xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / net / wireless / ralink / rt2x00 / rt2800mmio.c
blob1123e2bed8036e449035f1ccccd8fbec890840d9
1 /* Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
2 * Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
3 * Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
4 * Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
5 * Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
6 * Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
7 * Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
8 * Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
9 * <http://rt2x00.serialmonkey.com>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
25 /* Module: rt2800mmio
26 * Abstract: rt2800 MMIO device routines.
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/export.h>
33 #include "rt2x00.h"
34 #include "rt2x00mmio.h"
35 #include "rt2800.h"
36 #include "rt2800lib.h"
37 #include "rt2800mmio.h"
40 * TX descriptor initialization
42 __le32 *rt2800mmio_get_txwi(struct queue_entry *entry)
44 return (__le32 *) entry->skb->data;
46 EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi);
48 void rt2800mmio_write_tx_desc(struct queue_entry *entry,
49 struct txentry_desc *txdesc)
51 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
52 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
53 __le32 *txd = entry_priv->desc;
54 u32 word;
55 const unsigned int txwi_size = entry->queue->winfo_size;
58 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
59 * must contains a TXWI structure + 802.11 header + padding + 802.11
60 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
61 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
62 * data. It means that LAST_SEC0 is always 0.
66 * Initialize TX descriptor
68 word = 0;
69 rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
70 rt2x00_desc_write(txd, 0, word);
72 word = 0;
73 rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
74 rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
75 !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
76 rt2x00_set_field32(&word, TXD_W1_BURST,
77 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
78 rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
79 rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
80 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
81 rt2x00_desc_write(txd, 1, word);
83 word = 0;
84 rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
85 skbdesc->skb_dma + txwi_size);
86 rt2x00_desc_write(txd, 2, word);
88 word = 0;
89 rt2x00_set_field32(&word, TXD_W3_WIV,
90 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
91 rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
92 rt2x00_desc_write(txd, 3, word);
95 * Register descriptor details in skb frame descriptor.
97 skbdesc->desc = txd;
98 skbdesc->desc_len = TXD_DESC_SIZE;
100 EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc);
103 * RX control handlers
105 void rt2800mmio_fill_rxdone(struct queue_entry *entry,
106 struct rxdone_entry_desc *rxdesc)
108 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
109 __le32 *rxd = entry_priv->desc;
110 u32 word;
112 word = rt2x00_desc_read(rxd, 3);
114 if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
115 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
118 * Unfortunately we don't know the cipher type used during
119 * decryption. This prevents us from correct providing
120 * correct statistics through debugfs.
122 rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
124 if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
126 * Hardware has stripped IV/EIV data from 802.11 frame during
127 * decryption. Unfortunately the descriptor doesn't contain
128 * any fields with the EIV/IV data either, so they can't
129 * be restored by rt2x00lib.
131 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
134 * The hardware has already checked the Michael Mic and has
135 * stripped it from the frame. Signal this to mac80211.
137 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
139 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) {
140 rxdesc->flags |= RX_FLAG_DECRYPTED;
141 } else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) {
143 * In order to check the Michael Mic, the packet must have
144 * been decrypted. Mac80211 doesnt check the MMIC failure
145 * flag to initiate MMIC countermeasures if the decoded flag
146 * has not been set.
148 rxdesc->flags |= RX_FLAG_DECRYPTED;
150 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
154 if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
155 rxdesc->dev_flags |= RXDONE_MY_BSS;
157 if (rt2x00_get_field32(word, RXD_W3_L2PAD))
158 rxdesc->dev_flags |= RXDONE_L2PAD;
161 * Process the RXWI structure that is at the start of the buffer.
163 rt2800_process_rxwi(entry, rxdesc);
165 EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone);
168 * Interrupt functions.
