", mtd
->index
);
932 err
= io_init(ubi
, max_beb_per1024
);
937 ubi
->peb_buf
= vmalloc(ubi
->peb_size
);
941 #ifdef CONFIG_MTD_UBI_FASTMAP
942 ubi
->fm_size
= ubi_calc_fm_size(ubi
);
943 ubi
->fm_buf
= vzalloc(ubi
->fm_size
);
947 err
= ubi_attach(ubi
, 0);
949 ubi_err(ubi
, "failed to attach mtd%d, error %d",
954 if (ubi
->autoresize_vol_id
!= -1) {
955 err
= autoresize(ubi
, ubi
->autoresize_vol_id
);
960 /* Make device "available" before it becomes accessible via sysfs */
961 ubi_devices
[ubi_num
] = ubi
;
967 err
= ubi_debugfs_init_dev(ubi
);
971 ubi
->bgt_thread
= kthread_create(ubi_thread
, ubi
, "%s", ubi
->bgt_name
);
972 if (IS_ERR(ubi
->bgt_thread
)) {
973 err
= PTR_ERR(ubi
->bgt_thread
);
974 ubi_err(ubi
, "cannot spawn \"%s\", error %d",
979 ubi_msg(ubi
, "attached mtd%d (name \"%s\", size %llu MiB)",
980 mtd
->index
, mtd
->name
, ubi
->flash_size
>> 20);
981 ubi_msg(ubi
, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
982 ubi
->peb_size
, ubi
->peb_size
>> 10, ubi
->leb_size
);
983 ubi_msg(ubi
, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
984 ubi
->min_io_size
, ubi
->max_write_size
, ubi
->hdrs_min_io_size
);
985 ubi_msg(ubi
, "VID header offset: %d (aligned %d), data offset: %d",
986 ubi
->vid_hdr_offset
, ubi
->vid_hdr_aloffset
, ubi
->leb_start
);
987 ubi_msg(ubi
, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
988 ubi
->good_peb_count
, ubi
->bad_peb_count
, ubi
->corr_peb_count
);
989 ubi_msg(ubi
, "user volume: %d, internal volumes: %d, max. volumes count: %d",
990 ubi
->vol_count
- UBI_INT_VOL_COUNT
, UBI_INT_VOL_COUNT
,
992 ubi_msg(ubi
, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
993 ubi
->max_ec
, ubi
->mean_ec
, CONFIG_MTD_UBI_WL_THRESHOLD
,
995 ubi_msg(ubi
, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
996 ubi
->avail_pebs
, ubi
->rsvd_pebs
, ubi
->beb_rsvd_pebs
);
999 * The below lock makes sure we do not race with 'ubi_thread()' which
1000 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1002 spin_lock(&ubi
->wl_lock
);
1003 ubi
->thread_enabled
= 1;
1004 wake_up_process(ubi
->bgt_thread
);
1005 spin_unlock(&ubi
->wl_lock
);
1007 ubi_notify_all(ubi
, UBI_VOLUME_ADDED
, NULL
);
1011 ubi_debugfs_exit_dev(ubi
);
1015 ubi_devices
[ubi_num
] = NULL
;
1017 ubi_free_internal_volumes(ubi
);
1020 vfree(ubi
->peb_buf
);
1022 put_device(&ubi
->dev
);
1027 * ubi_detach_mtd_dev - detach an MTD device.
1028 * @ubi_num: UBI device number to detach from
1029 * @anyway: detach MTD even if device reference count is not zero
1031 * This function destroys an UBI device number @ubi_num and detaches the
1032 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1033 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1036 * Note, the invocations of this function has to be serialized by the
1037 * @ubi_devices_mutex.
1039 int ubi_detach_mtd_dev(int ubi_num
, int anyway
)
1041 struct ubi_device
*ubi
;
1043 if (ubi_num
< 0 || ubi_num
>= UBI_MAX_DEVICES
)
1046 ubi
= ubi_get_device(ubi_num
);
1050 spin_lock(&ubi_devices_lock
);
1051 put_device(&ubi
->dev
);
1052 ubi
->ref_count
-= 1;
1053 if (ubi
->ref_count
) {
1055 spin_unlock(&ubi_devices_lock
);
1058 /* This may only happen if there is a bug */
1059 ubi_err(ubi
, "%s reference count %d, destroy anyway",
1060 ubi
->ubi_name
, ubi
->ref_count
);
1062 ubi_devices
[ubi_num
] = NULL
;
1063 spin_unlock(&ubi_devices_lock
);
1065 ubi_assert(ubi_num
== ubi
->ubi_num
);
1066 ubi_notify_all(ubi
, UBI_VOLUME_REMOVED
, NULL
);
1067 ubi_msg(ubi
, "detaching mtd%d", ubi
->mtd
->index
);
1068 #ifdef CONFIG_MTD_UBI_FASTMAP
1069 /* If we don't write a new fastmap at detach time we lose all
1070 * EC updates that have been made since the last written fastmap.
