2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
21 Abstract: rt61pci device specific routines.
22 Supported chipsets: RT2561, RT2561s, RT2661.
25 #include <linux/crc-itu-t.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/pci.h>
32 #include <linux/eeprom_93cx6.h>
35 #include "rt2x00mmio.h"
36 #include "rt2x00pci.h"
40 * Allow hardware encryption to be disabled.
42 static bool modparam_nohwcrypt
= false;
43 module_param_named(nohwcrypt
, modparam_nohwcrypt
, bool, S_IRUGO
);
44 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
48 * BBP and RF register require indirect register access,
49 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
50 * These indirect registers work with busy bits,
51 * and we will try maximal REGISTER_BUSY_COUNT times to access
52 * the register while taking a REGISTER_BUSY_DELAY us delay
53 * between each attempt. When the busy bit is still set at that time,
54 * the access attempt is considered to have failed,
55 * and we will print an error.
57 #define WAIT_FOR_BBP(__dev, __reg) \
58 rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
59 #define WAIT_FOR_RF(__dev, __reg) \
60 rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
61 #define WAIT_FOR_MCU(__dev, __reg) \
62 rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
63 H2M_MAILBOX_CSR_OWNER, (__reg))
65 static void rt61pci_bbp_write(struct rt2x00_dev
*rt2x00dev
,
66 const unsigned int word
, const u8 value
)
70 mutex_lock(&rt2x00dev
->csr_mutex
);
73 * Wait until the BBP becomes available, afterwards we
74 * can safely write the new data into the register.
76 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
78 rt2x00_set_field32(®
, PHY_CSR3_VALUE
, value
);
79 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
80 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
81 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 0);
83 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR3
, reg
);
86 mutex_unlock(&rt2x00dev
->csr_mutex
);
89 static u8
rt61pci_bbp_read(struct rt2x00_dev
*rt2x00dev
,
90 const unsigned int word
)
95 mutex_lock(&rt2x00dev
->csr_mutex
);
98 * Wait until the BBP becomes available, afterwards we
99 * can safely write the read request into the register.
100 * After the data has been written, we wait until hardware
101 * returns the correct value, if at any time the register
102 * doesn't become available in time, reg will be 0xffffffff
103 * which means we return 0xff to the caller.
105 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
107 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
108 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
109 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 1);
111 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR3
, reg
);
113 WAIT_FOR_BBP(rt2x00dev
, ®
);
116 value
= rt2x00_get_field32(reg
, PHY_CSR3_VALUE
);
118 mutex_unlock(&rt2x00dev
->csr_mutex
);
123 static void rt61pci_rf_write(struct rt2x00_dev
*rt2x00dev
,
124 const unsigned int word
, const u32 value
)
128 mutex_lock(&rt2x00dev
->csr_mutex
);
131 * Wait until the RF becomes available, afterwards we
132 * can safely write the new data into the register.
134 if (WAIT_FOR_RF(rt2x00dev
, ®
)) {
136 rt2x00_set_field32(®
, PHY_CSR4_VALUE
, value
);
137 rt2x00_set_field32(®
, PHY_CSR4_NUMBER_OF_BITS
, 21);
138 rt2x00_set_field32(®
, PHY_CSR4_IF_SELECT
, 0);
139 rt2x00_set_field32(®
, PHY_CSR4_BUSY
, 1);
141 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR4
, reg
);
142 rt2x00_rf_write(rt2x00dev
, word
, value
);
145 mutex_unlock(&rt2x00dev
->csr_mutex
);
148 static void rt61pci_mcu_request(struct rt2x00_dev
*rt2x00dev
,
149 const u8 command
, const u8 token
,
150 const u8 arg0
, const u8 arg1
)
154 mutex_lock(&rt2x00dev
->csr_mutex
);
157 * Wait until the MCU becomes available, afterwards we
158 * can safely write the new data into the register.
160 if (WAIT_FOR_MCU(rt2x00dev
, ®
)) {
161 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_OWNER
, 1);
162 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_CMD_TOKEN
, token
);
163 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_ARG0
, arg0
);
164 rt2x00_set_field32(®
, H2M_MAILBOX_CSR_ARG1
, arg1
);
165 rt2x00mmio_register_write(rt2x00dev
, H2M_MAILBOX_CSR
, reg
);
167 reg
= rt2x00mmio_register_read(rt2x00dev
, HOST_CMD_CSR
);
168 rt2x00_set_field32(®
, HOST_CMD_CSR_HOST_COMMAND
, command
);
169 rt2x00_set_field32(®
, HOST_CMD_CSR_INTERRUPT_MCU
, 1);
170 rt2x00mmio_register_write(rt2x00dev
, HOST_CMD_CSR
, reg
);
173 mutex_unlock(&rt2x00dev
->csr_mutex
);
177 static void rt61pci_eepromregister_read(struct eeprom_93cx6
*eeprom
)
179 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
182 reg
= rt2x00mmio_register_read(rt2x00dev
, E2PROM_CSR
);
184 eeprom
->reg_data_in
= !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_IN
);
185 eeprom
->reg_data_out
= !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_OUT
);
186 eeprom
->reg_data_clock
=
187 !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_CLOCK
);
188 eeprom
->reg_chip_select
=
189 !!rt2x00_get_field32(reg
, E2PROM_CSR_CHIP_SELECT
);
192 static void rt61pci_eepromregister_write(struct eeprom_93cx6
*eeprom
)
194 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
197 rt2x00_set_field32(®
, E2PROM_CSR_DATA_IN
, !!eeprom
->reg_data_in
);
198 rt2x00_set_field32(®
, E2PROM_CSR_DATA_OUT
, !!eeprom
->reg_data_out
);
199 rt2x00_set_field32(®
, E2PROM_CSR_DATA_CLOCK
,
200 !!eeprom
->reg_data_clock
);
201 rt2x00_set_field32(®
, E2PROM_CSR_CHIP_SELECT
,
202 !!eeprom
->reg_chip_select
);
204 rt2x00mmio_register_write(rt2x00dev
, E2PROM_CSR
, reg
);
207 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
208 static const struct rt2x00debug rt61pci_rt2x00debug
= {
209 .owner
= THIS_MODULE
,
211 .read
= rt2x00mmio_register_read
,
212 .write
= rt2x00mmio_register_write
,
213 .flags
= RT2X00DEBUGFS_OFFSET
,
214 .word_base
= CSR_REG_BASE
,
215 .word_size
= sizeof(u32
),
216 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
219 .read
= rt2x00_eeprom_read
,
220 .write
= rt2x00_eeprom_write
,
221 .word_base
= EEPROM_BASE
,
222 .word_size
= sizeof(u16
),
223 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
226 .read
= rt61pci_bbp_read
,
227 .write
= rt61pci_bbp_write
,
228 .word_base
= BBP_BASE
,
229 .word_size
= sizeof(u8
),
230 .word_count
= BBP_SIZE
/ sizeof(u8
),
233 .read
= rt2x00_rf_read
,
234 .write
= rt61pci_rf_write
,
235 .word_base
= RF_BASE
,
236 .word_size
= sizeof(u32
),
237 .word_count
= RF_SIZE
/ sizeof(u32
),
240 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
242 static int rt61pci_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
246 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR13
);
247 return rt2x00_get_field32(reg
, MAC_CSR13_VAL5
);
250 #ifdef CONFIG_RT2X00_LIB_LEDS
251 static void rt61pci_brightness_set(struct led_classdev
*led_cdev
,
252 enum led_brightness brightness
)
254 struct rt2x00_led
*led
=
255 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
256 unsigned int enabled
= brightness
!= LED_OFF
;
257 unsigned int a_mode
=
258 (enabled
&& led
->rt2x00dev
->curr_band
== NL80211_BAND_5GHZ
);
259 unsigned int bg_mode
=
260 (enabled
&& led
->rt2x00dev
->curr_band
== NL80211_BAND_2GHZ
);
262 if (led
->type
== LED_TYPE_RADIO
) {
263 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
264 MCU_LEDCS_RADIO_STATUS
, enabled
);
266 rt61pci_mcu_request(led
->rt2x00dev
, MCU_LED
, 0xff,
267 (led
->rt2x00dev
->led_mcu_reg
& 0xff),
268 ((led
->rt2x00dev
->led_mcu_reg
>> 8)));
269 } else if (led
->type
== LED_TYPE_ASSOC
) {
270 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
271 MCU_LEDCS_LINK_BG_STATUS
, bg_mode
);
272 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
273 MCU_LEDCS_LINK_A_STATUS
, a_mode
);
275 rt61pci_mcu_request(led
->rt2x00dev
, MCU_LED
, 0xff,
276 (led
->rt2x00dev
->led_mcu_reg
& 0xff),
277 ((led
->rt2x00dev
->led_mcu_reg
>> 8)));
278 } else if (led
->type
== LED_TYPE_QUALITY
) {
280 * The brightness is divided into 6 levels (0 - 5),
281 * this means we need to convert the brightness
282 * argument into the matching level within that range.
284 rt61pci_mcu_request(led
->rt2x00dev
, MCU_LED_STRENGTH
, 0xff,
285 brightness
/ (LED_FULL
/ 6), 0);
289 static int rt61pci_blink_set(struct led_classdev
*led_cdev
,
290 unsigned long *delay_on
,
291 unsigned long *delay_off
)
293 struct rt2x00_led
*led
=
294 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
297 reg
= rt2x00mmio_register_read(led
->rt2x00dev
, MAC_CSR14
);
298 rt2x00_set_field32(®
, MAC_CSR14_ON_PERIOD
, *delay_on
);
299 rt2x00_set_field32(®
, MAC_CSR14_OFF_PERIOD
, *delay_off
);
300 rt2x00mmio_register_write(led
->rt2x00dev
, MAC_CSR14
, reg
);
305 static void rt61pci_init_led(struct rt2x00_dev
*rt2x00dev
,
306 struct rt2x00_led
*led
,
309 led
->rt2x00dev
= rt2x00dev
;
311 led
->led_dev
.brightness_set
= rt61pci_brightness_set
;
312 led
->led_dev
.blink_set
= rt61pci_blink_set
;
313 led
->flags
= LED_INITIALIZED
;
315 #endif /* CONFIG_RT2X00_LIB_LEDS */
318 * Configuration handlers.
320 static int rt61pci_config_shared_key(struct rt2x00_dev
*rt2x00dev
,
321 struct rt2x00lib_crypto
*crypto
,
322 struct ieee80211_key_conf
*key
)
324 struct hw_key_entry key_entry
;
325 struct rt2x00_field32 field
;
329 if (crypto
->cmd
== SET_KEY
) {
331 * rt2x00lib can't determine the correct free
332 * key_idx for shared keys. We have 1 register
333 * with key valid bits. The goal is simple, read
334 * the register, if that is full we have no slots
336 * Note that each BSS is allowed to have up to 4
337 * shared keys, so put a mask over the allowed
340 mask
= (0xf << crypto
->bssidx
);
342 reg
= rt2x00mmio_register_read(rt2x00dev
, SEC_CSR0
);
345 if (reg
&& reg
== mask
)
348 key
->hw_key_idx
+= reg
? ffz(reg
) : 0;
351 * Upload key to hardware
353 memcpy(key_entry
.key
, crypto
->key
,
354 sizeof(key_entry
.key
));
355 memcpy(key_entry
.tx_mic
, crypto
->tx_mic
,
356 sizeof(key_entry
.tx_mic
));
357 memcpy(key_entry
.rx_mic
, crypto
->rx_mic
,
358 sizeof(key_entry
.rx_mic
));
360 reg
= SHARED_KEY_ENTRY(key
->hw_key_idx
);
361 rt2x00mmio_register_multiwrite(rt2x00dev
, reg
,
362 &key_entry
, sizeof(key_entry
));
365 * The cipher types are stored over 2 registers.
366 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
367 * bssidx 1 and 2 keys are stored in SEC_CSR5.
368 * Using the correct defines correctly will cause overhead,
369 * so just calculate the correct offset.
371 if (key
->hw_key_idx
< 8) {
372 field
.bit_offset
= (3 * key
->hw_key_idx
);
373 field
.bit_mask
= 0x7 << field
.bit_offset
;
375 reg
= rt2x00mmio_register_read(rt2x00dev
, SEC_CSR1
);
376 rt2x00_set_field32(®
, field
, crypto
->cipher
);
377 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR1
, reg
);
379 field
.bit_offset
= (3 * (key
->hw_key_idx
- 8));
380 field
.bit_mask
= 0x7 << field
.bit_offset
;
382 reg
= rt2x00mmio_register_read(rt2x00dev
, SEC_CSR5
);
383 rt2x00_set_field32(®
, field
, crypto
->cipher
);
384 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR5
, reg
);
388 * The driver does not support the IV/EIV generation
389 * in hardware. However it doesn't support the IV/EIV
390 * inside the ieee80211 frame either, but requires it
391 * to be provided separately for the descriptor.
392 * rt2x00lib will cut the IV/EIV data out of all frames
393 * given to us by mac80211, but we must tell mac80211
394 * to generate the IV/EIV data.
