xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / net / wireless / ralink / rt2x00 / rt61pci.c
blob234310200759328ab674a2bc4e45ed20353bdc9d
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
20 Module: rt61pci
21 Abstract: rt61pci device specific routines.
22 Supported chipsets: RT2561, RT2561s, RT2661.
25 #include <linux/crc-itu-t.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/pci.h>
32 #include <linux/eeprom_93cx6.h>
34 #include "rt2x00.h"
35 #include "rt2x00mmio.h"
36 #include "rt2x00pci.h"
37 #include "rt61pci.h"
40 * Allow hardware encryption to be disabled.
42 static bool modparam_nohwcrypt = false;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
47 * Register access.
48 * BBP and RF register require indirect register access,
49 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
50 * These indirect registers work with busy bits,
51 * and we will try maximal REGISTER_BUSY_COUNT times to access
52 * the register while taking a REGISTER_BUSY_DELAY us delay
53 * between each attempt. When the busy bit is still set at that time,
54 * the access attempt is considered to have failed,
55 * and we will print an error.
57 #define WAIT_FOR_BBP(__dev, __reg) \
58 rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
59 #define WAIT_FOR_RF(__dev, __reg) \
60 rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
61 #define WAIT_FOR_MCU(__dev, __reg) \
62 rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
63 H2M_MAILBOX_CSR_OWNER, (__reg))
65 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
66 const unsigned int word, const u8 value)
68 u32 reg;
70 mutex_lock(&rt2x00dev->csr_mutex);
73 * Wait until the BBP becomes available, afterwards we
74 * can safely write the new data into the register.
76 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
77 reg = 0;
78 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
79 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
80 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
81 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
83 rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
86 mutex_unlock(&rt2x00dev->csr_mutex);
89 static u8 rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
90 const unsigned int word)
92 u32 reg;
93 u8 value;
95 mutex_lock(&rt2x00dev->csr_mutex);
98 * Wait until the BBP becomes available, afterwards we
99 * can safely write the read request into the register.
100 * After the data has been written, we wait until hardware
101 * returns the correct value, if at any time the register
102 * doesn't become available in time, reg will be 0xffffffff
103 * which means we return 0xff to the caller.
105 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
106 reg = 0;
107 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
108 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
109 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
111 rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
113 WAIT_FOR_BBP(rt2x00dev, &reg);
116 value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
118 mutex_unlock(&rt2x00dev->csr_mutex);
120 return value;
123 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
124 const unsigned int word, const u32 value)
126 u32 reg;
128 mutex_lock(&rt2x00dev->csr_mutex);
131 * Wait until the RF becomes available, afterwards we
132 * can safely write the new data into the register.
134 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
135 reg = 0;
136 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
137 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
138 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
139 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
141 rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg);
142 rt2x00_rf_write(rt2x00dev, word, value);
145 mutex_unlock(&rt2x00dev->csr_mutex);
148 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
149 const u8 command, const u8 token,
150 const u8 arg0, const u8 arg1)
152 u32 reg;
154 mutex_lock(&rt2x00dev->csr_mutex);
157 * Wait until the MCU becomes available, afterwards we
158 * can safely write the new data into the register.
160 if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
161 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
162 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
163 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
164 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
165 rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
167 reg = rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR);
168 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
169 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
170 rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg);
173 mutex_unlock(&rt2x00dev->csr_mutex);
177 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
179 struct rt2x00_dev *rt2x00dev = eeprom->data;
180 u32 reg;
182 reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR);
184 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
185 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
186 eeprom->reg_data_clock =
187 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
188 eeprom->reg_chip_select =
189 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
192 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
194 struct rt2x00_dev *rt2x00dev = eeprom->data;
195 u32 reg = 0;
197 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
198 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
199 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
200 !!eeprom->reg_data_clock);
201 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
202 !!eeprom->reg_chip_select);
204 rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
207 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
208 static const struct rt2x00debug rt61pci_rt2x00debug = {
209 .owner = THIS_MODULE,
210 .csr = {
211 .read = rt2x00mmio_register_read,
212 .write = rt2x00mmio_register_write,
213 .flags = RT2X00DEBUGFS_OFFSET,
214 .word_base = CSR_REG_BASE,
215 .word_size = sizeof(u32),
216 .word_count = CSR_REG_SIZE / sizeof(u32),
218 .eeprom = {
219 .read = rt2x00_eeprom_read,
220 .write = rt2x00_eeprom_write,
221 .word_base = EEPROM_BASE,
222 .word_size = sizeof(u16),
223 .word_count = EEPROM_SIZE / sizeof(u16),
225 .bbp = {
226 .read = rt61pci_bbp_read,
227 .write = rt61pci_bbp_write,
228 .word_base = BBP_BASE,
229 .word_size = sizeof(u8),
230 .word_count = BBP_SIZE / sizeof(u8),
232 .rf = {
233 .read = rt2x00_rf_read,
234 .write = rt61pci_rf_write,
235 .word_base = RF_BASE,
236 .word_size = sizeof(u32),
237 .word_count = RF_SIZE / sizeof(u32),
240 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
242 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
244 u32 reg;
246 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
247 return rt2x00_get_field32(reg, MAC_CSR13_VAL5);
250 #ifdef CONFIG_RT2X00_LIB_LEDS
251 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
252 enum led_brightness brightness)
254 struct rt2x00_led *led =
255 container_of(led_cdev, struct rt2x00_led, led_dev);
256 unsigned int enabled = brightness != LED_OFF;
257 unsigned int a_mode =
258 (enabled && led->rt2x00dev->curr_band == NL80211_BAND_5GHZ);
259 unsigned int bg_mode =
260 (enabled && led->rt2x00dev->curr_band == NL80211_BAND_2GHZ);
262 if (led->type == LED_TYPE_RADIO) {
263 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
264 MCU_LEDCS_RADIO_STATUS, enabled);
266 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
267 (led->rt2x00dev->led_mcu_reg & 0xff),
268 ((led->rt2x00dev->led_mcu_reg >> 8)));
269 } else if (led->type == LED_TYPE_ASSOC) {
270 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
271 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
272 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
273 MCU_LEDCS_LINK_A_STATUS, a_mode);
275 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
276 (led->rt2x00dev->led_mcu_reg & 0xff),
277 ((led->rt2x00dev->led_mcu_reg >> 8)));
278 } else if (led->type == LED_TYPE_QUALITY) {
280 * The brightness is divided into 6 levels (0 - 5),
281 * this means we need to convert the brightness
282 * argument into the matching level within that range.
284 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
285 brightness / (LED_FULL / 6), 0);
289 static int rt61pci_blink_set(struct led_classdev *led_cdev,
290 unsigned long *delay_on,
291 unsigned long *delay_off)
293 struct rt2x00_led *led =
294 container_of(led_cdev, struct rt2x00_led, led_dev);
295 u32 reg;
297 reg = rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14);
298 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
299 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
300 rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg);
302 return 0;
305 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
306 struct rt2x00_led *led,
307 enum led_type type)
309 led->rt2x00dev = rt2x00dev;
310 led->type = type;
311 led->led_dev.brightness_set = rt61pci_brightness_set;
312 led->led_dev.blink_set = rt61pci_blink_set;
313 led->flags = LED_INITIALIZED;
315 #endif /* CONFIG_RT2X00_LIB_LEDS */
318 * Configuration handlers.
320 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
321 struct rt2x00lib_crypto *crypto,
322 struct ieee80211_key_conf *key)
324 struct hw_key_entry key_entry;
325 struct rt2x00_field32 field;
326 u32 mask;
327 u32 reg;
329 if (crypto->cmd == SET_KEY) {
331 * rt2x00lib can't determine the correct free
332 * key_idx for shared keys. We have 1 register
333 * with key valid bits. The goal is simple, read
334 * the register, if that is full we have no slots
335 * left.
336 * Note that each BSS is allowed to have up to 4
337 * shared keys, so put a mask over the allowed
338 * entries.
340 mask = (0xf << crypto->bssidx);
342 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR0);
343 reg &= mask;
345 if (reg && reg == mask)
346 return -ENOSPC;
348 key->hw_key_idx += reg ? ffz(reg) : 0;
351 * Upload key to hardware
353 memcpy(key_entry.key, crypto->key,
354 sizeof(key_entry.key));
355 memcpy(key_entry.tx_mic, crypto->tx_mic,
356 sizeof(key_entry.tx_mic));
357 memcpy(key_entry.rx_mic, crypto->rx_mic,
358 sizeof(key_entry.rx_mic));
360 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
361 rt2x00mmio_register_multiwrite(rt2x00dev, reg,
362 &key_entry, sizeof(key_entry));
365 * The cipher types are stored over 2 registers.
