2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
32 #define CREATE_TRACE_POINTS
38 #define NVME_MINORS (1U << MINORBITS)
40 unsigned int admin_timeout
= 60;
41 module_param(admin_timeout
, uint
, 0644);
42 MODULE_PARM_DESC(admin_timeout
, "timeout in seconds for admin commands");
43 EXPORT_SYMBOL_GPL(admin_timeout
);
45 unsigned int nvme_io_timeout
= 30;
46 module_param_named(io_timeout
, nvme_io_timeout
, uint
, 0644);
47 MODULE_PARM_DESC(io_timeout
, "timeout in seconds for I/O");
48 EXPORT_SYMBOL_GPL(nvme_io_timeout
);
50 static unsigned char shutdown_timeout
= 5;
51 module_param(shutdown_timeout
, byte
, 0644);
52 MODULE_PARM_DESC(shutdown_timeout
, "timeout in seconds for controller shutdown");
54 static u8 nvme_max_retries
= 5;
55 module_param_named(max_retries
, nvme_max_retries
, byte
, 0644);
56 MODULE_PARM_DESC(max_retries
, "max number of retries a command may have");
58 static unsigned long default_ps_max_latency_us
= 100000;
59 module_param(default_ps_max_latency_us
, ulong
, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us
,
61 "max power saving latency for new devices; use PM QOS to change per device");
63 static bool force_apst
;
64 module_param(force_apst
, bool, 0644);
65 MODULE_PARM_DESC(force_apst
, "allow APST for newly enumerated devices even if quirked off");
68 module_param(streams
, bool, 0644);
69 MODULE_PARM_DESC(streams
, "turn on support for Streams write directives");
72 * nvme_wq - hosts nvme related works that are not reset or delete
73 * nvme_reset_wq - hosts nvme reset works
74 * nvme_delete_wq - hosts nvme delete works
76 * nvme_wq will host works such are scan, aen handling, fw activation,
77 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
78 * runs reset works which also flush works hosted on nvme_wq for
79 * serialization purposes. nvme_delete_wq host controller deletion
80 * works which flush reset works for serialization.
82 struct workqueue_struct
*nvme_wq
;
83 EXPORT_SYMBOL_GPL(nvme_wq
);
85 struct workqueue_struct
*nvme_reset_wq
;
86 EXPORT_SYMBOL_GPL(nvme_reset_wq
);
88 struct workqueue_struct
*nvme_delete_wq
;
89 EXPORT_SYMBOL_GPL(nvme_delete_wq
);
91 static DEFINE_IDA(nvme_subsystems_ida
);
92 static LIST_HEAD(nvme_subsystems
);
93 static DEFINE_MUTEX(nvme_subsystems_lock
);
95 static DEFINE_IDA(nvme_instance_ida
);
96 static dev_t nvme_chr_devt
;
97 static struct class *nvme_class
;
98 static struct class *nvme_subsys_class
;
100 static void nvme_ns_remove(struct nvme_ns
*ns
);
101 static int nvme_revalidate_disk(struct gendisk
*disk
);
103 static __le32
nvme_get_log_dw10(u8 lid
, size_t size
)
105 return cpu_to_le32((((size
/ 4) - 1) << 16) | lid
);
108 int nvme_reset_ctrl(struct nvme_ctrl
*ctrl
)
110 if (!nvme_change_ctrl_state(ctrl
, NVME_CTRL_RESETTING
))
112 if (!queue_work(nvme_reset_wq
, &ctrl
->reset_work
))
116 EXPORT_SYMBOL_GPL(nvme_reset_ctrl
);
118 int nvme_reset_ctrl_sync(struct nvme_ctrl
*ctrl
)
122 ret
= nvme_reset_ctrl(ctrl
);
124 flush_work(&ctrl
->reset_work
);
127 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync
);
129 static void nvme_delete_ctrl_work(struct work_struct
*work
)
131 struct nvme_ctrl
*ctrl
=
132 container_of(work
, struct nvme_ctrl
, delete_work
);
134 flush_work(&ctrl
->reset_work
);
135 nvme_stop_ctrl(ctrl
);
136 nvme_remove_namespaces(ctrl
);
137 ctrl
->ops
->delete_ctrl(ctrl
);
138 nvme_uninit_ctrl(ctrl
);
142 int nvme_delete_ctrl(struct nvme_ctrl
*ctrl
)
144 if (!nvme_change_ctrl_state(ctrl
, NVME_CTRL_DELETING
))
146 if (!queue_work(nvme_delete_wq
, &ctrl
->delete_work
))
150 EXPORT_SYMBOL_GPL(nvme_delete_ctrl
);
152 int nvme_delete_ctrl_sync(struct nvme_ctrl
*ctrl
)
157 * Keep a reference until the work is flushed since ->delete_ctrl
158 * can free the controller.
161 ret
= nvme_delete_ctrl(ctrl
);
163 flush_work(&ctrl
->delete_work
);
167 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync
);
169 static inline bool nvme_ns_has_pi(struct nvme_ns
*ns
)
171 return ns
->pi_type
&& ns
->ms
== sizeof(struct t10_pi_tuple
);
174 static blk_status_t
nvme_error_status(struct request
*req
)
176 switch (nvme_req(req
)->status
& 0x7ff) {
177 case NVME_SC_SUCCESS
:
179 case NVME_SC_CAP_EXCEEDED
:
180 return BLK_STS_NOSPC
;
181 case NVME_SC_LBA_RANGE
:
182 return BLK_STS_TARGET
;
183 case NVME_SC_BAD_ATTRIBUTES
:
184 case NVME_SC_ONCS_NOT_SUPPORTED
:
185 case NVME_SC_INVALID_OPCODE
:
186 case NVME_SC_INVALID_FIELD
:
187 case NVME_SC_INVALID_NS
:
188 return BLK_STS_NOTSUPP
;
189 case NVME_SC_WRITE_FAULT
:
190 case NVME_SC_READ_ERROR
:
191 case NVME_SC_UNWRITTEN_BLOCK
:
192 case NVME_SC_ACCESS_DENIED
:
193 case NVME_SC_READ_ONLY
:
194 case NVME_SC_COMPARE_FAILED
:
195 return BLK_STS_MEDIUM
;
196 case NVME_SC_GUARD_CHECK
:
197 case NVME_SC_APPTAG_CHECK
:
198 case NVME_SC_REFTAG_CHECK
:
199 case NVME_SC_INVALID_PI
:
200 return BLK_STS_PROTECTION
;
201 case NVME_SC_RESERVATION_CONFLICT
:
202 return BLK_STS_NEXUS
;
204 return BLK_STS_IOERR
;
208 static inline bool nvme_req_needs_retry(struct request
*req
)