396 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
400 * SEC_CSR0 contains only single-bit fields to indicate
401 * a particular key is valid. Because using the FIELD32()
402 * defines directly will cause a lot of overhead, we use
403 * a calculation to determine the correct bit directly.
405 mask
= 1 << key
->hw_key_idx
;
407 reg
= rt2x00mmio_register_read(rt2x00dev
, SEC_CSR0
);
408 if (crypto
->cmd
== SET_KEY
)
410 else if (crypto
->cmd
== DISABLE_KEY
)
412 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR0
, reg
);
417 static int rt61pci_config_pairwise_key(struct rt2x00_dev
*rt2x00dev
,
418 struct rt2x00lib_crypto
*crypto
,
419 struct ieee80211_key_conf
*key
)
421 struct hw_pairwise_ta_entry addr_entry
;
422 struct hw_key_entry key_entry
;
426 if (crypto
->cmd
== SET_KEY
) {
428 * rt2x00lib can't determine the correct free
429 * key_idx for pairwise keys. We have 2 registers
430 * with key valid bits. The goal is simple: read
431 * the first register. If that is full, move to
433 * When both registers are full, we drop the key.
434 * Otherwise, we use the first invalid entry.
436 reg
= rt2x00mmio_register_read(rt2x00dev
, SEC_CSR2
);
437 if (reg
&& reg
== ~0) {
438 key
->hw_key_idx
= 32;
439 reg
= rt2x00mmio_register_read(rt2x00dev
, SEC_CSR3
);
440 if (reg
&& reg
== ~0)
444 key
->hw_key_idx
+= reg
? ffz(reg
) : 0;
447 * Upload key to hardware
449 memcpy(key_entry
.key
, crypto
->key
,
450 sizeof(key_entry
.key
));
451 memcpy(key_entry
.tx_mic
, crypto
->tx_mic
,
452 sizeof(key_entry
.tx_mic
));
453 memcpy(key_entry
.rx_mic
, crypto
->rx_mic
,
454 sizeof(key_entry
.rx_mic
));
456 memset(&addr_entry
, 0, sizeof(addr_entry
));
457 memcpy(&addr_entry
, crypto
->address
, ETH_ALEN
);
458 addr_entry
.cipher
= crypto
->cipher
;
460 reg
= PAIRWISE_KEY_ENTRY(key
->hw_key_idx
);
461 rt2x00mmio_register_multiwrite(rt2x00dev
, reg
,
462 &key_entry
, sizeof(key_entry
));
464 reg
= PAIRWISE_TA_ENTRY(key
->hw_key_idx
);
465 rt2x00mmio_register_multiwrite(rt2x00dev
, reg
,
466 &addr_entry
, sizeof(addr_entry
));
469 * Enable pairwise lookup table for given BSS idx.
470 * Without this, received frames will not be decrypted
473 reg
= rt2x00mmio_register_read(rt2x00dev
, SEC_CSR4
);
474 reg
|= (1 << crypto
->bssidx
);
475 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR4
, reg
);
478 * The driver does not support the IV/EIV generation
479 * in hardware. However it doesn't support the IV/EIV
480 * inside the ieee80211 frame either, but requires it
481 * to be provided separately for the descriptor.
482 * rt2x00lib will cut the IV/EIV data out of all frames
483 * given to us by mac80211, but we must tell mac80211
484 * to generate the IV/EIV data.
486 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
490 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
491 * a particular key is valid. Because using the FIELD32()
492 * defines directly will cause a lot of overhead, we use
493 * a calculation to determine the correct bit directly.
495 if (key
->hw_key_idx
< 32) {
496 mask
= 1 << key
->hw_key_idx
;
498 reg
= rt2x00mmio_register_read(rt2x00dev
, SEC_CSR2
);
499 if (crypto
->cmd
== SET_KEY
)
501 else if (crypto
->cmd
== DISABLE_KEY
)
503 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR2
, reg
);
505 mask
= 1 << (key
->hw_key_idx
- 32);
507 reg
= rt2x00mmio_register_read(rt2x00dev
, SEC_CSR3
);
508 if (crypto
->cmd
== SET_KEY
)
510 else if (crypto
->cmd
== DISABLE_KEY
)
512 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR3
, reg
);
518 static void rt61pci_config_filter(struct rt2x00_dev
*rt2x00dev
,
519 const unsigned int filter_flags
)
524 * Start configuration steps.
525 * Note that the version error will always be dropped
526 * and broadcast frames will always be accepted since
527 * there is no filter for it at this time.
529 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR0
);
530 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CRC
,
531 !(filter_flags
& FIF_FCSFAIL
));
532 rt2x00_set_field32(®
, TXRX_CSR0_DROP_PHYSICAL
,
533 !(filter_flags
& FIF_PLCPFAIL
));
534 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CONTROL
,
535 !(filter_flags
& (FIF_CONTROL
| FIF_PSPOLL
)));
536 rt2x00_set_field32(®
, TXRX_CSR0_DROP_NOT_TO_ME
,
537 !test_bit(CONFIG_MONITORING
, &rt2x00dev
->flags
));
538 rt2x00_set_field32(®
, TXRX_CSR0_DROP_TO_DS
,
539 !test_bit(CONFIG_MONITORING
, &rt2x00dev
->flags
) &&
540 !rt2x00dev
->intf_ap_count
);
541 rt2x00_set_field32(®
, TXRX_CSR0_DROP_VERSION_ERROR
, 1);
542 rt2x00_set_field32(®
, TXRX_CSR0_DROP_MULTICAST
,
543 !(filter_flags
& FIF_ALLMULTI
));
544 rt2x00_set_field32(®
, TXRX_CSR0_DROP_BROADCAST
, 0);
545 rt2x00_set_field32(®
, TXRX_CSR0_DROP_ACK_CTS
,
546 !(filter_flags
& FIF_CONTROL
));
547 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
550 static void rt61pci_config_intf(struct rt2x00_dev
*rt2x00dev
,
551 struct rt2x00_intf
*intf
,
552 struct rt2x00intf_conf
*conf
,
553 const unsigned int flags
)
557 if (flags
& CONFIG_UPDATE_TYPE
) {
559 * Enable synchronisation.
561 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR9
);
562 rt2x00_set_field32(®
, TXRX_CSR9_TSF_SYNC
, conf
->sync
);
563 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
566 if (flags
& CONFIG_UPDATE_MAC
) {
567 reg
= le32_to_cpu(conf
->mac
[1]);
568 rt2x00_set_field32(®
, MAC_CSR3_UNICAST_TO_ME_MASK
, 0xff);
569 conf
->mac
[1] = cpu_to_le32(reg
);
571 rt2x00mmio_register_multiwrite(rt2x00dev
, MAC_CSR2
,
572 conf
->mac
, sizeof(conf
->mac
));
575 if (flags
& CONFIG_UPDATE_BSSID
) {
576 reg
= le32_to_cpu(conf
->bssid
[1]);
577 rt2x00_set_field32(®
, MAC_CSR5_BSS_ID_MASK
, 3);
578 conf
->bssid
[1] = cpu_to_le32(reg
);
580 rt2x00mmio_register_multiwrite(rt2x00dev
, MAC_CSR4
,
582 sizeof(conf
->bssid
));
586 static void rt61pci_config_erp(struct rt2x00_dev
*rt2x00dev
,
587 struct rt2x00lib_erp
*erp
,
592 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR0
);
593 rt2x00_set_field32(®
, TXRX_CSR0_RX_ACK_TIMEOUT
, 0x32);
594 rt2x00_set_field32(®
, TXRX_CSR0_TSF_OFFSET
, IEEE80211_HEADER
);
595 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
597 if (changed
& BSS_CHANGED_ERP_PREAMBLE
) {
598 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR4
);
599 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_ENABLE
, 1);
600 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_PREAMBLE
,
601 !!erp
->short_preamble
);
602 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
605 if (changed
& BSS_CHANGED_BASIC_RATES
)
606 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR5
,
609 if (changed
& BSS_CHANGED_BEACON_INT
) {
610 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR9
);
611 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_INTERVAL
,
612 erp
->beacon_int
* 16);
613 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
616 if (changed
& BSS_CHANGED_ERP_SLOT
) {
617 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR9
);
618 rt2x00_set_field32(®
, MAC_CSR9_SLOT_TIME
, erp
->slot_time
);
619 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR9
, reg
);
621 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR8
);
622 rt2x00_set_field32(®
, MAC_CSR8_SIFS
, erp
->sifs
);
623 rt2x00_set_field32(®
, MAC_CSR8_SIFS_AFTER_RX_OFDM
, 3);
624 rt2x00_set_field32(®
, MAC_CSR8_EIFS
, erp
->eifs
);
625 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR8
, reg
);
629 static void rt61pci_config_antenna_5x(struct rt2x00_dev
*rt2x00dev
,
630 struct antenna_setup
*ant
)
636 r3
= rt61pci_bbp_read(rt2x00dev
, 3);
637 r4
= rt61pci_bbp_read(rt2x00dev
, 4);
638 r77
= rt61pci_bbp_read(rt2x00dev
, 77);
640 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, rt2x00_rf(rt2x00dev
, RF5325
));
643 * Configure the RX antenna.
646 case ANTENNA_HW_DIVERSITY
:
647 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 2);
648 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
,
649 (rt2x00dev
->curr_band
!= NL80211_BAND_5GHZ
));
652 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
653 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
654 if (rt2x00dev
->curr_band
== NL80211_BAND_5GHZ
)
655 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
657 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
661 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
662 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
663 if (rt2x00dev
->curr_band
== NL80211_BAND_5GHZ
)
664 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
666 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
670 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
671 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
672 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
675 static void rt61pci_config_antenna_2x(struct rt2x00_dev
*rt2x00dev
,
676 struct antenna_setup
*ant
)
682 r3
= rt61pci_bbp_read(rt2x00dev
, 3);
683 r4
= rt61pci_bbp_read(rt2x00dev
, 4);
684 r77
= rt61pci_bbp_read(rt2x00dev
, 77);
686 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, rt2x00_rf(rt2x00dev
, RF2529
));
687 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
,
688 !rt2x00_has_cap_frame_type(rt2x00dev
));
691 * Configure the RX antenna.
694 case ANTENNA_HW_DIVERSITY
:
695 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 2);
698 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
699 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
703 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
704 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
708 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
709 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
710 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
713 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev
*rt2x00dev
,
714 const int p1
, const int p2
)
718 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR13
);
720 rt2x00_set_field32(®
, MAC_CSR13_DIR4
, 0);
721 rt2x00_set_field32(®
, MAC_CSR13_VAL4
, p1
);
723 rt2x00_set_field32(®
, MAC_CSR13_DIR3
, 0);
724 rt2x00_set_field32(®
, MAC_CSR13_VAL3
, !p2
);
726 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR13
, reg
);
729 static void rt61pci_config_antenna_2529(struct rt2x00_dev
*rt2x00dev
,
730 struct antenna_setup
*ant
)
736 r3
= rt61pci_bbp_read(rt2x00dev
, 3);
737 r4
= rt61pci_bbp_read(rt2x00dev
, 4);
738 r77
= rt61pci_bbp_read(rt2x00dev
, 77);
741 * Configure the RX antenna.
745 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
746 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
747 rt61pci_config_antenna_2529_rx(rt2x00dev
, 0, 0);
749 case ANTENNA_HW_DIVERSITY
:
751 * FIXME: Antenna selection for the rf 2529 is very confusing
752 * in the legacy driver. Just default to antenna B until the
753 * legacy code can be properly translated into rt2x00 code.
757 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
758 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
759 rt61pci_config_antenna_2529_rx(rt2x00dev
, 1, 1);
763 rt61pci_bbp_write(rt2x00dev
, 77, r77
);
764 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
765 rt61pci_bbp_write(rt2x00dev
, 4, r4
);
771 * value[0] -> non-LNA
777 static const struct antenna_sel antenna_sel_a
[] = {
778 { 96, { 0x58, 0x78 } },
779 { 104, { 0x38, 0x48 } },
780 { 75, { 0xfe, 0x80 } },
781 { 86, { 0xfe, 0x80 } },
782 { 88, { 0xfe, 0x80 } },
783 { 35, { 0x60, 0x60 } },
784 { 97, { 0x58, 0x58 } },
785 { 98, { 0x58, 0x58 } },
788 static const struct antenna_sel antenna_sel_bg
[] = {
789 { 96, { 0x48, 0x68 } },
790 { 104, { 0x2c, 0x3c } },
791 { 75, { 0xfe, 0x80 } },
792 { 86, { 0xfe, 0x80 } },
793 { 88, { 0xfe, 0x80 } },
794 { 35, { 0x50, 0x50 } },
795 { 97, { 0x48, 0x48 } },
796 { 98, { 0x48, 0x48 } },
799 static void rt61pci_config_ant(struct rt2x00_dev
*rt2x00dev
,
800 struct antenna_setup
*ant
)
802 const struct antenna_sel
*sel
;
808 * We should never come here because rt2x00lib is supposed
809 * to catch this and send us the correct antenna explicitely.