366 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
367 * bssidx 1 and 2 keys are stored in SEC_CSR5.
368 * Using the correct defines correctly will cause overhead,
369 * so just calculate the correct offset.
371 if (key->hw_key_idx < 8) {
372 field.bit_offset = (3 * key->hw_key_idx);
373 field.bit_mask = 0x7 << field.bit_offset;
375 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR1);
376 rt2x00_set_field32(&reg, field, crypto->cipher);
377 rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, reg);
378 } else {
379 field.bit_offset = (3 * (key->hw_key_idx - 8));
380 field.bit_mask = 0x7 << field.bit_offset;
382 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR5);
383 rt2x00_set_field32(&reg, field, crypto->cipher);
384 rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, reg);
388 * The driver does not support the IV/EIV generation
389 * in hardware. However it doesn't support the IV/EIV
390 * inside the ieee80211 frame either, but requires it
391 * to be provided separately for the descriptor.
392 * rt2x00lib will cut the IV/EIV data out of all frames
393 * given to us by mac80211, but we must tell mac80211
394 * to generate the IV/EIV data.
396 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
400 * SEC_CSR0 contains only single-bit fields to indicate
401 * a particular key is valid. Because using the FIELD32()
402 * defines directly will cause a lot of overhead, we use
403 * a calculation to determine the correct bit directly.
405 mask = 1 << key->hw_key_idx;
407 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR0);
408 if (crypto->cmd == SET_KEY)
409 reg |= mask;
410 else if (crypto->cmd == DISABLE_KEY)
411 reg &= ~mask;
412 rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, reg);
414 return 0;
417 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
418 struct rt2x00lib_crypto *crypto,
419 struct ieee80211_key_conf *key)
421 struct hw_pairwise_ta_entry addr_entry;
422 struct hw_key_entry key_entry;
423 u32 mask;
424 u32 reg;
426 if (crypto->cmd == SET_KEY) {
428 * rt2x00lib can't determine the correct free
429 * key_idx for pairwise keys. We have 2 registers
430 * with key valid bits. The goal is simple: read
431 * the first register. If that is full, move to
432 * the next register.
433 * When both registers are full, we drop the key.
434 * Otherwise, we use the first invalid entry.
436 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2);
437 if (reg && reg == ~0) {
438 key->hw_key_idx = 32;
439 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3);
440 if (reg && reg == ~0)
441 return -ENOSPC;
444 key->hw_key_idx += reg ? ffz(reg) : 0;
447 * Upload key to hardware
449 memcpy(key_entry.key, crypto->key,
450 sizeof(key_entry.key));
451 memcpy(key_entry.tx_mic, crypto->tx_mic,
452 sizeof(key_entry.tx_mic));
453 memcpy(key_entry.rx_mic, crypto->rx_mic,
454 sizeof(key_entry.rx_mic));
456 memset(&addr_entry, 0, sizeof(addr_entry));
457 memcpy(&addr_entry, crypto->address, ETH_ALEN);
458 addr_entry.cipher = crypto->cipher;
460 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
461 rt2x00mmio_register_multiwrite(rt2x00dev, reg,
462 &key_entry, sizeof(key_entry));
464 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
465 rt2x00mmio_register_multiwrite(rt2x00dev, reg,
466 &addr_entry, sizeof(addr_entry));
469 * Enable pairwise lookup table for given BSS idx.
470 * Without this, received frames will not be decrypted
471 * by the hardware.
473 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR4);
474 reg |= (1 << crypto->bssidx);
475 rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg);
478 * The driver does not support the IV/EIV generation
479 * in hardware. However it doesn't support the IV/EIV
480 * inside the ieee80211 frame either, but requires it
481 * to be provided separately for the descriptor.
482 * rt2x00lib will cut the IV/EIV data out of all frames
483 * given to us by mac80211, but we must tell mac80211
484 * to generate the IV/EIV data.
486 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
490 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
491 * a particular key is valid. Because using the FIELD32()
492 * defines directly will cause a lot of overhead, we use
493 * a calculation to determine the correct bit directly.
495 if (key->hw_key_idx < 32) {
496 mask = 1 << key->hw_key_idx;
498 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2);
499 if (crypto->cmd == SET_KEY)
500 reg |= mask;
501 else if (crypto->cmd == DISABLE_KEY)
502 reg &= ~mask;
503 rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg);
504 } else {
505 mask = 1 << (key->hw_key_idx - 32);
507 reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3);
508 if (crypto->cmd == SET_KEY)
509 reg |= mask;
510 else if (crypto->cmd == DISABLE_KEY)
511 reg &= ~mask;
512 rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg);
515 return 0;
518 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
519 const unsigned int filter_flags)
521 u32 reg;
524 * Start configuration steps.
525 * Note that the version error will always be dropped
526 * and broadcast frames will always be accepted since
527 * there is no filter for it at this time.
529 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
530 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
531 !(filter_flags & FIF_FCSFAIL));
532 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
533 !(filter_flags & FIF_PLCPFAIL));
534 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
535 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
536 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
537 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
538 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
539 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
540 !rt2x00dev->intf_ap_count);
541 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
542 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
543 !(filter_flags & FIF_ALLMULTI));
544 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
545 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
546 !(filter_flags & FIF_CONTROL));
547 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
550 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
551 struct rt2x00_intf *intf,
552 struct rt2x00intf_conf *conf,
553 const unsigned int flags)
555 u32 reg;
557 if (flags & CONFIG_UPDATE_TYPE) {
559 * Enable synchronisation.
561 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
562 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
563 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
566 if (flags & CONFIG_UPDATE_MAC) {
567 reg = le32_to_cpu(conf->mac[1]);
568 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
569 conf->mac[1] = cpu_to_le32(reg);
571 rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2,
572 conf->mac, sizeof(conf->mac));
575 if (flags & CONFIG_UPDATE_BSSID) {
576 reg = le32_to_cpu(conf->bssid[1]);
577 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
578 conf->bssid[1] = cpu_to_le32(reg);
580 rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4,
581 conf->bssid,
582 sizeof(conf->bssid));
586 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
587 struct rt2x00lib_erp *erp,
588 u32 changed)
590 u32 reg;
592 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
593 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
594 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
595 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
597 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
598 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4);
599 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
600 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
601 !!erp->short_preamble);
602 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
605 if (changed & BSS_CHANGED_BASIC_RATES)
606 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5,
607 erp->basic_rates);
609 if (changed & BSS_CHANGED_BEACON_INT) {
610 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
611 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
612 erp->beacon_int * 16);
613 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
616 if (changed & BSS_CHANGED_ERP_SLOT) {
617 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9);
618 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
619 rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
621 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR8);
622 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
623 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
624 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
625 rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg);
629 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
630 struct antenna_setup *ant)
632 u8 r3;
633 u8 r4;
634 u8 r77;
636 r3 = rt61pci_bbp_read(rt2x00dev, 3);
637 r4 = rt61pci_bbp_read(rt2x00dev, 4);
638 r77 = rt61pci_bbp_read(rt2x00dev, 77);
640 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
643 * Configure the RX antenna.
645 switch (ant->rx) {
646 case ANTENNA_HW_DIVERSITY:
647 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
648 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
649 (rt2x00dev->curr_band != NL80211_BAND_5GHZ));
650 break;
651 case ANTENNA_A:
652 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
653 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
654 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
655 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
656 else
657 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
658 break;
659 case ANTENNA_B:
660 default:
661 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
662 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
663 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
664 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
665 else
666 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
667 break;
670 rt61pci_bbp_write(rt2x00dev, 77, r77);
671 rt61pci_bbp_write(rt2x00dev, 3, r3);
672 rt61pci_bbp_write(rt2x00dev, 4, r4);
675 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
676 struct antenna_setup *ant)
678 u8 r3;
679 u8 r4;
680 u8 r77;
682 r3 = rt61pci_bbp_read(rt2x00dev, 3);
683 r4 = rt61pci_bbp_read(rt2x00dev, 4);
684 r77 = rt61pci_bbp_read(rt2x00dev, 77);
686 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
687 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
688 !rt2x00_has_cap_frame_type(rt2x00dev));
691 * Configure the RX antenna.
