xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / net / wireless / realtek / rtlwifi / rtl8192de / hw.c
blob80123fd9722198afd5ce68d816ac0283626f2fce
1 /******************************************************************************
3 * Copyright(c) 2009-2012 Realtek Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * The full GNU General Public License is included in this distribution in the
15 * file called LICENSE.
17 * Contact Information:
18 * wlanfae <wlanfae@realtek.com>
19 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
20 * Hsinchu 300, Taiwan.
22 * Larry Finger <Larry.Finger@lwfinger.net>
24 *****************************************************************************/
26 #include "../wifi.h"
27 #include "../efuse.h"
28 #include "../base.h"
29 #include "../regd.h"
30 #include "../cam.h"
31 #include "../ps.h"
32 #include "../pci.h"
33 #include "reg.h"
34 #include "def.h"
35 #include "phy.h"
36 #include "dm.h"
37 #include "fw.h"
38 #include "led.h"
39 #include "sw.h"
40 #include "hw.h"
42 u32 rtl92de_read_dword_dbi(struct ieee80211_hw *hw, u16 offset, u8 direct)
44 struct rtl_priv *rtlpriv = rtl_priv(hw);
45 u32 value;
47 rtl_write_word(rtlpriv, REG_DBI_CTRL, (offset & 0xFFC));
48 rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(1) | direct);
49 udelay(10);
50 value = rtl_read_dword(rtlpriv, REG_DBI_RDATA);
51 return value;
54 void rtl92de_write_dword_dbi(struct ieee80211_hw *hw,
55 u16 offset, u32 value, u8 direct)
57 struct rtl_priv *rtlpriv = rtl_priv(hw);
59 rtl_write_word(rtlpriv, REG_DBI_CTRL, ((offset & 0xFFC) | 0xF000));
60 rtl_write_dword(rtlpriv, REG_DBI_WDATA, value);
61 rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(0) | direct);
64 static void _rtl92de_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
65 u8 set_bits, u8 clear_bits)
67 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
68 struct rtl_priv *rtlpriv = rtl_priv(hw);
70 rtlpci->reg_bcn_ctrl_val |= set_bits;
71 rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
72 rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
75 static void _rtl92de_stop_tx_beacon(struct ieee80211_hw *hw)
77 struct rtl_priv *rtlpriv = rtl_priv(hw);
78 u8 tmp1byte;
80 tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
81 rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
82 rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff);
83 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
84 tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
85 tmp1byte &= ~(BIT(0));
86 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
89 static void _rtl92de_resume_tx_beacon(struct ieee80211_hw *hw)
91 struct rtl_priv *rtlpriv = rtl_priv(hw);
92 u8 tmp1byte;
94 tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
95 rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
96 rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
97 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
98 tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
99 tmp1byte |= BIT(0);
100 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
103 static void _rtl92de_enable_bcn_sub_func(struct ieee80211_hw *hw)
105 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(1));
108 static void _rtl92de_disable_bcn_sub_func(struct ieee80211_hw *hw)
110 _rtl92de_set_bcn_ctrl_reg(hw, BIT(1), 0);
113 void rtl92de_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
115 struct rtl_priv *rtlpriv = rtl_priv(hw);
116 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
117 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
119 switch (variable) {
120 case HW_VAR_RCR:
121 *((u32 *) (val)) = rtlpci->receive_config;
122 break;
123 case HW_VAR_RF_STATE:
124 *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
125 break;
126 case HW_VAR_FWLPS_RF_ON:{
127 enum rf_pwrstate rfState;
128 u32 val_rcr;
130 rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
131 (u8 *) (&rfState));
132 if (rfState == ERFOFF) {
133 *((bool *) (val)) = true;
134 } else {
135 val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
136 val_rcr &= 0x00070000;
137 if (val_rcr)
138 *((bool *) (val)) = false;
139 else
140 *((bool *) (val)) = true;
142 break;
144 case HW_VAR_FW_PSMODE_STATUS:
145 *((bool *) (val)) = ppsc->fw_current_inpsmode;
146 break;
147 case HW_VAR_CORRECT_TSF:{
148 u64 tsf;
149 u32 *ptsf_low = (u32 *)&tsf;
150 u32 *ptsf_high = ((u32 *)&tsf) + 1;
152 *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
153 *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
154 *((u64 *) (val)) = tsf;
155 break;
157 case HW_VAR_INT_MIGRATION:
158 *((bool *)(val)) = rtlpriv->dm.interrupt_migration;
159 break;
160 case HW_VAR_INT_AC:
161 *((bool *)(val)) = rtlpriv->dm.disable_tx_int;
162 break;
163 case HAL_DEF_WOWLAN:
164 break;
165 default:
166 pr_err("switch case %#x not processed\n", variable);
167 break;
171 void rtl92de_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
173 struct rtl_priv *rtlpriv = rtl_priv(hw);
174 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
175 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
176 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
177 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
178 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
179 u8 idx;
181 switch (variable) {
182 case HW_VAR_ETHER_ADDR:
183 for (idx = 0; idx < ETH_ALEN; idx++) {
184 rtl_write_byte(rtlpriv, (REG_MACID + idx),
185 val[idx]);
187 break;
188 case HW_VAR_BASIC_RATE: {
189 u16 rate_cfg = ((u16 *) val)[0];
190 u8 rate_index = 0;
192 rate_cfg = rate_cfg & 0x15f;
193 if (mac->vendor == PEER_CISCO &&
194 ((rate_cfg & 0x150) == 0))
195 rate_cfg |= 0x01;
196 rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
197 rtl_write_byte(rtlpriv, REG_RRSR + 1,
198 (rate_cfg >> 8) & 0xff);
199 while (rate_cfg > 0x1) {
200 rate_cfg = (rate_cfg >> 1);
201 rate_index++;
203 if (rtlhal->fw_version > 0xe)
204 rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
205 rate_index);
206 break;
208 case HW_VAR_BSSID:
209 for (idx = 0; idx < ETH_ALEN; idx++) {
210 rtl_write_byte(rtlpriv, (REG_BSSID + idx),
211 val[idx]);
213 break;
214 case HW_VAR_SIFS:
215 rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
216 rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
217 rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
218 rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
219 if (!mac->ht_enable)
220 rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
221 0x0e0e);
222 else
223 rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
224 *((u16 *) val));
225 break;
226 case HW_VAR_SLOT_TIME: {
227 u8 e_aci;
229 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
230 "HW_VAR_SLOT_TIME %x\n", val[0]);
231 rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
232 for (e_aci = 0; e_aci < AC_MAX; e_aci++)
233 rtlpriv->cfg->ops->set_hw_reg(hw,
234 HW_VAR_AC_PARAM,
235 (&e_aci));
236 break;
238 case HW_VAR_ACK_PREAMBLE: {
239 u8 reg_tmp;
240 u8 short_preamble = (bool) (*val);
242 reg_tmp = (mac->cur_40_prime_sc) << 5;
243 if (short_preamble)
244 reg_tmp |= 0x80;
245 rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
246 break;
248 case HW_VAR_AMPDU_MIN_SPACE: {
249 u8 min_spacing_to_set;
250 u8 sec_min_space;
252 min_spacing_to_set = *val;
253 if (min_spacing_to_set <= 7) {
254 sec_min_space = 0;
255 if (min_spacing_to_set < sec_min_space)
256 min_spacing_to_set = sec_min_space;
257 mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) |
258 min_spacing_to_set);
259 *val = min_spacing_to_set;
260 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
261 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
262 mac->min_space_cfg);
263 rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
264 mac->min_space_cfg);
266 break;
268 case HW_VAR_SHORTGI_DENSITY: {
269 u8 density_to_set;
271 density_to_set = *val;
272 mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
273 mac->min_space_cfg |= (density_to_set << 3);
274 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
275 "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
276 mac->min_space_cfg);
277 rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
278 mac->min_space_cfg);
279 break;
281 case HW_VAR_AMPDU_FACTOR: {
282 u8 factor_toset;
283 u32 regtoSet;
284 u8 *ptmp_byte = NULL;
285 u8 index;
287 if (rtlhal->macphymode == DUALMAC_DUALPHY)
288 regtoSet = 0xb9726641;
289 else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
290 regtoSet = 0x66626641;
291 else
292 regtoSet = 0xb972a841;
293 factor_toset = *val;
294 if (factor_toset <= 3) {
295 factor_toset = (1 << (factor_toset + 2));
296 if (factor_toset > 0xf)
297 factor_toset = 0xf;
298 for (index = 0; index < 4; index++) {
299 ptmp_byte = (u8 *) (&regtoSet) + index;
300 if ((*ptmp_byte & 0xf0) >
301 (factor_toset << 4))
302 *ptmp_byte = (*ptmp_byte & 0x0f)
303 | (factor_toset << 4);
304 if ((*ptmp_byte & 0x0f) > factor_toset)
305 *ptmp_byte = (*ptmp_byte & 0xf0)
306 | (factor_toset);
308 rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, regtoSet);
309 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
310 "Set HW_VAR_AMPDU_FACTOR: %#x\n",
311 factor_toset);
313 break;
315 case HW_VAR_AC_PARAM: {
316 u8 e_aci = *val;
317 rtl92d_dm_init_edca_turbo(hw);
318 if (rtlpci->acm_method != EACMWAY2_SW)
319 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL,
320 &e_aci);
321 break;
323 case HW_VAR_ACM_CTRL: {
324 u8 e_aci = *val;
325 union aci_aifsn *p_aci_aifsn =
326 (union aci_aifsn *)(&(mac->ac[0].aifs));
327 u8 acm = p_aci_aifsn->f.acm;
328 u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
330 acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1);
331 if (acm) {
332 switch (e_aci) {