811 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
812 ant
->tx
== ANTENNA_SW_DIVERSITY
);
814 if (rt2x00dev
->curr_band
== NL80211_BAND_5GHZ
) {
816 lna
= rt2x00_has_cap_external_lna_a(rt2x00dev
);
818 sel
= antenna_sel_bg
;
819 lna
= rt2x00_has_cap_external_lna_bg(rt2x00dev
);
822 for (i
= 0; i
< ARRAY_SIZE(antenna_sel_a
); i
++)
823 rt61pci_bbp_write(rt2x00dev
, sel
[i
].word
, sel
[i
].value
[lna
]);
825 reg
= rt2x00mmio_register_read(rt2x00dev
, PHY_CSR0
);
827 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_BG
,
828 rt2x00dev
->curr_band
== NL80211_BAND_2GHZ
);
829 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_A
,
830 rt2x00dev
->curr_band
== NL80211_BAND_5GHZ
);
832 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR0
, reg
);
834 if (rt2x00_rf(rt2x00dev
, RF5225
) || rt2x00_rf(rt2x00dev
, RF5325
))
835 rt61pci_config_antenna_5x(rt2x00dev
, ant
);
836 else if (rt2x00_rf(rt2x00dev
, RF2527
))
837 rt61pci_config_antenna_2x(rt2x00dev
, ant
);
838 else if (rt2x00_rf(rt2x00dev
, RF2529
)) {
839 if (rt2x00_has_cap_double_antenna(rt2x00dev
))
840 rt61pci_config_antenna_2x(rt2x00dev
, ant
);
842 rt61pci_config_antenna_2529(rt2x00dev
, ant
);
846 static void rt61pci_config_lna_gain(struct rt2x00_dev
*rt2x00dev
,
847 struct rt2x00lib_conf
*libconf
)
852 if (libconf
->conf
->chandef
.chan
->band
== NL80211_BAND_2GHZ
) {
853 if (rt2x00_has_cap_external_lna_bg(rt2x00dev
))
856 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
);
857 lna_gain
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_BG_1
);
859 if (rt2x00_has_cap_external_lna_a(rt2x00dev
))
862 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
);
863 lna_gain
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_A_1
);
866 rt2x00dev
->lna_gain
= lna_gain
;
869 static void rt61pci_config_channel(struct rt2x00_dev
*rt2x00dev
,
870 struct rf_channel
*rf
, const int txpower
)
876 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
877 rt2x00_set_field32(&rf
->rf4
, RF4_FREQ_OFFSET
, rt2x00dev
->freq_offset
);
879 smart
= !(rt2x00_rf(rt2x00dev
, RF5225
) || rt2x00_rf(rt2x00dev
, RF2527
));
881 r3
= rt61pci_bbp_read(rt2x00dev
, 3);
882 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, smart
);
883 rt61pci_bbp_write(rt2x00dev
, 3, r3
);
886 if (txpower
> MAX_TXPOWER
&& txpower
<= (MAX_TXPOWER
+ r94
))
887 r94
+= txpower
- MAX_TXPOWER
;
888 else if (txpower
< MIN_TXPOWER
&& txpower
>= (MIN_TXPOWER
- r94
))
890 rt61pci_bbp_write(rt2x00dev
, 94, r94
);
892 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
893 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
894 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
895 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
899 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
900 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
901 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
| 0x00000004);
902 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
906 rt61pci_rf_write(rt2x00dev
, 1, rf
->rf1
);
907 rt61pci_rf_write(rt2x00dev
, 2, rf
->rf2
);
908 rt61pci_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
909 rt61pci_rf_write(rt2x00dev
, 4, rf
->rf4
);
914 static void rt61pci_config_txpower(struct rt2x00_dev
*rt2x00dev
,
917 struct rf_channel rf
;
919 rf
.rf1
= rt2x00_rf_read(rt2x00dev
, 1);
920 rf
.rf2
= rt2x00_rf_read(rt2x00dev
, 2);
921 rf
.rf3
= rt2x00_rf_read(rt2x00dev
, 3);
922 rf
.rf4
= rt2x00_rf_read(rt2x00dev
, 4);
924 rt61pci_config_channel(rt2x00dev
, &rf
, txpower
);
927 static void rt61pci_config_retry_limit(struct rt2x00_dev
*rt2x00dev
,
928 struct rt2x00lib_conf
*libconf
)
932 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR4
);
933 rt2x00_set_field32(®
, TXRX_CSR4_OFDM_TX_RATE_DOWN
, 1);
934 rt2x00_set_field32(®
, TXRX_CSR4_OFDM_TX_RATE_STEP
, 0);
935 rt2x00_set_field32(®
, TXRX_CSR4_OFDM_TX_FALLBACK_CCK
, 0);
936 rt2x00_set_field32(®
, TXRX_CSR4_LONG_RETRY_LIMIT
,
937 libconf
->conf
->long_frame_max_tx_count
);
938 rt2x00_set_field32(®
, TXRX_CSR4_SHORT_RETRY_LIMIT
,
939 libconf
->conf
->short_frame_max_tx_count
);
940 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
943 static void rt61pci_config_ps(struct rt2x00_dev
*rt2x00dev
,
944 struct rt2x00lib_conf
*libconf
)
946 enum dev_state state
=
947 (libconf
->conf
->flags
& IEEE80211_CONF_PS
) ?
948 STATE_SLEEP
: STATE_AWAKE
;
951 if (state
== STATE_SLEEP
) {
952 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR11
);
953 rt2x00_set_field32(®
, MAC_CSR11_DELAY_AFTER_TBCN
,
954 rt2x00dev
->beacon_int
- 10);
955 rt2x00_set_field32(®
, MAC_CSR11_TBCN_BEFORE_WAKEUP
,
956 libconf
->conf
->listen_interval
- 1);
957 rt2x00_set_field32(®
, MAC_CSR11_WAKEUP_LATENCY
, 5);
959 /* We must first disable autowake before it can be enabled */
960 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 0);
961 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR11
, reg
);
963 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 1);
964 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR11
, reg
);
966 rt2x00mmio_register_write(rt2x00dev
, SOFT_RESET_CSR
,
968 rt2x00mmio_register_write(rt2x00dev
, IO_CNTL_CSR
, 0x0000001c);
969 rt2x00mmio_register_write(rt2x00dev
, PCI_USEC_CSR
, 0x00000060);
971 rt61pci_mcu_request(rt2x00dev
, MCU_SLEEP
, 0xff, 0, 0);
973 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR11
);
974 rt2x00_set_field32(®
, MAC_CSR11_DELAY_AFTER_TBCN
, 0);
975 rt2x00_set_field32(®
, MAC_CSR11_TBCN_BEFORE_WAKEUP
, 0);
976 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 0);
977 rt2x00_set_field32(®
, MAC_CSR11_WAKEUP_LATENCY
, 0);
978 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR11
, reg
);
980 rt2x00mmio_register_write(rt2x00dev
, SOFT_RESET_CSR
,
982 rt2x00mmio_register_write(rt2x00dev
, IO_CNTL_CSR
, 0x00000018);
983 rt2x00mmio_register_write(rt2x00dev
, PCI_USEC_CSR
, 0x00000020);
985 rt61pci_mcu_request(rt2x00dev
, MCU_WAKEUP
, 0xff, 0, 0);
989 static void rt61pci_config(struct rt2x00_dev
*rt2x00dev
,
990 struct rt2x00lib_conf
*libconf
,
991 const unsigned int flags
)
993 /* Always recalculate LNA gain before changing configuration */
994 rt61pci_config_lna_gain(rt2x00dev
, libconf
);
996 if (flags
& IEEE80211_CONF_CHANGE_CHANNEL
)
997 rt61pci_config_channel(rt2x00dev
, &libconf
->rf
,
998 libconf
->conf
->power_level
);
999 if ((flags
& IEEE80211_CONF_CHANGE_POWER
) &&
1000 !(flags
& IEEE80211_CONF_CHANGE_CHANNEL
))
1001 rt61pci_config_txpower(rt2x00dev
, libconf
->conf
->power_level
);
1002 if (flags
& IEEE80211_CONF_CHANGE_RETRY_LIMITS
)
1003 rt61pci_config_retry_limit(rt2x00dev
, libconf
);
1004 if (flags
& IEEE80211_CONF_CHANGE_PS
)
1005 rt61pci_config_ps(rt2x00dev
, libconf
);
1011 static void rt61pci_link_stats(struct rt2x00_dev
*rt2x00dev
,
1012 struct link_qual
*qual
)
1017 * Update FCS error count from register.
1019 reg
= rt2x00mmio_register_read(rt2x00dev
, STA_CSR0
);
1020 qual
->rx_failed
= rt2x00_get_field32(reg
, STA_CSR0_FCS_ERROR
);
1023 * Update False CCA count from register.
1025 reg
= rt2x00mmio_register_read(rt2x00dev
, STA_CSR1
);
1026 qual
->false_cca
= rt2x00_get_field32(reg
, STA_CSR1_FALSE_CCA_ERROR
);
1029 static inline void rt61pci_set_vgc(struct rt2x00_dev
*rt2x00dev
,
1030 struct link_qual
*qual
, u8 vgc_level
)
1032 if (qual
->vgc_level
!= vgc_level
) {
1033 rt61pci_bbp_write(rt2x00dev
, 17, vgc_level
);
1034 qual
->vgc_level
= vgc_level
;
1035 qual
->vgc_level_reg
= vgc_level
;
1039 static void rt61pci_reset_tuner(struct rt2x00_dev
*rt2x00dev
,
1040 struct link_qual
*qual
)
1042 rt61pci_set_vgc(rt2x00dev
, qual
, 0x20);
1045 static void rt61pci_link_tuner(struct rt2x00_dev
*rt2x00dev
,
1046 struct link_qual
*qual
, const u32 count
)
1052 * Determine r17 bounds.
1054 if (rt2x00dev
->curr_band
== NL80211_BAND_5GHZ
) {
1057 if (rt2x00_has_cap_external_lna_a(rt2x00dev
)) {
1064 if (rt2x00_has_cap_external_lna_bg(rt2x00dev
)) {
1071 * If we are not associated, we should go straight to the
1072 * dynamic CCA tuning.
1074 if (!rt2x00dev
->intf_associated
)
1075 goto dynamic_cca_tune
;
1078 * Special big-R17 for very short distance
1080 if (qual
->rssi
>= -35) {
1081 rt61pci_set_vgc(rt2x00dev
, qual
, 0x60);
1086 * Special big-R17 for short distance
1088 if (qual
->rssi
>= -58) {
1089 rt61pci_set_vgc(rt2x00dev
, qual
, up_bound
);
1094 * Special big-R17 for middle-short distance
1096 if (qual
->rssi
>= -66) {
1097 rt61pci_set_vgc(rt2x00dev
, qual
, low_bound
+ 0x10);
1102 * Special mid-R17 for middle distance
1104 if (qual
->rssi
>= -74) {
1105 rt61pci_set_vgc(rt2x00dev
, qual
, low_bound
+ 0x08);
1110 * Special case: Change up_bound based on the rssi.
1111 * Lower up_bound when rssi is weaker then -74 dBm.
1113 up_bound
-= 2 * (-74 - qual
->rssi
);
1114 if (low_bound
> up_bound
)
1115 up_bound
= low_bound
;
1117 if (qual
->vgc_level
> up_bound
) {
1118 rt61pci_set_vgc(rt2x00dev
, qual
, up_bound
);
1125 * r17 does not yet exceed upper limit, continue and base
1126 * the r17 tuning on the false CCA count.
1128 if ((qual
->false_cca
> 512) && (qual
->vgc_level
< up_bound
))
1129 rt61pci_set_vgc(rt2x00dev
, qual
, ++qual
->vgc_level
);
1130 else if ((qual
->false_cca
< 100) && (qual
->vgc_level
> low_bound
))
1131 rt61pci_set_vgc(rt2x00dev
, qual
, --qual
->vgc_level
);
1137 static void rt61pci_start_queue(struct data_queue
*queue
)
1139 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
1142 switch (queue
->qid
) {
1144 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR0
);
1145 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 0);
1146 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1149 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR9
);
1150 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 1);
1151 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 1);
1152 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 1);
1153 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1160 static void rt61pci_kick_queue(struct data_queue
*queue
)
1162 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
1165 switch (queue
->qid
) {
1167 reg
= rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
);
1168 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC0
, 1);
1169 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1172 reg
= rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
);
1173 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC1
, 1);
1174 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1177 reg
= rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
);
1178 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC2
, 1);
1179 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1182 reg
= rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
);
1183 rt2x00_set_field32(®
, TX_CNTL_CSR_KICK_TX_AC3
, 1);
1184 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1191 static void rt61pci_stop_queue(struct data_queue
*queue
)
1193 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
1196 switch (queue
->qid
) {
1198 reg
= rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
);
1199 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC0
, 1);
1200 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1203 reg
= rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
);
1204 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC1
, 1);
1205 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1208 reg
= rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
);
1209 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC2
, 1);
1210 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1213 reg
= rt2x00mmio_register_read(rt2x00dev
, TX_CNTL_CSR
);
1214 rt2x00_set_field32(®
, TX_CNTL_CSR_ABORT_TX_AC3
, 1);
1215 rt2x00mmio_register_write(rt2x00dev
, TX_CNTL_CSR
, reg
);
1218 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR0
);
1219 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 1);
1220 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1223 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR9
);
1224 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 0);
1225 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 0);
1226 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1227 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1230 * Wait for possibly running tbtt tasklets.