693 switch (ant->rx) {
694 case ANTENNA_HW_DIVERSITY:
695 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
696 break;
697 case ANTENNA_A:
698 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
699 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
700 break;
701 case ANTENNA_B:
702 default:
703 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
704 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
705 break;
708 rt61pci_bbp_write(rt2x00dev, 77, r77);
709 rt61pci_bbp_write(rt2x00dev, 3, r3);
710 rt61pci_bbp_write(rt2x00dev, 4, r4);
713 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
714 const int p1, const int p2)
716 u32 reg;
718 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
720 rt2x00_set_field32(&reg, MAC_CSR13_DIR4, 0);
721 rt2x00_set_field32(&reg, MAC_CSR13_VAL4, p1);
723 rt2x00_set_field32(&reg, MAC_CSR13_DIR3, 0);
724 rt2x00_set_field32(&reg, MAC_CSR13_VAL3, !p2);
726 rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
729 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
730 struct antenna_setup *ant)
732 u8 r3;
733 u8 r4;
734 u8 r77;
736 r3 = rt61pci_bbp_read(rt2x00dev, 3);
737 r4 = rt61pci_bbp_read(rt2x00dev, 4);
738 r77 = rt61pci_bbp_read(rt2x00dev, 77);
741 * Configure the RX antenna.
743 switch (ant->rx) {
744 case ANTENNA_A:
745 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
746 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
747 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
748 break;
749 case ANTENNA_HW_DIVERSITY:
751 * FIXME: Antenna selection for the rf 2529 is very confusing
752 * in the legacy driver. Just default to antenna B until the
753 * legacy code can be properly translated into rt2x00 code.
755 case ANTENNA_B:
756 default:
757 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
758 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
759 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
760 break;
763 rt61pci_bbp_write(rt2x00dev, 77, r77);
764 rt61pci_bbp_write(rt2x00dev, 3, r3);
765 rt61pci_bbp_write(rt2x00dev, 4, r4);
768 struct antenna_sel {
769 u8 word;
771 * value[0] -> non-LNA
772 * value[1] -> LNA
774 u8 value[2];
777 static const struct antenna_sel antenna_sel_a[] = {
778 { 96, { 0x58, 0x78 } },
779 { 104, { 0x38, 0x48 } },
780 { 75, { 0xfe, 0x80 } },
781 { 86, { 0xfe, 0x80 } },
782 { 88, { 0xfe, 0x80 } },
783 { 35, { 0x60, 0x60 } },
784 { 97, { 0x58, 0x58 } },
785 { 98, { 0x58, 0x58 } },
788 static const struct antenna_sel antenna_sel_bg[] = {
789 { 96, { 0x48, 0x68 } },
790 { 104, { 0x2c, 0x3c } },
791 { 75, { 0xfe, 0x80 } },
792 { 86, { 0xfe, 0x80 } },
793 { 88, { 0xfe, 0x80 } },
794 { 35, { 0x50, 0x50 } },
795 { 97, { 0x48, 0x48 } },
796 { 98, { 0x48, 0x48 } },
799 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
800 struct antenna_setup *ant)
802 const struct antenna_sel *sel;
803 unsigned int lna;
804 unsigned int i;
805 u32 reg;
808 * We should never come here because rt2x00lib is supposed
809 * to catch this and send us the correct antenna explicitely.
811 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
812 ant->tx == ANTENNA_SW_DIVERSITY);
814 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
815 sel = antenna_sel_a;
816 lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
817 } else {
818 sel = antenna_sel_bg;
819 lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
822 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
823 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
825 reg = rt2x00mmio_register_read(rt2x00dev, PHY_CSR0);
827 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
828 rt2x00dev->curr_band == NL80211_BAND_2GHZ);
829 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
830 rt2x00dev->curr_band == NL80211_BAND_5GHZ);
832 rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg);
834 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
835 rt61pci_config_antenna_5x(rt2x00dev, ant);
836 else if (rt2x00_rf(rt2x00dev, RF2527))
837 rt61pci_config_antenna_2x(rt2x00dev, ant);
838 else if (rt2x00_rf(rt2x00dev, RF2529)) {
839 if (rt2x00_has_cap_double_antenna(rt2x00dev))
840 rt61pci_config_antenna_2x(rt2x00dev, ant);
841 else
842 rt61pci_config_antenna_2529(rt2x00dev, ant);
846 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
847 struct rt2x00lib_conf *libconf)
849 u16 eeprom;
850 short lna_gain = 0;
852 if (libconf->conf->chandef.chan->band == NL80211_BAND_2GHZ) {
853 if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
854 lna_gain += 14;
856 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
857 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
858 } else {
859 if (rt2x00_has_cap_external_lna_a(rt2x00dev))
860 lna_gain += 14;
862 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
863 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
866 rt2x00dev->lna_gain = lna_gain;
869 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
870 struct rf_channel *rf, const int txpower)
872 u8 r3;
873 u8 r94;
874 u8 smart;
876 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
877 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
879 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
881 r3 = rt61pci_bbp_read(rt2x00dev, 3);
882 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
883 rt61pci_bbp_write(rt2x00dev, 3, r3);
885 r94 = 6;
886 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
887 r94 += txpower - MAX_TXPOWER;
888 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
889 r94 += txpower;
890 rt61pci_bbp_write(rt2x00dev, 94, r94);
892 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
893 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
894 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
895 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
897 udelay(200);
899 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
900 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
901 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
902 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
904 udelay(200);
906 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
907 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
908 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
909 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
911 msleep(1);
914 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
915 const int txpower)
917 struct rf_channel rf;
919 rf.rf1 = rt2x00_rf_read(rt2x00dev, 1);
920 rf.rf2 = rt2x00_rf_read(rt2x00dev, 2);
921 rf.rf3 = rt2x00_rf_read(rt2x00dev, 3);
922 rf.rf4 = rt2x00_rf_read(rt2x00dev, 4);
924 rt61pci_config_channel(rt2x00dev, &rf, txpower);
927 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
928 struct rt2x00lib_conf *libconf)
930 u32 reg;
932 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4);
933 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
934 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
935 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
936 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
937 libconf->conf->long_frame_max_tx_count);
938 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
939 libconf->conf->short_frame_max_tx_count);
940 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
943 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
944 struct rt2x00lib_conf *libconf)
946 enum dev_state state =
947 (libconf->conf->flags & IEEE80211_CONF_PS) ?
948 STATE_SLEEP : STATE_AWAKE;
949 u32 reg;
951 if (state == STATE_SLEEP) {
952 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11);
953 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
954 rt2x00dev->beacon_int - 10);
955 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
956 libconf->conf->listen_interval - 1);
957 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
959 /* We must first disable autowake before it can be enabled */
960 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
961 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
963 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
964 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
966 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
967 0x00000005);
968 rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
969 rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
971 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
972 } else {
973 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11);
974 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
975 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
976 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
977 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
978 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
980 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
981 0x00000007);
982 rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
983 rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
985 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
989 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
990 struct rt2x00lib_conf *libconf,
991 const unsigned int flags)
993 /* Always recalculate LNA gain before changing configuration */
994 rt61pci_config_lna_gain(rt2x00dev, libconf);
996 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
997 rt61pci_config_channel(rt2x00dev, &libconf->rf,
998 libconf->conf->power_level);
999 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
1000 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
1001 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1002 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1003 rt61pci_config_retry_limit(rt2x00dev, libconf);
1004 if (flags & IEEE80211_CONF_CHANGE_PS)
1005 rt61pci_config_ps(rt2x00dev, libconf);
1009 * Link tuning
1011 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1012 struct link_qual *qual)
1014 u32 reg;
1017 * Update FCS error count from register.
1019 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0);
1020 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1023 * Update False CCA count from register.
1025 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1);
1026 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1029 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1030 struct link_qual *qual, u8 vgc_level)
1032 if (qual->vgc_level != vgc_level) {
1033 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1034 qual->vgc_level = vgc_level;
1035 qual->vgc_level_reg = vgc_level;
1039 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1040 struct link_qual *qual)
1042 rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1045 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1046 struct link_qual *qual, const u32 count)
1048 u8 up_bound;
1049 u8 low_bound;
1052 * Determine r17 bounds.