210 if (blk_noretry_request(req
))
212 if (nvme_req(req
)->status
& NVME_SC_DNR
)
214 if (nvme_req(req
)->retries
>= nvme_max_retries
)
219 void nvme_complete_rq(struct request
*req
)
221 blk_status_t status
= nvme_error_status(req
);
223 trace_nvme_complete_rq(req
);
225 if (unlikely(status
!= BLK_STS_OK
&& nvme_req_needs_retry(req
))) {
226 if (nvme_req_needs_failover(req
, status
)) {
227 nvme_failover_req(req
);
231 if (!blk_queue_dying(req
->q
)) {
232 nvme_req(req
)->retries
++;
233 blk_mq_requeue_request(req
, true);
237 blk_mq_end_request(req
, status
);
239 EXPORT_SYMBOL_GPL(nvme_complete_rq
);
241 void nvme_cancel_request(struct request
*req
, void *data
, bool reserved
)
243 if (!blk_mq_request_started(req
))
246 dev_dbg_ratelimited(((struct nvme_ctrl
*) data
)->device
,
247 "Cancelling I/O %d", req
->tag
);
249 nvme_req(req
)->status
= NVME_SC_ABORT_REQ
;
250 blk_mq_complete_request(req
);
253 EXPORT_SYMBOL_GPL(nvme_cancel_request
);
255 bool nvme_change_ctrl_state(struct nvme_ctrl
*ctrl
,
256 enum nvme_ctrl_state new_state
)
258 enum nvme_ctrl_state old_state
;
260 bool changed
= false;
262 spin_lock_irqsave(&ctrl
->lock
, flags
);
264 old_state
= ctrl
->state
;
266 case NVME_CTRL_ADMIN_ONLY
:
268 case NVME_CTRL_RECONNECTING
:
278 case NVME_CTRL_RESETTING
:
279 case NVME_CTRL_RECONNECTING
:
286 case NVME_CTRL_RESETTING
:
290 case NVME_CTRL_ADMIN_ONLY
:
297 case NVME_CTRL_RECONNECTING
:
300 case NVME_CTRL_RESETTING
:
307 case NVME_CTRL_DELETING
:
310 case NVME_CTRL_ADMIN_ONLY
:
311 case NVME_CTRL_RESETTING
:
312 case NVME_CTRL_RECONNECTING
:
321 case NVME_CTRL_DELETING
:
333 ctrl
->state
= new_state
;
335 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
336 if (changed
&& ctrl
->state
== NVME_CTRL_LIVE
)
337 nvme_kick_requeue_lists(ctrl
);
340 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state
);
342 static void nvme_free_ns_head(struct kref
*ref
)
344 struct nvme_ns_head
*head
=
345 container_of(ref
, struct nvme_ns_head
, ref
);
347 nvme_mpath_remove_disk(head
);
348 ida_simple_remove(&head
->subsys
->ns_ida
, head
->instance
);
349 list_del_init(&head
->entry
);
350 cleanup_srcu_struct(&head
->srcu
);
354 static void nvme_put_ns_head(struct nvme_ns_head
*head
)
356 kref_put(&head
->ref
, nvme_free_ns_head
);
359 static void nvme_free_ns(struct kref
*kref
)
361 struct nvme_ns
*ns
= container_of(kref
, struct nvme_ns
, kref
);
364 nvme_nvm_unregister(ns
);
367 nvme_put_ns_head(ns
->head
);
368 nvme_put_ctrl(ns
->ctrl
);
372 static void nvme_put_ns(struct nvme_ns
*ns
)
374 kref_put(&ns
->kref
, nvme_free_ns
);
377 struct request
*nvme_alloc_request(struct request_queue
*q
,
378 struct nvme_command
*cmd
, blk_mq_req_flags_t flags
, int qid
)
380 unsigned op
= nvme_is_write(cmd
) ? REQ_OP_DRV_OUT
: REQ_OP_DRV_IN
;
383 if (qid
== NVME_QID_ANY
) {
384 req
= blk_mq_alloc_request(q
, op
, flags
);
386 req
= blk_mq_alloc_request_hctx(q
, op
, flags
,
392 req
->cmd_flags
|= REQ_FAILFAST_DRIVER
;
393 nvme_req(req
)->cmd
= cmd
;
397 EXPORT_SYMBOL_GPL(nvme_alloc_request
);
399 static int nvme_toggle_streams(struct nvme_ctrl
*ctrl
, bool enable
)
401 struct nvme_command c
;
403 memset(&c
, 0, sizeof(c
));
405 c
.directive
.opcode
= nvme_admin_directive_send
;
406 c
.directive
.nsid
= cpu_to_le32(NVME_NSID_ALL
);
407 c
.directive
.doper
= NVME_DIR_SND_ID_OP_ENABLE
;
408 c
.directive
.dtype
= NVME_DIR_IDENTIFY
;
409 c
.directive
.tdtype
= NVME_DIR_STREAMS
;
410 c
.directive
.endir
= enable
? NVME_DIR_ENDIR
: 0;
412 return nvme_submit_sync_cmd(ctrl
->admin_q
, &c
, NULL
, 0);
415 static int nvme_disable_streams(struct nvme_ctrl
*ctrl
)
417 return nvme_toggle_streams(ctrl
, false);
420 static int nvme_enable_streams(struct nvme_ctrl
*ctrl
)
422 return nvme_toggle_streams(ctrl
, true);
425 static int nvme_get_stream_params(struct nvme_ctrl
*ctrl
,
426 struct streams_directive_params
*s
, u32 nsid
)
428 struct nvme_command c
;
430 memset(&c
, 0, sizeof(c
));
431 memset(s
, 0, sizeof(*s
));
433 c
.directive
.opcode
= nvme_admin_directive_recv
;
434 c
.directive
.nsid
= cpu_to_le32(nsid
);
435 c
.directive
.numd
= cpu_to_le32((sizeof(*s
) >> 2) - 1);
436 c
.directive
.doper
= NVME_DIR_RCV_ST_OP_PARAM
;
437 c
.directive
.dtype
= NVME_DIR_STREAMS
;
439 return nvme_submit_sync_cmd(ctrl
->admin_q
, &c
, s
, sizeof(*s
));
442 static int nvme_configure_directives(struct nvme_ctrl
*ctrl
)
444 struct streams_directive_params s
;
447 if (!(ctrl
->oacs
& NVME_CTRL_OACS_DIRECTIVES
))
452 ret
= nvme_enable_streams(ctrl
);
456 ret
= nvme_get_stream_params(ctrl
, &s
, NVME_NSID_ALL
);
460 ctrl
->nssa
= le16_to_cpu(s
.nssa
);
461 if (ctrl
->nssa
< BLK_MAX_WRITE_HINTS
- 1) {
462 dev_info(ctrl
->device
, "too few streams (%u) available\n",
464 nvme_disable_streams(ctrl
);
468 ctrl
->nr_streams
= min_t(unsigned, ctrl
->nssa
, BLK_MAX_WRITE_HINTS
- 1);
469 dev_info(ctrl
->device
, "Using %u streams\n", ctrl
->nr_streams
);
474 * Check if 'req' has a write hint associated with it. If it does, assign
475 * a valid namespace stream to the write.