170 static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev)
172 struct ieee80211_conf conf = { .flags = 0 };
173 struct rt2x00lib_conf libconf = { .conf = &conf };
175 rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
178 static bool rt2800mmio_txdone_entry_check(struct queue_entry *entry, u32 status)
180 __le32 *txwi;
181 u32 word;
182 int wcid, tx_wcid;
184 wcid = rt2x00_get_field32(status, TX_STA_FIFO_WCID);
186 txwi = rt2800_drv_get_txwi(entry);
187 word = rt2x00_desc_read(txwi, 1);
188 tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
190 return (tx_wcid == wcid);
193 static bool rt2800mmio_txdone_find_entry(struct queue_entry *entry, void *data)
195 u32 status = *(u32 *)data;
198 * rt2800pci hardware might reorder frames when exchanging traffic
199 * with multiple BA enabled STAs.
201 * For example, a tx queue
202 * [ STA1 | STA2 | STA1 | STA2 ]
203 * can result in tx status reports
204 * [ STA1 | STA1 | STA2 | STA2 ]
205 * when the hw decides to aggregate the frames for STA1 into one AMPDU.
207 * To mitigate this effect, associate the tx status to the first frame
208 * in the tx queue with a matching wcid.
210 if (rt2800mmio_txdone_entry_check(entry, status) &&
211 !test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
213 * Got a matching frame, associate the tx status with
214 * the frame
216 entry->status = status;
217 set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
218 return true;
221 /* Check the next frame */
222 return false;
225 static bool rt2800mmio_txdone_match_first(struct queue_entry *entry, void *data)
227 u32 status = *(u32 *)data;
230 * Find the first frame without tx status and assign this status to it
231 * regardless if it matches or not.
233 if (!test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
235 * Got a matching frame, associate the tx status with
236 * the frame
238 entry->status = status;
239 set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
240 return true;
243 /* Check the next frame */
244 return false;
246 static bool rt2800mmio_txdone_release_entries(struct queue_entry *entry,
247 void *data)
249 if (test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
250 rt2800_txdone_entry(entry, entry->status,
251 rt2800mmio_get_txwi(entry), true);
252 return false;
255 /* No more frames to release */
256 return true;
259 static bool rt2800mmio_txdone(struct rt2x00_dev *rt2x00dev)
261 struct data_queue *queue;
262 u32 status;
263 u8 qid;
264 int max_tx_done = 16;
266 while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
267 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
268 if (unlikely(qid >= QID_RX)) {
270 * Unknown queue, this shouldn't happen. Just drop
271 * this tx status.
273 rt2x00_warn(rt2x00dev, "Got TX status report with unexpected pid %u, dropping\n",
274 qid);
275 break;
278 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
279 if (unlikely(queue == NULL)) {
281 * The queue is NULL, this shouldn't happen. Stop
282 * processing here and drop the tx status
284 rt2x00_warn(rt2x00dev, "Got TX status for an unavailable queue %u, dropping\n",
285 qid);
286 break;
289 if (unlikely(rt2x00queue_empty(queue))) {
291 * The queue is empty. Stop processing here
292 * and drop the tx status.
294 rt2x00_warn(rt2x00dev, "Got TX status for an empty queue %u, dropping\n",
295 qid);
296 break;
300 * Let's associate this tx status with the first
301 * matching frame.
303 if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
304 Q_INDEX, &status,
305 rt2800mmio_txdone_find_entry)) {
307 * We cannot match the tx status to any frame, so just
308 * use the first one.
310 if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
311 Q_INDEX, &status,
312 rt2800mmio_txdone_match_first)) {
313 rt2x00_warn(rt2x00dev, "No frame found for TX status on queue %u, dropping\n",
314 qid);
315 break;
320 * Release all frames with a valid tx status.
322 rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
323 Q_INDEX, NULL,
324 rt2800mmio_txdone_release_entries);
326 if (--max_tx_done == 0)
327 break;
330 return !max_tx_done;
333 static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev,
334 struct rt2x00_field32 irq_field)
336 u32 reg;
339 * Enable a single interrupt. The interrupt mask register
340 * access needs locking.