1054 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
1055 low_bound = 0x28;
1056 up_bound = 0x48;
1057 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
1058 low_bound += 0x10;
1059 up_bound += 0x10;
1061 } else {
1062 low_bound = 0x20;
1063 up_bound = 0x40;
1064 if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
1065 low_bound += 0x10;
1066 up_bound += 0x10;
1071 * If we are not associated, we should go straight to the
1072 * dynamic CCA tuning.
1074 if (!rt2x00dev->intf_associated)
1075 goto dynamic_cca_tune;
1078 * Special big-R17 for very short distance
1080 if (qual->rssi >= -35) {
1081 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1082 return;
1086 * Special big-R17 for short distance
1088 if (qual->rssi >= -58) {
1089 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1090 return;
1094 * Special big-R17 for middle-short distance
1096 if (qual->rssi >= -66) {
1097 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1098 return;
1102 * Special mid-R17 for middle distance
1104 if (qual->rssi >= -74) {
1105 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1106 return;
1110 * Special case: Change up_bound based on the rssi.
1111 * Lower up_bound when rssi is weaker then -74 dBm.
1113 up_bound -= 2 * (-74 - qual->rssi);
1114 if (low_bound > up_bound)
1115 up_bound = low_bound;
1117 if (qual->vgc_level > up_bound) {
1118 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1119 return;
1122 dynamic_cca_tune:
1125 * r17 does not yet exceed upper limit, continue and base
1126 * the r17 tuning on the false CCA count.
1128 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1129 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1130 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1131 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1135 * Queue handlers.
1137 static void rt61pci_start_queue(struct data_queue *queue)
1139 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1140 u32 reg;
1142 switch (queue->qid) {
1143 case QID_RX:
1144 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
1145 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1146 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1147 break;
1148 case QID_BEACON:
1149 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1150 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1151 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1152 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1153 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1154 break;
1155 default:
1156 break;
1160 static void rt61pci_kick_queue(struct data_queue *queue)
1162 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1163 u32 reg;
1165 switch (queue->qid) {
1166 case QID_AC_VO:
1167 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1168 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1169 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1170 break;
1171 case QID_AC_VI:
1172 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1173 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1174 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1175 break;
1176 case QID_AC_BE:
1177 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1178 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1179 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1180 break;
1181 case QID_AC_BK:
1182 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1183 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1184 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1185 break;
1186 default:
1187 break;
1191 static void rt61pci_stop_queue(struct data_queue *queue)
1193 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1194 u32 reg;
1196 switch (queue->qid) {
1197 case QID_AC_VO:
1198 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1199 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1200 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1201 break;
1202 case QID_AC_VI:
1203 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1204 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1205 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1206 break;
1207 case QID_AC_BE:
1208 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1209 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1210 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1211 break;
1212 case QID_AC_BK:
1213 reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR);
1214 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1215 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1216 break;
1217 case QID_RX:
1218 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
1219 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1220 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1221 break;
1222 case QID_BEACON:
1223 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1224 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1225 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1226 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1227 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1230 * Wait for possibly running tbtt tasklets.
1232 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1233 break;
1234 default:
1235 break;
1240 * Firmware functions
1242 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1244 u16 chip;
1245 char *fw_name;
1247 pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1248 switch (chip) {
1249 case RT2561_PCI_ID:
1250 fw_name = FIRMWARE_RT2561;
1251 break;
1252 case RT2561s_PCI_ID:
1253 fw_name = FIRMWARE_RT2561s;
1254 break;
1255 case RT2661_PCI_ID:
1256 fw_name = FIRMWARE_RT2661;
1257 break;
1258 default:
1259 fw_name = NULL;
1260 break;
1263 return fw_name;
1266 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1267 const u8 *data, const size_t len)
1269 u16 fw_crc;
1270 u16 crc;
1273 * Only support 8kb firmware files.
1275 if (len != 8192)
1276 return FW_BAD_LENGTH;
1279 * The last 2 bytes in the firmware array are the crc checksum itself.
1280 * This means that we should never pass those 2 bytes to the crc
1281 * algorithm.
1283 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1286 * Use the crc itu-t algorithm.
1288 crc = crc_itu_t(0, data, len - 2);
1289 crc = crc_itu_t_byte(crc, 0);
1290 crc = crc_itu_t_byte(crc, 0);
1292 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1295 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1296 const u8 *data, const size_t len)
1298 int i;
1299 u32 reg;
1302 * Wait for stable hardware.
1304 for (i = 0; i < 100; i++) {
1305 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0);
1306 if (reg)
1307 break;
1308 msleep(1);
1311 if (!reg) {
1312 rt2x00_err(rt2x00dev, "Unstable hardware\n");
1313 return -EBUSY;
1317 * Prepare MCU and mailbox for firmware loading.
1319 reg = 0;
1320 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1321 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1322 rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1323 rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1324 rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1327 * Write firmware to device.
1329 reg = 0;
1330 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1331 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1332 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1334 rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1335 data, len);
1337 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1338 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1340 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1341 rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1343 for (i = 0; i < 100; i++) {
1344 reg = rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR);
1345 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1346 break;
1347 msleep(1);
1350 if (i == 100) {
1351 rt2x00_err(rt2x00dev, "MCU Control register not ready\n");
1352 return -EBUSY;
1356 * Hardware needs another millisecond before it is ready.
1358 msleep(1);
1361 * Reset MAC and BBP registers.
1363 reg = 0;
1364 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1365 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1366 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1368 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1369 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1370 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1371 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1373 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1374 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1375 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1377 return 0;
1381 * Initialization functions.
1383 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1385 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1386 u32 word;
1388 if (entry->queue->qid == QID_RX) {
1389 word = rt2x00_desc_read(entry_priv->desc, 0);
1391 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1392 } else {
1393 word = rt2x00_desc_read(entry_priv->desc, 0);
1395 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1396 rt2x00_get_field32(word, TXD_W0_VALID));
1400 static void rt61pci_clear_entry(struct queue_entry *entry)
1402 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1403 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1404 u32 word;
1406 if (entry->queue->qid == QID_RX) {
1407 word = rt2x00_desc_read(entry_priv->desc, 5);
1408 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1409 skbdesc->skb_dma);
1410 rt2x00_desc_write(entry_priv->desc, 5, word);
1412 word = rt2x00_desc_read(entry_priv->desc, 0);
1413 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1414 rt2x00_desc_write(entry_priv->desc, 0, word);
1415 } else {
1416 word = rt2x00_desc_read(entry_priv->desc, 0);
1417 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1418 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1419 rt2x00_desc_write(entry_priv->desc, 0, word);
1423 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1425 struct queue_entry_priv_mmio *entry_priv;
1426 u32 reg;
1429 * Initialize registers.
1431 reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0);
1432 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1433 rt2x00dev->tx[0].limit);
1434 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1435 rt2x00dev->tx[1].limit);
1436 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1437 rt2x00dev->tx[2].limit);
1438 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1439 rt2x00dev->tx[3].limit);
1440 rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg);
1442 reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1);
1443 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1444 rt2x00dev->tx[0].desc_size / 4);
1445 rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg);
1447 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1448 reg = rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR);
1449 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1450 entry_priv->desc_dma);
1451 rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1453 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1454 reg = rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR);
1455 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1456 entry_priv->desc_dma);
1457 rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1459 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1460 reg = rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR);
1461 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1462 entry_priv->desc_dma);
1463 rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1465 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1466 reg = rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR);
1467 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1468 entry_priv->desc_dma);
1469 rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1471 reg = rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR);
1472 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1473 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1474 rt2x00dev->rx->desc_size / 4);
1475 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1476 rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg);
1478 entry_priv = rt2x00dev->rx->entries[0].priv_data;
1479 reg = rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR);
1480 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1481 entry_priv->desc_dma);
1482 rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg);
1484 reg = rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR);
1485 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1486 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1487 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1488 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1489 rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1491 reg = rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR);
1492 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1493 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1494 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1495 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1496 rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1498 reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR);
1499 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1500 rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1502 return 0;
1505 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1507 u32 reg;
1509 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0);
1510 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1511 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1512 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1513 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1515 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1);
1516 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1517 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1518 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1519 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1520 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1521 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1522 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1523 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1524 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg);
1527 * CCK TXD BBP registers
1529 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2);
1530 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1531 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1532 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1533 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1534 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1535 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1536 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1537 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1538 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg);
1541 * OFDM TXD BBP registers
1543 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3);
1544 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1545 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1546 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1547 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1548 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1549 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1550 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg);
1552 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7);
1553 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1554 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1555 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1556 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1557 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg);
1559 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8);
1560 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1561 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1562 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1563 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1564 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg);
1566 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1567 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1568 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1569 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1570 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1571 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1572 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1573 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1575 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1577 rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1579 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9);
1580 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1581 rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
1583 rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1585 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1586 return -EBUSY;
1588 rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1591 * Invalidate all Shared Keys (SEC_CSR0),
1592 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1594 rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1595 rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1596 rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1598 rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1599 rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1600 rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1601 rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1603 rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1605 rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1607 rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1610 * Clear all beacons
1611 * For the Beacon base registers we only need to clear
1612 * the first byte since that byte contains the VALID and OWNER
1613 * bits which (when set to 0) will invalidate the entire beacon.
