xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / mtd / ubi / build.c
blobe941395de3aedc0d4fc6d641e214ec9848c72e27
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2007
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Author: Artem Bityutskiy (Битюцкий Артём),
20 * Frank Haverkamp
24 * This file includes UBI initialization and building of UBI devices.
26 * When UBI is initialized, it attaches all the MTD devices specified as the
27 * module load parameters or the kernel boot parameters. If MTD devices were
28 * specified, UBI does not attach any MTD device, but it is possible to do
29 * later using the "UBI control device".
32 #include <linux/err.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/stringify.h>
36 #include <linux/namei.h>
37 #include <linux/stat.h>
38 #include <linux/miscdevice.h>
39 #include <linux/mtd/partitions.h>
40 #include <linux/log2.h>
41 #include <linux/kthread.h>
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/major.h>
45 #include "ubi.h"
47 /* Maximum length of the 'mtd=' parameter */
48 #define MTD_PARAM_LEN_MAX 64
50 /* Maximum number of comma-separated items in the 'mtd=' parameter */
51 #define MTD_PARAM_MAX_COUNT 4
53 /* Maximum value for the number of bad PEBs per 1024 PEBs */
54 #define MAX_MTD_UBI_BEB_LIMIT 768
56 #ifdef CONFIG_MTD_UBI_MODULE
57 #define ubi_is_module() 1
58 #else
59 #define ubi_is_module() 0
60 #endif
62 /**
63 * struct mtd_dev_param - MTD device parameter description data structure.
64 * @name: MTD character device node path, MTD device name, or MTD device number
65 * string
66 * @vid_hdr_offs: VID header offset
67 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
69 struct mtd_dev_param {
70 char name[MTD_PARAM_LEN_MAX];
71 int ubi_num;
72 int vid_hdr_offs;
73 int max_beb_per1024;
76 /* Numbers of elements set in the @mtd_dev_param array */
77 static int mtd_devs;
79 /* MTD devices specification parameters */
80 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
81 #ifdef CONFIG_MTD_UBI_FASTMAP
82 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
83 static bool fm_autoconvert;
84 static bool fm_debug;
85 #endif
87 /* Slab cache for wear-leveling entries */
88 struct kmem_cache *ubi_wl_entry_slab;
90 /* UBI control character device */
91 static struct miscdevice ubi_ctrl_cdev = {
92 .minor = MISC_DYNAMIC_MINOR,
93 .name = "ubi_ctrl",
94 .fops = &ubi_ctrl_cdev_operations,
97 /* All UBI devices in system */
98 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
100 /* Serializes UBI devices creations and removals */
101 DEFINE_MUTEX(ubi_devices_mutex);
103 /* Protects @ubi_devices and @ubi->ref_count */
104 static DEFINE_SPINLOCK(ubi_devices_lock);
106 /* "Show" method for files in '/<sysfs>/class/ubi/' */
107 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
108 static ssize_t version_show(struct class *class, struct class_attribute *attr,
109 char *buf)
111 return sprintf(buf, "%d\n", UBI_VERSION);
113 static CLASS_ATTR_RO(version);
115 static struct attribute *ubi_class_attrs[] = {
116 &class_attr_version.attr,
117 NULL,
119 ATTRIBUTE_GROUPS(ubi_class);
121 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
122 struct class ubi_class = {
123 .name = UBI_NAME_STR,
124 .owner = THIS_MODULE,
125 .class_groups = ubi_class_groups,
128 static ssize_t dev_attribute_show(struct device *dev,
129 struct device_attribute *attr, char *buf);
131 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
132 static struct device_attribute dev_eraseblock_size =
133 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
134 static struct device_attribute dev_avail_eraseblocks =
135 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
136 static struct device_attribute dev_total_eraseblocks =
137 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
138 static struct device_attribute dev_volumes_count =
139 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
140 static struct device_attribute dev_max_ec =
141 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
142 static struct device_attribute dev_reserved_for_bad =
143 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
144 static struct device_attribute dev_bad_peb_count =
145 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
146 static struct device_attribute dev_max_vol_count =
147 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
148 static struct device_attribute dev_min_io_size =
149 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
150 static struct device_attribute dev_bgt_enabled =
151 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
152 static struct device_attribute dev_mtd_num =
153 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
154 static struct device_attribute dev_ro_mode =
155 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL);
158 * ubi_volume_notify - send a volume change notification.
159 * @ubi: UBI device description object
160 * @vol: volume description object of the changed volume
161 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
163 * This is a helper function which notifies all subscribers about a volume
164 * change event (creation, removal, re-sizing, re-naming, updating). Returns
165 * zero in case of success and a negative error code in case of failure.
167 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
169 int ret;
170 struct ubi_notification nt;
172 ubi_do_get_device_info(ubi, &nt.di);
173 ubi_do_get_volume_info(ubi, vol, &nt.vi);
175 switch (ntype) {
176 case UBI_VOLUME_ADDED:
177 case UBI_VOLUME_REMOVED:
178 case UBI_VOLUME_RESIZED:
179 case UBI_VOLUME_RENAMED:
180 ret = ubi_update_fastmap(ubi);
181 if (ret)
182 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
185 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
189 * ubi_notify_all - send a notification to all volumes.