1232 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
1240 * Firmware functions
1242 static char *rt61pci_get_firmware_name(struct rt2x00_dev
*rt2x00dev
)
1247 pci_read_config_word(to_pci_dev(rt2x00dev
->dev
), PCI_DEVICE_ID
, &chip
);
1250 fw_name
= FIRMWARE_RT2561
;
1252 case RT2561s_PCI_ID
:
1253 fw_name
= FIRMWARE_RT2561s
;
1256 fw_name
= FIRMWARE_RT2661
;
1266 static int rt61pci_check_firmware(struct rt2x00_dev
*rt2x00dev
,
1267 const u8
*data
, const size_t len
)
1273 * Only support 8kb firmware files.
1276 return FW_BAD_LENGTH
;
1279 * The last 2 bytes in the firmware array are the crc checksum itself.
1280 * This means that we should never pass those 2 bytes to the crc
1283 fw_crc
= (data
[len
- 2] << 8 | data
[len
- 1]);
1286 * Use the crc itu-t algorithm.
1288 crc
= crc_itu_t(0, data
, len
- 2);
1289 crc
= crc_itu_t_byte(crc
, 0);
1290 crc
= crc_itu_t_byte(crc
, 0);
1292 return (fw_crc
== crc
) ? FW_OK
: FW_BAD_CRC
;
1295 static int rt61pci_load_firmware(struct rt2x00_dev
*rt2x00dev
,
1296 const u8
*data
, const size_t len
)
1302 * Wait for stable hardware.
1304 for (i
= 0; i
< 100; i
++) {
1305 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR0
);
1312 rt2x00_err(rt2x00dev
, "Unstable hardware\n");
1317 * Prepare MCU and mailbox for firmware loading.
1320 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 1);
1321 rt2x00mmio_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
1322 rt2x00mmio_register_write(rt2x00dev
, M2H_CMD_DONE_CSR
, 0xffffffff);
1323 rt2x00mmio_register_write(rt2x00dev
, H2M_MAILBOX_CSR
, 0);
1324 rt2x00mmio_register_write(rt2x00dev
, HOST_CMD_CSR
, 0);
1327 * Write firmware to device.
1330 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 1);
1331 rt2x00_set_field32(®
, MCU_CNTL_CSR_SELECT_BANK
, 1);
1332 rt2x00mmio_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
1334 rt2x00mmio_register_multiwrite(rt2x00dev
, FIRMWARE_IMAGE_BASE
,
1337 rt2x00_set_field32(®
, MCU_CNTL_CSR_SELECT_BANK
, 0);
1338 rt2x00mmio_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
1340 rt2x00_set_field32(®
, MCU_CNTL_CSR_RESET
, 0);
1341 rt2x00mmio_register_write(rt2x00dev
, MCU_CNTL_CSR
, reg
);
1343 for (i
= 0; i
< 100; i
++) {
1344 reg
= rt2x00mmio_register_read(rt2x00dev
, MCU_CNTL_CSR
);
1345 if (rt2x00_get_field32(reg
, MCU_CNTL_CSR_READY
))
1351 rt2x00_err(rt2x00dev
, "MCU Control register not ready\n");
1356 * Hardware needs another millisecond before it is ready.
1361 * Reset MAC and BBP registers.
1364 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 1);
1365 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 1);
1366 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1368 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR1
);
1369 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 0);
1370 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 0);
1371 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1373 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR1
);
1374 rt2x00_set_field32(®
, MAC_CSR1_HOST_READY
, 1);
1375 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1381 * Initialization functions.
1383 static bool rt61pci_get_entry_state(struct queue_entry
*entry
)
1385 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
1388 if (entry
->queue
->qid
== QID_RX
) {
1389 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
1391 return rt2x00_get_field32(word
, RXD_W0_OWNER_NIC
);
1393 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
1395 return (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
1396 rt2x00_get_field32(word
, TXD_W0_VALID
));
1400 static void rt61pci_clear_entry(struct queue_entry
*entry
)
1402 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
1403 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1406 if (entry
->queue
->qid
== QID_RX
) {
1407 word
= rt2x00_desc_read(entry_priv
->desc
, 5);
1408 rt2x00_set_field32(&word
, RXD_W5_BUFFER_PHYSICAL_ADDRESS
,
1410 rt2x00_desc_write(entry_priv
->desc
, 5, word
);
1412 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
1413 rt2x00_set_field32(&word
, RXD_W0_OWNER_NIC
, 1);
1414 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
1416 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
1417 rt2x00_set_field32(&word
, TXD_W0_VALID
, 0);
1418 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 0);
1419 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
1423 static int rt61pci_init_queues(struct rt2x00_dev
*rt2x00dev
)
1425 struct queue_entry_priv_mmio
*entry_priv
;
1429 * Initialize registers.
1431 reg
= rt2x00mmio_register_read(rt2x00dev
, TX_RING_CSR0
);
1432 rt2x00_set_field32(®
, TX_RING_CSR0_AC0_RING_SIZE
,
1433 rt2x00dev
->tx
[0].limit
);
1434 rt2x00_set_field32(®
, TX_RING_CSR0_AC1_RING_SIZE
,
1435 rt2x00dev
->tx
[1].limit
);
1436 rt2x00_set_field32(®
, TX_RING_CSR0_AC2_RING_SIZE
,
1437 rt2x00dev
->tx
[2].limit
);
1438 rt2x00_set_field32(®
, TX_RING_CSR0_AC3_RING_SIZE
,
1439 rt2x00dev
->tx
[3].limit
);
1440 rt2x00mmio_register_write(rt2x00dev
, TX_RING_CSR0
, reg
);
1442 reg
= rt2x00mmio_register_read(rt2x00dev
, TX_RING_CSR1
);
1443 rt2x00_set_field32(®
, TX_RING_CSR1_TXD_SIZE
,
1444 rt2x00dev
->tx
[0].desc_size
/ 4);
1445 rt2x00mmio_register_write(rt2x00dev
, TX_RING_CSR1
, reg
);
1447 entry_priv
= rt2x00dev
->tx
[0].entries
[0].priv_data
;
1448 reg
= rt2x00mmio_register_read(rt2x00dev
, AC0_BASE_CSR
);
1449 rt2x00_set_field32(®
, AC0_BASE_CSR_RING_REGISTER
,
1450 entry_priv
->desc_dma
);
1451 rt2x00mmio_register_write(rt2x00dev
, AC0_BASE_CSR
, reg
);
1453 entry_priv
= rt2x00dev
->tx
[1].entries
[0].priv_data
;
1454 reg
= rt2x00mmio_register_read(rt2x00dev
, AC1_BASE_CSR
);
1455 rt2x00_set_field32(®
, AC1_BASE_CSR_RING_REGISTER
,
1456 entry_priv
->desc_dma
);
1457 rt2x00mmio_register_write(rt2x00dev
, AC1_BASE_CSR
, reg
);
1459 entry_priv
= rt2x00dev
->tx
[2].entries
[0].priv_data
;
1460 reg
= rt2x00mmio_register_read(rt2x00dev
, AC2_BASE_CSR
);
1461 rt2x00_set_field32(®
, AC2_BASE_CSR_RING_REGISTER
,
1462 entry_priv
->desc_dma
);
1463 rt2x00mmio_register_write(rt2x00dev
, AC2_BASE_CSR
, reg
);
1465 entry_priv
= rt2x00dev
->tx
[3].entries
[0].priv_data
;
1466 reg
= rt2x00mmio_register_read(rt2x00dev
, AC3_BASE_CSR
);
1467 rt2x00_set_field32(®
, AC3_BASE_CSR_RING_REGISTER
,
1468 entry_priv
->desc_dma
);
1469 rt2x00mmio_register_write(rt2x00dev
, AC3_BASE_CSR
, reg
);
1471 reg
= rt2x00mmio_register_read(rt2x00dev
, RX_RING_CSR
);
1472 rt2x00_set_field32(®
, RX_RING_CSR_RING_SIZE
, rt2x00dev
->rx
->limit
);
1473 rt2x00_set_field32(®
, RX_RING_CSR_RXD_SIZE
,
1474 rt2x00dev
->rx
->desc_size
/ 4);
1475 rt2x00_set_field32(®
, RX_RING_CSR_RXD_WRITEBACK_SIZE
, 4);
1476 rt2x00mmio_register_write(rt2x00dev
, RX_RING_CSR
, reg
);
1478 entry_priv
= rt2x00dev
->rx
->entries
[0].priv_data
;
1479 reg
= rt2x00mmio_register_read(rt2x00dev
, RX_BASE_CSR
);
1480 rt2x00_set_field32(®
, RX_BASE_CSR_RING_REGISTER
,
1481 entry_priv
->desc_dma
);
1482 rt2x00mmio_register_write(rt2x00dev
, RX_BASE_CSR
, reg
);
1484 reg
= rt2x00mmio_register_read(rt2x00dev
, TX_DMA_DST_CSR
);
1485 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC0
, 2);
1486 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC1
, 2);
1487 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC2
, 2);
1488 rt2x00_set_field32(®
, TX_DMA_DST_CSR_DEST_AC3
, 2);
1489 rt2x00mmio_register_write(rt2x00dev
, TX_DMA_DST_CSR
, reg
);
1491 reg
= rt2x00mmio_register_read(rt2x00dev
, LOAD_TX_RING_CSR
);
1492 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC0
, 1);
1493 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC1
, 1);
1494 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC2
, 1);
1495 rt2x00_set_field32(®
, LOAD_TX_RING_CSR_LOAD_TXD_AC3
, 1);
1496 rt2x00mmio_register_write(rt2x00dev
, LOAD_TX_RING_CSR
, reg
);
1498 reg
= rt2x00mmio_register_read(rt2x00dev
, RX_CNTL_CSR
);
1499 rt2x00_set_field32(®
, RX_CNTL_CSR_LOAD_RXD
, 1);
1500 rt2x00mmio_register_write(rt2x00dev
, RX_CNTL_CSR
, reg
);
1505 static int rt61pci_init_registers(struct rt2x00_dev
*rt2x00dev
)
1509 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR0
);
1510 rt2x00_set_field32(®
, TXRX_CSR0_AUTO_TX_SEQ
, 1);
1511 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 0);
1512 rt2x00_set_field32(®
, TXRX_CSR0_TX_WITHOUT_WAITING
, 0);
1513 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1515 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR1
);
1516 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0
, 47); /* CCK Signal */
1517 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0_VALID
, 1);
1518 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1
, 30); /* Rssi */
1519 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1_VALID
, 1);
1520 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2
, 42); /* OFDM Rate */
1521 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2_VALID
, 1);
1522 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3
, 30); /* Rssi */
1523 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3_VALID
, 1);
1524 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR1
, reg
);
1527 * CCK TXD BBP registers
1529 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR2
);
1530 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0
, 13);
1531 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0_VALID
, 1);
1532 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1
, 12);
1533 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1_VALID
, 1);
1534 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2
, 11);
1535 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2_VALID
, 1);
1536 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3
, 10);
1537 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3_VALID
, 1);
1538 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
1541 * OFDM TXD BBP registers
1543 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR3
);
1544 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0
, 7);
1545 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0_VALID
, 1);
1546 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1
, 6);
1547 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1_VALID
, 1);
1548 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2
, 5);
1549 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2_VALID
, 1);
1550 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR3
, reg
);
1552 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR7
);
1553 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_6MBS
, 59);
1554 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_9MBS
, 53);
1555 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_12MBS
, 49);
1556 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_18MBS
, 46);
1557 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR7
, reg
);
1559 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR8
);
1560 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_24MBS
, 44);
1561 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_36MBS
, 42);
1562 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_48MBS
, 42);
1563 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_54MBS
, 42);
1564 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR8
, reg
);
1566 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR9
);
1567 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_INTERVAL
, 0);
1568 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 0);
1569 rt2x00_set_field32(®
, TXRX_CSR9_TSF_SYNC
, 0);
1570 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 0);
1571 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1572 rt2x00_set_field32(®
, TXRX_CSR9_TIMESTAMP_COMPENSATE
, 0);
1573 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1575 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR15
, 0x0000000f);
1577 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR6
, 0x00000fff);
1579 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR9
);
1580 rt2x00_set_field32(®
, MAC_CSR9_CW_SELECT
, 0);
1581 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR9
, reg
);
1583 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR10
, 0x0000071c);
1585 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
1588 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR13
, 0x0000e000);
1591 * Invalidate all Shared Keys (SEC_CSR0),
1592 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1594 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR0
, 0x00000000);
1595 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR1
, 0x00000000);
1596 rt2x00mmio_register_write(rt2x00dev
, SEC_CSR5
, 0x00000000);
1598 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR1
, 0x000023b0);
1599 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR5
, 0x060a100c);
1600 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR6
, 0x00080606);
1601 rt2x00mmio_register_write(rt2x00dev
, PHY_CSR7
, 0x00000a08);
1603 rt2x00mmio_register_write(rt2x00dev
, PCI_CFG_CSR
, 0x28ca4404);
1605 rt2x00mmio_register_write(rt2x00dev
, TEST_MODE_CSR
, 0x00000200);
1607 rt2x00mmio_register_write(rt2x00dev
, M2H_CMD_DONE_CSR
, 0xffffffff);
1611 * For the Beacon base registers we only need to clear
1612 * the first byte since that byte contains the VALID and OWNER
1613 * bits which (when set to 0) will invalidate the entire beacon.