1615 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1616 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1617 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1618 rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1621 * We must clear the error counters.
1622 * These registers are cleared on read,
1623 * so we may pass a useless variable to store the value.
1625 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0);
1626 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1);
1627 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR2);
1630 * Reset MAC and BBP registers.
1632 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1633 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1634 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1635 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1637 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1638 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1639 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1640 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1642 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1);
1643 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1644 rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1646 return 0;
1649 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1651 unsigned int i;
1652 u8 value;
1654 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1655 value = rt61pci_bbp_read(rt2x00dev, 0);
1656 if ((value != 0xff) && (value != 0x00))
1657 return 0;
1658 udelay(REGISTER_BUSY_DELAY);
1661 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1662 return -EACCES;
1665 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1667 unsigned int i;
1668 u16 eeprom;
1669 u8 reg_id;
1670 u8 value;
1672 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1673 return -EACCES;
1675 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1676 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1677 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1678 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1679 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1680 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1681 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1682 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1683 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1684 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1685 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1686 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1687 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1688 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1689 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1690 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1691 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1692 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1693 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1694 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1695 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1696 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1697 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1698 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1700 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1701 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
1703 if (eeprom != 0xffff && eeprom != 0x0000) {
1704 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1705 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1706 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1710 return 0;
1714 * Device state switch handlers.
1716 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1717 enum dev_state state)
1719 int mask = (state == STATE_RADIO_IRQ_OFF);
1720 u32 reg;
1721 unsigned long flags;
1724 * When interrupts are being enabled, the interrupt registers
1725 * should clear the register to assure a clean state.
1727 if (state == STATE_RADIO_IRQ_ON) {
1728 reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
1729 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1731 reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR);
1732 rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1736 * Only toggle the interrupts bits we are going to use.
1737 * Non-checked interrupt bits are disabled by default.
1739 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1741 reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
1742 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1743 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1744 rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1745 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1746 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1747 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
1749 reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
1750 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1751 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1752 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1753 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1754 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1755 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1756 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1757 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1758 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1759 rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1761 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1763 if (state == STATE_RADIO_IRQ_OFF) {
1765 * Ensure that all tasklets are finished.
1767 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1768 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1769 tasklet_kill(&rt2x00dev->autowake_tasklet);
1770 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1774 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1776 u32 reg;
1779 * Initialize all registers.
1781 if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1782 rt61pci_init_registers(rt2x00dev) ||
1783 rt61pci_init_bbp(rt2x00dev)))
1784 return -EIO;
1787 * Enable RX.
1789 reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR);
1790 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1791 rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1793 return 0;
1796 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1799 * Disable power
1801 rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1804 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1806 u32 reg, reg2;
1807 unsigned int i;
1808 char put_to_sleep;
1810 put_to_sleep = (state != STATE_AWAKE);
1812 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12);
1813 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1814 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1815 rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1818 * Device is not guaranteed to be in the requested state yet.
1819 * We must wait until the register indicates that the
1820 * device has entered the correct state.
1822 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1823 reg2 = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12);
1824 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1825 if (state == !put_to_sleep)
1826 return 0;
1827 rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1828 msleep(10);
1831 return -EBUSY;
1834 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1835 enum dev_state state)
1837 int retval = 0;
1839 switch (state) {
1840 case STATE_RADIO_ON:
1841 retval = rt61pci_enable_radio(rt2x00dev);
1842 break;
1843 case STATE_RADIO_OFF:
1844 rt61pci_disable_radio(rt2x00dev);
1845 break;
1846 case STATE_RADIO_IRQ_ON:
1847 case STATE_RADIO_IRQ_OFF:
1848 rt61pci_toggle_irq(rt2x00dev, state);
1849 break;
1850 case STATE_DEEP_SLEEP:
1851 case STATE_SLEEP:
1852 case STATE_STANDBY:
1853 case STATE_AWAKE:
1854 retval = rt61pci_set_state(rt2x00dev, state);
1855 break;
1856 default:
1857 retval = -ENOTSUPP;
1858 break;
1861 if (unlikely(retval))
1862 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1863 state, retval);
1865 return retval;
1869 * TX descriptor initialization
1871 static void rt61pci_write_tx_desc(struct queue_entry *entry,
1872 struct txentry_desc *txdesc)
1874 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1875 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1876 __le32 *txd = entry_priv->desc;
1877 u32 word;
1880 * Start writing the descriptor words.
1882 word = rt2x00_desc_read(txd, 1);
1883 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1884 rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1885 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1886 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1887 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1888 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1889 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1890 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1891 rt2x00_desc_write(txd, 1, word);
1893 word = rt2x00_desc_read(txd, 2);
1894 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1895 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1896 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1897 txdesc->u.plcp.length_low);
1898 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1899 txdesc->u.plcp.length_high);
1900 rt2x00_desc_write(txd, 2, word);
1902 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1903 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1904 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1907 word = rt2x00_desc_read(txd, 5);
1908 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1909 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, entry->entry_idx);
1910 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1911 TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1912 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1913 rt2x00_desc_write(txd, 5, word);
1915 if (entry->queue->qid != QID_BEACON) {
1916 word = rt2x00_desc_read(txd, 6);
1917 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1918 skbdesc->skb_dma);
1919 rt2x00_desc_write(txd, 6, word);
1921 word = rt2x00_desc_read(txd, 11);
1922 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1923 txdesc->length);
1924 rt2x00_desc_write(txd, 11, word);
1928 * Writing TXD word 0 must the last to prevent a race condition with
1929 * the device, whereby the device may take hold of the TXD before we
1930 * finished updating it.
1932 word = rt2x00_desc_read(txd, 0);
1933 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1934 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1935 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1936 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1937 rt2x00_set_field32(&word, TXD_W0_ACK,
1938 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1939 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1940 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1941 rt2x00_set_field32(&word, TXD_W0_OFDM,
1942 (txdesc->rate_mode == RATE_MODE_OFDM));
1943 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1944 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1945 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1946 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1947 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1948 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1949 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1950 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1951 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1952 rt2x00_set_field32(&word, TXD_W0_BURST,
1953 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1954 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1955 rt2x00_desc_write(txd, 0, word);
1958 * Register descriptor details in skb frame descriptor.
1960 skbdesc->desc = txd;
1961 skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1962 TXD_DESC_SIZE;
1966 * TX data initialization
1968 static void rt61pci_write_beacon(struct queue_entry *entry,
1969 struct txentry_desc *txdesc)
1971 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1972 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1973 unsigned int beacon_base;
1974 unsigned int padding_len;
1975 u32 orig_reg, reg;
1978 * Disable beaconing while we are reloading the beacon data,
1979 * otherwise we might be sending out invalid data.
1981 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
1982 orig_reg = reg;
1983 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1984 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1987 * Write the TX descriptor for the beacon.
1989 rt61pci_write_tx_desc(entry, txdesc);
1992 * Dump beacon to userspace through debugfs.
1994 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1997 * Write entire beacon with descriptor and padding to register.
1999 padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
2000 if (padding_len && skb_pad(entry->skb, padding_len)) {
2001 rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
2002 /* skb freed by skb_pad() on failure */
2003 entry->skb = NULL;
2004 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2005 return;
2008 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
2009 rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base,
2010 entry_priv->desc, TXINFO_SIZE);
2011 rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
2012 entry->skb->data,
2013 entry->skb->len + padding_len);
2016 * Enable beaconing again.
2018 * For Wi-Fi faily generated beacons between participating
2019 * stations. Set TBTT phase adaptive adjustment step to 8us.
2021 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
2023 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2024 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
2027 * Clean up beacon skb.