477 static void nvme_assign_write_stream(struct nvme_ctrl
*ctrl
,
478 struct request
*req
, u16
*control
,
481 enum rw_hint streamid
= req
->write_hint
;
483 if (streamid
== WRITE_LIFE_NOT_SET
|| streamid
== WRITE_LIFE_NONE
)
487 if (WARN_ON_ONCE(streamid
> ctrl
->nr_streams
))
490 *control
|= NVME_RW_DTYPE_STREAMS
;
491 *dsmgmt
|= streamid
<< 16;
494 if (streamid
< ARRAY_SIZE(req
->q
->write_hints
))
495 req
->q
->write_hints
[streamid
] += blk_rq_bytes(req
) >> 9;
498 static inline void nvme_setup_flush(struct nvme_ns
*ns
,
499 struct nvme_command
*cmnd
)
501 memset(cmnd
, 0, sizeof(*cmnd
));
502 cmnd
->common
.opcode
= nvme_cmd_flush
;
503 cmnd
->common
.nsid
= cpu_to_le32(ns
->head
->ns_id
);
506 static blk_status_t
nvme_setup_discard(struct nvme_ns
*ns
, struct request
*req
,
507 struct nvme_command
*cmnd
)
509 unsigned short segments
= blk_rq_nr_discard_segments(req
), n
= 0;
510 struct nvme_dsm_range
*range
;
513 range
= kmalloc_array(segments
, sizeof(*range
), GFP_ATOMIC
);
515 return BLK_STS_RESOURCE
;
517 __rq_for_each_bio(bio
, req
) {
518 u64 slba
= nvme_block_nr(ns
, bio
->bi_iter
.bi_sector
);
519 u32 nlb
= bio
->bi_iter
.bi_size
>> ns
->lba_shift
;
521 range
[n
].cattr
= cpu_to_le32(0);
522 range
[n
].nlb
= cpu_to_le32(nlb
);
523 range
[n
].slba
= cpu_to_le64(slba
);
527 if (WARN_ON_ONCE(n
!= segments
)) {
529 return BLK_STS_IOERR
;
532 memset(cmnd
, 0, sizeof(*cmnd
));
533 cmnd
->dsm
.opcode
= nvme_cmd_dsm
;
534 cmnd
->dsm
.nsid
= cpu_to_le32(ns
->head
->ns_id
);
535 cmnd
->dsm
.nr
= cpu_to_le32(segments
- 1);
536 cmnd
->dsm
.attributes
= cpu_to_le32(NVME_DSMGMT_AD
);
538 req
->special_vec
.bv_page
= virt_to_page(range
);
539 req
->special_vec
.bv_offset
= offset_in_page(range
);
540 req
->special_vec
.bv_len
= sizeof(*range
) * segments
;
541 req
->rq_flags
|= RQF_SPECIAL_PAYLOAD
;
546 static inline blk_status_t
nvme_setup_rw(struct nvme_ns
*ns
,
547 struct request
*req
, struct nvme_command
*cmnd
)
549 struct nvme_ctrl
*ctrl
= ns
->ctrl
;
553 if (req
->cmd_flags
& REQ_FUA
)
554 control
|= NVME_RW_FUA
;
555 if (req
->cmd_flags
& (REQ_FAILFAST_DEV
| REQ_RAHEAD
))
556 control
|= NVME_RW_LR
;
558 if (req
->cmd_flags
& REQ_RAHEAD
)
559 dsmgmt
|= NVME_RW_DSM_FREQ_PREFETCH
;
561 memset(cmnd
, 0, sizeof(*cmnd
));
562 cmnd
->rw
.opcode
= (rq_data_dir(req
) ? nvme_cmd_write
: nvme_cmd_read
);
563 cmnd
->rw
.nsid
= cpu_to_le32(ns
->head
->ns_id
);
564 cmnd
->rw
.slba
= cpu_to_le64(nvme_block_nr(ns
, blk_rq_pos(req
)));
565 cmnd
->rw
.length
= cpu_to_le16((blk_rq_bytes(req
) >> ns
->lba_shift
) - 1);
567 if (req_op(req
) == REQ_OP_WRITE
&& ctrl
->nr_streams
)
568 nvme_assign_write_stream(ctrl
, req
, &control
, &dsmgmt
);
572 * If formated with metadata, the block layer always provides a
573 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
574 * we enable the PRACT bit for protection information or set the
575 * namespace capacity to zero to prevent any I/O.
577 if (!blk_integrity_rq(req
)) {
578 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns
)))
579 return BLK_STS_NOTSUPP
;
580 control
|= NVME_RW_PRINFO_PRACT
;
583 switch (ns
->pi_type
) {
584 case NVME_NS_DPS_PI_TYPE3
:
585 control
|= NVME_RW_PRINFO_PRCHK_GUARD
;
587 case NVME_NS_DPS_PI_TYPE1
:
588 case NVME_NS_DPS_PI_TYPE2
:
589 control
|= NVME_RW_PRINFO_PRCHK_GUARD
|
590 NVME_RW_PRINFO_PRCHK_REF
;
591 cmnd
->rw
.reftag
= cpu_to_le32(
592 nvme_block_nr(ns
, blk_rq_pos(req
)));
597 cmnd
->rw
.control
= cpu_to_le16(control
);
598 cmnd
->rw
.dsmgmt
= cpu_to_le32(dsmgmt
);
602 blk_status_t
nvme_setup_cmd(struct nvme_ns
*ns
, struct request
*req
,
603 struct nvme_command
*cmd
)
605 blk_status_t ret
= BLK_STS_OK
;
607 if (!(req
->rq_flags
& RQF_DONTPREP
)) {
608 nvme_req(req
)->retries
= 0;
609 nvme_req(req
)->flags
= 0;
610 req
->rq_flags
|= RQF_DONTPREP
;
613 switch (req_op(req
)) {
616 memcpy(cmd
, nvme_req(req
)->cmd
, sizeof(*cmd
));
619 nvme_setup_flush(ns
, cmd
);
621 case REQ_OP_WRITE_ZEROES
:
622 /* currently only aliased to deallocate for a few ctrls: */
624 ret
= nvme_setup_discard(ns
, req
, cmd
);
628 ret
= nvme_setup_rw(ns
, req
, cmd
);
632 return BLK_STS_IOERR
;
635 cmd
->common
.command_id
= req
->tag
;
637 trace_nvme_setup_nvm_cmd(req
->q
->id
, cmd
);
639 trace_nvme_setup_admin_cmd(cmd
);
642 EXPORT_SYMBOL_GPL(nvme_setup_cmd
);
645 * Returns 0 on success. If the result is negative, it's a Linux error code;
646 * if the result is positive, it's an NVM Express status code
648 int __nvme_submit_sync_cmd(struct request_queue
*q
, struct nvme_command
*cmd
,
649 union nvme_result
*result
, void *buffer
, unsigned bufflen
,
650 unsigned timeout
, int qid
, int at_head
,
651 blk_mq_req_flags_t flags
)
656 req
= nvme_alloc_request(q
, cmd
, flags
, qid
);
660 req
->timeout
= timeout
? timeout
: ADMIN_TIMEOUT
;
662 if (buffer
&& bufflen
) {
663 ret
= blk_rq_map_kern(q
, req
, buffer
, bufflen
, GFP_KERNEL
);
668 blk_execute_rq(req
->q
, NULL
, req
, at_head
);
670 *result
= nvme_req(req
)->result
;
671 if (nvme_req(req
)->flags
& NVME_REQ_CANCELLED
)
674 ret
= nvme_req(req
)->status
;
676 blk_mq_free_request(req
);
679 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd
);
681 int nvme_submit_sync_cmd(struct request_queue
*q
, struct nvme_command
*cmd
,
682 void *buffer
, unsigned bufflen
)
684 return __nvme_submit_sync_cmd(q
, cmd
, NULL
, buffer
, bufflen
, 0,
687 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd
);
689 static void *nvme_add_user_metadata(struct bio
*bio
, void __user
*ubuf
,
690 unsigned len
, u32 seed
, bool write
)
692 struct bio_integrity_payload
*bip
;
696 buf
= kmalloc(len
, GFP_KERNEL
);
701 if (write
&& copy_from_user(buf
, ubuf
, len
))
704 bip
= bio_integrity_alloc(bio
, GFP_KERNEL
, 1);
710 bip
->bip_iter
.bi_size
= len
;
711 bip
->bip_iter
.bi_sector
= seed
;
712 ret
= bio_integrity_add_page(bio
, virt_to_page(buf
), len
,
713 offset_in_page(buf
));
723 static int nvme_submit_user_cmd(struct request_queue
*q
,
724 struct nvme_command
*cmd
, void __user
*ubuffer
,