342 spin_lock_irq(&rt2x00dev->irqmask_lock);
343 reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
344 rt2x00_set_field32(&reg, irq_field, 1);
345 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
346 spin_unlock_irq(&rt2x00dev->irqmask_lock);
349 void rt2800mmio_txstatus_tasklet(unsigned long data)
351 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
352 if (rt2800mmio_txdone(rt2x00dev))
353 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
356 * No need to enable the tx status interrupt here as we always
357 * leave it enabled to minimize the possibility of a tx status
358 * register overflow. See comment in interrupt handler.
361 EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet);
363 void rt2800mmio_pretbtt_tasklet(unsigned long data)
365 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
366 rt2x00lib_pretbtt(rt2x00dev);
367 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
368 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
370 EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet);
372 void rt2800mmio_tbtt_tasklet(unsigned long data)
374 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
375 struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
376 u32 reg;
378 rt2x00lib_beacondone(rt2x00dev);
380 if (rt2x00dev->intf_ap_count) {
382 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
383 * causing beacon skew and as a result causing problems with
384 * some powersaving clients over time. Shorten the beacon
385 * interval every 64 beacons by 64us to mitigate this effect.
387 if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
388 reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
389 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
390 (rt2x00dev->beacon_int * 16) - 1);
391 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
392 } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
393 reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
394 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
395 (rt2x00dev->beacon_int * 16));
396 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
398 drv_data->tbtt_tick++;
399 drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
402 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
403 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
405 EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet);
407 void rt2800mmio_rxdone_tasklet(unsigned long data)
409 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
410 if (rt2x00mmio_rxdone(rt2x00dev))
411 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
412 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
413 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
415 EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet);
417 void rt2800mmio_autowake_tasklet(unsigned long data)
419 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
420 rt2800mmio_wakeup(rt2x00dev);
421 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
422 rt2800mmio_enable_interrupt(rt2x00dev,
423 INT_MASK_CSR_AUTO_WAKEUP);
425 EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet);
427 static void rt2800mmio_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
429 u32 status;
430 int i;
433 * The TX_FIFO_STATUS interrupt needs special care. We should
434 * read TX_STA_FIFO but we should do it immediately as otherwise
435 * the register can overflow and we would lose status reports.
437 * Hence, read the TX_STA_FIFO register and copy all tx status
438 * reports into a kernel FIFO which is handled in the txstatus
439 * tasklet. We use a tasklet to process the tx status reports
440 * because we can schedule the tasklet multiple times (when the
441 * interrupt fires again during tx status processing).
443 * Furthermore we don't disable the TX_FIFO_STATUS
444 * interrupt here but leave it enabled so that the TX_STA_FIFO
445 * can also be read while the tx status tasklet gets executed.
447 * Since we have only one producer and one consumer we don't
448 * need to lock the kfifo.
450 for (i = 0; i < rt2x00dev->tx->limit; i++) {
451 status = rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO);
453 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
454 break;
456 if (!kfifo_put(&rt2x00dev->txstatus_fifo, status)) {
457 rt2x00_warn(rt2x00dev, "TX status FIFO overrun, drop tx status report\n");
458 break;
462 /* Schedule the tasklet for processing the tx status. */
463 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
466 irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance)
468 struct rt2x00_dev *rt2x00dev = dev_instance;
469 u32 reg, mask;
471 /* Read status and ACK all interrupts */
472 reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
473 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
475 if (!reg)
476 return IRQ_NONE;
478 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
479 return IRQ_HANDLED;
482 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
483 * for interrupts and interrupt masks we can just use the value of
484 * INT_SOURCE_CSR to create the interrupt mask.
486 mask = ~reg;
488 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
489 rt2800mmio_txstatus_interrupt(rt2x00dev);
491 * Never disable the TX_FIFO_STATUS interrupt.
493 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
496 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
497 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
499 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
500 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
502 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
503 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
505 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
506 tasklet_schedule(&rt2x00dev->autowake_tasklet);
509 * Disable all interrupts for which a tasklet was scheduled right now,
510 * the tasklet will reenable the appropriate interrupts.