190 * @ubi: UBI device description object
191 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
192 * @nb: the notifier to call
194 * This function walks all volumes of UBI device @ubi and sends the @ntype
195 * notification for each volume. If @nb is %NULL, then all registered notifiers
196 * are called, otherwise only the @nb notifier is called. Returns the number of
197 * sent notifications.
199 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
201 struct ubi_notification nt;
202 int i, count = 0;
204 ubi_do_get_device_info(ubi, &nt.di);
206 mutex_lock(&ubi->device_mutex);
207 for (i = 0; i < ubi->vtbl_slots; i++) {
209 * Since the @ubi->device is locked, and we are not going to
210 * change @ubi->volumes, we do not have to lock
211 * @ubi->volumes_lock.
213 if (!ubi->volumes[i])
214 continue;
216 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
217 if (nb)
218 nb->notifier_call(nb, ntype, &nt);
219 else
220 blocking_notifier_call_chain(&ubi_notifiers, ntype,
221 &nt);
222 count += 1;
224 mutex_unlock(&ubi->device_mutex);
226 return count;
230 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
231 * @nb: the notifier to call
233 * This function walks all UBI devices and volumes and sends the
234 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
235 * registered notifiers are called, otherwise only the @nb notifier is called.
236 * Returns the number of sent notifications.
238 int ubi_enumerate_volumes(struct notifier_block *nb)
240 int i, count = 0;
243 * Since the @ubi_devices_mutex is locked, and we are not going to
244 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
246 for (i = 0; i < UBI_MAX_DEVICES; i++) {
247 struct ubi_device *ubi = ubi_devices[i];
249 if (!ubi)
250 continue;
251 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
254 return count;
258 * ubi_get_device - get UBI device.
259 * @ubi_num: UBI device number
261 * This function returns UBI device description object for UBI device number
262 * @ubi_num, or %NULL if the device does not exist. This function increases the
263 * device reference count to prevent removal of the device. In other words, the
264 * device cannot be removed if its reference count is not zero.
266 struct ubi_device *ubi_get_device(int ubi_num)
268 struct ubi_device *ubi;
270 spin_lock(&ubi_devices_lock);
271 ubi = ubi_devices[ubi_num];
272 if (ubi) {
273 ubi_assert(ubi->ref_count >= 0);
274 ubi->ref_count += 1;
275 get_device(&ubi->dev);
277 spin_unlock(&ubi_devices_lock);
279 return ubi;
283 * ubi_put_device - drop an UBI device reference.
284 * @ubi: UBI device description object
286 void ubi_put_device(struct ubi_device *ubi)
288 spin_lock(&ubi_devices_lock);
289 ubi->ref_count -= 1;
290 put_device(&ubi->dev);
291 spin_unlock(&ubi_devices_lock);
295 * ubi_get_by_major - get UBI device by character device major number.
296 * @major: major number
298 * This function is similar to 'ubi_get_device()', but it searches the device
299 * by its major number.
301 struct ubi_device *ubi_get_by_major(int major)
303 int i;
304 struct ubi_device *ubi;
306 spin_lock(&ubi_devices_lock);
307 for (i = 0; i < UBI_MAX_DEVICES; i++) {
308 ubi = ubi_devices[i];
309 if (ubi && MAJOR(ubi->cdev.dev) == major) {
310 ubi_assert(ubi->ref_count >= 0);
311 ubi->ref_count += 1;
312 get_device(&ubi->dev);
313 spin_unlock(&ubi_devices_lock);
314 return ubi;
317 spin_unlock(&ubi_devices_lock);
319 return NULL;
323 * ubi_major2num - get UBI device number by character device major number.
324 * @major: major number
326 * This function searches UBI device number object by its major number. If UBI
327 * device was not found, this function returns -ENODEV, otherwise the UBI device
328 * number is returned.
330 int ubi_major2num(int major)
332 int i, ubi_num = -ENODEV;
334 spin_lock(&ubi_devices_lock);
335 for (i = 0; i < UBI_MAX_DEVICES; i++) {
336 struct ubi_device *ubi = ubi_devices[i];
338 if (ubi && MAJOR(ubi->cdev.dev) == major) {
339 ubi_num = ubi->ubi_num;
340 break;
343 spin_unlock(&ubi_devices_lock);
345 return ubi_num;
348 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
349 static ssize_t dev_attribute_show(struct device *dev,
350 struct device_attribute *attr, char *buf)
352 ssize_t ret;
353 struct ubi_device *ubi;
356 * The below code looks weird, but it actually makes sense. We get the
357 * UBI device reference from the contained 'struct ubi_device'. But it
358 * is unclear if the device was removed or not yet. Indeed, if the
359 * device was removed before we increased its reference count,
360 * 'ubi_get_device()' will return -ENODEV and we fail.
362 * Remember, 'struct ubi_device' is freed in the release function, so
363 * we still can use 'ubi->ubi_num'.