725 unsigned bufflen
, void __user
*meta_buffer
, unsigned meta_len
,
726 u32 meta_seed
, u32
*result
, unsigned timeout
)
728 bool write
= nvme_is_write(cmd
);
729 struct nvme_ns
*ns
= q
->queuedata
;
730 struct gendisk
*disk
= ns
? ns
->disk
: NULL
;
732 struct bio
*bio
= NULL
;
736 req
= nvme_alloc_request(q
, cmd
, 0, NVME_QID_ANY
);
740 req
->timeout
= timeout
? timeout
: ADMIN_TIMEOUT
;
742 if (ubuffer
&& bufflen
) {
743 ret
= blk_rq_map_user(q
, req
, NULL
, ubuffer
, bufflen
,
749 if (disk
&& meta_buffer
&& meta_len
) {
750 meta
= nvme_add_user_metadata(bio
, meta_buffer
, meta_len
,
759 blk_execute_rq(req
->q
, disk
, req
, 0);
760 if (nvme_req(req
)->flags
& NVME_REQ_CANCELLED
)
763 ret
= nvme_req(req
)->status
;
765 *result
= le32_to_cpu(nvme_req(req
)->result
.u32
);
766 if (meta
&& !ret
&& !write
) {
767 if (copy_to_user(meta_buffer
, meta
, meta_len
))
773 blk_rq_unmap_user(bio
);
775 blk_mq_free_request(req
);
779 static void nvme_keep_alive_end_io(struct request
*rq
, blk_status_t status
)
781 struct nvme_ctrl
*ctrl
= rq
->end_io_data
;
783 blk_mq_free_request(rq
);
786 dev_err(ctrl
->device
,
787 "failed nvme_keep_alive_end_io error=%d\n",
792 schedule_delayed_work(&ctrl
->ka_work
, ctrl
->kato
* HZ
);
795 static int nvme_keep_alive(struct nvme_ctrl
*ctrl
)
797 struct nvme_command c
;
800 memset(&c
, 0, sizeof(c
));
801 c
.common
.opcode
= nvme_admin_keep_alive
;
803 rq
= nvme_alloc_request(ctrl
->admin_q
, &c
, BLK_MQ_REQ_RESERVED
,
808 rq
->timeout
= ctrl
->kato
* HZ
;
809 rq
->end_io_data
= ctrl
;
811 blk_execute_rq_nowait(rq
->q
, NULL
, rq
, 0, nvme_keep_alive_end_io
);
816 static void nvme_keep_alive_work(struct work_struct
*work
)
818 struct nvme_ctrl
*ctrl
= container_of(to_delayed_work(work
),
819 struct nvme_ctrl
, ka_work
);
821 if (nvme_keep_alive(ctrl
)) {
822 /* allocation failure, reset the controller */
823 dev_err(ctrl
->device
, "keep-alive failed\n");
824 nvme_reset_ctrl(ctrl
);
829 void nvme_start_keep_alive(struct nvme_ctrl
*ctrl
)
831 if (unlikely(ctrl
->kato
== 0))
834 INIT_DELAYED_WORK(&ctrl
->ka_work
, nvme_keep_alive_work
);
835 schedule_delayed_work(&ctrl
->ka_work
, ctrl
->kato
* HZ
);
837 EXPORT_SYMBOL_GPL(nvme_start_keep_alive
);
839 void nvme_stop_keep_alive(struct nvme_ctrl
*ctrl
)
841 if (unlikely(ctrl
->kato
== 0))
844 cancel_delayed_work_sync(&ctrl
->ka_work
);
846 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive
);
848 static int nvme_identify_ctrl(struct nvme_ctrl
*dev
, struct nvme_id_ctrl
**id
)
850 struct nvme_command c
= { };
853 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
854 c
.identify
.opcode
= nvme_admin_identify
;
855 c
.identify
.cns
= NVME_ID_CNS_CTRL
;
857 *id
= kmalloc(sizeof(struct nvme_id_ctrl
), GFP_KERNEL
);
861 error
= nvme_submit_sync_cmd(dev
->admin_q
, &c
, *id
,
862 sizeof(struct nvme_id_ctrl
));
868 static int nvme_identify_ns_descs(struct nvme_ctrl
*ctrl
, unsigned nsid
,
869 struct nvme_ns_ids
*ids
)
871 struct nvme_command c
= { };
877 c
.identify
.opcode
= nvme_admin_identify
;
878 c
.identify
.nsid
= cpu_to_le32(nsid
);
879 c
.identify
.cns
= NVME_ID_CNS_NS_DESC_LIST
;
881 data
= kzalloc(NVME_IDENTIFY_DATA_SIZE
, GFP_KERNEL
);
885 status
= nvme_submit_sync_cmd(ctrl
->admin_q
, &c
, data
,
886 NVME_IDENTIFY_DATA_SIZE
);
890 for (pos
= 0; pos
< NVME_IDENTIFY_DATA_SIZE
; pos
+= len
) {
891 struct nvme_ns_id_desc
*cur
= data
+ pos
;
897 case NVME_NIDT_EUI64
:
898 if (cur
->nidl
!= NVME_NIDT_EUI64_LEN
) {
899 dev_warn(ctrl
->device
,
900 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
904 len
= NVME_NIDT_EUI64_LEN
;
905 memcpy(ids
->eui64
, data
+ pos
+ sizeof(*cur
), len
);
907 case NVME_NIDT_NGUID
:
908 if (cur
->nidl
!= NVME_NIDT_NGUID_LEN
) {
909 dev_warn(ctrl
->device
,
910 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
914 len
= NVME_NIDT_NGUID_LEN
;
915 memcpy(ids
->nguid
, data
+ pos
+ sizeof(*cur
), len
);
918 if (cur
->nidl
!= NVME_NIDT_UUID_LEN
) {
919 dev_warn(ctrl
->device
,
920 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
924 len
= NVME_NIDT_UUID_LEN
;
925 uuid_copy(&ids
->uuid
, data
+ pos
+ sizeof(*cur
));
928 /* Skip unnkown types */
940 static int nvme_identify_ns_list(struct nvme_ctrl
*dev
, unsigned nsid
, __le32
*ns_list
)
942 struct nvme_command c
= { };
944 c
.identify
.opcode
= nvme_admin_identify
;
945 c
.identify
.cns
= NVME_ID_CNS_NS_ACTIVE_LIST
;
946 c
.identify
.nsid
= cpu_to_le32(nsid
);
947 return nvme_submit_sync_cmd(dev
->admin_q
, &c
, ns_list
, 0x1000);
950 static struct nvme_id_ns
*nvme_identify_ns(struct nvme_ctrl
*ctrl
,
953 struct nvme_id_ns
*id
;
954 struct nvme_command c
= { };
957 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
958 c
.identify
.opcode
= nvme_admin_identify
;
959 c
.identify
.nsid
= cpu_to_le32(nsid
);
960 c
.identify
.cns
= NVME_ID_CNS_NS
;
962 id
= kmalloc(sizeof(*id
), GFP_KERNEL
);
966 error
= nvme_submit_sync_cmd(ctrl
->admin_q
, &c
, id
, sizeof(*id
));
968 dev_warn(ctrl
->device
, "Identify namespace failed\n");
976 static int nvme_set_features(struct nvme_ctrl
*dev
, unsigned fid
, unsigned dword11
,
977 void *buffer
, size_t buflen
, u32
*result
)
979 struct nvme_command c
;
980 union nvme_result res
;
983 memset(&c
, 0, sizeof(c
));
984 c
.features
.opcode
= nvme_admin_set_features
;
985 c
.features
.fid
= cpu_to_le32(fid
);
986 c
.features
.dword11
= cpu_to_le32(dword11
);
988 ret
= __nvme_submit_sync_cmd(dev
->admin_q
, &c
, &res
,
989 buffer
, buflen
, 0, NVME_QID_ANY
, 0, 0);
990 if (ret
>= 0 && result
)
991 *result
= le32_to_cpu(res
.u32
);
995 int nvme_set_queue_count(struct nvme_ctrl
*ctrl
, int *count
)
997 u32 q_count
= (*count
- 1) | ((*count
- 1) << 16);
999 int status
, nr_io_queues
;
1001 status
= nvme_set_features(ctrl
, NVME_FEAT_NUM_QUEUES
, q_count
, NULL
, 0,
1007 * Degraded controllers might return an error when setting the queue
1008 * count. We still want to be able to bring them online and offer
1009 * access to the admin queue, as that might be only way to fix them up.