333 case AC0_BE:
334 acm_ctrl |= ACMHW_BEQEN;
335 break;
336 case AC2_VI:
337 acm_ctrl |= ACMHW_VIQEN;
338 break;
339 case AC3_VO:
340 acm_ctrl |= ACMHW_VOQEN;
341 break;
342 default:
343 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
344 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
345 acm);
346 break;
348 } else {
349 switch (e_aci) {
350 case AC0_BE:
351 acm_ctrl &= (~ACMHW_BEQEN);
352 break;
353 case AC2_VI:
354 acm_ctrl &= (~ACMHW_VIQEN);
355 break;
356 case AC3_VO:
357 acm_ctrl &= (~ACMHW_VOQEN);
358 break;
359 default:
360 pr_err("switch case %#x not processed\n",
361 e_aci);
362 break;
365 RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
366 "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
367 acm_ctrl);
368 rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
369 break;
371 case HW_VAR_RCR:
372 rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
373 rtlpci->receive_config = ((u32 *) (val))[0];
374 break;
375 case HW_VAR_RETRY_LIMIT: {
376 u8 retry_limit = val[0];
378 rtl_write_word(rtlpriv, REG_RL,
379 retry_limit << RETRY_LIMIT_SHORT_SHIFT |
380 retry_limit << RETRY_LIMIT_LONG_SHIFT);
381 break;
383 case HW_VAR_DUAL_TSF_RST:
384 rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
385 break;
386 case HW_VAR_EFUSE_BYTES:
387 rtlefuse->efuse_usedbytes = *((u16 *) val);
388 break;
389 case HW_VAR_EFUSE_USAGE:
390 rtlefuse->efuse_usedpercentage = *val;
391 break;
392 case HW_VAR_IO_CMD:
393 rtl92d_phy_set_io_cmd(hw, (*(enum io_type *)val));
394 break;
395 case HW_VAR_WPA_CONFIG:
396 rtl_write_byte(rtlpriv, REG_SECCFG, *val);
397 break;
398 case HW_VAR_SET_RPWM:
399 rtl92d_fill_h2c_cmd(hw, H2C_PWRM, 1, (val));
400 break;
401 case HW_VAR_H2C_FW_PWRMODE:
402 break;
403 case HW_VAR_FW_PSMODE_STATUS:
404 ppsc->fw_current_inpsmode = *((bool *) val);
405 break;
406 case HW_VAR_H2C_FW_JOINBSSRPT: {
407 u8 mstatus = (*val);
408 u8 tmp_regcr, tmp_reg422;
409 bool recover = false;
411 if (mstatus == RT_MEDIA_CONNECT) {
412 rtlpriv->cfg->ops->set_hw_reg(hw,
413 HW_VAR_AID, NULL);
414 tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
415 rtl_write_byte(rtlpriv, REG_CR + 1,
416 (tmp_regcr | BIT(0)));
417 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
418 _rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
419 tmp_reg422 = rtl_read_byte(rtlpriv,
420 REG_FWHW_TXQ_CTRL + 2);
421 if (tmp_reg422 & BIT(6))
422 recover = true;
423 rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
424 tmp_reg422 & (~BIT(6)));
425 rtl92d_set_fw_rsvdpagepkt(hw, 0);
426 _rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
427 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
428 if (recover)
429 rtl_write_byte(rtlpriv,
430 REG_FWHW_TXQ_CTRL + 2,
431 tmp_reg422);
432 rtl_write_byte(rtlpriv, REG_CR + 1,
433 (tmp_regcr & ~(BIT(0))));
435 rtl92d_set_fw_joinbss_report_cmd(hw, (*val));
436 break;
438 case HW_VAR_AID: {
439 u16 u2btmp;
440 u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
441 u2btmp &= 0xC000;
442 rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
443 mac->assoc_id));
444 break;
446 case HW_VAR_CORRECT_TSF: {
447 u8 btype_ibss = val[0];
449 if (btype_ibss)
450 _rtl92de_stop_tx_beacon(hw);
451 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
452 rtl_write_dword(rtlpriv, REG_TSFTR,
453 (u32) (mac->tsf & 0xffffffff));
454 rtl_write_dword(rtlpriv, REG_TSFTR + 4,
455 (u32) ((mac->tsf >> 32) & 0xffffffff));
456 _rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
457 if (btype_ibss)
458 _rtl92de_resume_tx_beacon(hw);
460 break;
462 case HW_VAR_INT_MIGRATION: {
463 bool int_migration = *(bool *) (val);
465 if (int_migration) {
466 /* Set interrupt migration timer and
467 * corresponding Tx/Rx counter.
468 * timer 25ns*0xfa0=100us for 0xf packets.
469 * 0x306:Rx, 0x307:Tx */
470 rtl_write_dword(rtlpriv, REG_INT_MIG, 0xfe000fa0);
471 rtlpriv->dm.interrupt_migration = int_migration;
472 } else {
473 /* Reset all interrupt migration settings. */
474 rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
475 rtlpriv->dm.interrupt_migration = int_migration;
477 break;
479 case HW_VAR_INT_AC: {
480 bool disable_ac_int = *((bool *) val);
482 /* Disable four ACs interrupts. */
483 if (disable_ac_int) {
484 /* Disable VO, VI, BE and BK four AC interrupts
485 * to gain more efficient CPU utilization.
486 * When extremely highly Rx OK occurs,
487 * we will disable Tx interrupts.
489 rtlpriv->cfg->ops->update_interrupt_mask(hw, 0,
490 RT_AC_INT_MASKS);
491 rtlpriv->dm.disable_tx_int = disable_ac_int;
492 /* Enable four ACs interrupts. */
493 } else {
494 rtlpriv->cfg->ops->update_interrupt_mask(hw,
495 RT_AC_INT_MASKS, 0);
496 rtlpriv->dm.disable_tx_int = disable_ac_int;
498 break;
500 default:
501 pr_err("switch case %#x not processed\n", variable);
502 break;
506 static bool _rtl92de_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
508 struct rtl_priv *rtlpriv = rtl_priv(hw);
509 bool status = true;
510 long count = 0;
511 u32 value = _LLT_INIT_ADDR(address) |
512 _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
514 rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
515 do {
516 value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
517 if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
518 break;
519 if (count > POLLING_LLT_THRESHOLD) {
520 pr_err("Failed to polling write LLT done at address %d!\n",
521 address);
522 status = false;
523 break;
525 } while (++count);
526 return status;
529 static bool _rtl92de_llt_table_init(struct ieee80211_hw *hw)
531 struct rtl_priv *rtlpriv = rtl_priv(hw);
532 unsigned short i;
533 u8 txpktbuf_bndy;
534 u8 maxPage;
535 bool status;
536 u32 value32; /* High+low page number */
537 u8 value8; /* normal page number */
539 if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) {
540 maxPage = 255;
541 txpktbuf_bndy = 246;
542 value8 = 0;
543 value32 = 0x80bf0d29;
544 } else {
545 maxPage = 127;
546 txpktbuf_bndy = 123;
547 value8 = 0;
548 value32 = 0x80750005;
551 /* Set reserved page for each queue */
552 /* 11. RQPN 0x200[31:0] = 0x80BD1C1C */
553 /* load RQPN */
554 rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
555 rtl_write_dword(rtlpriv, REG_RQPN, value32);
557 /* 12. TXRKTBUG_PG_BNDY 0x114[31:0] = 0x27FF00F6 */
558 /* TXRKTBUG_PG_BNDY */
559 rtl_write_dword(rtlpriv, REG_TRXFF_BNDY,
560 (rtl_read_word(rtlpriv, REG_TRXFF_BNDY + 2) << 16 |
561 txpktbuf_bndy));
563 /* 13. TDECTRL[15:8] 0x209[7:0] = 0xF6 */
564 /* Beacon Head for TXDMA */
565 rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
567 /* 14. BCNQ_PGBNDY 0x424[7:0] = 0xF6 */
568 /* BCNQ_PGBNDY */
569 rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
570 rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
572 /* 15. WMAC_LBK_BF_HD 0x45D[7:0] = 0xF6 */
573 /* WMAC_LBK_BF_HD */
574 rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
576 /* Set Tx/Rx page size (Tx must be 128 Bytes, */
577 /* Rx can be 64,128,256,512,1024 bytes) */
578 /* 16. PBP [7:0] = 0x11 */
579 /* TRX page size */
580 rtl_write_byte(rtlpriv, REG_PBP, 0x11);
582 /* 17. DRV_INFO_SZ = 0x04 */
583 rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
585 /* 18. LLT_table_init(Adapter); */
586 for (i = 0; i < (txpktbuf_bndy - 1); i++) {
587 status = _rtl92de_llt_write(hw, i, i + 1);
588 if (true != status)
589 return status;
592 /* end of list */
593 status = _rtl92de_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
594 if (true != status)
595 return status;
597 /* Make the other pages as ring buffer */
598 /* This ring buffer is used as beacon buffer if we */
599 /* config this MAC as two MAC transfer. */
600 /* Otherwise used as local loopback buffer. */
601 for (i = txpktbuf_bndy; i < maxPage; i++) {
602 status = _rtl92de_llt_write(hw, i, (i + 1));
603 if (true != status)
604 return status;
607 /* Let last entry point to the start entry of ring buffer */
608 status = _rtl92de_llt_write(hw, maxPage, txpktbuf_bndy);
609 if (true != status)
610 return status;
612 return true;
615 static void _rtl92de_gen_refresh_led_state(struct ieee80211_hw *hw)
617 struct rtl_priv *rtlpriv = rtl_priv(hw);
618 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
619 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
620 struct rtl_led *pled0 = &rtlpriv->ledctl.sw_led0;
622 if (rtlpci->up_first_time)
623 return;
624 if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
625 rtl92de_sw_led_on(hw, pled0);
626 else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
627 rtl92de_sw_led_on(hw, pled0);
628 else
629 rtl92de_sw_led_off(hw, pled0);
632 static bool _rtl92de_init_mac(struct ieee80211_hw *hw)
634 struct rtl_priv *rtlpriv = rtl_priv(hw);
635 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
636 unsigned char bytetmp;
637 unsigned short wordtmp;
638 u16 retry;
640 rtl92d_phy_set_poweron(hw);
641 /* Add for resume sequence of power domain according
642 * to power document V11. Chapter V.11.... */
643 /* 0. RSV_CTRL 0x1C[7:0] = 0x00 */
644 /* unlock ISO/CLK/Power control register */
645 rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
646 rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x05);
648 /* 1. AFE_XTAL_CTRL [7:0] = 0x0F enable XTAL */
649 /* 2. SPS0_CTRL 0x11[7:0] = 0x2b enable SPS into PWM mode */
650 /* 3. delay (1ms) this is not necessary when initially power on */
652 /* C. Resume Sequence */
653 /* a. SPS0_CTRL 0x11[7:0] = 0x2b */
654 rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
656 /* b. AFE_XTAL_CTRL [7:0] = 0x0F */
657 rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F);
659 /* c. DRV runs power on init flow */
661 /* auto enable WLAN */
662 /* 4. APS_FSMCO 0x04[8] = 1; wait till 0x04[8] = 0 */