365 ubi = container_of(dev, struct ubi_device, dev);
366 ubi = ubi_get_device(ubi->ubi_num);
367 if (!ubi)
368 return -ENODEV;
370 if (attr == &dev_eraseblock_size)
371 ret = sprintf(buf, "%d\n", ubi->leb_size);
372 else if (attr == &dev_avail_eraseblocks)
373 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
374 else if (attr == &dev_total_eraseblocks)
375 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
376 else if (attr == &dev_volumes_count)
377 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
378 else if (attr == &dev_max_ec)
379 ret = sprintf(buf, "%d\n", ubi->max_ec);
380 else if (attr == &dev_reserved_for_bad)
381 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
382 else if (attr == &dev_bad_peb_count)
383 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
384 else if (attr == &dev_max_vol_count)
385 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
386 else if (attr == &dev_min_io_size)
387 ret = sprintf(buf, "%d\n", ubi->min_io_size);
388 else if (attr == &dev_bgt_enabled)
389 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
390 else if (attr == &dev_mtd_num)
391 ret = sprintf(buf, "%d\n", ubi->mtd->index);
392 else if (attr == &dev_ro_mode)
393 ret = sprintf(buf, "%d\n", ubi->ro_mode);
394 else
395 ret = -EINVAL;
397 ubi_put_device(ubi);
398 return ret;
401 static struct attribute *ubi_dev_attrs[] = {
402 &dev_eraseblock_size.attr,
403 &dev_avail_eraseblocks.attr,
404 &dev_total_eraseblocks.attr,
405 &dev_volumes_count.attr,
406 &dev_max_ec.attr,
407 &dev_reserved_for_bad.attr,
408 &dev_bad_peb_count.attr,
409 &dev_max_vol_count.attr,
410 &dev_min_io_size.attr,
411 &dev_bgt_enabled.attr,
412 &dev_mtd_num.attr,
413 &dev_ro_mode.attr,
414 NULL
416 ATTRIBUTE_GROUPS(ubi_dev);
418 static void dev_release(struct device *dev)
420 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
422 kfree(ubi);
426 * kill_volumes - destroy all user volumes.
427 * @ubi: UBI device description object
429 static void kill_volumes(struct ubi_device *ubi)
431 int i;
433 for (i = 0; i < ubi->vtbl_slots; i++)
434 if (ubi->volumes[i])
435 ubi_free_volume(ubi, ubi->volumes[i]);
439 * uif_init - initialize user interfaces for an UBI device.
440 * @ubi: UBI device description object
442 * This function initializes various user interfaces for an UBI device. If the
443 * initialization fails at an early stage, this function frees all the
444 * resources it allocated, returns an error.
446 * This function returns zero in case of success and a negative error code in
447 * case of failure.
449 static int uif_init(struct ubi_device *ubi)
451 int i, err;
452 dev_t dev;
454 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
457 * Major numbers for the UBI character devices are allocated
458 * dynamically. Major numbers of volume character devices are
459 * equivalent to ones of the corresponding UBI character device. Minor
460 * numbers of UBI character devices are 0, while minor numbers of
461 * volume character devices start from 1. Thus, we allocate one major
462 * number and ubi->vtbl_slots + 1 minor numbers.
464 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
465 if (err) {
466 ubi_err(ubi, "cannot register UBI character devices");
467 return err;
470 ubi->dev.devt = dev;
472 ubi_assert(MINOR(dev) == 0);
473 cdev_init(&ubi->cdev, &ubi_cdev_operations);
474 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
475 ubi->cdev.owner = THIS_MODULE;
477 dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num);
478 err = cdev_device_add(&ubi->cdev, &ubi->dev);
479 if (err)
480 goto out_unreg;
482 for (i = 0; i < ubi->vtbl_slots; i++)
483 if (ubi->volumes[i]) {
484 err = ubi_add_volume(ubi, ubi->volumes[i]);
485 if (err) {
486 ubi_err(ubi, "cannot add volume %d", i);
487 goto out_volumes;
491 return 0;
493 out_volumes:
494 kill_volumes(ubi);
495 cdev_device_del(&ubi->cdev, &ubi->dev);
496 out_unreg:
497 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
498 ubi_err(ubi, "cannot initialize UBI %s, error %d",
499 ubi->ubi_name, err);
500 return err;
504 * uif_close - close user interfaces for an UBI device.
505 * @ubi: UBI device description object
507 * Note, since this function un-registers UBI volume device objects (@vol->dev),
508 * the memory allocated voe the volumes is freed as well (in the release
509 * function).
511 static void uif_close(struct ubi_device *ubi)
513 kill_volumes(ubi);
514 cdev_device_del(&ubi->cdev, &ubi->dev);
515 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
519 * ubi_free_internal_volumes - free internal volumes.
520 * @ubi: UBI device description object
522 void ubi_free_internal_volumes(struct ubi_device *ubi)
524 int i;
526 for (i = ubi->vtbl_slots;
527 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
528 ubi_eba_replace_table(ubi->volumes[i], NULL);
529 kfree(ubi->volumes[i]);
533 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
535 int limit, device_pebs;
536 uint64_t device_size;
538 if (!max_beb_per1024) {
540 * Since max_beb_per1024 has not been set by the user in either
541 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the
542 * limit if it is supported by the device.