1615 rt2x00mmio_register_write(rt2x00dev
, HW_BEACON_BASE0
, 0);
1616 rt2x00mmio_register_write(rt2x00dev
, HW_BEACON_BASE1
, 0);
1617 rt2x00mmio_register_write(rt2x00dev
, HW_BEACON_BASE2
, 0);
1618 rt2x00mmio_register_write(rt2x00dev
, HW_BEACON_BASE3
, 0);
1621 * We must clear the error counters.
1622 * These registers are cleared on read,
1623 * so we may pass a useless variable to store the value.
1625 reg
= rt2x00mmio_register_read(rt2x00dev
, STA_CSR0
);
1626 reg
= rt2x00mmio_register_read(rt2x00dev
, STA_CSR1
);
1627 reg
= rt2x00mmio_register_read(rt2x00dev
, STA_CSR2
);
1630 * Reset MAC and BBP registers.
1632 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR1
);
1633 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 1);
1634 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 1);
1635 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1637 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR1
);
1638 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 0);
1639 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 0);
1640 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1642 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR1
);
1643 rt2x00_set_field32(®
, MAC_CSR1_HOST_READY
, 1);
1644 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1649 static int rt61pci_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
1654 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1655 value
= rt61pci_bbp_read(rt2x00dev
, 0);
1656 if ((value
!= 0xff) && (value
!= 0x00))
1658 udelay(REGISTER_BUSY_DELAY
);
1661 rt2x00_err(rt2x00dev
, "BBP register access failed, aborting\n");
1665 static int rt61pci_init_bbp(struct rt2x00_dev
*rt2x00dev
)
1672 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev
)))
1675 rt61pci_bbp_write(rt2x00dev
, 3, 0x00);
1676 rt61pci_bbp_write(rt2x00dev
, 15, 0x30);
1677 rt61pci_bbp_write(rt2x00dev
, 21, 0xc8);
1678 rt61pci_bbp_write(rt2x00dev
, 22, 0x38);
1679 rt61pci_bbp_write(rt2x00dev
, 23, 0x06);
1680 rt61pci_bbp_write(rt2x00dev
, 24, 0xfe);
1681 rt61pci_bbp_write(rt2x00dev
, 25, 0x0a);
1682 rt61pci_bbp_write(rt2x00dev
, 26, 0x0d);
1683 rt61pci_bbp_write(rt2x00dev
, 34, 0x12);
1684 rt61pci_bbp_write(rt2x00dev
, 37, 0x07);
1685 rt61pci_bbp_write(rt2x00dev
, 39, 0xf8);
1686 rt61pci_bbp_write(rt2x00dev
, 41, 0x60);
1687 rt61pci_bbp_write(rt2x00dev
, 53, 0x10);
1688 rt61pci_bbp_write(rt2x00dev
, 54, 0x18);
1689 rt61pci_bbp_write(rt2x00dev
, 60, 0x10);
1690 rt61pci_bbp_write(rt2x00dev
, 61, 0x04);
1691 rt61pci_bbp_write(rt2x00dev
, 62, 0x04);
1692 rt61pci_bbp_write(rt2x00dev
, 75, 0xfe);
1693 rt61pci_bbp_write(rt2x00dev
, 86, 0xfe);
1694 rt61pci_bbp_write(rt2x00dev
, 88, 0xfe);
1695 rt61pci_bbp_write(rt2x00dev
, 90, 0x0f);
1696 rt61pci_bbp_write(rt2x00dev
, 99, 0x00);
1697 rt61pci_bbp_write(rt2x00dev
, 102, 0x16);
1698 rt61pci_bbp_write(rt2x00dev
, 107, 0x04);
1700 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
1701 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
);
1703 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
1704 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
1705 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
1706 rt61pci_bbp_write(rt2x00dev
, reg_id
, value
);
1714 * Device state switch handlers.
1716 static void rt61pci_toggle_irq(struct rt2x00_dev
*rt2x00dev
,
1717 enum dev_state state
)
1719 int mask
= (state
== STATE_RADIO_IRQ_OFF
);
1721 unsigned long flags
;
1724 * When interrupts are being enabled, the interrupt registers
1725 * should clear the register to assure a clean state.
1727 if (state
== STATE_RADIO_IRQ_ON
) {
1728 reg
= rt2x00mmio_register_read(rt2x00dev
, INT_SOURCE_CSR
);
1729 rt2x00mmio_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
1731 reg
= rt2x00mmio_register_read(rt2x00dev
, MCU_INT_SOURCE_CSR
);
1732 rt2x00mmio_register_write(rt2x00dev
, MCU_INT_SOURCE_CSR
, reg
);
1736 * Only toggle the interrupts bits we are going to use.
1737 * Non-checked interrupt bits are disabled by default.
1739 spin_lock_irqsave(&rt2x00dev
->irqmask_lock
, flags
);
1741 reg
= rt2x00mmio_register_read(rt2x00dev
, INT_MASK_CSR
);
1742 rt2x00_set_field32(®
, INT_MASK_CSR_TXDONE
, mask
);
1743 rt2x00_set_field32(®
, INT_MASK_CSR_RXDONE
, mask
);
1744 rt2x00_set_field32(®
, INT_MASK_CSR_BEACON_DONE
, mask
);
1745 rt2x00_set_field32(®
, INT_MASK_CSR_ENABLE_MITIGATION
, mask
);
1746 rt2x00_set_field32(®
, INT_MASK_CSR_MITIGATION_PERIOD
, 0xff);
1747 rt2x00mmio_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
1749 reg
= rt2x00mmio_register_read(rt2x00dev
, MCU_INT_MASK_CSR
);
1750 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_0
, mask
);
1751 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_1
, mask
);
1752 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_2
, mask
);
1753 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_3
, mask
);
1754 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_4
, mask
);
1755 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_5
, mask
);
1756 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_6
, mask
);
1757 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_7
, mask
);
1758 rt2x00_set_field32(®
, MCU_INT_MASK_CSR_TWAKEUP
, mask
);
1759 rt2x00mmio_register_write(rt2x00dev
, MCU_INT_MASK_CSR
, reg
);
1761 spin_unlock_irqrestore(&rt2x00dev
->irqmask_lock
, flags
);
1763 if (state
== STATE_RADIO_IRQ_OFF
) {
1765 * Ensure that all tasklets are finished.
1767 tasklet_kill(&rt2x00dev
->txstatus_tasklet
);
1768 tasklet_kill(&rt2x00dev
->rxdone_tasklet
);
1769 tasklet_kill(&rt2x00dev
->autowake_tasklet
);
1770 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
1774 static int rt61pci_enable_radio(struct rt2x00_dev
*rt2x00dev
)
1779 * Initialize all registers.
1781 if (unlikely(rt61pci_init_queues(rt2x00dev
) ||
1782 rt61pci_init_registers(rt2x00dev
) ||
1783 rt61pci_init_bbp(rt2x00dev
)))
1789 reg
= rt2x00mmio_register_read(rt2x00dev
, RX_CNTL_CSR
);
1790 rt2x00_set_field32(®
, RX_CNTL_CSR_ENABLE_RX_DMA
, 1);
1791 rt2x00mmio_register_write(rt2x00dev
, RX_CNTL_CSR
, reg
);
1796 static void rt61pci_disable_radio(struct rt2x00_dev
*rt2x00dev
)
1801 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR10
, 0x00001818);
1804 static int rt61pci_set_state(struct rt2x00_dev
*rt2x00dev
, enum dev_state state
)
1810 put_to_sleep
= (state
!= STATE_AWAKE
);
1812 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR12
);
1813 rt2x00_set_field32(®
, MAC_CSR12_FORCE_WAKEUP
, !put_to_sleep
);
1814 rt2x00_set_field32(®
, MAC_CSR12_PUT_TO_SLEEP
, put_to_sleep
);
1815 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR12
, reg
);
1818 * Device is not guaranteed to be in the requested state yet.
1819 * We must wait until the register indicates that the
1820 * device has entered the correct state.
1822 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1823 reg2
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR12
);
1824 state
= rt2x00_get_field32(reg2
, MAC_CSR12_BBP_CURRENT_STATE
);
1825 if (state
== !put_to_sleep
)
1827 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR12
, reg
);
1834 static int rt61pci_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1835 enum dev_state state
)
1840 case STATE_RADIO_ON
:
1841 retval
= rt61pci_enable_radio(rt2x00dev
);
1843 case STATE_RADIO_OFF
:
1844 rt61pci_disable_radio(rt2x00dev
);
1846 case STATE_RADIO_IRQ_ON
:
1847 case STATE_RADIO_IRQ_OFF
:
1848 rt61pci_toggle_irq(rt2x00dev
, state
);
1850 case STATE_DEEP_SLEEP
:
1854 retval
= rt61pci_set_state(rt2x00dev
, state
);
1861 if (unlikely(retval
))
1862 rt2x00_err(rt2x00dev
, "Device failed to enter state %d (%d)\n",
1869 * TX descriptor initialization
1871 static void rt61pci_write_tx_desc(struct queue_entry
*entry
,
1872 struct txentry_desc
*txdesc
)
1874 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1875 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
1876 __le32
*txd
= entry_priv
->desc
;
1880 * Start writing the descriptor words.
1882 word
= rt2x00_desc_read(txd
, 1);
1883 rt2x00_set_field32(&word
, TXD_W1_HOST_Q_ID
, entry
->queue
->qid
);
1884 rt2x00_set_field32(&word
, TXD_W1_AIFSN
, entry
->queue
->aifs
);
1885 rt2x00_set_field32(&word
, TXD_W1_CWMIN
, entry
->queue
->cw_min
);
1886 rt2x00_set_field32(&word
, TXD_W1_CWMAX
, entry
->queue
->cw_max
);
1887 rt2x00_set_field32(&word
, TXD_W1_IV_OFFSET
, txdesc
->iv_offset
);
1888 rt2x00_set_field32(&word
, TXD_W1_HW_SEQUENCE
,
1889 test_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
));
1890 rt2x00_set_field32(&word
, TXD_W1_BUFFER_COUNT
, 1);
1891 rt2x00_desc_write(txd
, 1, word
);
1893 word
= rt2x00_desc_read(txd
, 2);
1894 rt2x00_set_field32(&word
, TXD_W2_PLCP_SIGNAL
, txdesc
->u
.plcp
.signal
);
1895 rt2x00_set_field32(&word
, TXD_W2_PLCP_SERVICE
, txdesc
->u
.plcp
.service
);
1896 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_LOW
,
1897 txdesc
->u
.plcp
.length_low
);
1898 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_HIGH
,
1899 txdesc
->u
.plcp
.length_high
);
1900 rt2x00_desc_write(txd
, 2, word
);
1902 if (test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
->flags
)) {
1903 _rt2x00_desc_write(txd
, 3, skbdesc
->iv
[0]);
1904 _rt2x00_desc_write(txd
, 4, skbdesc
->iv
[1]);
1907 word
= rt2x00_desc_read(txd
, 5);
1908 rt2x00_set_field32(&word
, TXD_W5_PID_TYPE
, entry
->queue
->qid
);
1909 rt2x00_set_field32(&word
, TXD_W5_PID_SUBTYPE
, entry
->entry_idx
);
1910 rt2x00_set_field32(&word
, TXD_W5_TX_POWER
,
1911 TXPOWER_TO_DEV(entry
->queue
->rt2x00dev
->tx_power
));
1912 rt2x00_set_field32(&word
, TXD_W5_WAITING_DMA_DONE_INT
, 1);
1913 rt2x00_desc_write(txd
, 5, word
);
1915 if (entry
->queue
->qid
!= QID_BEACON
) {
1916 word
= rt2x00_desc_read(txd
, 6);
1917 rt2x00_set_field32(&word
, TXD_W6_BUFFER_PHYSICAL_ADDRESS
,
1919 rt2x00_desc_write(txd
, 6, word
);
1921 word
= rt2x00_desc_read(txd
, 11);
1922 rt2x00_set_field32(&word
, TXD_W11_BUFFER_LENGTH0
,
1924 rt2x00_desc_write(txd
, 11, word
);
1928 * Writing TXD word 0 must the last to prevent a race condition with
1929 * the device, whereby the device may take hold of the TXD before we
1930 * finished updating it.