512 spin_lock(&rt2x00dev->irqmask_lock);
513 reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
514 reg &= mask;
515 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
516 spin_unlock(&rt2x00dev->irqmask_lock);
518 return IRQ_HANDLED;
520 EXPORT_SYMBOL_GPL(rt2800mmio_interrupt);
522 void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
523 enum dev_state state)
525 u32 reg;
526 unsigned long flags;
529 * When interrupts are being enabled, the interrupt registers
530 * should clear the register to assure a clean state.
532 if (state == STATE_RADIO_IRQ_ON) {
533 reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
534 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
537 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
538 reg = 0;
539 if (state == STATE_RADIO_IRQ_ON) {
540 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
541 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
542 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
543 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
544 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
546 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
547 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
549 if (state == STATE_RADIO_IRQ_OFF) {
551 * Wait for possibly running tasklets to finish.
553 tasklet_kill(&rt2x00dev->txstatus_tasklet);
554 tasklet_kill(&rt2x00dev->rxdone_tasklet);
555 tasklet_kill(&rt2x00dev->autowake_tasklet);
556 tasklet_kill(&rt2x00dev->tbtt_tasklet);
557 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
560 EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq);
563 * Queue handlers.
565 void rt2800mmio_start_queue(struct data_queue *queue)
567 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
568 u32 reg;
570 switch (queue->qid) {
571 case QID_RX:
572 reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
573 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
574 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
575 break;
576 case QID_BEACON:
577 reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
578 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
579 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
580 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
581 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
583 reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
584 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
585 rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
586 break;
587 default:
588 break;
591 EXPORT_SYMBOL_GPL(rt2800mmio_start_queue);
593 void rt2800mmio_kick_queue(struct data_queue *queue)
595 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
596 struct queue_entry *entry;
598 switch (queue->qid) {
599 case QID_AC_VO:
600 case QID_AC_VI:
601 case QID_AC_BE:
602 case QID_AC_BK:
603 entry = rt2x00queue_get_entry(queue, Q_INDEX);
604 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
605 entry->entry_idx);
606 break;
607 case QID_MGMT:
608 entry = rt2x00queue_get_entry(queue, Q_INDEX);
609 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
610 entry->entry_idx);
611 break;
612 default:
613 break;
616 EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue);
618 void rt2800mmio_stop_queue(struct data_queue *queue)
620 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
621 u32 reg;
623 switch (queue->qid) {
624 case QID_RX:
625 reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
626 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
627 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
628 break;
629 case QID_BEACON:
630 reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
631 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
632 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
633 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
634 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
636 reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
637 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
638 rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
641 * Wait for current invocation to finish. The tasklet
642 * won't be scheduled anymore afterwards since we disabled
643 * the TBTT and PRE TBTT timer.
645 tasklet_kill(&rt2x00dev->tbtt_tasklet);
646 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
648 break;
649 default:
650 break;
653 EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue);
655 void rt2800mmio_queue_init(struct data_queue *queue)
657 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
658 unsigned short txwi_size, rxwi_size;
660 rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);
662 switch (queue->qid) {
663 case QID_RX:
664 queue->limit = 128;
665 queue->data_size = AGGREGATION_SIZE;
666 queue->desc_size = RXD_DESC_SIZE;
667 queue->winfo_size = rxwi_size;
668 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
669 break;
671 case QID_AC_VO:
672 case QID_AC_VI:
673 case QID_AC_BE:
674 case QID_AC_BK:
675 queue->limit = 64;
676 queue->data_size = AGGREGATION_SIZE;
677 queue->desc_size = TXD_DESC_SIZE;
678 queue->winfo_size = txwi_size;
679 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
680 break;
682 case QID_BEACON:
683 queue->limit = 8;
684 queue->data_size = 0; /* No DMA required for beacons */
685 queue->desc_size = TXD_DESC_SIZE;
686 queue->winfo_size = txwi_size;
687 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
688 break;
690 case QID_ATIM:
691 /* fallthrough */
692 default:
693 BUG();
694 break;
697 EXPORT_SYMBOL_GPL(rt2800mmio_queue_init);
700 * Initialization functions.