544 limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size);
545 if (limit < 0)
546 return 0;
547 return limit;
551 * Here we are using size of the entire flash chip and
552 * not just the MTD partition size because the maximum
553 * number of bad eraseblocks is a percentage of the
554 * whole device and bad eraseblocks are not fairly
555 * distributed over the flash chip. So the worst case
556 * is that all the bad eraseblocks of the chip are in
557 * the MTD partition we are attaching (ubi->mtd).
559 device_size = mtd_get_device_size(ubi->mtd);
560 device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
561 limit = mult_frac(device_pebs, max_beb_per1024, 1024);
563 /* Round it up */
564 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
565 limit += 1;
567 return limit;
571 * io_init - initialize I/O sub-system for a given UBI device.
572 * @ubi: UBI device description object
573 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
575 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
576 * assumed:
577 * o EC header is always at offset zero - this cannot be changed;
578 * o VID header starts just after the EC header at the closest address
579 * aligned to @io->hdrs_min_io_size;
580 * o data starts just after the VID header at the closest address aligned to
581 * @io->min_io_size
583 * This function returns zero in case of success and a negative error code in
584 * case of failure.
586 static int io_init(struct ubi_device *ubi, int max_beb_per1024)
588 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
589 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
591 if (ubi->mtd->numeraseregions != 0) {
593 * Some flashes have several erase regions. Different regions
594 * may have different eraseblock size and other
595 * characteristics. It looks like mostly multi-region flashes
596 * have one "main" region and one or more small regions to
597 * store boot loader code or boot parameters or whatever. I
598 * guess we should just pick the largest region. But this is
599 * not implemented.
601 ubi_err(ubi, "multiple regions, not implemented");
602 return -EINVAL;
605 if (ubi->vid_hdr_offset < 0)
606 return -EINVAL;
609 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
610 * physical eraseblocks maximum.
613 ubi->peb_size = ubi->mtd->erasesize;
614 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
615 ubi->flash_size = ubi->mtd->size;
617 if (mtd_can_have_bb(ubi->mtd)) {
618 ubi->bad_allowed = 1;
619 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
622 if (ubi->mtd->type == MTD_NORFLASH) {
623 ubi_assert(ubi->mtd->writesize == 1);
624 ubi->nor_flash = 1;
627 ubi->min_io_size = ubi->mtd->writesize;
628 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
631 * Make sure minimal I/O unit is power of 2. Note, there is no
632 * fundamental reason for this assumption. It is just an optimization
633 * which allows us to avoid costly division operations.
635 if (!is_power_of_2(ubi->min_io_size)) {
636 ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
637 ubi->min_io_size);
638 return -EINVAL;
641 ubi_assert(ubi->hdrs_min_io_size > 0);
642 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
643 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
645 ubi->max_write_size = ubi->mtd->writebufsize;
647 * Maximum write size has to be greater or equivalent to min. I/O
648 * size, and be multiple of min. I/O size.
650 if (ubi->max_write_size < ubi->min_io_size ||
651 ubi->max_write_size % ubi->min_io_size ||
652 !is_power_of_2(ubi->max_write_size)) {
653 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
654 ubi->max_write_size, ubi->min_io_size);
655 return -EINVAL;
658 /* Calculate default aligned sizes of EC and VID headers */
659 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
660 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
662 dbg_gen("min_io_size %d", ubi->min_io_size);
663 dbg_gen("max_write_size %d", ubi->max_write_size);
664 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
665 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
666 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
668 if (ubi->vid_hdr_offset == 0)
669 /* Default offset */
670 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
671 ubi->ec_hdr_alsize;
672 else {
673 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
674 ~(ubi->hdrs_min_io_size - 1);
675 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
676 ubi->vid_hdr_aloffset;
679 /* Similar for the data offset */
680 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
681 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
683 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset);
684 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
685 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift);
686 dbg_gen("leb_start %d", ubi->leb_start);
688 /* The shift must be aligned to 32-bit boundary */
689 if (ubi->vid_hdr_shift % 4) {
690 ubi_err(ubi, "unaligned VID header shift %d",
691 ubi->vid_hdr_shift);
692 return -EINVAL;
695 /* Check sanity */
696 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
697 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
698 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
699 ubi->leb_start & (ubi->min_io_size - 1)) {
700 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
701 ubi->vid_hdr_offset, ubi->leb_start);
702 return -EINVAL;
706 * Set maximum amount of physical erroneous eraseblocks to be 10%.
707 * Erroneous PEB are those which have read errors.
709 ubi->max_erroneous = ubi->peb_count / 10;
710 if (ubi->max_erroneous < 16)
711 ubi->max_erroneous = 16;
712 dbg_gen("max_erroneous %d", ubi->max_erroneous);
715 * It may happen that EC and VID headers are situated in one minimal
716 * I/O unit. In this case we can only accept this UBI image in
717 * read-only mode.
719 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
720 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
721 ubi->ro_mode = 1;
724 ubi->leb_size = ubi->peb_size - ubi->leb_start;
726 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
727 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
728 ubi->mtd->index);
729 ubi->ro_mode = 1;
733 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
734 * unfortunately, MTD does not provide this information. We should loop
735 * over all physical eraseblocks and invoke mtd->block_is_bad() for
736 * each physical eraseblock. So, we leave @ubi->bad_peb_count
737 * uninitialized so far.