2029 dev_kfree_skb_any(entry->skb);
2030 entry->skb = NULL;
2033 static void rt61pci_clear_beacon(struct queue_entry *entry)
2035 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2036 u32 orig_reg, reg;
2039 * Disable beaconing while we are reloading the beacon data,
2040 * otherwise we might be sending out invalid data.
2042 orig_reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9);
2043 reg = orig_reg;
2044 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
2045 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
2048 * Clear beacon.
2050 rt2x00mmio_register_write(rt2x00dev,
2051 HW_BEACON_OFFSET(entry->entry_idx), 0);
2054 * Restore global beaconing state.
2056 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2060 * RX control handlers
2062 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
2064 u8 offset = rt2x00dev->lna_gain;
2065 u8 lna;
2067 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
2068 switch (lna) {
2069 case 3:
2070 offset += 90;
2071 break;
2072 case 2:
2073 offset += 74;
2074 break;
2075 case 1:
2076 offset += 64;
2077 break;
2078 default:
2079 return 0;
2082 if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
2083 if (lna == 3 || lna == 2)
2084 offset += 10;
2087 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
2090 static void rt61pci_fill_rxdone(struct queue_entry *entry,
2091 struct rxdone_entry_desc *rxdesc)
2093 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2094 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
2095 u32 word0;
2096 u32 word1;
2098 word0 = rt2x00_desc_read(entry_priv->desc, 0);
2099 word1 = rt2x00_desc_read(entry_priv->desc, 1);
2101 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2102 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2104 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2105 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2107 if (rxdesc->cipher != CIPHER_NONE) {
2108 rxdesc->iv[0] = _rt2x00_desc_read(entry_priv->desc, 2);
2109 rxdesc->iv[1] = _rt2x00_desc_read(entry_priv->desc, 3);
2110 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2112 rxdesc->icv = _rt2x00_desc_read(entry_priv->desc, 4);
2113 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2116 * Hardware has stripped IV/EIV data from 802.11 frame during
2117 * decryption. It has provided the data separately but rt2x00lib
2118 * should decide if it should be reinserted.
2120 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2123 * The hardware has already checked the Michael Mic and has
2124 * stripped it from the frame. Signal this to mac80211.
2126 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2128 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2129 rxdesc->flags |= RX_FLAG_DECRYPTED;
2130 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2131 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2135 * Obtain the status about this packet.
2136 * When frame was received with an OFDM bitrate,
2137 * the signal is the PLCP value. If it was received with
2138 * a CCK bitrate the signal is the rate in 100kbit/s.
2140 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2141 rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2142 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2144 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2145 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2146 else
2147 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2148 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2149 rxdesc->dev_flags |= RXDONE_MY_BSS;
2153 * Interrupt functions.
2155 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2157 struct data_queue *queue;
2158 struct queue_entry *entry;
2159 struct queue_entry *entry_done;
2160 struct queue_entry_priv_mmio *entry_priv;
2161 struct txdone_entry_desc txdesc;
2162 u32 word;
2163 u32 reg;
2164 int type;
2165 int index;
2166 int i;
2169 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2170 * at most X times and also stop processing once the TX_STA_FIFO_VALID
2171 * flag is not set anymore.
2173 * The legacy drivers use X=TX_RING_SIZE but state in a comment
2174 * that the TX_STA_FIFO stack has a size of 16. We stick to our
2175 * tx ring size for now.
2177 for (i = 0; i < rt2x00dev->tx->limit; i++) {
2178 reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR4);
2179 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2180 break;
2183 * Skip this entry when it contains an invalid
2184 * queue identication number.
2186 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2187 queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
2188 if (unlikely(!queue))
2189 continue;
2192 * Skip this entry when it contains an invalid
2193 * index number.
2195 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2196 if (unlikely(index >= queue->limit))
2197 continue;
2199 entry = &queue->entries[index];
2200 entry_priv = entry->priv_data;
2201 word = rt2x00_desc_read(entry_priv->desc, 0);
2203 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2204 !rt2x00_get_field32(word, TXD_W0_VALID))
2205 return;
2207 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2208 while (entry != entry_done) {
2209 /* Catch up.
2210 * Just report any entries we missed as failed.
2212 rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n",
2213 entry_done->entry_idx);
2215 rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2216 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2220 * Obtain the status about this packet.
2222 txdesc.flags = 0;
2223 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2224 case 0: /* Success, maybe with retry */
2225 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2226 break;
2227 case 6: /* Failure, excessive retries */
2228 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2229 /* Don't break, this is a failed frame! */
2230 default: /* Failure */
2231 __set_bit(TXDONE_FAILURE, &txdesc.flags);
2233 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2236 * the frame was retried at least once
2237 * -> hw used fallback rates
2239 if (txdesc.retry)
2240 __set_bit(TXDONE_FALLBACK, &txdesc.flags);
2242 rt2x00lib_txdone(entry, &txdesc);
2246 static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2248 struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };
2250 rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2253 static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
2254 struct rt2x00_field32 irq_field)
2256 u32 reg;
2259 * Enable a single interrupt. The interrupt mask register
2260 * access needs locking.
2262 spin_lock_irq(&rt2x00dev->irqmask_lock);
2264 reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
2265 rt2x00_set_field32(&reg, irq_field, 0);
2266 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2268 spin_unlock_irq(&rt2x00dev->irqmask_lock);
2271 static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
2272 struct rt2x00_field32 irq_field)
2274 u32 reg;
2277 * Enable a single MCU interrupt. The interrupt mask register
2278 * access needs locking.
2280 spin_lock_irq(&rt2x00dev->irqmask_lock);
2282 reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
2283 rt2x00_set_field32(&reg, irq_field, 0);
2284 rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2286 spin_unlock_irq(&rt2x00dev->irqmask_lock);
2289 static void rt61pci_txstatus_tasklet(unsigned long data)
2291 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2292 rt61pci_txdone(rt2x00dev);
2293 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2294 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
2297 static void rt61pci_tbtt_tasklet(unsigned long data)
2299 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2300 rt2x00lib_beacondone(rt2x00dev);
2301 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2302 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
2305 static void rt61pci_rxdone_tasklet(unsigned long data)
2307 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2308 if (rt2x00mmio_rxdone(rt2x00dev))
2309 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2310 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2311 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
2314 static void rt61pci_autowake_tasklet(unsigned long data)
2316 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2317 rt61pci_wakeup(rt2x00dev);
2318 rt2x00mmio_register_write(rt2x00dev,
2319 M2H_CMD_DONE_CSR, 0xffffffff);
2320 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2321 rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
2324 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2326 struct rt2x00_dev *rt2x00dev = dev_instance;
2327 u32 reg_mcu, mask_mcu;
2328 u32 reg, mask;
2331 * Get the interrupt sources & saved to local variable.
2332 * Write register value back to clear pending interrupts.
2334 reg_mcu = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR);
2335 rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2337 reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
2338 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2340 if (!reg && !reg_mcu)
2341 return IRQ_NONE;
2343 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2344 return IRQ_HANDLED;
2347 * Schedule tasklets for interrupt handling.
2349 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2350 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2352 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2353 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
2355 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2356 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
2358 if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2359 tasklet_schedule(&rt2x00dev->autowake_tasklet);
2362 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2363 * for interrupts and interrupt masks we can just use the value of
2364 * INT_SOURCE_CSR to create the interrupt mask.
2366 mask = reg;
2367 mask_mcu = reg_mcu;
2370 * Disable all interrupts for which a tasklet was scheduled right now,
2371 * the tasklet will reenable the appropriate interrupts.
2373 spin_lock(&rt2x00dev->irqmask_lock);
2375 reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
2376 reg |= mask;
2377 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2379 reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR);
2380 reg |= mask_mcu;
2381 rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2383 spin_unlock(&rt2x00dev->irqmask_lock);
2385 return IRQ_HANDLED;
2389 * Device probe functions.
2391 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2393 struct eeprom_93cx6 eeprom;
2394 u32 reg;
2395 u16 word;
2396 u8 *mac;
2397 s8 value;
2399 reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR);
2401 eeprom.data = rt2x00dev;
2402 eeprom.register_read = rt61pci_eepromregister_read;
2403 eeprom.register_write = rt61pci_eepromregister_write;
2404 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2405 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2406 eeprom.reg_data_in = 0;
2407 eeprom.reg_data_out = 0;
2408 eeprom.reg_data_clock = 0;
2409 eeprom.reg_chip_select = 0;
2411 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2412 EEPROM_SIZE / sizeof(u16));
2415 * Start validation of the data that has been read.