702 bool rt2800mmio_get_entry_state(struct queue_entry *entry)
704 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
705 u32 word;
707 if (entry->queue->qid == QID_RX) {
708 word = rt2x00_desc_read(entry_priv->desc, 1);
710 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
711 } else {
712 word = rt2x00_desc_read(entry_priv->desc, 1);
714 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
717 EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state);
719 void rt2800mmio_clear_entry(struct queue_entry *entry)
721 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
722 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
723 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
724 u32 word;
726 if (entry->queue->qid == QID_RX) {
727 word = rt2x00_desc_read(entry_priv->desc, 0);
728 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
729 rt2x00_desc_write(entry_priv->desc, 0, word);
731 word = rt2x00_desc_read(entry_priv->desc, 1);
732 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
733 rt2x00_desc_write(entry_priv->desc, 1, word);
736 * Set RX IDX in register to inform hardware that we have
737 * handled this entry and it is available for reuse again.
739 rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
740 entry->entry_idx);
741 } else {
742 word = rt2x00_desc_read(entry_priv->desc, 1);
743 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
744 rt2x00_desc_write(entry_priv->desc, 1, word);
747 EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry);
749 int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev)
751 struct queue_entry_priv_mmio *entry_priv;
754 * Initialize registers.
756 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
757 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
758 entry_priv->desc_dma);
759 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
760 rt2x00dev->tx[0].limit);
761 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
762 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
764 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
765 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
766 entry_priv->desc_dma);
767 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
768 rt2x00dev->tx[1].limit);
769 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
770 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
772 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
773 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
774 entry_priv->desc_dma);
775 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
776 rt2x00dev->tx[2].limit);
777 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
778 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
780 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
781 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
782 entry_priv->desc_dma);
783 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
784 rt2x00dev->tx[3].limit);
785 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
786 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
788 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
789 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
790 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
791 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
793 rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
794 rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
795 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
796 rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
798 entry_priv = rt2x00dev->rx->entries[0].priv_data;
799 rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
800 entry_priv->desc_dma);
801 rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
802 rt2x00dev->rx[0].limit);
803 rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
804 rt2x00dev->rx[0].limit - 1);
805 rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
807 rt2800_disable_wpdma(rt2x00dev);
809 rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
811 return 0;
813 EXPORT_SYMBOL_GPL(rt2800mmio_init_queues);
815 int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev)
817 u32 reg;
820 * Reset DMA indexes
822 reg = rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX);
823 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
824 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
825 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
826 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
827 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
828 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
829 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
830 rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
832 rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
833 rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
835 if (rt2x00_is_pcie(rt2x00dev) &&
836 (rt2x00_rt(rt2x00dev, RT3090) ||
837 rt2x00_rt(rt2x00dev, RT3390) ||
838 rt2x00_rt(rt2x00dev, RT3572) ||
839 rt2x00_rt(rt2x00dev, RT3593) ||
840 rt2x00_rt(rt2x00dev, RT5390) ||
841 rt2x00_rt(rt2x00dev, RT5392) ||
842 rt2x00_rt(rt2x00dev, RT5592))) {
843 reg = rt2x00mmio_register_read(rt2x00dev, AUX_CTRL);
844 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
845 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
846 rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
849 rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
851 reg = 0;
852 rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
853 rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
854 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
856 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
858 return 0;
860 EXPORT_SYMBOL_GPL(rt2800mmio_init_registers);
863 * Device state switch handlers.
865 int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev)
867 /* Wait for DMA, ignore error until we initialize queues. */
868 rt2800_wait_wpdma_ready(rt2x00dev);
870 if (unlikely(rt2800mmio_init_queues(rt2x00dev)))
871 return -EIO;
873 return rt2800_enable_radio(rt2x00dev);
875 EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio);
877 MODULE_AUTHOR(DRV_PROJECT);
878 MODULE_VERSION(DRV_VERSION);
879 MODULE_DESCRIPTION("rt2800 MMIO library");
880 MODULE_LICENSE("GPL");