740 return 0;
744 * autoresize - re-size the volume which has the "auto-resize" flag set.
745 * @ubi: UBI device description object
746 * @vol_id: ID of the volume to re-size
748 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
749 * the volume table to the largest possible size. See comments in ubi-header.h
750 * for more description of the flag. Returns zero in case of success and a
751 * negative error code in case of failure.
753 static int autoresize(struct ubi_device *ubi, int vol_id)
755 struct ubi_volume_desc desc;
756 struct ubi_volume *vol = ubi->volumes[vol_id];
757 int err, old_reserved_pebs = vol->reserved_pebs;
759 if (ubi->ro_mode) {
760 ubi_warn(ubi, "skip auto-resize because of R/O mode");
761 return 0;
765 * Clear the auto-resize flag in the volume in-memory copy of the
766 * volume table, and 'ubi_resize_volume()' will propagate this change
767 * to the flash.
769 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
771 if (ubi->avail_pebs == 0) {
772 struct ubi_vtbl_record vtbl_rec;
775 * No available PEBs to re-size the volume, clear the flag on
776 * flash and exit.
778 vtbl_rec = ubi->vtbl[vol_id];
779 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
780 if (err)
781 ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
782 vol_id);
783 } else {
784 desc.vol = vol;
785 err = ubi_resize_volume(&desc,
786 old_reserved_pebs + ubi->avail_pebs);
787 if (err)
788 ubi_err(ubi, "cannot auto-resize volume %d",
789 vol_id);
792 if (err)
793 return err;
795 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
796 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
797 return 0;
801 * ubi_attach_mtd_dev - attach an MTD device.
802 * @mtd: MTD device description object
803 * @ubi_num: number to assign to the new UBI device
804 * @vid_hdr_offset: VID header offset
805 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
807 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
808 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
809 * which case this function finds a vacant device number and assigns it
810 * automatically. Returns the new UBI device number in case of success and a
811 * negative error code in case of failure.
813 * Note, the invocations of this function has to be serialized by the
814 * @ubi_devices_mutex.
816 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
817 int vid_hdr_offset, int max_beb_per1024)
819 struct ubi_device *ubi;
820 int i, err;
822 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
823 return -EINVAL;
825 if (!max_beb_per1024)
826 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
829 * Check if we already have the same MTD device attached.
831 * Note, this function assumes that UBI devices creations and deletions
832 * are serialized, so it does not take the &ubi_devices_lock.
834 for (i = 0; i < UBI_MAX_DEVICES; i++) {
835 ubi = ubi_devices[i];
836 if (ubi && mtd->index == ubi->mtd->index) {
837 pr_err("ubi: mtd%d is already attached to ubi%d\n",
838 mtd->index, i);
839 return -EEXIST;
844 * Make sure this MTD device is not emulated on top of an UBI volume
845 * already. Well, generally this recursion works fine, but there are
846 * different problems like the UBI module takes a reference to itself
847 * by attaching (and thus, opening) the emulated MTD device. This
848 * results in inability to unload the module. And in general it makes
849 * no sense to attach emulated MTD devices, so we prohibit this.
851 if (mtd->type == MTD_UBIVOLUME) {
852 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n",
853 mtd->index);
854 return -EINVAL;
857 if (ubi_num == UBI_DEV_NUM_AUTO) {
858 /* Search for an empty slot in the @ubi_devices array */
859 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
860 if (!ubi_devices[ubi_num])
861 break;
862 if (ubi_num == UBI_MAX_DEVICES) {
863 pr_err("ubi: only %d UBI devices may be created\n",
864 UBI_MAX_DEVICES);
865 return -ENFILE;
867 } else {
868 if (ubi_num >= UBI_MAX_DEVICES)
869 return -EINVAL;
871 /* Make sure ubi_num is not busy */
872 if (ubi_devices[ubi_num]) {
873 pr_err("ubi: ubi%i already exists\n", ubi_num);
874 return -EEXIST;
878 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
879 if (!ubi)
880 return -ENOMEM;
882 device_initialize(&ubi->dev);
883 ubi->dev.release = dev_release;
884 ubi->dev.class = &ubi_class;
885 ubi->dev.groups = ubi_dev_groups;
887 ubi->mtd = mtd;
888 ubi->ubi_num = ubi_num;
889 ubi->vid_hdr_offset = vid_hdr_offset;
890 ubi->autoresize_vol_id = -1;
892 #ifdef CONFIG_MTD_UBI_FASTMAP
893 ubi->fm_pool.used = ubi->fm_pool.size = 0;
894 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
897 * fm_pool.max_size is 5% of the total number of PEBs but it's also
898 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
900 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
901 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
902 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
903 UBI_FM_MIN_POOL_SIZE);
905 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
906 ubi->fm_disabled = !fm_autoconvert;
907 if (fm_debug)
908 ubi_enable_dbg_chk_fastmap(ubi);