2417 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2418 rt2x00lib_set_mac_address(rt2x00dev, mac);
2420 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
2421 if (word == 0xffff) {
2422 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2423 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2424 ANTENNA_B);
2425 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2426 ANTENNA_B);
2427 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2428 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2429 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2430 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2431 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2432 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
2435 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
2436 if (word == 0xffff) {
2437 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2438 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2439 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2440 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2441 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2442 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2443 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2444 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2445 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
2448 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
2449 if (word == 0xffff) {
2450 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2451 LED_MODE_DEFAULT);
2452 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2453 rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
2456 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
2457 if (word == 0xffff) {
2458 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2459 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2460 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2461 rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
2464 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
2465 if (word == 0xffff) {
2466 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2467 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2468 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2469 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2470 } else {
2471 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2472 if (value < -10 || value > 10)
2473 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2474 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2475 if (value < -10 || value > 10)
2476 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2477 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2480 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
2481 if (word == 0xffff) {
2482 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2483 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2484 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2485 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2486 } else {
2487 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2488 if (value < -10 || value > 10)
2489 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2490 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2491 if (value < -10 || value > 10)
2492 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2493 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2496 return 0;
2499 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2501 u32 reg;
2502 u16 value;
2503 u16 eeprom;
2506 * Read EEPROM word for configuration.
2508 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
2511 * Identify RF chipset.
2513 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2514 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0);
2515 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2516 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2518 if (!rt2x00_rf(rt2x00dev, RF5225) &&
2519 !rt2x00_rf(rt2x00dev, RF5325) &&
2520 !rt2x00_rf(rt2x00dev, RF2527) &&
2521 !rt2x00_rf(rt2x00dev, RF2529)) {
2522 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
2523 return -ENODEV;
2527 * Determine number of antennas.
2529 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2530 __set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
2533 * Identify default antenna configuration.
2535 rt2x00dev->default_ant.tx =
2536 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2537 rt2x00dev->default_ant.rx =
2538 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2541 * Read the Frame type.
2543 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2544 __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
2547 * Detect if this device has a hardware controlled radio.
2549 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2550 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
2553 * Read frequency offset and RF programming sequence.
2555 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
2556 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2557 __set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
2559 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2562 * Read external LNA informations.
2564 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
2566 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2567 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
2568 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2569 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
2572 * When working with a RF2529 chip without double antenna,
2573 * the antenna settings should be gathered from the NIC
2574 * eeprom word.
2576 if (rt2x00_rf(rt2x00dev, RF2529) &&
2577 !rt2x00_has_cap_double_antenna(rt2x00dev)) {
2578 rt2x00dev->default_ant.rx =
2579 ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2580 rt2x00dev->default_ant.tx =
2581 ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2583 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2584 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2585 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2586 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2590 * Store led settings, for correct led behaviour.
2591 * If the eeprom value is invalid,
2592 * switch to default led mode.
2594 #ifdef CONFIG_RT2X00_LIB_LEDS
2595 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
2596 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2598 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2599 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2600 if (value == LED_MODE_SIGNAL_STRENGTH)
2601 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2602 LED_TYPE_QUALITY);
2604 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2605 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2606 rt2x00_get_field16(eeprom,
2607 EEPROM_LED_POLARITY_GPIO_0));
2608 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2609 rt2x00_get_field16(eeprom,
2610 EEPROM_LED_POLARITY_GPIO_1));
2611 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2612 rt2x00_get_field16(eeprom,
2613 EEPROM_LED_POLARITY_GPIO_2));
2614 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2615 rt2x00_get_field16(eeprom,
2616 EEPROM_LED_POLARITY_GPIO_3));
2617 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2618 rt2x00_get_field16(eeprom,
2619 EEPROM_LED_POLARITY_GPIO_4));
2620 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2621 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2622 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2623 rt2x00_get_field16(eeprom,
2624 EEPROM_LED_POLARITY_RDY_G));
2625 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2626 rt2x00_get_field16(eeprom,
2627 EEPROM_LED_POLARITY_RDY_A));
2628 #endif /* CONFIG_RT2X00_LIB_LEDS */
2630 return 0;
2634 * RF value list for RF5225 & RF5325
2635 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2637 static const struct rf_channel rf_vals_noseq[] = {
2638 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2639 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2640 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2641 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2642 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2643 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2644 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2645 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2646 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2647 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2648 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2649 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2650 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2651 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2653 /* 802.11 UNI / HyperLan 2 */
2654 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2655 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2656 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2657 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2658 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2659 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2660 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2661 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2663 /* 802.11 HyperLan 2 */
2664 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2665 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2666 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2667 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2668 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2669 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2670 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2671 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2672 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2673 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2675 /* 802.11 UNII */
2676 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2677 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2678 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2679 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2680 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2681 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2683 /* MMAC(Japan)J52 ch 34,38,42,46 */
2684 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2685 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2686 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2687 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2691 * RF value list for RF5225 & RF5325
2692 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2694 static const struct rf_channel rf_vals_seq[] = {
2695 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2696 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2697 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2698 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2699 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2700 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2701 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2702 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2703 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2704 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2705 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2706 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2707 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2708 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2710 /* 802.11 UNI / HyperLan 2 */
2711 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2712 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2713 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2714 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2715 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2716 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2717 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2718 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2720 /* 802.11 HyperLan 2 */
2721 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2722 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2723 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2724 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2725 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2726 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2727 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2728 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2729 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2730 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2732 /* 802.11 UNII */
2733 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2734 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2735 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2736 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2737 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2738 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2740 /* MMAC(Japan)J52 ch 34,38,42,46 */
2741 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2742 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2743 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2744 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2747 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2749 struct hw_mode_spec *spec = &rt2x00dev->spec;
2750 struct channel_info *info;
2751 char *tx_power;
2752 unsigned int i;
2755 * Disable powersaving as default.
2757 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2760 * Initialize all hw fields.
2762 ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
2763 ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
2764 ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
2765 ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
2767 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2768 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2769 rt2x00_eeprom_addr(rt2x00dev,
2770 EEPROM_MAC_ADDR_0));
2773 * As rt61 has a global fallback table we cannot specify
2774 * more then one tx rate per frame but since the hw will
2775 * try several rates (based on the fallback table) we should
2776 * initialize max_report_rates to the maximum number of rates
2777 * we are going to try. Otherwise mac80211 will truncate our
2778 * reported tx rates and the rc algortihm will end up with
2779 * incorrect data.
2781 rt2x00dev->hw->max_rates = 1;
2782 rt2x00dev->hw->max_report_rates = 7;
2783 rt2x00dev->hw->max_rate_tries = 1;
2786 * Initialize hw_mode information.
2788 spec->supported_bands = SUPPORT_BAND_2GHZ;
2789 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2791 if (!rt2x00_has_cap_rf_sequence(rt2x00dev)) {
2792 spec->num_channels = 14;
2793 spec->channels = rf_vals_noseq;
2794 } else {
2795 spec->num_channels = 14;
2796 spec->channels = rf_vals_seq;
2799 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2800 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2801 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2805 * Create channel information array
2807 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2808 if (!info)
2809 return -ENOMEM;
2811 spec->channels_info = info;
2813 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2814 for (i = 0; i < 14; i++) {
2815 info[i].max_power = MAX_TXPOWER;
2816 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2819 if (spec->num_channels > 14) {
2820 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2821 for (i = 14; i < spec->num_channels; i++) {
2822 info[i].max_power = MAX_TXPOWER;
2823 info[i].default_power1 =
2824 TXPOWER_FROM_DEV(tx_power[i - 14]);
2828 return 0;
2831 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2833 int retval;
2834 u32 reg;
2837 * Disable power saving.
2839 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2842 * Allocate eeprom data.
2844 retval = rt61pci_validate_eeprom(rt2x00dev);
2845 if (retval)
2846 return retval;
2848 retval = rt61pci_init_eeprom(rt2x00dev);
2849 if (retval)
2850 return retval;
2853 * Enable rfkill polling by setting GPIO direction of the
2854 * rfkill switch GPIO pin correctly.
2856 reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13);
2857 rt2x00_set_field32(&reg, MAC_CSR13_DIR5, 1);
2858 rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
2861 * Initialize hw specifications.
2863 retval = rt61pci_probe_hw_mode(rt2x00dev);
2864 if (retval)
2865 return retval;
2868 * This device has multiple filters for control frames,
2869 * but has no a separate filter for PS Poll frames.