1071 * In case of fastmap debugging we omit the update to simulate an
1072 * unclean shutdown. */
1073 if (!ubi_dbg_chk_fastmap(ubi
))
1074 ubi_update_fastmap(ubi
);
1077 * Before freeing anything, we have to stop the background thread to
1078 * prevent it from doing anything on this device while we are freeing.
1080 if (ubi
->bgt_thread
)
1081 kthread_stop(ubi
->bgt_thread
);
1083 ubi_debugfs_exit_dev(ubi
);
1087 ubi_free_internal_volumes(ubi
);
1089 put_mtd_device(ubi
->mtd
);
1090 vfree(ubi
->peb_buf
);
1092 ubi_msg(ubi
, "mtd%d is detached", ubi
->mtd
->index
);
1093 put_device(&ubi
->dev
);
1098 * open_mtd_by_chdev - open an MTD device by its character device node path.
1099 * @mtd_dev: MTD character device node path
1101 * This helper function opens an MTD device by its character node device path.
1102 * Returns MTD device description object in case of success and a negative
1103 * error code in case of failure.
1105 static struct mtd_info
* __init
open_mtd_by_chdev(const char *mtd_dev
)
1111 /* Probably this is an MTD character device node path */
1112 err
= kern_path(mtd_dev
, LOOKUP_FOLLOW
, &path
);
1114 return ERR_PTR(err
);
1116 err
= vfs_getattr(&path
, &stat
, STATX_TYPE
, AT_STATX_SYNC_AS_STAT
);
1119 return ERR_PTR(err
);
1121 /* MTD device number is defined by the major / minor numbers */
1122 if (MAJOR(stat
.rdev
) != MTD_CHAR_MAJOR
|| !S_ISCHR(stat
.mode
))
1123 return ERR_PTR(-EINVAL
);
1125 minor
= MINOR(stat
.rdev
);
1129 * Just do not think the "/dev/mtdrX" devices support is need,
1130 * so do not support them to avoid doing extra work.
1132 return ERR_PTR(-EINVAL
);
1134 return get_mtd_device(NULL
, minor
/ 2);
1138 * open_mtd_device - open MTD device by name, character device path, or number.
1139 * @mtd_dev: name, character device node path, or MTD device device number
1141 * This function tries to open and MTD device described by @mtd_dev string,
1142 * which is first treated as ASCII MTD device number, and if it is not true, it
1143 * is treated as MTD device name, and if that is also not true, it is treated
1144 * as MTD character device node path. Returns MTD device description object in
1145 * case of success and a negative error code in case of failure.
1147 static struct mtd_info
* __init
open_mtd_device(const char *mtd_dev
)
1149 struct mtd_info
*mtd
;
1153 mtd_num
= simple_strtoul(mtd_dev
, &endp
, 0);
1154 if (*endp
!= '\0' || mtd_dev
== endp
) {
1156 * This does not look like an ASCII integer, probably this is
1159 mtd
= get_mtd_device_nm(mtd_dev
);
1160 if (IS_ERR(mtd
) && PTR_ERR(mtd
) == -ENODEV
)
1161 /* Probably this is an MTD character device node path */
1162 mtd
= open_mtd_by_chdev(mtd_dev
);
1164 mtd
= get_mtd_device(NULL
, mtd_num
);
1169 static int __init
ubi_init(void)
1173 /* Ensure that EC and VID headers have correct size */
1174 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr
) != 64);
1175 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr
) != 64);
1177 if (mtd_devs
> UBI_MAX_DEVICES
) {
1178 pr_err("UBI error: too many MTD devices, maximum is %d\n",
1183 /* Create base sysfs directory and sysfs files */
1184 err
= class_register(&ubi_class
);
1188 err
= misc_register(&ubi_ctrl_cdev
);
1190 pr_err("UBI error: cannot register device\n");
1194 ubi_wl_entry_slab
= kmem_cache_create("ubi_wl_entry_slab",
1195 sizeof(struct ubi_wl_entry
),
1197 if (!ubi_wl_entry_slab
) {
1202 err
= ubi_debugfs_init();
1207 /* Attach MTD devices */
1208 for (i
= 0; i
< mtd_devs
; i
++) {
1209 struct mtd_dev_param
*p
= &mtd_dev_param
[i
];
1210 struct mtd_info
*mtd
;
1214 mtd
= open_mtd_device(p
->name
);
1217 pr_err("UBI error: cannot open mtd %s, error %d\n",
1219 /* See comment below re-ubi_is_module(). */
1220 if (ubi_is_module())
1225 mutex_lock(&ubi_devices_mutex
);
1226 err
= ubi_attach_mtd_dev(mtd
, p
->ubi_num
,
1227 p
->vid_hdr_offs
, p
->max_beb_per1024
);
1228 mutex_unlock(&ubi_devices_mutex
);
1230 pr_err("UBI error: cannot attach mtd%d\n",
1232 put_mtd_device(mtd
);
1235 * Originally UBI stopped initializing on any error.
1236 * However, later on it was found out that this
1237 * behavior is not very good when UBI is compiled into
1238 * the kernel and the MTD devices to attach are passed
1239 * through the command line. Indeed, UBI failure
1240 * stopped whole boot sequence.