910 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
911 <= UBI_FM_MAX_START) {
912 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
913 UBI_FM_MAX_START);
914 ubi->fm_disabled = 1;
917 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
918 ubi_msg(ubi, "default fastmap WL pool size: %d",
919 ubi->fm_wl_pool.max_size);
920 #else
921 ubi->fm_disabled = 1;
922 #endif
923 mutex_init(&ubi->buf_mutex);
924 mutex_init(&ubi->ckvol_mutex);
925 mutex_init(&ubi->device_mutex);
926 spin_lock_init(&ubi->volumes_lock);
927 init_rwsem(&ubi->fm_protect);
928 init_rwsem(&ubi->fm_eba_sem);
930 ubi_msg(ubi, "attaching mtd%d", mtd->index);
932 err = io_init(ubi, max_beb_per1024);
933 if (err)
934 goto out_free;
936 err = -ENOMEM;
937 ubi->peb_buf = vmalloc(ubi->peb_size);
938 if (!ubi->peb_buf)
939 goto out_free;
941 #ifdef CONFIG_MTD_UBI_FASTMAP
942 ubi->fm_size = ubi_calc_fm_size(ubi);
943 ubi->fm_buf = vzalloc(ubi->fm_size);
944 if (!ubi->fm_buf)
945 goto out_free;
946 #endif
947 err = ubi_attach(ubi, 0);
948 if (err) {
949 ubi_err(ubi, "failed to attach mtd%d, error %d",
950 mtd->index, err);
951 goto out_free;
954 if (ubi->autoresize_vol_id != -1) {
955 err = autoresize(ubi, ubi->autoresize_vol_id);
956 if (err)
957 goto out_detach;
960 /* Make device "available" before it becomes accessible via sysfs */
961 ubi_devices[ubi_num] = ubi;
963 err = uif_init(ubi);
964 if (err)
965 goto out_detach;
967 err = ubi_debugfs_init_dev(ubi);
968 if (err)
969 goto out_uif;
971 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
972 if (IS_ERR(ubi->bgt_thread)) {
973 err = PTR_ERR(ubi->bgt_thread);
974 ubi_err(ubi, "cannot spawn \"%s\", error %d",
975 ubi->bgt_name, err);
976 goto out_debugfs;
979 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
980 mtd->index, mtd->name, ubi->flash_size >> 20);
981 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
982 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
983 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
984 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
985 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
986 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
987 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
988 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
989 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
990 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
991 ubi->vtbl_slots);
992 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
993 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
994 ubi->image_seq);
995 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
996 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
999 * The below lock makes sure we do not race with 'ubi_thread()' which
1000 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1002 spin_lock(&ubi->wl_lock);
1003 ubi->thread_enabled = 1;
1004 wake_up_process(ubi->bgt_thread);
1005 spin_unlock(&ubi->wl_lock);
1007 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1008 return ubi_num;
1010 out_debugfs:
1011 ubi_debugfs_exit_dev(ubi);
1012 out_uif:
1013 uif_close(ubi);
1014 out_detach:
1015 ubi_devices[ubi_num] = NULL;
1016 ubi_wl_close(ubi);
1017 ubi_free_internal_volumes(ubi);
1018 vfree(ubi->vtbl);
1019 out_free:
1020 vfree(ubi->peb_buf);
1021 vfree(ubi->fm_buf);
1022 put_device(&ubi->dev);
1023 return err;
1027 * ubi_detach_mtd_dev - detach an MTD device.
1028 * @ubi_num: UBI device number to detach from
1029 * @anyway: detach MTD even if device reference count is not zero
1031 * This function destroys an UBI device number @ubi_num and detaches the
1032 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1033 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1034 * exist.
1036 * Note, the invocations of this function has to be serialized by the
1037 * @ubi_devices_mutex.
1039 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1041 struct ubi_device *ubi;
1043 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1044 return -EINVAL;
1046 ubi = ubi_get_device(ubi_num);
1047 if (!ubi)
1048 return -EINVAL;
1050 spin_lock(&ubi_devices_lock);
1051 put_device(&ubi->dev);
1052 ubi->ref_count -= 1;
1053 if (ubi->ref_count) {
1054 if (!anyway) {
1055 spin_unlock(&ubi_devices_lock);
1056 return -EBUSY;
1058 /* This may only happen if there is a bug */
1059 ubi_err(ubi, "%s reference count %d, destroy anyway",
1060 ubi->ubi_name, ubi->ref_count);
1062 ubi_devices[ubi_num] = NULL;
1063 spin_unlock(&ubi_devices_lock);
1065 ubi_assert(ubi_num == ubi->ubi_num);
1066 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1067 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1068 #ifdef CONFIG_MTD_UBI_FASTMAP
1069 /* If we don't write a new fastmap at detach time we lose all
1070 * EC updates that have been made since the last written fastmap.
1071 * In case of fastmap debugging we omit the update to simulate an
1072 * unclean shutdown. */
1073 if (!ubi_dbg_chk_fastmap(ubi))
1074 ubi_update_fastmap(ubi);
1075 #endif
1077 * Before freeing anything, we have to stop the background thread to
1078 * prevent it from doing anything on this device while we are freeing.