1932 word
= rt2x00_desc_read(txd
, 0);
1933 rt2x00_set_field32(&word
, TXD_W0_OWNER_NIC
, 1);
1934 rt2x00_set_field32(&word
, TXD_W0_VALID
, 1);
1935 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1936 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1937 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1938 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1939 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1940 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1941 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1942 (txdesc
->rate_mode
== RATE_MODE_OFDM
));
1943 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->u
.plcp
.ifs
);
1944 rt2x00_set_field32(&word
, TXD_W0_RETRY_MODE
,
1945 test_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
));
1946 rt2x00_set_field32(&word
, TXD_W0_TKIP_MIC
,
1947 test_bit(ENTRY_TXD_ENCRYPT_MMIC
, &txdesc
->flags
));
1948 rt2x00_set_field32(&word
, TXD_W0_KEY_TABLE
,
1949 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE
, &txdesc
->flags
));
1950 rt2x00_set_field32(&word
, TXD_W0_KEY_INDEX
, txdesc
->key_idx
);
1951 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, txdesc
->length
);
1952 rt2x00_set_field32(&word
, TXD_W0_BURST
,
1953 test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
));
1954 rt2x00_set_field32(&word
, TXD_W0_CIPHER_ALG
, txdesc
->cipher
);
1955 rt2x00_desc_write(txd
, 0, word
);
1958 * Register descriptor details in skb frame descriptor.
1960 skbdesc
->desc
= txd
;
1961 skbdesc
->desc_len
= (entry
->queue
->qid
== QID_BEACON
) ? TXINFO_SIZE
:
1966 * TX data initialization
1968 static void rt61pci_write_beacon(struct queue_entry
*entry
,
1969 struct txentry_desc
*txdesc
)
1971 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1972 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
1973 unsigned int beacon_base
;
1974 unsigned int padding_len
;
1978 * Disable beaconing while we are reloading the beacon data,
1979 * otherwise we might be sending out invalid data.
1981 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR9
);
1983 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1984 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1987 * Write the TX descriptor for the beacon.
1989 rt61pci_write_tx_desc(entry
, txdesc
);
1992 * Dump beacon to userspace through debugfs.
1994 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_BEACON
, entry
);
1997 * Write entire beacon with descriptor and padding to register.
1999 padding_len
= roundup(entry
->skb
->len
, 4) - entry
->skb
->len
;
2000 if (padding_len
&& skb_pad(entry
->skb
, padding_len
)) {
2001 rt2x00_err(rt2x00dev
, "Failure padding beacon, aborting\n");
2002 /* skb freed by skb_pad() on failure */
2004 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, orig_reg
);
2008 beacon_base
= HW_BEACON_OFFSET(entry
->entry_idx
);
2009 rt2x00mmio_register_multiwrite(rt2x00dev
, beacon_base
,
2010 entry_priv
->desc
, TXINFO_SIZE
);
2011 rt2x00mmio_register_multiwrite(rt2x00dev
, beacon_base
+ TXINFO_SIZE
,
2013 entry
->skb
->len
+ padding_len
);
2016 * Enable beaconing again.
2018 * For Wi-Fi faily generated beacons between participating
2019 * stations. Set TBTT phase adaptive adjustment step to 8us.
2021 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR10
, 0x00001008);
2023 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 1);
2024 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
2027 * Clean up beacon skb.
2029 dev_kfree_skb_any(entry
->skb
);
2033 static void rt61pci_clear_beacon(struct queue_entry
*entry
)
2035 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
2039 * Disable beaconing while we are reloading the beacon data,
2040 * otherwise we might be sending out invalid data.
2042 orig_reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR9
);
2044 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
2045 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
2050 rt2x00mmio_register_write(rt2x00dev
,
2051 HW_BEACON_OFFSET(entry
->entry_idx
), 0);
2054 * Restore global beaconing state.
2056 rt2x00mmio_register_write(rt2x00dev
, TXRX_CSR9
, orig_reg
);
2060 * RX control handlers
2062 static int rt61pci_agc_to_rssi(struct rt2x00_dev
*rt2x00dev
, int rxd_w1
)
2064 u8 offset
= rt2x00dev
->lna_gain
;
2067 lna
= rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_LNA
);
2082 if (rt2x00dev
->curr_band
== NL80211_BAND_5GHZ
) {
2083 if (lna
== 3 || lna
== 2)
2087 return rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_AGC
) * 2 - offset
;
2090 static void rt61pci_fill_rxdone(struct queue_entry
*entry
,
2091 struct rxdone_entry_desc
*rxdesc
)
2093 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
2094 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
2098 word0
= rt2x00_desc_read(entry_priv
->desc
, 0);
2099 word1
= rt2x00_desc_read(entry_priv
->desc
, 1);
2101 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
2102 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
2104 rxdesc
->cipher
= rt2x00_get_field32(word0
, RXD_W0_CIPHER_ALG
);
2105 rxdesc
->cipher_status
= rt2x00_get_field32(word0
, RXD_W0_CIPHER_ERROR
);
2107 if (rxdesc
->cipher
!= CIPHER_NONE
) {
2108 rxdesc
->iv
[0] = _rt2x00_desc_read(entry_priv
->desc
, 2);
2109 rxdesc
->iv
[1] = _rt2x00_desc_read(entry_priv
->desc
, 3);
2110 rxdesc
->dev_flags
|= RXDONE_CRYPTO_IV
;
2112 rxdesc
->icv
= _rt2x00_desc_read(entry_priv
->desc
, 4);
2113 rxdesc
->dev_flags
|= RXDONE_CRYPTO_ICV
;
2116 * Hardware has stripped IV/EIV data from 802.11 frame during
2117 * decryption. It has provided the data separately but rt2x00lib
2118 * should decide if it should be reinserted.
2120 rxdesc
->flags
|= RX_FLAG_IV_STRIPPED
;
2123 * The hardware has already checked the Michael Mic and has
2124 * stripped it from the frame. Signal this to mac80211.
2126 rxdesc
->flags
|= RX_FLAG_MMIC_STRIPPED
;
2128 if (rxdesc
->cipher_status
== RX_CRYPTO_SUCCESS
)
2129 rxdesc
->flags
|= RX_FLAG_DECRYPTED
;
2130 else if (rxdesc
->cipher_status
== RX_CRYPTO_FAIL_MIC
)
2131 rxdesc
->flags
|= RX_FLAG_MMIC_ERROR
;
2135 * Obtain the status about this packet.
2136 * When frame was received with an OFDM bitrate,
2137 * the signal is the PLCP value. If it was received with
2138 * a CCK bitrate the signal is the rate in 100kbit/s.
2140 rxdesc
->signal
= rt2x00_get_field32(word1
, RXD_W1_SIGNAL
);
2141 rxdesc
->rssi
= rt61pci_agc_to_rssi(rt2x00dev
, word1
);
2142 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
2144 if (rt2x00_get_field32(word0
, RXD_W0_OFDM
))
2145 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
2147 rxdesc
->dev_flags
|= RXDONE_SIGNAL_BITRATE
;
2148 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
2149 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
2153 * Interrupt functions.
2155 static void rt61pci_txdone(struct rt2x00_dev
*rt2x00dev
)
2157 struct data_queue
*queue
;
2158 struct queue_entry
*entry
;
2159 struct queue_entry
*entry_done
;
2160 struct queue_entry_priv_mmio
*entry_priv
;
2161 struct txdone_entry_desc txdesc
;
2169 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2170 * at most X times and also stop processing once the TX_STA_FIFO_VALID
2171 * flag is not set anymore.
2173 * The legacy drivers use X=TX_RING_SIZE but state in a comment
2174 * that the TX_STA_FIFO stack has a size of 16. We stick to our
2175 * tx ring size for now.
2177 for (i
= 0; i
< rt2x00dev
->tx
->limit
; i
++) {
2178 reg
= rt2x00mmio_register_read(rt2x00dev
, STA_CSR4
);
2179 if (!rt2x00_get_field32(reg
, STA_CSR4_VALID
))
2183 * Skip this entry when it contains an invalid
2184 * queue identication number.
2186 type
= rt2x00_get_field32(reg
, STA_CSR4_PID_TYPE
);
2187 queue
= rt2x00queue_get_tx_queue(rt2x00dev
, type
);
2188 if (unlikely(!queue
))
2192 * Skip this entry when it contains an invalid
2195 index
= rt2x00_get_field32(reg
, STA_CSR4_PID_SUBTYPE
);
2196 if (unlikely(index
>= queue
->limit
))
2199 entry
= &queue
->entries
[index
];
2200 entry_priv
= entry
->priv_data
;
2201 word
= rt2x00_desc_read(entry_priv
->desc
, 0);
2203 if (rt2x00_get_field32(word
, TXD_W0_OWNER_NIC
) ||
2204 !rt2x00_get_field32(word
, TXD_W0_VALID
))
2207 entry_done
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
2208 while (entry
!= entry_done
) {
2210 * Just report any entries we missed as failed.
2212 rt2x00_warn(rt2x00dev
, "TX status report missed for entry %d\n",
2213 entry_done
->entry_idx
);
2215 rt2x00lib_txdone_noinfo(entry_done
, TXDONE_UNKNOWN
);
2216 entry_done
= rt2x00queue_get_entry(queue
, Q_INDEX_DONE
);
2220 * Obtain the status about this packet.
2223 switch (rt2x00_get_field32(reg
, STA_CSR4_TX_RESULT
)) {
2224 case 0: /* Success, maybe with retry */
2225 __set_bit(TXDONE_SUCCESS
, &txdesc
.flags
);
2227 case 6: /* Failure, excessive retries */
2228 __set_bit(TXDONE_EXCESSIVE_RETRY
, &txdesc
.flags
);
2229 /* Don't break, this is a failed frame! */
2230 default: /* Failure */
2231 __set_bit(TXDONE_FAILURE
, &txdesc
.flags
);
2233 txdesc
.retry
= rt2x00_get_field32(reg
, STA_CSR4_RETRY_COUNT
);
2236 * the frame was retried at least once
2237 * -> hw used fallback rates
2240 __set_bit(TXDONE_FALLBACK
, &txdesc
.flags
);
2242 rt2x00lib_txdone(entry
, &txdesc
);
2246 static void rt61pci_wakeup(struct rt2x00_dev
*rt2x00dev
)
2248 struct rt2x00lib_conf libconf
= { .conf
= &rt2x00dev
->hw
->conf
};
2250 rt61pci_config(rt2x00dev
, &libconf
, IEEE80211_CONF_CHANGE_PS
);
2253 static inline void rt61pci_enable_interrupt(struct rt2x00_dev
*rt2x00dev
,
2254 struct rt2x00_field32 irq_field
)
2259 * Enable a single interrupt. The interrupt mask register
2260 * access needs locking.
2262 spin_lock_irq(&rt2x00dev
->irqmask_lock
);
2264 reg
= rt2x00mmio_register_read(rt2x00dev
, INT_MASK_CSR
);
2265 rt2x00_set_field32(®
, irq_field
, 0);
2266 rt2x00mmio_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
2268 spin_unlock_irq(&rt2x00dev
->irqmask_lock
);
2271 static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev
*rt2x00dev
,
2272 struct rt2x00_field32 irq_field
)
2277 * Enable a single MCU interrupt. The interrupt mask register
2278 * access needs locking.
2280 spin_lock_irq(&rt2x00dev
->irqmask_lock
);
2282 reg
= rt2x00mmio_register_read(rt2x00dev
, MCU_INT_MASK_CSR
);
2283 rt2x00_set_field32(®
, irq_field
, 0);
2284 rt2x00mmio_register_write(rt2x00dev
, MCU_INT_MASK_CSR
, reg
);
2286 spin_unlock_irq(&rt2x00dev
->irqmask_lock
);
2289 static void rt61pci_txstatus_tasklet(unsigned long data
)
2291 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
2292 rt61pci_txdone(rt2x00dev
);
2293 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
2294 rt61pci_enable_interrupt(rt2x00dev
, INT_MASK_CSR_TXDONE
);
2297 static void rt61pci_tbtt_tasklet(unsigned long data
)
2299 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
2300 rt2x00lib_beacondone(rt2x00dev
);
2301 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
2302 rt61pci_enable_interrupt(rt2x00dev
, INT_MASK_CSR_BEACON_DONE
);
2305 static void rt61pci_rxdone_tasklet(unsigned long data
)
2307 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
2308 if (rt2x00mmio_rxdone(rt2x00dev
))
2309 tasklet_schedule(&rt2x00dev
->rxdone_tasklet
);
2310 else if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
2311 rt61pci_enable_interrupt(rt2x00dev
, INT_MASK_CSR_RXDONE
);
2314 static void rt61pci_autowake_tasklet(unsigned long data
)
2316 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
2317 rt61pci_wakeup(rt2x00dev
);
2318 rt2x00mmio_register_write(rt2x00dev
,
2319 M2H_CMD_DONE_CSR
, 0xffffffff);
2320 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
2321 rt61pci_enable_mcu_interrupt(rt2x00dev
, MCU_INT_MASK_CSR_TWAKEUP
);
2324 static irqreturn_t
rt61pci_interrupt(int irq
, void *dev_instance
)
2326 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
2327 u32 reg_mcu
, mask_mcu
;
2331 * Get the interrupt sources & saved to local variable.