663 /* Power On Reset for MAC Block */
664 bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0);
665 udelay(2);
666 rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
667 udelay(2);
669 /* 5. Wait while 0x04[8] == 0 goto 2, otherwise goto 1 */
670 bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
671 udelay(50);
672 retry = 0;
673 while ((bytetmp & BIT(0)) && retry < 1000) {
674 retry++;
675 bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
676 udelay(50);
679 /* Enable Radio off, GPIO, and LED function */
680 /* 6. APS_FSMCO 0x04[15:0] = 0x0012 when enable HWPDN */
681 rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012);
683 /* release RF digital isolation */
684 /* 7. SYS_ISO_CTRL 0x01[1] = 0x0; */
685 /*Set REG_SYS_ISO_CTRL 0x1=0x82 to prevent wake# problem. */
686 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82);
687 udelay(2);
689 /* make sure that BB reset OK. */
690 /* rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); */
692 /* Disable REG_CR before enable it to assure reset */
693 rtl_write_word(rtlpriv, REG_CR, 0x0);
695 /* Release MAC IO register reset */
696 rtl_write_word(rtlpriv, REG_CR, 0x2ff);
698 /* clear stopping tx/rx dma */
699 rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0x0);
701 /* rtl_write_word(rtlpriv,REG_CR+2, 0x2); */
703 /* System init */
704 /* 18. LLT_table_init(Adapter); */
705 if (!_rtl92de_llt_table_init(hw))
706 return false;
708 /* Clear interrupt and enable interrupt */
709 /* 19. HISR 0x124[31:0] = 0xffffffff; */
710 /* HISRE 0x12C[7:0] = 0xFF */
711 rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
712 rtl_write_byte(rtlpriv, REG_HISRE, 0xff);
714 /* 20. HIMR 0x120[31:0] |= [enable INT mask bit map]; */
715 /* 21. HIMRE 0x128[7:0] = [enable INT mask bit map] */
716 /* The IMR should be enabled later after all init sequence
717 * is finished. */
719 /* 22. PCIE configuration space configuration */
720 /* 23. Ensure PCIe Device 0x80[15:0] = 0x0143 (ASPM+CLKREQ), */
721 /* and PCIe gated clock function is enabled. */
722 /* PCIE configuration space will be written after
723 * all init sequence.(Or by BIOS) */
725 rtl92d_phy_config_maccoexist_rfpage(hw);
727 /* THe below section is not related to power document Vxx . */
728 /* This is only useful for driver and OS setting. */
729 /* -------------------Software Relative Setting---------------------- */
730 wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
731 wordtmp &= 0xf;
732 wordtmp |= 0xF771;
733 rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
735 /* Reported Tx status from HW for rate adaptive. */
736 /* This should be realtive to power on step 14. But in document V11 */
737 /* still not contain the description.!!! */
738 rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
740 /* Set Tx/Rx page size (Tx must be 128 Bytes,
741 * Rx can be 64,128,256,512,1024 bytes) */
742 /* rtl_write_byte(rtlpriv,REG_PBP, 0x11); */
744 /* Set RCR register */
745 rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
746 /* rtl_write_byte(rtlpriv,REG_RX_DRVINFO_SZ, 4); */
748 /* Set TCR register */
749 rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
751 /* disable earlymode */
752 rtl_write_byte(rtlpriv, 0x4d0, 0x0);
754 /* Set TX/RX descriptor physical address(from OS API). */
755 rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
756 rtlpci->tx_ring[BEACON_QUEUE].dma);
757 rtl_write_dword(rtlpriv, REG_MGQ_DESA, rtlpci->tx_ring[MGNT_QUEUE].dma);
758 rtl_write_dword(rtlpriv, REG_VOQ_DESA, rtlpci->tx_ring[VO_QUEUE].dma);
759 rtl_write_dword(rtlpriv, REG_VIQ_DESA, rtlpci->tx_ring[VI_QUEUE].dma);
760 rtl_write_dword(rtlpriv, REG_BEQ_DESA, rtlpci->tx_ring[BE_QUEUE].dma);
761 rtl_write_dword(rtlpriv, REG_BKQ_DESA, rtlpci->tx_ring[BK_QUEUE].dma);
762 rtl_write_dword(rtlpriv, REG_HQ_DESA, rtlpci->tx_ring[HIGH_QUEUE].dma);
763 /* Set RX Desc Address */
764 rtl_write_dword(rtlpriv, REG_RX_DESA,
765 rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
767 /* if we want to support 64 bit DMA, we should set it here,
768 * but now we do not support 64 bit DMA*/
770 rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x33);
772 /* Reset interrupt migration setting when initialization */
773 rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
775 /* Reconsider when to do this operation after asking HWSD. */
776 bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
777 rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6));
778 do {
779 retry++;
780 bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
781 } while ((retry < 200) && !(bytetmp & BIT(7)));
783 /* After MACIO reset,we must refresh LED state. */
784 _rtl92de_gen_refresh_led_state(hw);
786 /* Reset H2C protection register */
787 rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
789 return true;
792 static void _rtl92de_hw_configure(struct ieee80211_hw *hw)
794 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
795 struct rtl_priv *rtlpriv = rtl_priv(hw);
796 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
797 u8 reg_bw_opmode = BW_OPMODE_20MHZ;
798 u32 reg_rrsr;
800 reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
801 rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8);
802 rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
803 rtl_write_dword(rtlpriv, REG_RRSR, reg_rrsr);
804 rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
805 rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0);
806 rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80);
807 rtl_write_word(rtlpriv, REG_RL, 0x0707);
808 rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802);
809 rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
810 rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000);
811 rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504);
812 rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000);
813 rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504);
814 /* Aggregation threshold */
815 if (rtlhal->macphymode == DUALMAC_DUALPHY)
816 rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb9726641);
817 else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
818 rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x66626641);
819 else
820 rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841);
821 rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2);
822 rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
823 rtlpci->reg_bcn_ctrl_val = 0x1f;
824 rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val);
825 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
826 rtl_write_byte(rtlpriv, REG_PIFS, 0x1C);
827 rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
828 rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
829 /* For throughput */
830 rtl_write_word(rtlpriv, REG_FAST_EDCA_CTRL, 0x6666);
831 /* ACKTO for IOT issue. */
832 rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
833 /* Set Spec SIFS (used in NAV) */
834 rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010);
835 rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010);
836 /* Set SIFS for CCK */
837 rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010);
838 /* Set SIFS for OFDM */
839 rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010);
840 /* Set Multicast Address. */
841 rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff);
842 rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff);
843 switch (rtlpriv->phy.rf_type) {
844 case RF_1T2R:
845 case RF_1T1R:
846 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
847 break;
848 case RF_2T2R:
849 case RF_2T2R_GREEN:
850 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
851 break;
855 static void _rtl92de_enable_aspm_back_door(struct ieee80211_hw *hw)
857 struct rtl_priv *rtlpriv = rtl_priv(hw);
858 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
860 rtl_write_byte(rtlpriv, 0x34b, 0x93);
861 rtl_write_word(rtlpriv, 0x350, 0x870c);
862 rtl_write_byte(rtlpriv, 0x352, 0x1);
863 if (ppsc->support_backdoor)
864 rtl_write_byte(rtlpriv, 0x349, 0x1b);
865 else
866 rtl_write_byte(rtlpriv, 0x349, 0x03);
867 rtl_write_word(rtlpriv, 0x350, 0x2718);
868 rtl_write_byte(rtlpriv, 0x352, 0x1);
871 void rtl92de_enable_hw_security_config(struct ieee80211_hw *hw)
873 struct rtl_priv *rtlpriv = rtl_priv(hw);
874 u8 sec_reg_value;
876 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
877 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
878 rtlpriv->sec.pairwise_enc_algorithm,
879 rtlpriv->sec.group_enc_algorithm);
880 if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
881 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
882 "not open hw encryption\n");
883 return;
885 sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
886 if (rtlpriv->sec.use_defaultkey) {
887 sec_reg_value |= SCR_TXUSEDK;
888 sec_reg_value |= SCR_RXUSEDK;
890 sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
891 rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
892 RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
893 "The SECR-value %x\n", sec_reg_value);
894 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
897 int rtl92de_hw_init(struct ieee80211_hw *hw)
899 struct rtl_priv *rtlpriv = rtl_priv(hw);
900 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
901 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
902 struct rtl_phy *rtlphy = &(rtlpriv->phy);
903 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
904 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
905 bool rtstatus = true;
906 u8 tmp_u1b;
907 int i;
908 int err;
909 unsigned long flags;
911 rtlpci->being_init_adapter = true;
912 rtlpci->init_ready = false;