1080 if (ubi->bgt_thread)
1081 kthread_stop(ubi->bgt_thread);
1083 ubi_debugfs_exit_dev(ubi);
1084 uif_close(ubi);
1086 ubi_wl_close(ubi);
1087 ubi_free_internal_volumes(ubi);
1088 vfree(ubi->vtbl);
1089 put_mtd_device(ubi->mtd);
1090 vfree(ubi->peb_buf);
1091 vfree(ubi->fm_buf);
1092 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1093 put_device(&ubi->dev);
1094 return 0;
1098 * open_mtd_by_chdev - open an MTD device by its character device node path.
1099 * @mtd_dev: MTD character device node path
1101 * This helper function opens an MTD device by its character node device path.
1102 * Returns MTD device description object in case of success and a negative
1103 * error code in case of failure.
1105 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1107 int err, minor;
1108 struct path path;
1109 struct kstat stat;
1111 /* Probably this is an MTD character device node path */
1112 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1113 if (err)
1114 return ERR_PTR(err);
1116 err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT);
1117 path_put(&path);
1118 if (err)
1119 return ERR_PTR(err);
1121 /* MTD device number is defined by the major / minor numbers */
1122 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode))
1123 return ERR_PTR(-EINVAL);
1125 minor = MINOR(stat.rdev);
1127 if (minor & 1)
1129 * Just do not think the "/dev/mtdrX" devices support is need,
1130 * so do not support them to avoid doing extra work.
1132 return ERR_PTR(-EINVAL);
1134 return get_mtd_device(NULL, minor / 2);
1138 * open_mtd_device - open MTD device by name, character device path, or number.
1139 * @mtd_dev: name, character device node path, or MTD device device number
1141 * This function tries to open and MTD device described by @mtd_dev string,
1142 * which is first treated as ASCII MTD device number, and if it is not true, it
1143 * is treated as MTD device name, and if that is also not true, it is treated
1144 * as MTD character device node path. Returns MTD device description object in
1145 * case of success and a negative error code in case of failure.
1147 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1149 struct mtd_info *mtd;
1150 int mtd_num;
1151 char *endp;
1153 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1154 if (*endp != '\0' || mtd_dev == endp) {
1156 * This does not look like an ASCII integer, probably this is
1157 * MTD device name.
1159 mtd = get_mtd_device_nm(mtd_dev);
1160 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1161 /* Probably this is an MTD character device node path */
1162 mtd = open_mtd_by_chdev(mtd_dev);
1163 } else
1164 mtd = get_mtd_device(NULL, mtd_num);
1166 return mtd;
1169 static int __init ubi_init(void)
1171 int err, i, k;
1173 /* Ensure that EC and VID headers have correct size */
1174 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1175 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1177 if (mtd_devs > UBI_MAX_DEVICES) {
1178 pr_err("UBI error: too many MTD devices, maximum is %d\n",
1179 UBI_MAX_DEVICES);
1180 return -EINVAL;
1183 /* Create base sysfs directory and sysfs files */
1184 err = class_register(&ubi_class);
1185 if (err < 0)
1186 return err;
1188 err = misc_register(&ubi_ctrl_cdev);
1189 if (err) {
1190 pr_err("UBI error: cannot register device\n");
1191 goto out;
1194 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1195 sizeof(struct ubi_wl_entry),
1196 0, 0, NULL);
1197 if (!ubi_wl_entry_slab) {
1198 err = -ENOMEM;
1199 goto out_dev_unreg;
1202 err = ubi_debugfs_init();
1203 if (err)
1204 goto out_slab;
1207 /* Attach MTD devices */
1208 for (i = 0; i < mtd_devs; i++) {
1209 struct mtd_dev_param *p = &mtd_dev_param[i];
1210 struct mtd_info *mtd;
1212 cond_resched();
1214 mtd = open_mtd_device(p->name);
1215 if (IS_ERR(mtd)) {
1216 err = PTR_ERR(mtd);
1217 pr_err("UBI error: cannot open mtd %s, error %d\n",
1218 p->name, err);
1219 /* See comment below re-ubi_is_module(). */
1220 if (ubi_is_module())
1221 goto out_detach;
1222 continue;
1225 mutex_lock(&ubi_devices_mutex);
1226 err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1227 p->vid_hdr_offs, p->max_beb_per1024);
1228 mutex_unlock(&ubi_devices_mutex);
1229 if (err < 0) {
1230 pr_err("UBI error: cannot attach mtd%d\n",
1231 mtd->index);
1232 put_mtd_device(mtd);
1235 * Originally UBI stopped initializing on any error.
1236 * However, later on it was found out that this
1237 * behavior is not very good when UBI is compiled into
1238 * the kernel and the MTD devices to attach are passed
1239 * through the command line. Indeed, UBI failure
1240 * stopped whole boot sequence.
1242 * To fix this, we changed the behavior for the
1243 * non-module case, but preserved the old behavior for
1244 * the module case, just for compatibility. This is a
1245 * little inconsistent, though.