1012 dev_err(ctrl
->device
, "Could not set queue count (%d)\n", status
);
1015 nr_io_queues
= min(result
& 0xffff, result
>> 16) + 1;
1016 *count
= min(*count
, nr_io_queues
);
1021 EXPORT_SYMBOL_GPL(nvme_set_queue_count
);
1023 static int nvme_submit_io(struct nvme_ns
*ns
, struct nvme_user_io __user
*uio
)
1025 struct nvme_user_io io
;
1026 struct nvme_command c
;
1027 unsigned length
, meta_len
;
1028 void __user
*metadata
;
1030 if (copy_from_user(&io
, uio
, sizeof(io
)))
1035 switch (io
.opcode
) {
1036 case nvme_cmd_write
:
1038 case nvme_cmd_compare
:
1044 length
= (io
.nblocks
+ 1) << ns
->lba_shift
;
1045 meta_len
= (io
.nblocks
+ 1) * ns
->ms
;
1046 metadata
= (void __user
*)(uintptr_t)io
.metadata
;
1051 } else if (meta_len
) {
1052 if ((io
.metadata
& 3) || !io
.metadata
)
1056 memset(&c
, 0, sizeof(c
));
1057 c
.rw
.opcode
= io
.opcode
;
1058 c
.rw
.flags
= io
.flags
;
1059 c
.rw
.nsid
= cpu_to_le32(ns
->head
->ns_id
);
1060 c
.rw
.slba
= cpu_to_le64(io
.slba
);
1061 c
.rw
.length
= cpu_to_le16(io
.nblocks
);
1062 c
.rw
.control
= cpu_to_le16(io
.control
);
1063 c
.rw
.dsmgmt
= cpu_to_le32(io
.dsmgmt
);
1064 c
.rw
.reftag
= cpu_to_le32(io
.reftag
);
1065 c
.rw
.apptag
= cpu_to_le16(io
.apptag
);
1066 c
.rw
.appmask
= cpu_to_le16(io
.appmask
);
1068 return nvme_submit_user_cmd(ns
->queue
, &c
,
1069 (void __user
*)(uintptr_t)io
.addr
, length
,
1070 metadata
, meta_len
, io
.slba
, NULL
, 0);
1073 static u32
nvme_known_admin_effects(u8 opcode
)
1076 case nvme_admin_format_nvm
:
1077 return NVME_CMD_EFFECTS_CSUPP
| NVME_CMD_EFFECTS_LBCC
|
1078 NVME_CMD_EFFECTS_CSE_MASK
;
1079 case nvme_admin_sanitize_nvm
:
1080 return NVME_CMD_EFFECTS_CSE_MASK
;
1087 static u32
nvme_passthru_start(struct nvme_ctrl
*ctrl
, struct nvme_ns
*ns
,
1094 effects
= le32_to_cpu(ctrl
->effects
->iocs
[opcode
]);
1095 if (effects
& ~NVME_CMD_EFFECTS_CSUPP
)
1096 dev_warn(ctrl
->device
,
1097 "IO command:%02x has unhandled effects:%08x\n",
1103 effects
= le32_to_cpu(ctrl
->effects
->iocs
[opcode
]);
1105 effects
= nvme_known_admin_effects(opcode
);
1108 * For simplicity, IO to all namespaces is quiesced even if the command
1109 * effects say only one namespace is affected.
1111 if (effects
& (NVME_CMD_EFFECTS_LBCC
| NVME_CMD_EFFECTS_CSE_MASK
)) {
1112 nvme_start_freeze(ctrl
);
1113 nvme_wait_freeze(ctrl
);
1118 static void nvme_update_formats(struct nvme_ctrl
*ctrl
)
1122 mutex_lock(&ctrl
->namespaces_mutex
);
1123 list_for_each_entry(ns
, &ctrl
->namespaces
, list
) {
1124 if (ns
->disk
&& nvme_revalidate_disk(ns
->disk
))
1127 mutex_unlock(&ctrl
->namespaces_mutex
);
1130 static void nvme_passthru_end(struct nvme_ctrl
*ctrl
, u32 effects
)
1133 * Revalidate LBA changes prior to unfreezing. This is necessary to
1134 * prevent memory corruption if a logical block size was changed by
1137 if (effects
& NVME_CMD_EFFECTS_LBCC
)
1138 nvme_update_formats(ctrl
);
1139 if (effects
& (NVME_CMD_EFFECTS_LBCC
| NVME_CMD_EFFECTS_CSE_MASK
))
1140 nvme_unfreeze(ctrl
);
1141 if (effects
& NVME_CMD_EFFECTS_CCC
)
1142 nvme_init_identify(ctrl
);
1143 if (effects
& (NVME_CMD_EFFECTS_NIC
| NVME_CMD_EFFECTS_NCC
))
1144 nvme_queue_scan(ctrl
);
1147 static int nvme_user_cmd(struct nvme_ctrl
*ctrl
, struct nvme_ns
*ns
,
1148 struct nvme_passthru_cmd __user
*ucmd
)
1150 struct nvme_passthru_cmd cmd
;
1151 struct nvme_command c
;
1152 unsigned timeout
= 0;
1156 if (!capable(CAP_SYS_ADMIN
))
1158 if (copy_from_user(&cmd
, ucmd
, sizeof(cmd
)))
1163 memset(&c
, 0, sizeof(c
));
1164 c
.common
.opcode
= cmd
.opcode
;
1165 c
.common
.flags
= cmd
.flags
;
1166 c
.common
.nsid
= cpu_to_le32(cmd
.nsid
);
1167 c
.common
.cdw2
[0] = cpu_to_le32(cmd
.cdw2
);
1168 c
.common
.cdw2
[1] = cpu_to_le32(cmd
.cdw3
);
1169 c
.common
.cdw10
[0] = cpu_to_le32(cmd
.cdw10
);
1170 c
.common
.cdw10
[1] = cpu_to_le32(cmd
.cdw11
);
1171 c
.common
.cdw10
[2] = cpu_to_le32(cmd
.cdw12
);
1172 c
.common
.cdw10
[3] = cpu_to_le32(cmd
.cdw13
);
1173 c
.common
.cdw10
[4] = cpu_to_le32(cmd
.cdw14
);
1174 c
.common
.cdw10
[5] = cpu_to_le32(cmd
.cdw15
);
1177 timeout
= msecs_to_jiffies(cmd
.timeout_ms
);
1179 effects
= nvme_passthru_start(ctrl
, ns
, cmd
.opcode
);
1180 status
= nvme_submit_user_cmd(ns
? ns
->queue
: ctrl
->admin_q
, &c
,
1181 (void __user
*)(uintptr_t)cmd
.addr
, cmd
.data_len
,
1182 (void __user
*)(uintptr_t)cmd
.metadata
, cmd
.metadata
,
1183 0, &cmd
.result
, timeout
);
1184 nvme_passthru_end(ctrl
, effects
);
1187 if (put_user(cmd
.result
, &ucmd
->result
))
1195 * Issue ioctl requests on the first available path. Note that unlike normal
1196 * block layer requests we will not retry failed request on another controller.