913 spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags);
914 /* we should do iqk after disable/enable */
915 rtl92d_phy_reset_iqk_result(hw);
916 /* rtlpriv->intf_ops->disable_aspm(hw); */
917 rtstatus = _rtl92de_init_mac(hw);
918 if (!rtstatus) {
919 pr_err("Init MAC failed\n");
920 err = 1;
921 spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
922 return err;
924 err = rtl92d_download_fw(hw);
925 spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
926 if (err) {
927 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
928 "Failed to download FW. Init HW without FW..\n");
929 return 1;
931 rtlhal->last_hmeboxnum = 0;
932 rtlpriv->psc.fw_current_inpsmode = false;
934 tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
935 tmp_u1b = tmp_u1b | 0x30;
936 rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
938 if (rtlhal->earlymode_enable) {
939 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
940 "EarlyMode Enabled!!!\n");
942 tmp_u1b = rtl_read_byte(rtlpriv, 0x4d0);
943 tmp_u1b = tmp_u1b | 0x1f;
944 rtl_write_byte(rtlpriv, 0x4d0, tmp_u1b);
946 rtl_write_byte(rtlpriv, 0x4d3, 0x80);
948 tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
949 tmp_u1b = tmp_u1b | 0x40;
950 rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
953 if (mac->rdg_en) {
954 rtl_write_byte(rtlpriv, REG_RD_CTRL, 0xff);
955 rtl_write_word(rtlpriv, REG_RD_NAV_NXT, 0x200);
956 rtl_write_byte(rtlpriv, REG_RD_RESP_PKT_TH, 0x05);
959 rtl92d_phy_mac_config(hw);
960 /* because last function modify RCR, so we update
961 * rcr var here, or TP will unstable for receive_config
962 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
963 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/
964 rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
965 rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
967 rtl92d_phy_bb_config(hw);
969 rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
970 /* set before initialize RF */
971 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
973 /* config RF */
974 rtl92d_phy_rf_config(hw);
976 /* After read predefined TXT, we must set BB/MAC/RF
977 * register as our requirement */
978 /* After load BB,RF params,we need do more for 92D. */
979 rtl92d_update_bbrf_configuration(hw);
980 /* set default value after initialize RF, */
981 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0);
982 rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
983 RF_CHNLBW, RFREG_OFFSET_MASK);
984 rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
985 RF_CHNLBW, RFREG_OFFSET_MASK);
987 /*---- Set CCK and OFDM Block "ON"----*/
988 if (rtlhal->current_bandtype == BAND_ON_2_4G)
989 rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
990 rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
991 if (rtlhal->interfaceindex == 0) {
992 /* RFPGA0_ANALOGPARAMETER2: cck clock select,
993 * set to 20MHz by default */
994 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
995 BIT(11), 3);
996 } else {
997 /* Mac1 */
998 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(11) |
999 BIT(10), 3);
1002 _rtl92de_hw_configure(hw);
1004 /* reset hw sec */
1005 rtl_cam_reset_all_entry(hw);
1006 rtl92de_enable_hw_security_config(hw);
1008 /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1009 /* TX power index for different rate set. */
1010 rtl92d_phy_get_hw_reg_originalvalue(hw);
1011 rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel);
1013 ppsc->rfpwr_state = ERFON;
1015 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
1017 _rtl92de_enable_aspm_back_door(hw);
1018 /* rtlpriv->intf_ops->enable_aspm(hw); */
1020 rtl92d_dm_init(hw);
1021 rtlpci->being_init_adapter = false;
1023 if (ppsc->rfpwr_state == ERFON) {
1024 rtl92d_phy_lc_calibrate(hw);
1025 /* 5G and 2.4G must wait sometime to let RF LO ready */
1026 if (rtlhal->macphymode == DUALMAC_DUALPHY) {
1027 u32 tmp_rega;
1028 for (i = 0; i < 10000; i++) {
1029 udelay(MAX_STALL_TIME);
1031 tmp_rega = rtl_get_rfreg(hw,
1032 (enum radio_path)RF90_PATH_A,
1033 0x2a, MASKDWORD);
1035 if (((tmp_rega & BIT(11)) == BIT(11)))
1036 break;
1038 /* check that loop was successful. If not, exit now */
1039 if (i == 10000) {
1040 rtlpci->init_ready = false;
1041 return 1;
1045 rtlpci->init_ready = true;
1046 return err;
1049 static enum version_8192d _rtl92de_read_chip_version(struct ieee80211_hw *hw)
1051 struct rtl_priv *rtlpriv = rtl_priv(hw);
1052 enum version_8192d version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
1053 u32 value32;
1055 value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
1056 if (!(value32 & 0x000f0000)) {
1057 version = VERSION_TEST_CHIP_92D_SINGLEPHY;
1058 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "TEST CHIP!!!\n");
1059 } else {
1060 version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
1061 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Normal CHIP!!!\n");
1063 return version;
1066 static int _rtl92de_set_media_status(struct ieee80211_hw *hw,
1067 enum nl80211_iftype type)
1069 struct rtl_priv *rtlpriv = rtl_priv(hw);
1070 u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1071 enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
1072 u8 bcnfunc_enable;
1074 bt_msr &= 0xfc;
1076 if (type == NL80211_IFTYPE_UNSPECIFIED ||
1077 type == NL80211_IFTYPE_STATION) {
1078 _rtl92de_stop_tx_beacon(hw);
1079 _rtl92de_enable_bcn_sub_func(hw);
1080 } else if (type == NL80211_IFTYPE_ADHOC ||
1081 type == NL80211_IFTYPE_AP) {
1082 _rtl92de_resume_tx_beacon(hw);
1083 _rtl92de_disable_bcn_sub_func(hw);
1084 } else {
1085 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1086 "Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n",
1087 type);
1089 bcnfunc_enable = rtl_read_byte(rtlpriv, REG_BCN_CTRL);
1090 switch (type) {
1091 case NL80211_IFTYPE_UNSPECIFIED:
1092 bt_msr |= MSR_NOLINK;
1093 ledaction = LED_CTL_LINK;
1094 bcnfunc_enable &= 0xF7;
1095 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1096 "Set Network type to NO LINK!\n");
1097 break;
1098 case NL80211_IFTYPE_ADHOC:
1099 bt_msr |= MSR_ADHOC;
1100 bcnfunc_enable |= 0x08;
1101 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1102 "Set Network type to Ad Hoc!\n");
1103 break;
1104 case NL80211_IFTYPE_STATION:
1105 bt_msr |= MSR_INFRA;
1106 ledaction = LED_CTL_LINK;
1107 bcnfunc_enable &= 0xF7;
1108 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1109 "Set Network type to STA!\n");
1110 break;
1111 case NL80211_IFTYPE_AP:
1112 bt_msr |= MSR_AP;
1113 bcnfunc_enable |= 0x08;
1114 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1115 "Set Network type to AP!\n");
1116 break;
1117 default:
1118 pr_err("Network type %d not supported!\n", type);
1119 return 1;
1121 rtl_write_byte(rtlpriv, MSR, bt_msr);
1122 rtlpriv->cfg->ops->led_control(hw, ledaction);
1123 if ((bt_msr & MSR_MASK) == MSR_AP)
1124 rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
1125 else
1126 rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
1127 return 0;
1130 void rtl92de_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1132 struct rtl_priv *rtlpriv = rtl_priv(hw);
1133 u32 reg_rcr;
1135 if (rtlpriv->psc.rfpwr_state != ERFON)
1136 return;
1138 rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1140 if (check_bssid) {
1141 reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
1142 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1143 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
1144 } else if (!check_bssid) {
1145 reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
1146 _rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
1147 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1151 int rtl92de_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1153 struct rtl_priv *rtlpriv = rtl_priv(hw);
1155 if (_rtl92de_set_media_status(hw, type))
1156 return -EOPNOTSUPP;
1158 /* check bssid */
1159 if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1160 if (type != NL80211_IFTYPE_AP)
1161 rtl92de_set_check_bssid(hw, true);
1162 } else {
1163 rtl92de_set_check_bssid(hw, false);
1165 return 0;
1168 /* do iqk or reload iqk */
1169 /* windows just rtl92d_phy_reload_iqk_setting in set channel,
1170 * but it's very strict for time sequence so we add
1171 * rtl92d_phy_reload_iqk_setting here */
1172 void rtl92d_linked_set_reg(struct ieee80211_hw *hw)
1174 struct rtl_priv *rtlpriv = rtl_priv(hw);
1175 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1176 u8 indexforchannel;
1177 u8 channel = rtlphy->current_channel;
1179 indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel);
1180 if (!rtlphy->iqk_matrix[indexforchannel].iqk_done) {
1181 RT_TRACE(rtlpriv, COMP_SCAN | COMP_INIT, DBG_DMESG,
1182 "Do IQK for channel:%d\n", channel);
1183 rtl92d_phy_iq_calibrate(hw);
1187 /* don't set REG_EDCA_BE_PARAM here because
1188 * mac80211 will send pkt when scan */
1189 void rtl92de_set_qos(struct ieee80211_hw *hw, int aci)
1191 rtl92d_dm_init_edca_turbo(hw);
1194 void rtl92de_enable_interrupt(struct ieee80211_hw *hw)
1196 struct rtl_priv *rtlpriv = rtl_priv(hw);
1197 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1199 rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
1200 rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
1203 void rtl92de_disable_interrupt(struct ieee80211_hw *hw)
1205 struct rtl_priv *rtlpriv = rtl_priv(hw);
1206 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1208 rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED);
1209 rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED);
1210 synchronize_irq(rtlpci->pdev->irq);
1213 static void _rtl92de_poweroff_adapter(struct ieee80211_hw *hw)
1215 struct rtl_priv *rtlpriv = rtl_priv(hw);
1216 u8 u1b_tmp;
1217 unsigned long flags;