1242 * To fix this, we changed the behavior for the
1243 * non-module case, but preserved the old behavior for
1244 * the module case, just for compatibility. This is a
1245 * little inconsistent, though.
1247 if (ubi_is_module())
1252 err
= ubiblock_init();
1254 pr_err("UBI error: block: cannot initialize, error %d\n", err
);
1256 /* See comment above re-ubi_is_module(). */
1257 if (ubi_is_module())
1264 for (k
= 0; k
< i
; k
++)
1265 if (ubi_devices
[k
]) {
1266 mutex_lock(&ubi_devices_mutex
);
1267 ubi_detach_mtd_dev(ubi_devices
[k
]->ubi_num
, 1);
1268 mutex_unlock(&ubi_devices_mutex
);
1272 kmem_cache_destroy(ubi_wl_entry_slab
);
1274 misc_deregister(&ubi_ctrl_cdev
);
1276 class_unregister(&ubi_class
);
1277 pr_err("UBI error: cannot initialize UBI, error %d\n", err
);
1280 late_initcall(ubi_init
);
1282 static void __exit
ubi_exit(void)
1288 for (i
= 0; i
< UBI_MAX_DEVICES
; i
++)
1289 if (ubi_devices
[i
]) {
1290 mutex_lock(&ubi_devices_mutex
);
1291 ubi_detach_mtd_dev(ubi_devices
[i
]->ubi_num
, 1);
1292 mutex_unlock(&ubi_devices_mutex
);
1295 kmem_cache_destroy(ubi_wl_entry_slab
);
1296 misc_deregister(&ubi_ctrl_cdev
);
1297 class_unregister(&ubi_class
);
1299 module_exit(ubi_exit
);
1302 * bytes_str_to_int - convert a number of bytes string into an integer.
1303 * @str: the string to convert
1305 * This function returns positive resulting integer in case of success and a
1306 * negative error code in case of failure.
1308 static int bytes_str_to_int(const char *str
)
1311 unsigned long result
;
1313 result
= simple_strtoul(str
, &endp
, 0);
1314 if (str
== endp
|| result
>= INT_MAX
) {
1315 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str
);
1326 if (endp
[1] == 'i' && endp
[2] == 'B')
1331 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str
);
1339 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1340 * @val: the parameter value to parse
1343 * This function returns zero in case of success and a negative error code in
1346 static int ubi_mtd_param_parse(const char *val
, const struct kernel_param
*kp
)
1349 struct mtd_dev_param
*p
;
1350 char buf
[MTD_PARAM_LEN_MAX
];
1351 char *pbuf
= &buf
[0];
1352 char *tokens
[MTD_PARAM_MAX_COUNT
], *token
;
1357 if (mtd_devs
== UBI_MAX_DEVICES
) {
1358 pr_err("UBI error: too many parameters, max. is %d\n",
1363 len
= strnlen(val
, MTD_PARAM_LEN_MAX
);
1364 if (len
== MTD_PARAM_LEN_MAX
) {
1365 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1366 val
, MTD_PARAM_LEN_MAX
);
1371 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1377 /* Get rid of the final newline */
1378 if (buf
[len
- 1] == '\n')
1379 buf
[len
- 1] = '\0';
1381 for (i
= 0; i
< MTD_PARAM_MAX_COUNT
; i
++)
1382 tokens
[i
] = strsep(&pbuf
, ",");
1385 pr_err("UBI error: too many arguments at \"%s\"\n", val
);
1389 p
= &mtd_dev_param
[mtd_devs
];
1390 strcpy(&p
->name
[0], tokens
[0]);
1394 p
->vid_hdr_offs
= bytes_str_to_int(token
);
1396 if (p
->vid_hdr_offs
< 0)
1397 return p
->vid_hdr_offs
;
1402 int err
= kstrtoint(token
, 10, &p
->max_beb_per1024
);
1405 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1413 int err
= kstrtoint(token
, 10, &p
->ubi_num
);
1416 pr_err("UBI error: bad value for ubi_num parameter: %s",
1421 p
->ubi_num
= UBI_DEV_NUM_AUTO
;
1427 module_param_call(mtd
, ubi_mtd_param_parse
, NULL
, NULL
, 0400);
1428 MODULE_PARM_DESC(mtd
, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1429 "Multiple \"mtd\" parameters may be specified.\n"
1430 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1431 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1432 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1433 __stringify(CONFIG_MTD_UBI_BEB_LIMIT
) ") if 0)\n"
1434 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1436 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1437 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1438 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1439 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1440 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1441 #ifdef CONFIG_MTD_UBI_FASTMAP
1442 module_param(fm_autoconvert
, bool, 0644);
1443 MODULE_PARM_DESC(fm_autoconvert
, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1444 module_param(fm_debug
, bool, 0);
1445 MODULE_PARM_DESC(fm_debug
, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1447 MODULE_VERSION(__stringify(UBI_VERSION
));
1448 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1449 MODULE_AUTHOR("Artem Bityutskiy");
1450 MODULE_LICENSE("GPL");