1198 static struct nvme_ns
*nvme_get_ns_from_disk(struct gendisk
*disk
,
1199 struct nvme_ns_head
**head
, int *srcu_idx
)
1201 #ifdef CONFIG_NVME_MULTIPATH
1202 if (disk
->fops
== &nvme_ns_head_ops
) {
1203 *head
= disk
->private_data
;
1204 *srcu_idx
= srcu_read_lock(&(*head
)->srcu
);
1205 return nvme_find_path(*head
);
1210 return disk
->private_data
;
1213 static void nvme_put_ns_from_disk(struct nvme_ns_head
*head
, int idx
)
1216 srcu_read_unlock(&head
->srcu
, idx
);
1219 static int nvme_ns_ioctl(struct nvme_ns
*ns
, unsigned cmd
, unsigned long arg
)
1223 force_successful_syscall_return();
1224 return ns
->head
->ns_id
;
1225 case NVME_IOCTL_ADMIN_CMD
:
1226 return nvme_user_cmd(ns
->ctrl
, NULL
, (void __user
*)arg
);
1227 case NVME_IOCTL_IO_CMD
:
1228 return nvme_user_cmd(ns
->ctrl
, ns
, (void __user
*)arg
);
1229 case NVME_IOCTL_SUBMIT_IO
:
1230 return nvme_submit_io(ns
, (void __user
*)arg
);
1234 return nvme_nvm_ioctl(ns
, cmd
, arg
);
1236 if (is_sed_ioctl(cmd
))
1237 return sed_ioctl(ns
->ctrl
->opal_dev
, cmd
,
1238 (void __user
*) arg
);
1243 static int nvme_ioctl(struct block_device
*bdev
, fmode_t mode
,
1244 unsigned int cmd
, unsigned long arg
)
1246 struct nvme_ns_head
*head
= NULL
;
1250 ns
= nvme_get_ns_from_disk(bdev
->bd_disk
, &head
, &srcu_idx
);
1254 ret
= nvme_ns_ioctl(ns
, cmd
, arg
);
1255 nvme_put_ns_from_disk(head
, srcu_idx
);
1259 static int nvme_open(struct block_device
*bdev
, fmode_t mode
)
1261 struct nvme_ns
*ns
= bdev
->bd_disk
->private_data
;
1263 #ifdef CONFIG_NVME_MULTIPATH
1264 /* should never be called due to GENHD_FL_HIDDEN */
1265 if (WARN_ON_ONCE(ns
->head
->disk
))
1268 if (!kref_get_unless_zero(&ns
->kref
))
1270 if (!try_module_get(ns
->ctrl
->ops
->module
))
1281 static void nvme_release(struct gendisk
*disk
, fmode_t mode
)
1283 struct nvme_ns
*ns
= disk
->private_data
;
1285 module_put(ns
->ctrl
->ops
->module
);
1289 static int nvme_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
1291 /* some standard values */
1292 geo
->heads
= 1 << 6;
1293 geo
->sectors
= 1 << 5;
1294 geo
->cylinders
= get_capacity(bdev
->bd_disk
) >> 11;
1298 #ifdef CONFIG_BLK_DEV_INTEGRITY
1299 static void nvme_init_integrity(struct gendisk
*disk
, u16 ms
, u8 pi_type
)
1301 struct blk_integrity integrity
;
1303 memset(&integrity
, 0, sizeof(integrity
));
1305 case NVME_NS_DPS_PI_TYPE3
:
1306 integrity
.profile
= &t10_pi_type3_crc
;
1307 integrity
.tag_size
= sizeof(u16
) + sizeof(u32
);
1308 integrity
.flags
|= BLK_INTEGRITY_DEVICE_CAPABLE
;
1310 case NVME_NS_DPS_PI_TYPE1
:
1311 case NVME_NS_DPS_PI_TYPE2
:
1312 integrity
.profile
= &t10_pi_type1_crc
;
1313 integrity
.tag_size
= sizeof(u16
);
1314 integrity
.flags
|= BLK_INTEGRITY_DEVICE_CAPABLE
;
1317 integrity
.profile
= NULL
;
1320 integrity
.tuple_size
= ms
;
1321 blk_integrity_register(disk
, &integrity
);
1322 blk_queue_max_integrity_segments(disk
->queue
, 1);
1325 static void nvme_init_integrity(struct gendisk
*disk
, u16 ms
, u8 pi_type
)
1328 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1330 static void nvme_set_chunk_size(struct nvme_ns
*ns
)
1332 u32 chunk_size
= (((u32
)ns
->noiob
) << (ns
->lba_shift
- 9));
1333 blk_queue_chunk_sectors(ns
->queue
, rounddown_pow_of_two(chunk_size
));
1336 static void nvme_config_discard(struct nvme_ctrl
*ctrl
,
1337 unsigned stream_alignment
, struct request_queue
*queue
)
1339 u32 size
= queue_logical_block_size(queue
);
1341 if (stream_alignment
)
1342 size
*= stream_alignment
;
1344 BUILD_BUG_ON(PAGE_SIZE
/ sizeof(struct nvme_dsm_range
) <
1345 NVME_DSM_MAX_RANGES
);
1347 queue
->limits
.discard_alignment
= 0;
1348 queue
->limits
.discard_granularity
= size
;
1350 blk_queue_max_discard_sectors(queue
, UINT_MAX
);
1351 blk_queue_max_discard_segments(queue
, NVME_DSM_MAX_RANGES
);
1352 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, queue
);
1354 if (ctrl
->quirks
& NVME_QUIRK_DEALLOCATE_ZEROES
)
1355 blk_queue_max_write_zeroes_sectors(queue
, UINT_MAX
);
1358 static void nvme_report_ns_ids(struct nvme_ctrl
*ctrl
, unsigned int nsid
,
1359 struct nvme_id_ns
*id
, struct nvme_ns_ids
*ids
)
1361 memset(ids
, 0, sizeof(*ids
));
1363 if (ctrl
->vs
>= NVME_VS(1, 1, 0))
1364 memcpy(ids
->eui64
, id
->eui64
, sizeof(id
->eui64
));
1365 if (ctrl
->vs
>= NVME_VS(1, 2, 0))
1366 memcpy(ids
->nguid
, id
->nguid
, sizeof(id
->nguid
));
1367 if (ctrl
->vs
>= NVME_VS(1, 3, 0)) {
1368 /* Don't treat error as fatal we potentially
1369 * already have a NGUID or EUI-64
1371 if (nvme_identify_ns_descs(ctrl
, nsid
, ids
))
1372 dev_warn(ctrl