1219 rtlpriv->intf_ops->enable_aspm(hw);
1220 rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
1221 rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(3), 0);
1222 rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(15), 0);
1224 /* 0x20:value 05-->04 */
1225 rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04);
1227 /* ==== Reset digital sequence ====== */
1228 rtl92d_firmware_selfreset(hw);
1230 /* f. SYS_FUNC_EN 0x03[7:0]=0x51 reset MCU, MAC register, DCORE */
1231 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51);
1233 /* g. MCUFWDL 0x80[1:0]=0 reset MCU ready status */
1234 rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
1236 /* ==== Pull GPIO PIN to balance level and LED control ====== */
1238 /* h. GPIO_PIN_CTRL 0x44[31:0]=0x000 */
1239 rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000);
1241 /* i. Value = GPIO_PIN_CTRL[7:0] */
1242 u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL);
1244 /* j. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); */
1245 /* write external PIN level */
1246 rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL,
1247 0x00FF0000 | (u1b_tmp << 8));
1249 /* k. GPIO_MUXCFG 0x42 [15:0] = 0x0780 */
1250 rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790);
1252 /* l. LEDCFG 0x4C[15:0] = 0x8080 */
1253 rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
1255 /* ==== Disable analog sequence === */
1257 /* m. AFE_PLL_CTRL[7:0] = 0x80 disable PLL */
1258 rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
1260 /* n. SPS0_CTRL 0x11[7:0] = 0x22 enter PFM mode */
1261 rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
1263 /* o. AFE_XTAL_CTRL 0x24[7:0] = 0x0E disable XTAL, if No BT COEX */
1264 rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e);
1266 /* p. RSV_CTRL 0x1C[7:0] = 0x0E lock ISO/CLK/Power control register */
1267 rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);
1269 /* ==== interface into suspend === */
1271 /* q. APS_FSMCO[15:8] = 0x58 PCIe suspend mode */
1272 /* According to power document V11, we need to set this */
1273 /* value as 0x18. Otherwise, we may not L0s sometimes. */
1274 /* This indluences power consumption. Bases on SD1's test, */
1275 /* set as 0x00 do not affect power current. And if it */
1276 /* is set as 0x18, they had ever met auto load fail problem. */
1277 rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10);
1279 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1280 "In PowerOff,reg0x%x=%X\n",
1281 REG_SPS0_CTRL, rtl_read_byte(rtlpriv, REG_SPS0_CTRL));
1282 /* r. Note: for PCIe interface, PON will not turn */
1283 /* off m-bias and BandGap in PCIe suspend mode. */
1285 /* 0x17[7] 1b': power off in process 0b' : power off over */
1286 if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) {
1287 spin_lock_irqsave(&globalmutex_power, flags);
1288 u1b_tmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
1289 u1b_tmp &= (~BIT(7));
1290 rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1b_tmp);
1291 spin_unlock_irqrestore(&globalmutex_power, flags);
1294 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<=======\n");
1297 void rtl92de_card_disable(struct ieee80211_hw *hw)
1299 struct rtl_priv *rtlpriv = rtl_priv(hw);
1300 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1301 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1302 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1303 enum nl80211_iftype opmode;
1305 mac->link_state = MAC80211_NOLINK;
1306 opmode = NL80211_IFTYPE_UNSPECIFIED;
1307 _rtl92de_set_media_status(hw, opmode);
1309 if (rtlpci->driver_is_goingto_unload ||
1310 ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1311 rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1312 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1313 /* Power sequence for each MAC. */
1314 /* a. stop tx DMA */
1315 /* b. close RF */
1316 /* c. clear rx buf */
1317 /* d. stop rx DMA */
1318 /* e. reset MAC */
1320 /* a. stop tx DMA */
1321 rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xFE);
1322 udelay(50);
1324 /* b. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */
1326 /* c. ========RF OFF sequence========== */
1327 /* 0x88c[23:20] = 0xf. */
1328 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
1329 rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
1331 /* APSD_CTRL 0x600[7:0] = 0x40 */
1332 rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
1334 /* Close antenna 0,0xc04,0xd04 */
1335 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0);
1336 rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0);
1338 /* SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB state machine */
1339 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
1341 /* Mac0 can not do Global reset. Mac1 can do. */
1342 /* SYS_FUNC_EN 0x02[7:0] = 0xE0 reset BB state machine */
1343 if (rtlpriv->rtlhal.interfaceindex == 1)
1344 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0);
1345 udelay(50);
1347 /* d. stop tx/rx dma before disable REG_CR (0x100) to fix */
1348 /* dma hang issue when disable/enable device. */
1349 rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xff);
1350 udelay(50);
1351 rtl_write_byte(rtlpriv, REG_CR, 0x0);
1352 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==> Do power off.......\n");
1353 if (rtl92d_phy_check_poweroff(hw))
1354 _rtl92de_poweroff_adapter(hw);
1355 return;
1358 void rtl92de_interrupt_recognized(struct ieee80211_hw *hw,
1359 struct rtl_int *intvec)
1361 struct rtl_priv *rtlpriv = rtl_priv(hw);
1362 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1364 intvec->inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1365 rtl_write_dword(rtlpriv, ISR, intvec->inta);
1368 void rtl92de_set_beacon_related_registers(struct ieee80211_hw *hw)
1370 struct rtl_priv *rtlpriv = rtl_priv(hw);
1371 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1372 u16 bcn_interval, atim_window;
1374 bcn_interval = mac->beacon_interval;
1375 atim_window = 2;
1376 /*rtl92de_disable_interrupt(hw); */
1377 rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
1378 rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
1379 rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
1380 rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x20);
1381 if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G)
1382 rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x30);
1383 else
1384 rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x20);
1385 rtl_write_byte(rtlpriv, 0x606, 0x30);
1388 void rtl92de_set_beacon_interval(struct ieee80211_hw *hw)
1390 struct rtl_priv *rtlpriv = rtl_priv(hw);
1391 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1392 u16 bcn_interval = mac->beacon_interval;
1394 RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
1395 "beacon_interval:%d\n", bcn_interval);
1396 /* rtl92de_disable_interrupt(hw); */
1397 rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
1398 /* rtl92de_enable_interrupt(hw); */
1401 void rtl92de_update_interrupt_mask(struct ieee80211_hw *hw,
1402 u32 add_msr, u32 rm_msr)
1404 struct rtl_priv *rtlpriv = rtl_priv(hw);
1405 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1407 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
1408 add_msr, rm_msr);
1409 if (add_msr)
1410 rtlpci->irq_mask[0] |= add_msr;
1411 if (rm_msr)
1412 rtlpci->irq_mask[0] &= (~rm_msr);
1413 rtl92de_disable_interrupt(hw);
1414 rtl92de_enable_interrupt(hw);
1417 static void _rtl92de_readpowervalue_fromprom(struct txpower_info *pwrinfo,
1418 u8 *rom_content, bool autoLoadfail)
1420 u32 rfpath, eeaddr, group, offset1, offset2;
1421 u8 i;
1423 memset(pwrinfo, 0, sizeof(struct txpower_info));
1424 if (autoLoadfail) {
1425 for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1426 for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1427 if (group < CHANNEL_GROUP_MAX_2G) {
1428 pwrinfo->cck_index[rfpath][group] =
1429 EEPROM_DEFAULT_TXPOWERLEVEL_2G;
1430 pwrinfo->ht40_1sindex[rfpath][group] =
1431 EEPROM_DEFAULT_TXPOWERLEVEL_2G;
1432 } else {
1433 pwrinfo->ht40_1sindex[rfpath][group] =
1434 EEPROM_DEFAULT_TXPOWERLEVEL_5G;
1436 pwrinfo->ht40_2sindexdiff[rfpath][group] =
1437 EEPROM_DEFAULT_HT40_2SDIFF;
1438 pwrinfo->ht20indexdiff[rfpath][group] =
1439 EEPROM_DEFAULT_HT20_DIFF;
1440 pwrinfo->ofdmindexdiff[rfpath][group] =
1441 EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
1442 pwrinfo->ht40maxoffset[rfpath][group] =
1443 EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
1444 pwrinfo->ht20maxoffset[rfpath][group] =
1445 EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
1448 for (i = 0; i < 3; i++) {
1449 pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
1450 pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
1452 return;
1455 /* Maybe autoload OK,buf the tx power index value is not filled.
1456 * If we find it, we set it to default value. */
1457 for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1458 for (group = 0; group < CHANNEL_GROUP_MAX_2G; group++) {
1459 eeaddr = EEPROM_CCK_TX_PWR_INX_2G + (rfpath * 3)
1460 + group;
1461 pwrinfo->cck_index[rfpath][group] =
1462 (rom_content[eeaddr] == 0xFF) ?
1463 (eeaddr > 0x7B ?
1464 EEPROM_DEFAULT_TXPOWERLEVEL_5G :
1465 EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
1466 rom_content[eeaddr];
1469 for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1470 for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1471 offset1 = group / 3;
1472 offset2 = group % 3;
1473 eeaddr = EEPROM_HT40_1S_TX_PWR_INX_2G + (rfpath * 3) +
1474 offset2 + offset1 * 21;
1475 pwrinfo->ht40_1sindex[rfpath][group] =
1476 (rom_content[eeaddr] == 0xFF) ? (eeaddr > 0x7B ?