1247 if (ubi_is_module())
1248 goto out_detach;
1252 err = ubiblock_init();
1253 if (err) {
1254 pr_err("UBI error: block: cannot initialize, error %d\n", err);
1256 /* See comment above re-ubi_is_module(). */
1257 if (ubi_is_module())
1258 goto out_detach;
1261 return 0;
1263 out_detach:
1264 for (k = 0; k < i; k++)
1265 if (ubi_devices[k]) {
1266 mutex_lock(&ubi_devices_mutex);
1267 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1268 mutex_unlock(&ubi_devices_mutex);
1270 ubi_debugfs_exit();
1271 out_slab:
1272 kmem_cache_destroy(ubi_wl_entry_slab);
1273 out_dev_unreg:
1274 misc_deregister(&ubi_ctrl_cdev);
1275 out:
1276 class_unregister(&ubi_class);
1277 pr_err("UBI error: cannot initialize UBI, error %d\n", err);
1278 return err;
1280 late_initcall(ubi_init);
1282 static void __exit ubi_exit(void)
1284 int i;
1286 ubiblock_exit();
1288 for (i = 0; i < UBI_MAX_DEVICES; i++)
1289 if (ubi_devices[i]) {
1290 mutex_lock(&ubi_devices_mutex);
1291 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1292 mutex_unlock(&ubi_devices_mutex);
1294 ubi_debugfs_exit();
1295 kmem_cache_destroy(ubi_wl_entry_slab);
1296 misc_deregister(&ubi_ctrl_cdev);
1297 class_unregister(&ubi_class);
1299 module_exit(ubi_exit);
1302 * bytes_str_to_int - convert a number of bytes string into an integer.
1303 * @str: the string to convert
1305 * This function returns positive resulting integer in case of success and a
1306 * negative error code in case of failure.
1308 static int bytes_str_to_int(const char *str)
1310 char *endp;
1311 unsigned long result;
1313 result = simple_strtoul(str, &endp, 0);
1314 if (str == endp || result >= INT_MAX) {
1315 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1316 return -EINVAL;
1319 switch (*endp) {
1320 case 'G':
1321 result *= 1024;
1322 case 'M':
1323 result *= 1024;
1324 case 'K':
1325 result *= 1024;
1326 if (endp[1] == 'i' && endp[2] == 'B')
1327 endp += 2;
1328 case '\0':
1329 break;
1330 default:
1331 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1332 return -EINVAL;
1335 return result;
1339 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1340 * @val: the parameter value to parse
1341 * @kp: not used
1343 * This function returns zero in case of success and a negative error code in
1344 * case of error.
1346 static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp)
1348 int i, len;
1349 struct mtd_dev_param *p;
1350 char buf[MTD_PARAM_LEN_MAX];
1351 char *pbuf = &buf[0];
1352 char *tokens[MTD_PARAM_MAX_COUNT], *token;
1354 if (!val)
1355 return -EINVAL;
1357 if (mtd_devs == UBI_MAX_DEVICES) {
1358 pr_err("UBI error: too many parameters, max. is %d\n",
1359 UBI_MAX_DEVICES);
1360 return -EINVAL;
1363 len = strnlen(val, MTD_PARAM_LEN_MAX);
1364 if (len == MTD_PARAM_LEN_MAX) {
1365 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1366 val, MTD_PARAM_LEN_MAX);
1367 return -EINVAL;
1370 if (len == 0) {
1371 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1372 return 0;
1375 strcpy(buf, val);
1377 /* Get rid of the final newline */
1378 if (buf[len - 1] == '\n')
1379 buf[len - 1] = '\0';
1381 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1382 tokens[i] = strsep(&pbuf, ",");
1384 if (pbuf) {
1385 pr_err("UBI error: too many arguments at \"%s\"\n", val);
1386 return -EINVAL;
1389 p = &mtd_dev_param[mtd_devs];
1390 strcpy(&p->name[0], tokens[0]);
1392 token = tokens[1];
1393 if (token) {
1394 p->vid_hdr_offs = bytes_str_to_int(token);
1396 if (p->vid_hdr_offs < 0)
1397 return p->vid_hdr_offs;
1400 token = tokens[2];
1401 if (token) {
1402 int err = kstrtoint(token, 10, &p->max_beb_per1024);
1404 if (err) {
1405 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1406 token);
1407 return -EINVAL;
1411 token = tokens[3];
1412 if (token) {
1413 int err = kstrtoint(token, 10, &p->ubi_num);
1415 if (err) {
1416 pr_err("UBI error: bad value for ubi_num parameter: %s",
1417 token);
1418 return -EINVAL;
1420 } else
1421 p->ubi_num = UBI_DEV_NUM_AUTO;
1423 mtd_devs += 1;
1424 return 0;
1427 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400);
1428 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1429 "Multiple \"mtd\" parameters may be specified.\n"
1430 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1431 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1432 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1433 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1434 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1435 "\n"
1436 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1437 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1438 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1439 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1440 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1441 #ifdef CONFIG_MTD_UBI_FASTMAP
1442 module_param(fm_autoconvert, bool, 0644);
1443 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1444 module_param(fm_debug, bool, 0);
1445 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1446 #endif
1447 MODULE_VERSION(__stringify(UBI_VERSION));
1448 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1449 MODULE_AUTHOR("Artem Bityutskiy");
1450 MODULE_LICENSE("GPL");