->device
,
1373 "%s: Identify Descriptors failed\n", __func__
);
1377 static bool nvme_ns_ids_valid(struct nvme_ns_ids
*ids
)
1379 return !uuid_is_null(&ids
->uuid
) ||
1380 memchr_inv(ids
->nguid
, 0, sizeof(ids
->nguid
)) ||
1381 memchr_inv(ids
->eui64
, 0, sizeof(ids
->eui64
));
1384 static bool nvme_ns_ids_equal(struct nvme_ns_ids
*a
, struct nvme_ns_ids
*b
)
1386 return uuid_equal(&a
->uuid
, &b
->uuid
) &&
1387 memcmp(&a
->nguid
, &b
->nguid
, sizeof(a
->nguid
)) == 0 &&
1388 memcmp(&a
->eui64
, &b
->eui64
, sizeof(a
->eui64
)) == 0;
1391 static void nvme_update_disk_info(struct gendisk
*disk
,
1392 struct nvme_ns
*ns
, struct nvme_id_ns
*id
)
1394 sector_t capacity
= le64_to_cpup(&id
->nsze
) << (ns
->lba_shift
- 9);
1395 unsigned short bs
= 1 << ns
->lba_shift
;
1396 unsigned stream_alignment
= 0;
1398 if (ns
->ctrl
->nr_streams
&& ns
->sws
&& ns
->sgs
)
1399 stream_alignment
= ns
->sws
* ns
->sgs
;
1401 blk_mq_freeze_queue(disk
->queue
);
1402 blk_integrity_unregister(disk
);
1404 blk_queue_logical_block_size(disk
->queue
, bs
);
1405 blk_queue_physical_block_size(disk
->queue
, bs
);
1406 blk_queue_io_min(disk
->queue
, bs
);
1408 if (ns
->ms
&& !ns
->ext
&&
1409 (ns
->ctrl
->ops
->flags
& NVME_F_METADATA_SUPPORTED
))
1410 nvme_init_integrity(disk
, ns
->ms
, ns
->pi_type
);
1411 if (ns
->ms
&& !nvme_ns_has_pi(ns
) && !blk_get_integrity(disk
))
1413 set_capacity(disk
, capacity
);
1415 if (ns
->ctrl
->oncs
& NVME_CTRL_ONCS_DSM
)
1416 nvme_config_discard(ns
->ctrl
, stream_alignment
, disk
->queue
);
1417 blk_mq_unfreeze_queue(disk
->queue
);
1420 static void __nvme_revalidate_disk(struct gendisk
*disk
, struct nvme_id_ns
*id
)
1422 struct nvme_ns
*ns
= disk
->private_data
;
1425 * If identify namespace failed, use default 512 byte block size so
1426 * block layer can use before failing read/write for 0 capacity.
1428 ns
->lba_shift
= id
->lbaf
[id
->flbas
& NVME_NS_FLBAS_LBA_MASK
].ds
;
1429 if (ns
->lba_shift
== 0)
1431 ns
->noiob
= le16_to_cpu(id
->noiob
);
1432 ns
->ext
= ns
->ms
&& (id
->flbas
& NVME_NS_FLBAS_META_EXT
);
1433 ns
->ms
= le16_to_cpu(id
->lbaf
[id
->flbas
& NVME_NS_FLBAS_LBA_MASK
].ms
);
1434 /* the PI implementation requires metadata equal t10 pi tuple size */
1435 if (ns
->ms
== sizeof(struct t10_pi_tuple
))
1436 ns
->pi_type
= id
->dps
& NVME_NS_DPS_PI_MASK
;
1441 nvme_set_chunk_size(ns
);
1442 nvme_update_disk_info(disk
, ns
, id
);
1443 #ifdef CONFIG_NVME_MULTIPATH
1445 nvme_update_disk_info(ns
->head
->disk
, ns
, id
);
1449 static int nvme_revalidate_disk(struct gendisk
*disk
)
1451 struct nvme_ns
*ns
= disk
->private_data
;
1452 struct nvme_ctrl
*ctrl
= ns
->ctrl
;
1453 struct nvme_id_ns
*id
;
1454 struct nvme_ns_ids ids
;
1457 if (test_bit(NVME_NS_DEAD
, &ns
->flags
)) {
1458 set_capacity(disk
, 0);
1462 id
= nvme_identify_ns(ctrl
, ns
->head
->ns_id
);
1466 if (id
->ncap
== 0) {
1471 __nvme_revalidate_disk(disk
, id
);
1472 nvme_report_ns_ids(ctrl
, ns
->head
->ns_id
, id
, &ids
);
1473 if (!nvme_ns_ids_equal(&ns
->head
->ids
, &ids
)) {
1474 dev_err(ctrl
->device
,
1475 "identifiers changed for nsid %d\n", ns
->head
->ns_id
);
1484 static char nvme_pr_type(enum pr_type type
)
1487 case PR_WRITE_EXCLUSIVE
:
1489 case PR_EXCLUSIVE_ACCESS
:
1491 case PR_WRITE_EXCLUSIVE_REG_ONLY
:
1493 case PR_EXCLUSIVE_ACCESS_REG_ONLY
:
1495 case PR_WRITE_EXCLUSIVE_ALL_REGS
:
1497 case PR_EXCLUSIVE_ACCESS_ALL_REGS
:
1504 static int nvme_pr_command(struct block_device
*bdev
, u32 cdw10
,
1505 u64 key
, u64 sa_key
, u8 op
)
1507 struct nvme_ns_head
*head
= NULL
;
1509 struct nvme_command c
;
1511 u8 data
[16] = { 0, };
1513 ns
= nvme_get_ns_from_disk(bdev
->bd_disk
, &head
, &srcu_idx
);
1515 return -EWOULDBLOCK
;
1517 put_unaligned_le64(key
, &data
[0]);
1518 put_unaligned_le64(sa_key
, &data
[8]);
1520 memset(&c
, 0, sizeof(c
));
1521 c
.common
.opcode
= op
;
1522 c
.common
.nsid
= cpu_to_le32(ns
->head
->ns_id
);
1523 c
.common
.cdw10
[0] = cpu_to_le32(cdw10
);
1525 ret
= nvme_submit_sync_cmd(ns
->queue
, &c
, data
, 16);
1526 nvme_put_ns_from_disk(head
, srcu_idx
);
1530 static int nvme_pr_register(struct block_device
*bdev
, u64 old
,
1531 u64
new, unsigned flags
)
1535 if (flags
& ~PR_FL_IGNORE_KEY
)
1538 cdw10
= old
? 2 : 0;
1539 cdw10
|= (flags
& PR_FL_IGNORE_KEY
) ? 1 << 3 : 0;
1540 cdw10
|= (1 << 30) | (1 << 31); /* PTPL=1 */
1541 return nvme_pr_command(bdev
, cdw10
, old
, new, nvme_cmd_resv_register
);
1544 static int nvme_pr_reserve(struct block_device
*bdev
, u64 key
,
1545 enum pr_type type
, unsigned flags
)
1549 if (flags