1477 EEPROM_DEFAULT_TXPOWERLEVEL_5G :
1478 EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
1479 rom_content[eeaddr];
1482 /* These just for 92D efuse offset. */
1483 for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1484 for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1485 int base1 = EEPROM_HT40_2S_TX_PWR_INX_DIFF_2G;
1487 offset1 = group / 3;
1488 offset2 = group % 3;
1490 if (rom_content[base1 + offset2 + offset1 * 21] != 0xFF)
1491 pwrinfo->ht40_2sindexdiff[rfpath][group] =
1492 (rom_content[base1 +
1493 offset2 + offset1 * 21] >> (rfpath * 4))
1494 & 0xF;
1495 else
1496 pwrinfo->ht40_2sindexdiff[rfpath][group] =
1497 EEPROM_DEFAULT_HT40_2SDIFF;
1498 if (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G + offset2
1499 + offset1 * 21] != 0xFF)
1500 pwrinfo->ht20indexdiff[rfpath][group] =
1501 (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G
1502 + offset2 + offset1 * 21] >> (rfpath * 4))
1503 & 0xF;
1504 else
1505 pwrinfo->ht20indexdiff[rfpath][group] =
1506 EEPROM_DEFAULT_HT20_DIFF;
1507 if (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G + offset2
1508 + offset1 * 21] != 0xFF)
1509 pwrinfo->ofdmindexdiff[rfpath][group] =
1510 (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G
1511 + offset2 + offset1 * 21] >> (rfpath * 4))
1512 & 0xF;
1513 else
1514 pwrinfo->ofdmindexdiff[rfpath][group] =
1515 EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
1516 if (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G + offset2
1517 + offset1 * 21] != 0xFF)
1518 pwrinfo->ht40maxoffset[rfpath][group] =
1519 (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G
1520 + offset2 + offset1 * 21] >> (rfpath * 4))
1521 & 0xF;
1522 else
1523 pwrinfo->ht40maxoffset[rfpath][group] =
1524 EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
1525 if (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G + offset2
1526 + offset1 * 21] != 0xFF)
1527 pwrinfo->ht20maxoffset[rfpath][group] =
1528 (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G +
1529 offset2 + offset1 * 21] >> (rfpath * 4)) &
1530 0xF;
1531 else
1532 pwrinfo->ht20maxoffset[rfpath][group] =
1533 EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
1536 if (rom_content[EEPROM_TSSI_A_5G] != 0xFF) {
1537 /* 5GL */
1538 pwrinfo->tssi_a[0] = rom_content[EEPROM_TSSI_A_5G] & 0x3F;
1539 pwrinfo->tssi_b[0] = rom_content[EEPROM_TSSI_B_5G] & 0x3F;
1540 /* 5GM */
1541 pwrinfo->tssi_a[1] = rom_content[EEPROM_TSSI_AB_5G] & 0x3F;
1542 pwrinfo->tssi_b[1] =
1543 (rom_content[EEPROM_TSSI_AB_5G] & 0xC0) >> 6 |
1544 (rom_content[EEPROM_TSSI_AB_5G + 1] & 0x0F) << 2;
1545 /* 5GH */
1546 pwrinfo->tssi_a[2] = (rom_content[EEPROM_TSSI_AB_5G + 1] &
1547 0xF0) >> 4 |
1548 (rom_content[EEPROM_TSSI_AB_5G + 2] & 0x03) << 4;
1549 pwrinfo->tssi_b[2] = (rom_content[EEPROM_TSSI_AB_5G + 2] &
1550 0xFC) >> 2;
1551 } else {
1552 for (i = 0; i < 3; i++) {
1553 pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
1554 pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
1559 static void _rtl92de_read_txpower_info(struct ieee80211_hw *hw,
1560 bool autoload_fail, u8 *hwinfo)
1562 struct rtl_priv *rtlpriv = rtl_priv(hw);
1563 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1564 struct txpower_info pwrinfo;
1565 u8 tempval[2], i, pwr, diff;
1566 u32 ch, rfPath, group;
1568 _rtl92de_readpowervalue_fromprom(&pwrinfo, hwinfo, autoload_fail);
1569 if (!autoload_fail) {
1570 /* bit0~2 */
1571 rtlefuse->eeprom_regulatory = (hwinfo[EEPROM_RF_OPT1] & 0x7);
1572 rtlefuse->eeprom_thermalmeter =
1573 hwinfo[EEPROM_THERMAL_METER] & 0x1f;
1574 rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_K];
1575 tempval[0] = hwinfo[EEPROM_IQK_DELTA] & 0x03;
1576 tempval[1] = (hwinfo[EEPROM_LCK_DELTA] & 0x0C) >> 2;
1577 rtlefuse->txpwr_fromeprom = true;
1578 if (IS_92D_D_CUT(rtlpriv->rtlhal.version) ||
1579 IS_92D_E_CUT(rtlpriv->rtlhal.version)) {
1580 rtlefuse->internal_pa_5g[0] =
1581 !((hwinfo[EEPROM_TSSI_A_5G] & BIT(6)) >> 6);
1582 rtlefuse->internal_pa_5g[1] =
1583 !((hwinfo[EEPROM_TSSI_B_5G] & BIT(6)) >> 6);
1584 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
1585 "Is D cut,Internal PA0 %d Internal PA1 %d\n",
1586 rtlefuse->internal_pa_5g[0],
1587 rtlefuse->internal_pa_5g[1]);
1589 rtlefuse->eeprom_c9 = hwinfo[EEPROM_RF_OPT6];
1590 rtlefuse->eeprom_cc = hwinfo[EEPROM_RF_OPT7];
1591 } else {
1592 rtlefuse->eeprom_regulatory = 0;
1593 rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
1594 rtlefuse->crystalcap = EEPROM_DEFAULT_CRYSTALCAP;
1595 tempval[0] = tempval[1] = 3;
1598 /* Use default value to fill parameters if
1599 * efuse is not filled on some place. */
1601 /* ThermalMeter from EEPROM */
1602 if (rtlefuse->eeprom_thermalmeter < 0x06 ||
1603 rtlefuse->eeprom_thermalmeter > 0x1c)
1604 rtlefuse->eeprom_thermalmeter = 0x12;
1605 rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
1607 /* check XTAL_K */
1608 if (rtlefuse->crystalcap == 0xFF)
1609 rtlefuse->crystalcap = 0;
1610 if (rtlefuse->eeprom_regulatory > 3)
1611 rtlefuse->eeprom_regulatory = 0;
1613 for (i = 0; i < 2; i++) {
1614 switch (tempval[i]) {
1615 case 0:
1616 tempval[i] = 5;
1617 break;
1618 case 1:
1619 tempval[i] = 4;
1620 break;
1621 case 2:
1622 tempval[i] = 3;
1623 break;
1624 case 3:
1625 default:
1626 tempval[i] = 0;
1627 break;
1631 rtlefuse->delta_iqk = tempval[0];
1632 if (tempval[1] > 0)
1633 rtlefuse->delta_lck = tempval[1] - 1;
1634 if (rtlefuse->eeprom_c9 == 0xFF)
1635 rtlefuse->eeprom_c9 = 0x00;
1636 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1637 "EEPROMRegulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
1638 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1639 "ThermalMeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
1640 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1641 "CrystalCap = 0x%x\n", rtlefuse->crystalcap);
1642 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1643 "Delta_IQK = 0x%x Delta_LCK = 0x%x\n",
1644 rtlefuse->delta_iqk, rtlefuse->delta_lck);
1646 for (rfPath = 0; rfPath < RF6052_MAX_PATH; rfPath++) {
1647 for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
1648 group = rtl92d_get_chnlgroup_fromarray((u8) ch);
1649 if (ch < CHANNEL_MAX_NUMBER_2G)
1650 rtlefuse->txpwrlevel_cck[rfPath][ch] =
1651 pwrinfo.cck_index[rfPath][group];
1652 rtlefuse->txpwrlevel_ht40_1s[rfPath][ch] =
1653 pwrinfo.ht40_1sindex[rfPath][group];
1654 rtlefuse->txpwr_ht20diff[rfPath][ch] =
1655 pwrinfo.ht20indexdiff[rfPath][group];
1656 rtlefuse->txpwr_legacyhtdiff[rfPath][ch] =
1657 pwrinfo.ofdmindexdiff[rfPath][group];
1658 rtlefuse->pwrgroup_ht20[rfPath][ch] =
1659 pwrinfo.ht20maxoffset[rfPath][group];
1660 rtlefuse->pwrgroup_ht40[rfPath][ch] =
1661 pwrinfo.ht40maxoffset[rfPath][group];
1662 pwr = pwrinfo.ht40_1sindex[rfPath][group];
1663 diff = pwrinfo.ht40_2sindexdiff[rfPath][group];
1664 rtlefuse->txpwrlevel_ht40_2s[rfPath][ch] =
1665 (pwr > diff) ? (pwr - diff) : 0;
1670 static void _rtl92de_read_macphymode_from_prom(struct ieee80211_hw *hw,
1671 u8 *content)
1673 struct rtl_priv *rtlpriv = rtl_priv(hw);
1674 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1675 u8 macphy_crvalue = content[EEPROM_MAC_FUNCTION];
1677 if (macphy_crvalue & BIT(3)) {
1678 rtlhal->macphymode = SINGLEMAC_SINGLEPHY;
1679 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1680 "MacPhyMode SINGLEMAC_SINGLEPHY\n");
1681 } else {
1682 rtlhal->macphymode = DUALMAC_DUALPHY;
1683 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1684 "MacPhyMode DUALMAC_DUALPHY\n");
1688 static void _rtl92de_read_macphymode_and_bandtype(struct ieee80211_hw *hw,
1689 u8 *content)
1691 _rtl92de_read_macphymode_from_prom(hw, content);
1692 rtl92d_phy_config_macphymode(hw);
1693 rtl92d_phy_config_macphymode_info(hw);
1696 static void _rtl92de_efuse_update_chip_version(struct ieee80211_hw *hw)
1698 struct rtl_priv *rtlpriv = rtl_priv(hw);
1699 enum version_8192d chipver = rtlpriv->rtlhal.version;
1700 u8 cutvalue[2];
1701 u16 chipvalue;
1703 rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_H,
1704 &cutvalue[1]);
1705 rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_L,
1706 &cutvalue[0]);
1707 chipvalue = (cutvalue[1] << 8) | cutvalue[0];
1708 switch (chipvalue) {
1709 case 0xAA55:
1710 chipver |= CHIP_92D_C_CUT;
1711 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "C-CUT!!!\n");
1712 break;
1713 case 0x9966:
1714 chipver |= CHIP_92D_D_CUT;
1715 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "D-CUT!!!\n");
1716 break;
1717 case 0xCC33:
1718 chipver |= CHIP_92D_E_CUT;
1719 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "E-CUT!!!\n");
1720 break;
1721 default:
1722 chipver |= CHIP_92D_D_CUT;
1723 pr_err("Unknown CUT!\n");
1724 break;
1726 rtlpriv->rtlhal.version = chipver;
1729 static void _rtl92de_read_adapter_info(struct ieee80211_hw *hw)
1731 struct rtl_priv *rtlpriv = rtl_priv(hw);
1732 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1733 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1734 int params[] = {RTL8190_EEPROM_ID, EEPROM_VID, EEPROM_DID,
1735 EEPROM_SVID, EEPROM_SMID, EEPROM_MAC_ADDR_MAC0_92D,
1736 EEPROM_CHANNEL_PLAN, EEPROM_VERSION, EEPROM_CUSTOMER_ID,
1737 COUNTRY_CODE_WORLD_WIDE_13};
1738 int i;
1739 u16 usvalue;
1740 u8 *hwinfo;
1742 hwinfo = kzalloc(HWSET_MAX_SIZE, GFP_KERNEL);
1743 if (!hwinfo)
1744 return;
1746 if (rtl_get_hwinfo(hw, rtlpriv, HWSET_MAX_SIZE, hwinfo, params))
1747 goto exit;
1749 _rtl92de_efuse_update_chip_version(hw);
1750 _rtl92de_read_macphymode_and_bandtype(hw, hwinfo);
1752 /* Read Permanent MAC address for 2nd interface */
1753 if (rtlhal->interfaceindex != 0) {
1754 for (i = 0; i < 6; i += 2) {
1755 usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC1_92D + i];
1756 *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1759 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR,
1760 rtlefuse->dev_addr);
1761 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1762 _rtl92de_read_txpower_info(hw, rtlefuse->autoload_failflag, hwinfo);
1764 /* Read Channel Plan */
1765 switch (rtlhal->bandset) {
1766 case BAND_ON_2_4G:
1767 rtlefuse->channel_plan = COUNTRY_CODE_TELEC;
1768 break;
1769 case BAND_ON_5G:
1770 rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1771 break;
1772 case BAND_ON_BOTH:
1773 rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1774 break;
1775 default:
1776 rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1777 break;
1779 rtlefuse->txpwr_fromeprom = true;
1780 exit:
1781 kfree(hwinfo);
1784 void rtl92de_read_eeprom_info(struct ieee80211_hw *hw)
1786 struct rtl_priv *rtlpriv = rtl_priv(hw);
1787 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1788 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1789 u8 tmp_u1b;
1791 rtlhal->version = _rtl92de_read_chip_version(hw);
1792 tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
1793 rtlefuse->autoload_status = tmp_u1b;
1794 if (tmp_u1b & BIT(4)) {
1795 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
1796 rtlefuse->epromtype = EEPROM_93C46;
1797 } else {
1798 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
1799 rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
1801 if (tmp_u1b & BIT(5)) {
1802 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1804 rtlefuse->autoload_failflag = false;
1805 _rtl92de_read_adapter_info(hw);
1806 } else {
1807 pr_err("Autoload ERR!!\n");
1809 return;
1812 static void rtl92de_update_hal_rate_table(struct ieee80211_hw *hw,
1813 struct ieee80211_sta *sta)
1815 struct rtl_priv *rtlpriv = rtl_priv(hw);
1816 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1817 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1818 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1819 u32 ratr_value;
1820 u8 ratr_index = 0;
1821 u8 nmode = mac->ht_enable;
1822 u8 mimo_ps = IEEE80211_SMPS_OFF;
1823 u16 shortgi_rate;
1824 u32 tmp_ratr_value;
1825 u8 curtxbw_40mhz = mac->bw_40;
1826 u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1827 1 : 0;
1828 u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1829 1 : 0;
1830 enum wireless_mode wirelessmode = mac->mode;
1832 if (rtlhal->current_bandtype == BAND_ON_5G)
1833 ratr_value = sta->supp_rates[1] << 4;
1834 else
1835 ratr_value = sta->supp_rates[0];
1836 ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
1837 sta->ht_cap.mcs.rx_mask[0] << 12);
1838 switch (wirelessmode) {
1839 case WIRELESS_MODE_A:
1840 ratr_value &= 0x00000FF0;
1841 break;
1842 case WIRELESS_MODE_B:
1843 if (ratr_value & 0x0000000c)
1844 ratr_value &= 0x0000000d;
1845 else
1846 ratr_value &= 0x0000000f;
1847 break;
1848 case WIRELESS_MODE_G:
1849 ratr_value &= 0x00000FF5;
1850 break;
1851 case WIRELESS_MODE_N_24G:
1852 case WIRELESS_MODE_N_5G:
1853 nmode = 1;
1854 if (mimo_ps == IEEE80211_SMPS_STATIC) {
1855 ratr_value &= 0x0007F005;
1856 } else {
1857 u32 ratr_mask;
1859 if (get_rf_type(rtlphy) == RF_1T2R ||
1860 get_rf_type(rtlphy) == RF_1T1R) {
1861 ratr_mask = 0x000ff005;
1862 } else {
1863 ratr_mask = 0x0f0ff005;
1866 ratr_value &= ratr_mask;
1868 break;
1869 default:
1870 if (rtlphy->rf_type == RF_1T2R)
1871 ratr_value &= 0x000ff0ff;
1872 else
1873 ratr_value &= 0x0f0ff0ff;
1875 break;
1877 ratr_value &= 0x0FFFFFFF;
1878 if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) ||
1879 (!curtxbw_40mhz && curshortgi_20mhz))) {
1880 ratr_value |= 0x10000000;
1881 tmp_ratr_value = (ratr_value >> 12);
1882 for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
1883 if ((1 << shortgi_rate) & tmp_ratr_value)
1884 break;
1886 shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
1887 (shortgi_rate << 4) | (shortgi_rate);
1889 rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
1890 RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
1891 rtl_read_dword(rtlpriv, REG_ARFR0));
1894 static void rtl92de_update_hal_rate_mask(struct ieee80211_hw *hw,
1895 struct ieee80211_sta *sta, u8 rssi_level, bool update_bw)
1897 struct rtl_priv *rtlpriv = rtl_priv(hw);
1898 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1899 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1900 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1901 struct rtl_sta_info *sta_entry = NULL;
1902 u32 ratr_bitmap;
1903 u8 ratr_index;
1904 u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
1905 u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1906 1 : 0;
1907 u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1908 1 : 0;
1909 enum wireless_mode wirelessmode = 0;
1910 bool shortgi = false;
1911 u32 value[2];
1912 u8 macid = 0;
1913 u8 mimo_ps = IEEE80211_SMPS_OFF;
1915 sta_entry = (struct rtl_sta_info *) sta->drv_priv;
1916 mimo_ps = sta_entry->mimo_ps;
1917 wirelessmode = sta_entry->wireless_mode;
1918 if (mac->opmode == NL80211_IFTYPE_STATION)
1919 curtxbw_40mhz = mac->bw_40;
1920 else if (mac->opmode == NL80211_IFTYPE_AP ||
1921 mac->opmode == NL80211_IFTYPE_ADHOC)
1922 macid = sta->aid + 1;
1924 if (rtlhal->current_bandtype == BAND_ON_5G)
1925 ratr_bitmap = sta->supp_rates[1] << 4;
1926 else
1927 ratr_bitmap = sta->supp_rates[0];
1928 ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
1929 sta->ht_cap.mcs.rx_mask[0] << 12);
1930 switch (wirelessmode) {
1931 case WIRELESS_MODE_B:
1932 ratr_index = RATR_INX_WIRELESS_B;
1933 if (ratr_bitmap & 0x0000000c)
1934 ratr_bitmap &= 0x0000000d;
1935 else
1936 ratr_bitmap &= 0x0000000f;
1937 break;
1938 case WIRELESS_MODE_G:
1939 ratr_index = RATR_INX_WIRELESS_GB;
1941 if (rssi_level == 1)
1942 ratr_bitmap &= 0x00000f00;
1943 else if (rssi_level == 2)
1944 ratr_bitmap &= 0x00000ff0;
1945 else
1946 ratr_bitmap &= 0x00000ff5;
1947 break;
1948 case WIRELESS_MODE_A:
1949 ratr_index = RATR_INX_WIRELESS_G;
1950 ratr_bitmap &= 0x00000ff0;
1951 break;
1952 case WIRELESS_MODE_N_24G:
1953 case WIRELESS_MODE_N_5G:
1954 if (wirelessmode == WIRELESS_MODE_N_24G)
1955 ratr_index = RATR_INX_WIRELESS_NGB;
1956 else
1957 ratr_index = RATR_INX_WIRELESS_NG;
1958 if (mimo_ps == IEEE80211_SMPS_STATIC) {
1959 if (rssi_level == 1)
1960 ratr_bitmap &= 0x00070000;
1961 else if (rssi_level == 2)
1962 ratr_bitmap &= 0x0007f000;
1963 else
1964 ratr_bitmap &= 0x0007f005;
1965 } else {
1966 if (rtlphy->rf_type == RF_1T2R ||
1967 rtlphy->rf_type == RF_1T1R) {
1968 if (curtxbw_40mhz) {
1969 if (rssi_level == 1)
1970 ratr_bitmap &= 0x000f0000;
1971 else if (rssi_level == 2)
1972 ratr_bitmap &= 0x000ff000;
1973 else
1974 ratr_bitmap &= 0x000ff015;
1975 } else {
1976 if (rssi_level == 1)
1977 ratr_bitmap &= 0x000f0000;