2871 __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2874 * This device requires firmware and DMA mapped skbs.
2876 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2877 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
2878 if (!modparam_nohwcrypt)
2879 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2880 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2883 * Set the rssi offset.
2885 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2887 return 0;
2891 * IEEE80211 stack callback functions.
2893 static int rt61pci_conf_tx(struct ieee80211_hw *hw,
2894 struct ieee80211_vif *vif, u16 queue_idx,
2895 const struct ieee80211_tx_queue_params *params)
2897 struct rt2x00_dev *rt2x00dev = hw->priv;
2898 struct data_queue *queue;
2899 struct rt2x00_field32 field;
2900 int retval;
2901 u32 reg;
2902 u32 offset;
2905 * First pass the configuration through rt2x00lib, that will
2906 * update the queue settings and validate the input. After that
2907 * we are free to update the registers based on the value
2908 * in the queue parameter.
2910 retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2911 if (retval)
2912 return retval;
2915 * We only need to perform additional register initialization
2916 * for WMM queues.
2918 if (queue_idx >= 4)
2919 return 0;
2921 queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2923 /* Update WMM TXOP register */
2924 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2925 field.bit_offset = (queue_idx & 1) * 16;
2926 field.bit_mask = 0xffff << field.bit_offset;
2928 reg = rt2x00mmio_register_read(rt2x00dev, offset);
2929 rt2x00_set_field32(&reg, field, queue->txop);
2930 rt2x00mmio_register_write(rt2x00dev, offset, reg);
2932 /* Update WMM registers */
2933 field.bit_offset = queue_idx * 4;
2934 field.bit_mask = 0xf << field.bit_offset;
2936 reg = rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR);
2937 rt2x00_set_field32(&reg, field, queue->aifs);
2938 rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg);
2940 reg = rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR);
2941 rt2x00_set_field32(&reg, field, queue->cw_min);
2942 rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg);
2944 reg = rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR);
2945 rt2x00_set_field32(&reg, field, queue->cw_max);
2946 rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg);
2948 return 0;
2951 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2953 struct rt2x00_dev *rt2x00dev = hw->priv;
2954 u64 tsf;
2955 u32 reg;
2957 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13);
2958 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2959 reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12);
2960 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2962 return tsf;
2965 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2966 .tx = rt2x00mac_tx,
2967 .start = rt2x00mac_start,
2968 .stop = rt2x00mac_stop,
2969 .add_interface = rt2x00mac_add_interface,
2970 .remove_interface = rt2x00mac_remove_interface,
2971 .config = rt2x00mac_config,
2972 .configure_filter = rt2x00mac_configure_filter,
2973 .set_key = rt2x00mac_set_key,
2974 .sw_scan_start = rt2x00mac_sw_scan_start,
2975 .sw_scan_complete = rt2x00mac_sw_scan_complete,
2976 .get_stats = rt2x00mac_get_stats,
2977 .bss_info_changed = rt2x00mac_bss_info_changed,
2978 .conf_tx = rt61pci_conf_tx,
2979 .get_tsf = rt61pci_get_tsf,
2980 .rfkill_poll = rt2x00mac_rfkill_poll,
2981 .flush = rt2x00mac_flush,
2982 .set_antenna = rt2x00mac_set_antenna,
2983 .get_antenna = rt2x00mac_get_antenna,
2984 .get_ringparam = rt2x00mac_get_ringparam,
2985 .tx_frames_pending = rt2x00mac_tx_frames_pending,
2988 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2989 .irq_handler = rt61pci_interrupt,
2990 .txstatus_tasklet = rt61pci_txstatus_tasklet,
2991 .tbtt_tasklet = rt61pci_tbtt_tasklet,
2992 .rxdone_tasklet = rt61pci_rxdone_tasklet,
2993 .autowake_tasklet = rt61pci_autowake_tasklet,
2994 .probe_hw = rt61pci_probe_hw,
2995 .get_firmware_name = rt61pci_get_firmware_name,
2996 .check_firmware = rt61pci_check_firmware,
2997 .load_firmware = rt61pci_load_firmware,
2998 .initialize = rt2x00mmio_initialize,
2999 .uninitialize = rt2x00mmio_uninitialize,
3000 .get_entry_state = rt61pci_get_entry_state,
3001 .clear_entry = rt61pci_clear_entry,
3002 .set_device_state = rt61pci_set_device_state,
3003 .rfkill_poll = rt61pci_rfkill_poll,
3004 .link_stats = rt61pci_link_stats,
3005 .reset_tuner = rt61pci_reset_tuner,
3006 .link_tuner = rt61pci_link_tuner,
3007 .start_queue = rt61pci_start_queue,
3008 .kick_queue = rt61pci_kick_queue,
3009 .stop_queue = rt61pci_stop_queue,
3010 .flush_queue = rt2x00mmio_flush_queue,
3011 .write_tx_desc = rt61pci_write_tx_desc,
3012 .write_beacon = rt61pci_write_beacon,
3013 .clear_beacon = rt61pci_clear_beacon,
3014 .fill_rxdone = rt61pci_fill_rxdone,
3015 .config_shared_key = rt61pci_config_shared_key,
3016 .config_pairwise_key = rt61pci_config_pairwise_key,
3017 .config_filter = rt61pci_config_filter,
3018 .config_intf = rt61pci_config_intf,
3019 .config_erp = rt61pci_config_erp,
3020 .config_ant = rt61pci_config_ant,
3021 .config = rt61pci_config,
3024 static void rt61pci_queue_init(struct data_queue *queue)
3026 switch (queue->qid) {
3027 case QID_RX:
3028 queue->limit = 32;
3029 queue->data_size = DATA_FRAME_SIZE;
3030 queue->desc_size = RXD_DESC_SIZE;
3031 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3032 break;
3034 case QID_AC_VO:
3035 case QID_AC_VI:
3036 case QID_AC_BE:
3037 case QID_AC_BK:
3038 queue->limit = 32;
3039 queue->data_size = DATA_FRAME_SIZE;
3040 queue->desc_size = TXD_DESC_SIZE;
3041 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3042 break;
3044 case QID_BEACON:
3045 queue->limit = 4;
3046 queue->data_size = 0; /* No DMA required for beacons */
3047 queue->desc_size = TXINFO_SIZE;
3048 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3049 break;
3051 case QID_ATIM:
3052 /* fallthrough */
3053 default:
3054 BUG();
3055 break;
3059 static const struct rt2x00_ops rt61pci_ops = {
3060 .name = KBUILD_MODNAME,
3061 .max_ap_intf = 4,
3062 .eeprom_size = EEPROM_SIZE,
3063 .rf_size = RF_SIZE,
3064 .tx_queues = NUM_TX_QUEUES,
3065 .queue_init = rt61pci_queue_init,
3066 .lib = &rt61pci_rt2x00_ops,
3067 .hw = &rt61pci_mac80211_ops,
3068 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
3069 .debugfs = &rt61pci_rt2x00debug,
3070 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
3074 * RT61pci module information.
3076 static const struct pci_device_id rt61pci_device_table[] = {
3077 /* RT2561s */
3078 { PCI_DEVICE(0x1814, 0x0301) },
3079 /* RT2561 v2 */
3080 { PCI_DEVICE(0x1814, 0x0302) },
3081 /* RT2661 */
3082 { PCI_DEVICE(0x1814, 0x0401) },
3083 { 0, }
3086 MODULE_AUTHOR(DRV_PROJECT);
3087 MODULE_VERSION(DRV_VERSION);
3088 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3089 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
3090 "PCI & PCMCIA chipset based cards");
3091 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
3092 MODULE_FIRMWARE(FIRMWARE_RT2561);
3093 MODULE_FIRMWARE(FIRMWARE_RT2561s);
3094 MODULE_FIRMWARE(FIRMWARE_RT2661);
3095 MODULE_LICENSE("GPL");
3097 static int rt61pci_probe(struct pci_dev *pci_dev,
3098 const struct pci_device_id *id)
3100 return rt2x00pci_probe(pci_dev, &rt61pci_ops);
3103 static struct pci_driver rt61pci_driver = {
3104 .name = KBUILD_MODNAME,
3105 .id_table = rt61pci_device_table,
3106 .probe = rt61pci_probe,
3107 .remove = rt2x00pci_remove,
3108 .suspend = rt2x00pci_suspend,
3109 .resume = rt2x00pci_resume,
3112 module_pci_driver(rt61pci_driver);