2332 * Write register value back to clear pending interrupts.
2334 reg_mcu
= rt2x00mmio_register_read(rt2x00dev
, MCU_INT_SOURCE_CSR
);
2335 rt2x00mmio_register_write(rt2x00dev
, MCU_INT_SOURCE_CSR
, reg_mcu
);
2337 reg
= rt2x00mmio_register_read(rt2x00dev
, INT_SOURCE_CSR
);
2338 rt2x00mmio_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
2340 if (!reg
&& !reg_mcu
)
2343 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
2347 * Schedule tasklets for interrupt handling.
2349 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_RXDONE
))
2350 tasklet_schedule(&rt2x00dev
->rxdone_tasklet
);
2352 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_TXDONE
))
2353 tasklet_schedule(&rt2x00dev
->txstatus_tasklet
);
2355 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_BEACON_DONE
))
2356 tasklet_hi_schedule(&rt2x00dev
->tbtt_tasklet
);
2358 if (rt2x00_get_field32(reg_mcu
, MCU_INT_SOURCE_CSR_TWAKEUP
))
2359 tasklet_schedule(&rt2x00dev
->autowake_tasklet
);
2362 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2363 * for interrupts and interrupt masks we can just use the value of
2364 * INT_SOURCE_CSR to create the interrupt mask.
2370 * Disable all interrupts for which a tasklet was scheduled right now,
2371 * the tasklet will reenable the appropriate interrupts.
2373 spin_lock(&rt2x00dev
->irqmask_lock
);
2375 reg
= rt2x00mmio_register_read(rt2x00dev
, INT_MASK_CSR
);
2377 rt2x00mmio_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
2379 reg
= rt2x00mmio_register_read(rt2x00dev
, MCU_INT_MASK_CSR
);
2381 rt2x00mmio_register_write(rt2x00dev
, MCU_INT_MASK_CSR
, reg
);
2383 spin_unlock(&rt2x00dev
->irqmask_lock
);
2389 * Device probe functions.
2391 static int rt61pci_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
2393 struct eeprom_93cx6 eeprom
;
2399 reg
= rt2x00mmio_register_read(rt2x00dev
, E2PROM_CSR
);
2401 eeprom
.data
= rt2x00dev
;
2402 eeprom
.register_read
= rt61pci_eepromregister_read
;
2403 eeprom
.register_write
= rt61pci_eepromregister_write
;
2404 eeprom
.width
= rt2x00_get_field32(reg
, E2PROM_CSR_TYPE_93C46
) ?
2405 PCI_EEPROM_WIDTH_93C46
: PCI_EEPROM_WIDTH_93C66
;
2406 eeprom
.reg_data_in
= 0;
2407 eeprom
.reg_data_out
= 0;
2408 eeprom
.reg_data_clock
= 0;
2409 eeprom
.reg_chip_select
= 0;
2411 eeprom_93cx6_multiread(&eeprom
, EEPROM_BASE
, rt2x00dev
->eeprom
,
2412 EEPROM_SIZE
/ sizeof(u16
));
2415 * Start validation of the data that has been read.
2417 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
2418 rt2x00lib_set_mac_address(rt2x00dev
, mac
);
2420 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
);
2421 if (word
== 0xffff) {
2422 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
2423 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
2425 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
2427 rt2x00_set_field16(&word
, EEPROM_ANTENNA_FRAME_TYPE
, 0);
2428 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
2429 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
2430 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF5225
);
2431 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
2432 rt2x00_eeprom_dbg(rt2x00dev
, "Antenna: 0x%04x\n", word
);
2435 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
);
2436 if (word
== 0xffff) {
2437 rt2x00_set_field16(&word
, EEPROM_NIC_ENABLE_DIVERSITY
, 0);
2438 rt2x00_set_field16(&word
, EEPROM_NIC_TX_DIVERSITY
, 0);
2439 rt2x00_set_field16(&word
, EEPROM_NIC_RX_FIXED
, 0);
2440 rt2x00_set_field16(&word
, EEPROM_NIC_TX_FIXED
, 0);
2441 rt2x00_set_field16(&word
, EEPROM_NIC_EXTERNAL_LNA_BG
, 0);
2442 rt2x00_set_field16(&word
, EEPROM_NIC_CARDBUS_ACCEL
, 0);
2443 rt2x00_set_field16(&word
, EEPROM_NIC_EXTERNAL_LNA_A
, 0);
2444 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
2445 rt2x00_eeprom_dbg(rt2x00dev
, "NIC: 0x%04x\n", word
);
2448 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
);
2449 if (word
== 0xffff) {
2450 rt2x00_set_field16(&word
, EEPROM_LED_LED_MODE
,
2452 rt2x00_eeprom_write(rt2x00dev
, EEPROM_LED
, word
);
2453 rt2x00_eeprom_dbg(rt2x00dev
, "Led: 0x%04x\n", word
);
2456 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
);
2457 if (word
== 0xffff) {
2458 rt2x00_set_field16(&word
, EEPROM_FREQ_OFFSET
, 0);
2459 rt2x00_set_field16(&word
, EEPROM_FREQ_SEQ
, 0);
2460 rt2x00_eeprom_write(rt2x00dev
, EEPROM_FREQ
, word
);
2461 rt2x00_eeprom_dbg(rt2x00dev
, "Freq: 0x%04x\n", word
);
2464 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
);
2465 if (word
== 0xffff) {
2466 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
2467 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
2468 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
2469 rt2x00_eeprom_dbg(rt2x00dev
, "RSSI OFFSET BG: 0x%04x\n", word
);
2471 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_1
);
2472 if (value
< -10 || value
> 10)
2473 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
2474 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_2
);
2475 if (value
< -10 || value
> 10)
2476 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
2477 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
2480 word
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
);
2481 if (word
== 0xffff) {
2482 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
2483 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
2484 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
2485 rt2x00_eeprom_dbg(rt2x00dev
, "RSSI OFFSET A: 0x%04x\n", word
);
2487 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_1
);
2488 if (value
< -10 || value
> 10)
2489 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
2490 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_2
);
2491 if (value
< -10 || value
> 10)
2492 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
2493 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
2499 static int rt61pci_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
2506 * Read EEPROM word for configuration.
2508 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
);
2511 * Identify RF chipset.
2513 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
2514 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR0
);
2515 rt2x00_set_chip(rt2x00dev
, rt2x00_get_field32(reg
, MAC_CSR0_CHIPSET
),
2516 value
, rt2x00_get_field32(reg
, MAC_CSR0_REVISION
));
2518 if (!rt2x00_rf(rt2x00dev
, RF5225
) &&
2519 !rt2x00_rf(rt2x00dev
, RF5325
) &&
2520 !rt2x00_rf(rt2x00dev
, RF2527
) &&
2521 !rt2x00_rf(rt2x00dev
, RF2529
)) {
2522 rt2x00_err(rt2x00dev
, "Invalid RF chipset detected\n");
2527 * Determine number of antennas.
2529 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_NUM
) == 2)
2530 __set_bit(CAPABILITY_DOUBLE_ANTENNA
, &rt2x00dev
->cap_flags
);
2533 * Identify default antenna configuration.
2535 rt2x00dev
->default_ant
.tx
=
2536 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
2537 rt2x00dev
->default_ant
.rx
=
2538 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
2541 * Read the Frame type.
2543 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_FRAME_TYPE
))
2544 __set_bit(CAPABILITY_FRAME_TYPE
, &rt2x00dev
->cap_flags
);
2547 * Detect if this device has a hardware controlled radio.
2549 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
2550 __set_bit(CAPABILITY_HW_BUTTON
, &rt2x00dev
->cap_flags
);
2553 * Read frequency offset and RF programming sequence.
2555 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
);
2556 if (rt2x00_get_field16(eeprom
, EEPROM_FREQ_SEQ
))
2557 __set_bit(CAPABILITY_RF_SEQUENCE
, &rt2x00dev
->cap_flags
);
2559 rt2x00dev
->freq_offset
= rt2x00_get_field16(eeprom
, EEPROM_FREQ_OFFSET
);
2562 * Read external LNA informations.
2564 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
);
2566 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_EXTERNAL_LNA_A
))
2567 __set_bit(CAPABILITY_EXTERNAL_LNA_A
, &rt2x00dev
->cap_flags
);
2568 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_EXTERNAL_LNA_BG
))
2569 __set_bit(CAPABILITY_EXTERNAL_LNA_BG
, &rt2x00dev
->cap_flags
);
2572 * When working with a RF2529 chip without double antenna,
2573 * the antenna settings should be gathered from the NIC
2576 if (rt2x00_rf(rt2x00dev
, RF2529
) &&
2577 !rt2x00_has_cap_double_antenna(rt2x00dev
)) {
2578 rt2x00dev
->default_ant
.rx
=
2579 ANTENNA_A
+ rt2x00_get_field16(eeprom
, EEPROM_NIC_RX_FIXED
);
2580 rt2x00dev
->default_ant
.tx
=
2581 ANTENNA_B
- rt2x00_get_field16(eeprom
, EEPROM_NIC_TX_FIXED
);
2583 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_TX_DIVERSITY
))
2584 rt2x00dev
->default_ant
.tx
= ANTENNA_SW_DIVERSITY
;
2585 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_ENABLE_DIVERSITY
))
2586 rt2x00dev
->default_ant
.rx
= ANTENNA_SW_DIVERSITY
;
2590 * Store led settings, for correct led behaviour.
2591 * If the eeprom value is invalid,
2592 * switch to default led mode.
2594 #ifdef CONFIG_RT2X00_LIB_LEDS
2595 eeprom
= rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
);
2596 value
= rt2x00_get_field16(eeprom
, EEPROM_LED_LED_MODE
);
2598 rt61pci_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
2599 rt61pci_init_led(rt2x00dev
, &rt2x00dev
->led_assoc
, LED_TYPE_ASSOC
);
2600 if (value
== LED_MODE_SIGNAL_STRENGTH
)
2601 rt61pci_init_led(rt2x00dev
, &rt2x00dev
->led_qual
,
2604 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_LED_MODE
, value
);
2605 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_0
,
2606 rt2x00_get_field16(eeprom
,
2607 EEPROM_LED_POLARITY_GPIO_0
));
2608 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_1
,
2609 rt2x00_get_field16(eeprom
,
2610 EEPROM_LED_POLARITY_GPIO_1
));
2611 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_2
,
2612 rt2x00_get_field16(eeprom
,
2613 EEPROM_LED_POLARITY_GPIO_2
));
2614 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_3
,
2615 rt2x00_get_field16(eeprom
,
2616 EEPROM_LED_POLARITY_GPIO_3
));
2617 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_4
,
2618 rt2x00_get_field16(eeprom
,
2619 EEPROM_LED_POLARITY_GPIO_4
));
2620 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_ACT
,
2621 rt2x00_get_field16(eeprom
, EEPROM_LED_POLARITY_ACT
));
2622 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_READY_BG
,
2623 rt2x00_get_field16(eeprom
,
2624 EEPROM_LED_POLARITY_RDY_G
));
2625 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_READY_A
,
2626 rt2x00_get_field16(eeprom
,
2627 EEPROM_LED_POLARITY_RDY_A
));
2628 #endif /* CONFIG_RT2X00_LIB_LEDS */
2634 * RF value list for RF5225 & RF5325
2635 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2637 static const struct rf_channel rf_vals_noseq
[] = {
2638 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2639 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2640 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2641 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2642 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2643 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2644 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2645 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2646 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2647 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2648 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2649 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2650 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2651 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2653 /* 802.11 UNI / HyperLan 2 */
2654 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2655 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2656 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2657 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2658 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2659 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2660 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2661 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2663 /* 802.11 HyperLan 2 */
2664 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2665 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2666 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2667 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2668 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2669 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2670 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2671 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2672 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2673 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2676 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2677 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2678 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2679 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2680 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2681 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2683 /* MMAC(Japan)J52 ch 34,38,42,46 */
2684 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2685 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2686 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2687 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2691 * RF value list for RF5225 & RF5325
2692 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2694 static const struct rf_channel rf_vals_seq
[] = {
2695 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2696 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2697 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2698 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2699 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2700 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2701 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2702 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2703 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2704 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2705 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2706 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2707 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2708 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2710 /* 802.11 UNI / HyperLan 2 */
2711 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2712 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2713 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2714 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2715 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2716 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2717 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2718 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2720 /* 802.11 HyperLan 2 */
2721 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2722 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2723 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2724 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2725 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2726 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2727 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2728 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2729 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2730 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2733 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2734 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2735 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2736 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2737 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2738 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2740 /* MMAC(Japan)J52 ch 34,38,42,46 */
2741 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2742 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2743 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2744 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2747 static int rt61pci_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
2749 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
2750 struct channel_info
*info
;
2755 * Disable powersaving as default.