1978 else if (rssi_level == 2)
1979 ratr_bitmap &= 0x000ff000;
1980 else
1981 ratr_bitmap &= 0x000ff005;
1983 } else {
1984 if (curtxbw_40mhz) {
1985 if (rssi_level == 1)
1986 ratr_bitmap &= 0x0f0f0000;
1987 else if (rssi_level == 2)
1988 ratr_bitmap &= 0x0f0ff000;
1989 else
1990 ratr_bitmap &= 0x0f0ff015;
1991 } else {
1992 if (rssi_level == 1)
1993 ratr_bitmap &= 0x0f0f0000;
1994 else if (rssi_level == 2)
1995 ratr_bitmap &= 0x0f0ff000;
1996 else
1997 ratr_bitmap &= 0x0f0ff005;
2001 if ((curtxbw_40mhz && curshortgi_40mhz) ||
2002 (!curtxbw_40mhz && curshortgi_20mhz)) {
2004 if (macid == 0)
2005 shortgi = true;
2006 else if (macid == 1)
2007 shortgi = false;
2009 break;
2010 default:
2011 ratr_index = RATR_INX_WIRELESS_NGB;
2013 if (rtlphy->rf_type == RF_1T2R)
2014 ratr_bitmap &= 0x000ff0ff;
2015 else
2016 ratr_bitmap &= 0x0f0ff0ff;
2017 break;
2020 value[0] = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28);
2021 value[1] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
2022 RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
2023 "ratr_bitmap :%x value0:%x value1:%x\n",
2024 ratr_bitmap, value[0], value[1]);
2025 rtl92d_fill_h2c_cmd(hw, H2C_RA_MASK, 5, (u8 *) value);
2026 if (macid != 0)
2027 sta_entry->ratr_index = ratr_index;
2030 void rtl92de_update_hal_rate_tbl(struct ieee80211_hw *hw,
2031 struct ieee80211_sta *sta, u8 rssi_level, bool update_bw)
2033 struct rtl_priv *rtlpriv = rtl_priv(hw);
2035 if (rtlpriv->dm.useramask)
2036 rtl92de_update_hal_rate_mask(hw, sta, rssi_level, update_bw);
2037 else
2038 rtl92de_update_hal_rate_table(hw, sta);
2041 void rtl92de_update_channel_access_setting(struct ieee80211_hw *hw)
2043 struct rtl_priv *rtlpriv = rtl_priv(hw);
2044 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2045 u16 sifs_timer;
2047 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2048 &mac->slot_time);
2049 if (!mac->ht_enable)
2050 sifs_timer = 0x0a0a;
2051 else
2052 sifs_timer = 0x1010;
2053 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2056 bool rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2058 struct rtl_priv *rtlpriv = rtl_priv(hw);
2059 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2060 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2061 enum rf_pwrstate e_rfpowerstate_toset;
2062 u8 u1tmp;
2063 bool actuallyset = false;
2064 unsigned long flag;
2066 if (rtlpci->being_init_adapter)
2067 return false;
2068 if (ppsc->swrf_processing)
2069 return false;
2070 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2071 if (ppsc->rfchange_inprogress) {
2072 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2073 return false;
2074 } else {
2075 ppsc->rfchange_inprogress = true;
2076 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2078 rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv,
2079 REG_MAC_PINMUX_CFG) & ~(BIT(3)));
2080 u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
2081 e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF;
2082 if (ppsc->hwradiooff && (e_rfpowerstate_toset == ERFON)) {
2083 RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2084 "GPIOChangeRF - HW Radio ON, RF ON\n");
2085 e_rfpowerstate_toset = ERFON;
2086 ppsc->hwradiooff = false;
2087 actuallyset = true;
2088 } else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) {
2089 RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2090 "GPIOChangeRF - HW Radio OFF, RF OFF\n");
2091 e_rfpowerstate_toset = ERFOFF;
2092 ppsc->hwradiooff = true;
2093 actuallyset = true;
2095 if (actuallyset) {
2096 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2097 ppsc->rfchange_inprogress = false;
2098 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2099 } else {
2100 if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
2101 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2102 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2103 ppsc->rfchange_inprogress = false;
2104 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2106 *valid = 1;
2107 return !ppsc->hwradiooff;
2110 void rtl92de_set_key(struct ieee80211_hw *hw, u32 key_index,
2111 u8 *p_macaddr, bool is_group, u8 enc_algo,
2112 bool is_wepkey, bool clear_all)
2114 struct rtl_priv *rtlpriv = rtl_priv(hw);
2115 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2116 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2117 u8 *macaddr = p_macaddr;
2118 u32 entry_id;
2119 bool is_pairwise = false;
2120 static u8 cam_const_addr[4][6] = {
2121 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2122 {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2123 {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2124 {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2126 static u8 cam_const_broad[] = {
2127 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2130 if (clear_all) {
2131 u8 idx;
2132 u8 cam_offset = 0;
2133 u8 clear_number = 5;
2134 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
2135 for (idx = 0; idx < clear_number; idx++) {
2136 rtl_cam_mark_invalid(hw, cam_offset + idx);
2137 rtl_cam_empty_entry(hw, cam_offset + idx);
2139 if (idx < 5) {
2140 memset(rtlpriv->sec.key_buf[idx], 0,
2141 MAX_KEY_LEN);
2142 rtlpriv->sec.key_len[idx] = 0;
2145 } else {
2146 switch (enc_algo) {
2147 case WEP40_ENCRYPTION:
2148 enc_algo = CAM_WEP40;
2149 break;
2150 case WEP104_ENCRYPTION:
2151 enc_algo = CAM_WEP104;
2152 break;
2153 case TKIP_ENCRYPTION:
2154 enc_algo = CAM_TKIP;
2155 break;
2156 case AESCCMP_ENCRYPTION:
2157 enc_algo = CAM_AES;
2158 break;
2159 default:
2160 pr_err("switch case %#x not processed\n",
2161 enc_algo);
2162 enc_algo = CAM_TKIP;
2163 break;
2165 if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2166 macaddr = cam_const_addr[key_index];
2167 entry_id = key_index;
2168 } else {
2169 if (is_group) {
2170 macaddr = cam_const_broad;
2171 entry_id = key_index;
2172 } else {
2173 if (mac->opmode == NL80211_IFTYPE_AP) {
2174 entry_id = rtl_cam_get_free_entry(hw,
2175 p_macaddr);
2176 if (entry_id >= TOTAL_CAM_ENTRY) {
2177 pr_err("Can not find free hw security cam entry\n");
2178 return;
2180 } else {
2181 entry_id = CAM_PAIRWISE_KEY_POSITION;
2183 key_index = PAIRWISE_KEYIDX;
2184 is_pairwise = true;
2187 if (rtlpriv->sec.key_len[key_index] == 0) {
2188 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2189 "delete one entry, entry_id is %d\n",
2190 entry_id);
2191 if (mac->opmode == NL80211_IFTYPE_AP)
2192 rtl_cam_del_entry(hw, p_macaddr);
2193 rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2194 } else {
2195 RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
2196 "The insert KEY length is %d\n",
2197 rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
2198 RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
2199 "The insert KEY is %x %x\n",
2200 rtlpriv->sec.key_buf[0][0],
2201 rtlpriv->sec.key_buf[0][1]);
2202 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2203 "add one entry\n");
2204 if (is_pairwise) {
2205 RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
2206 "Pairwise Key content",
2207 rtlpriv->sec.pairwise_key,
2208 rtlpriv->
2209 sec.key_len[PAIRWISE_KEYIDX]);
2210 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2211 "set Pairwise key\n");
2212 rtl_cam_add_one_entry(hw, macaddr, key_index,
2213 entry_id, enc_algo,
2214 CAM_CONFIG_NO_USEDK,
2215 rtlpriv->
2216 sec.key_buf[key_index]);
2217 } else {
2218 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2219 "set group key\n");
2220 if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2221 rtl_cam_add_one_entry(hw,
2222 rtlefuse->dev_addr,
2223 PAIRWISE_KEYIDX,
2224 CAM_PAIRWISE_KEY_POSITION,
2225 enc_algo, CAM_CONFIG_NO_USEDK,
2226 rtlpriv->sec.key_buf[entry_id]);
2228 rtl_cam_add_one_entry(hw, macaddr, key_index,
2229 entry_id, enc_algo,
2230 CAM_CONFIG_NO_USEDK,
2231 rtlpriv->sec.key_buf
2232 [entry_id]);
2238 void rtl92de_suspend(struct ieee80211_hw *hw)
2240 struct rtl_priv *rtlpriv = rtl_priv(hw);
2242 rtlpriv->rtlhal.macphyctl_reg = rtl_read_byte(rtlpriv,
2243 REG_MAC_PHY_CTRL_NORMAL);
2246 void rtl92de_resume(struct ieee80211_hw *hw)
2248 struct rtl_priv *rtlpriv = rtl_priv(hw);
2250 rtl_write_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL,
2251 rtlpriv->rtlhal.macphyctl_reg);