2757 rt2x00dev
->hw
->wiphy
->flags
&= ~WIPHY_FLAG_PS_ON_BY_DEFAULT
;
2760 * Initialize all hw fields.
2762 ieee80211_hw_set(rt2x00dev
->hw
, PS_NULLFUNC_STACK
);
2763 ieee80211_hw_set(rt2x00dev
->hw
, SUPPORTS_PS
);
2764 ieee80211_hw_set(rt2x00dev
->hw
, HOST_BROADCAST_PS_BUFFERING
);
2765 ieee80211_hw_set(rt2x00dev
->hw
, SIGNAL_DBM
);
2767 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
2768 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
2769 rt2x00_eeprom_addr(rt2x00dev
,
2770 EEPROM_MAC_ADDR_0
));
2773 * As rt61 has a global fallback table we cannot specify
2774 * more then one tx rate per frame but since the hw will
2775 * try several rates (based on the fallback table) we should
2776 * initialize max_report_rates to the maximum number of rates
2777 * we are going to try. Otherwise mac80211 will truncate our
2778 * reported tx rates and the rc algortihm will end up with
2781 rt2x00dev
->hw
->max_rates
= 1;
2782 rt2x00dev
->hw
->max_report_rates
= 7;
2783 rt2x00dev
->hw
->max_rate_tries
= 1;
2786 * Initialize hw_mode information.
2788 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
2789 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
2791 if (!rt2x00_has_cap_rf_sequence(rt2x00dev
)) {
2792 spec
->num_channels
= 14;
2793 spec
->channels
= rf_vals_noseq
;
2795 spec
->num_channels
= 14;
2796 spec
->channels
= rf_vals_seq
;
2799 if (rt2x00_rf(rt2x00dev
, RF5225
) || rt2x00_rf(rt2x00dev
, RF5325
)) {
2800 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
2801 spec
->num_channels
= ARRAY_SIZE(rf_vals_seq
);
2805 * Create channel information array
2807 info
= kcalloc(spec
->num_channels
, sizeof(*info
), GFP_KERNEL
);
2811 spec
->channels_info
= info
;
2813 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_G_START
);
2814 for (i
= 0; i
< 14; i
++) {
2815 info
[i
].max_power
= MAX_TXPOWER
;
2816 info
[i
].default_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
2819 if (spec
->num_channels
> 14) {
2820 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_A_START
);
2821 for (i
= 14; i
< spec
->num_channels
; i
++) {
2822 info
[i
].max_power
= MAX_TXPOWER
;
2823 info
[i
].default_power1
=
2824 TXPOWER_FROM_DEV(tx_power
[i
- 14]);
2831 static int rt61pci_probe_hw(struct rt2x00_dev
*rt2x00dev
)
2837 * Disable power saving.
2839 rt2x00mmio_register_write(rt2x00dev
, SOFT_RESET_CSR
, 0x00000007);
2842 * Allocate eeprom data.
2844 retval
= rt61pci_validate_eeprom(rt2x00dev
);
2848 retval
= rt61pci_init_eeprom(rt2x00dev
);
2853 * Enable rfkill polling by setting GPIO direction of the
2854 * rfkill switch GPIO pin correctly.
2856 reg
= rt2x00mmio_register_read(rt2x00dev
, MAC_CSR13
);
2857 rt2x00_set_field32(®
, MAC_CSR13_DIR5
, 1);
2858 rt2x00mmio_register_write(rt2x00dev
, MAC_CSR13
, reg
);
2861 * Initialize hw specifications.
2863 retval
= rt61pci_probe_hw_mode(rt2x00dev
);
2868 * This device has multiple filters for control frames,
2869 * but has no a separate filter for PS Poll frames.
2871 __set_bit(CAPABILITY_CONTROL_FILTERS
, &rt2x00dev
->cap_flags
);
2874 * This device requires firmware and DMA mapped skbs.
2876 __set_bit(REQUIRE_FIRMWARE
, &rt2x00dev
->cap_flags
);
2877 __set_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
);
2878 if (!modparam_nohwcrypt
)
2879 __set_bit(CAPABILITY_HW_CRYPTO
, &rt2x00dev
->cap_flags
);
2880 __set_bit(CAPABILITY_LINK_TUNING
, &rt2x00dev
->cap_flags
);
2883 * Set the rssi offset.
2885 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
2891 * IEEE80211 stack callback functions.
2893 static int rt61pci_conf_tx(struct ieee80211_hw
*hw
,
2894 struct ieee80211_vif
*vif
, u16 queue_idx
,
2895 const struct ieee80211_tx_queue_params
*params
)
2897 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2898 struct data_queue
*queue
;
2899 struct rt2x00_field32 field
;
2905 * First pass the configuration through rt2x00lib, that will
2906 * update the queue settings and validate the input. After that
2907 * we are free to update the registers based on the value
2908 * in the queue parameter.
2910 retval
= rt2x00mac_conf_tx(hw
, vif
, queue_idx
, params
);
2915 * We only need to perform additional register initialization
2921 queue
= rt2x00queue_get_tx_queue(rt2x00dev
, queue_idx
);
2923 /* Update WMM TXOP register */
2924 offset
= AC_TXOP_CSR0
+ (sizeof(u32
) * (!!(queue_idx
& 2)));
2925 field
.bit_offset
= (queue_idx
& 1) * 16;
2926 field
.bit_mask
= 0xffff << field
.bit_offset
;
2928 reg
= rt2x00mmio_register_read(rt2x00dev
, offset
);
2929 rt2x00_set_field32(®
, field
, queue
->txop
);
2930 rt2x00mmio_register_write(rt2x00dev
, offset
, reg
);
2932 /* Update WMM registers */
2933 field
.bit_offset
= queue_idx
* 4;
2934 field
.bit_mask
= 0xf << field
.bit_offset
;
2936 reg
= rt2x00mmio_register_read(rt2x00dev
, AIFSN_CSR
);
2937 rt2x00_set_field32(®
, field
, queue
->aifs
);
2938 rt2x00mmio_register_write(rt2x00dev
, AIFSN_CSR
, reg
);
2940 reg
= rt2x00mmio_register_read(rt2x00dev
, CWMIN_CSR
);
2941 rt2x00_set_field32(®
, field
, queue
->cw_min
);
2942 rt2x00mmio_register_write(rt2x00dev
, CWMIN_CSR
, reg
);
2944 reg
= rt2x00mmio_register_read(rt2x00dev
, CWMAX_CSR
);
2945 rt2x00_set_field32(®
, field
, queue
->cw_max
);
2946 rt2x00mmio_register_write(rt2x00dev
, CWMAX_CSR
, reg
);
2951 static u64
rt61pci_get_tsf(struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
)
2953 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2957 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR13
);
2958 tsf
= (u64
) rt2x00_get_field32(reg
, TXRX_CSR13_HIGH_TSFTIMER
) << 32;
2959 reg
= rt2x00mmio_register_read(rt2x00dev
, TXRX_CSR12
);
2960 tsf
|= rt2x00_get_field32(reg
, TXRX_CSR12_LOW_TSFTIMER
);
2965 static const struct ieee80211_ops rt61pci_mac80211_ops
= {
2967 .start
= rt2x00mac_start
,
2968 .stop
= rt2x00mac_stop
,
2969 .add_interface
= rt2x00mac_add_interface
,
2970 .remove_interface
= rt2x00mac_remove_interface
,
2971 .config
= rt2x00mac_config
,
2972 .configure_filter
= rt2x00mac_configure_filter
,
2973 .set_key
= rt2x00mac_set_key
,
2974 .sw_scan_start
= rt2x00mac_sw_scan_start
,
2975 .sw_scan_complete
= rt2x00mac_sw_scan_complete
,
2976 .get_stats
= rt2x00mac_get_stats
,
2977 .bss_info_changed
= rt2x00mac_bss_info_changed
,
2978 .conf_tx
= rt61pci_conf_tx
,
2979 .get_tsf
= rt61pci_get_tsf
,
2980 .rfkill_poll
= rt2x00mac_rfkill_poll
,
2981 .flush
= rt2x00mac_flush
,
2982 .set_antenna
= rt2x00mac_set_antenna
,
2983 .get_antenna
= rt2x00mac_get_antenna
,
2984 .get_ringparam
= rt2x00mac_get_ringparam
,
2985 .tx_frames_pending
= rt2x00mac_tx_frames_pending
,
2988 static const struct rt2x00lib_ops rt61pci_rt2x00_ops
= {
2989 .irq_handler
= rt61pci_interrupt
,
2990 .txstatus_tasklet
= rt61pci_txstatus_tasklet
,
2991 .tbtt_tasklet
= rt61pci_tbtt_tasklet
,
2992 .rxdone_tasklet
= rt61pci_rxdone_tasklet
,
2993 .autowake_tasklet
= rt61pci_autowake_tasklet
,
2994 .probe_hw
= rt61pci_probe_hw
,
2995 .get_firmware_name
= rt61pci_get_firmware_name
,
2996 .check_firmware
= rt61pci_check_firmware
,
2997 .load_firmware
= rt61pci_load_firmware
,
2998 .initialize
= rt2x00mmio_initialize
,
2999 .uninitialize
= rt2x00mmio_uninitialize
,
3000 .get_entry_state
= rt61pci_get_entry_state
,
3001 .clear_entry
= rt61pci_clear_entry
,
3002 .set_device_state
= rt61pci_set_device_state
,
3003 .rfkill_poll
= rt61pci_rfkill_poll
,
3004 .link_stats
= rt61pci_link_stats
,
3005 .reset_tuner
= rt61pci_reset_tuner
,
3006 .link_tuner
= rt61pci_link_tuner
,
3007 .start_queue
= rt61pci_start_queue
,
3008 .kick_queue
= rt61pci_kick_queue
,
3009 .stop_queue
= rt61pci_stop_queue
,
3010 .flush_queue
= rt2x00mmio_flush_queue
,
3011 .write_tx_desc
= rt61pci_write_tx_desc
,
3012 .write_beacon
= rt61pci_write_beacon
,
3013 .clear_beacon
= rt61pci_clear_beacon
,
3014 .fill_rxdone
= rt61pci_fill_rxdone
,
3015 .config_shared_key
= rt61pci_config_shared_key
,
3016 .config_pairwise_key
= rt61pci_config_pairwise_key
,
3017 .config_filter
= rt61pci_config_filter
,
3018 .config_intf
= rt61pci_config_intf
,
3019 .config_erp
= rt61pci_config_erp
,
3020 .config_ant
= rt61pci_config_ant
,
3021 .config
= rt61pci_config
,
3024 static void rt61pci_queue_init(struct data_queue
*queue
)
3026 switch (queue
->qid
) {
3029 queue
->data_size
= DATA_FRAME_SIZE
;
3030 queue
->desc_size
= RXD_DESC_SIZE
;
3031 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
3039 queue
->data_size
= DATA_FRAME_SIZE
;
3040 queue
->desc_size
= TXD_DESC_SIZE
;
3041 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
3046 queue
->data_size
= 0; /* No DMA required for beacons */
3047 queue
->desc_size
= TXINFO_SIZE
;
3048 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
3059 static const struct rt2x00_ops rt61pci_ops
= {
3060 .name
= KBUILD_MODNAME
,
3062 .eeprom_size
= EEPROM_SIZE
,
3064 .tx_queues
= NUM_TX_QUEUES
,
3065 .queue_init
= rt61pci_queue_init
,
3066 .lib
= &rt61pci_rt2x00_ops
,
3067 .hw
= &rt61pci_mac80211_ops
,
3068 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
3069 .debugfs
= &rt61pci_rt2x00debug
,
3070 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
3074 * RT61pci module information.
3076 static const struct pci_device_id rt61pci_device_table
[] = {
3078 { PCI_DEVICE(0x1814, 0x0301) },
3080 { PCI_DEVICE(0x1814, 0x0302) },
3082 { PCI_DEVICE(0x1814, 0x0401) },
3086 MODULE_AUTHOR(DRV_PROJECT
);
3087 MODULE_VERSION(DRV_VERSION
);
3088 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3089 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
3090 "PCI & PCMCIA chipset based cards");
3091 MODULE_DEVICE_TABLE(pci
, rt61pci_device_table
);
3092 MODULE_FIRMWARE(FIRMWARE_RT2561
);
3093 MODULE_FIRMWARE(FIRMWARE_RT2561s
);
3094 MODULE_FIRMWARE(FIRMWARE_RT2661
);
3095 MODULE_LICENSE("GPL");
3097 static int rt61pci_probe(struct pci_dev
*pci_dev
,
3098 const struct pci_device_id
*id
)
3100 return rt2x00pci_probe(pci_dev
, &rt61pci_ops
);
3103 static struct pci_driver rt61pci_driver
= {
3104 .name
= KBUILD_MODNAME
,
3105 .id_table
= rt61pci_device_table
,
3106 .probe
= rt61pci_probe
,
3107 .remove
= rt2x00pci_remove
,
3108 .suspend
= rt2x00pci_suspend
,
3109 .resume
= rt2x00pci_resume
,
3112 module_pci_driver(rt61pci_driver
);