& ~PR_FL_IGNORE_KEY
)
1552 cdw10
= nvme_pr_type(type
) << 8;
1553 cdw10
|= ((flags
& PR_FL_IGNORE_KEY
) ? 1 << 3 : 0);
1554 return nvme_pr_command(bdev
, cdw10
, key
, 0, nvme_cmd_resv_acquire
);
1557 static int nvme_pr_preempt(struct block_device
*bdev
, u64 old
, u64
new,
1558 enum pr_type type
, bool abort
)
1560 u32 cdw10
= nvme_pr_type(type
) << 8 | abort
? 2 : 1;
1561 return nvme_pr_command(bdev
, cdw10
, old
, new, nvme_cmd_resv_acquire
);
1564 static int nvme_pr_clear(struct block_device
*bdev
, u64 key
)
1566 u32 cdw10
= 1 | (key
? 1 << 3 : 0);
1567 return nvme_pr_command(bdev
, cdw10
, key
, 0, nvme_cmd_resv_register
);
1570 static int nvme_pr_release(struct block_device
*bdev
, u64 key
, enum pr_type type
)
1572 u32 cdw10
= nvme_pr_type(type
) << 8 | key
? 1 << 3 : 0;
1573 return nvme_pr_command(bdev
, cdw10
, key
, 0, nvme_cmd_resv_release
);
1576 static const struct pr_ops nvme_pr_ops
= {
1577 .pr_register
= nvme_pr_register
,
1578 .pr_reserve
= nvme_pr_reserve
,
1579 .pr_release
= nvme_pr_release
,
1580 .pr_preempt
= nvme_pr_preempt
,
1581 .pr_clear
= nvme_pr_clear
,
1584 #ifdef CONFIG_BLK_SED_OPAL
1585 int nvme_sec_submit(void *data
, u16 spsp
, u8 secp
, void *buffer
, size_t len
,
1588 struct nvme_ctrl
*ctrl
= data
;
1589 struct nvme_command cmd
;
1591 memset(&cmd
, 0, sizeof(cmd
));
1593 cmd
.common
.opcode
= nvme_admin_security_send
;
1595 cmd
.common
.opcode
= nvme_admin_security_recv
;
1596 cmd
.common
.nsid
= 0;
1597 cmd
.common
.cdw10
[0] = cpu_to_le32(((u32
)secp
) << 24 | ((u32
)spsp
) << 8);
1598 cmd
.common
.cdw10
[1] = cpu_to_le32(len
);
1600 return __nvme_submit_sync_cmd(ctrl
->admin_q
, &cmd
, NULL
, buffer
, len
,
1601 ADMIN_TIMEOUT
, NVME_QID_ANY
, 1, 0);
1603 EXPORT_SYMBOL_GPL(nvme_sec_submit
);
1604 #endif /* CONFIG_BLK_SED_OPAL */
1606 static const struct block_device_operations nvme_fops
= {
1607 .owner
= THIS_MODULE
,
1608 .ioctl
= nvme_ioctl
,
1609 .compat_ioctl
= nvme_ioctl
,
1611 .release
= nvme_release
,
1612 .getgeo
= nvme_getgeo
,
1613 .revalidate_disk
= nvme_revalidate_disk
,
1614 .pr_ops
= &nvme_pr_ops
,
1617 #ifdef CONFIG_NVME_MULTIPATH
1618 static int nvme_ns_head_open(struct block_device
*bdev
, fmode_t mode
)
1620 struct nvme_ns_head
*head
= bdev
->bd_disk
->private_data
;
1622 if (!kref_get_unless_zero(&head
->ref
))
1627 static void nvme_ns_head_release(struct gendisk
*disk
, fmode_t mode
)
1629 nvme_put_ns_head(disk
->private_data
);
1632 const struct block_device_operations nvme_ns_head_ops
= {
1633 .owner
= THIS_MODULE
,
1634 .open
= nvme_ns_head_open
,
1635 .release
= nvme_ns_head_release
,
1636 .ioctl
= nvme_ioctl
,
1637 .compat_ioctl
= nvme_ioctl
,
1638 .getgeo
= nvme_getgeo
,
1639 .pr_ops
= &nvme_pr_ops
,
1641 #endif /* CONFIG_NVME_MULTIPATH */
1643 static int nvme_wait_ready(struct nvme_ctrl
*ctrl
, u64 cap
, bool enabled
)
1645 unsigned long timeout
=
1646 ((NVME_CAP_TIMEOUT(cap
) + 1) * HZ
/ 2) + jiffies
;
1647 u32 csts
, bit
= enabled
? NVME_CSTS_RDY
: 0;
1650 while ((ret
= ctrl
->ops
->reg_read32(ctrl
, NVME_REG_CSTS
, &csts
)) == 0) {
1653 if ((csts
& NVME_CSTS_RDY
) == bit
)
1657 if (fatal_signal_pending(current
))
1659 if (time_after(jiffies
, timeout
)) {
1660 dev_err(ctrl
->device
,
1661 "Device not ready; aborting %s\n", enabled
?
1662 "initialisation" : "reset");
1671 * If the device has been passed off to us in an enabled state, just clear
1672 * the enabled bit. The spec says we should set the 'shutdown notification
1673 * bits', but doing so may cause the device to complete commands to the
1674 * admin queue ... and we don't know what memory that might be pointing at!
1676 int nvme_disable_ctrl(struct nvme_ctrl
*ctrl
, u64 cap
)
1680 ctrl
->ctrl_config
&= ~NVME_CC_SHN_MASK
;
1681 ctrl
->ctrl_config
&= ~NVME_CC_ENABLE
;
1683 ret
= ctrl
->ops
->reg_write32(ctrl
, NVME_REG_CC
, ctrl
->ctrl_config
);
1687 if (ctrl
->quirks
& NVME_QUIRK_DELAY_BEFORE_CHK_RDY
)
1688 msleep(NVME_QUIRK_DELAY_AMOUNT
);
1690 return nvme_wait_ready(ctrl
, cap
, false);
1692 EXPORT_SYMBOL_GPL(nvme_disable_ctrl
);
1694 int nvme_enable_ctrl(struct nvme_ctrl
*ctrl
, u64 cap
)
1697 * Default to a 4K page size, with the intention to update this
1698 * path in the future to accomodate architectures with differing
1699 * kernel and IO page sizes.
1701 unsigned dev_page_min
= NVME_CAP_MPSMIN(cap
) + 12, page_shift
= 12;
1704 if (page_shift
< dev_page_min
) {
1705 dev_err(ctrl
->device
,
1706 "Minimum device page size %u too large for host (%u)\n",
1707 1 << dev_page_min
, 1 << page_shift
);
1711 ctrl
->page_size
= 1 << page_shift
;
1713 ctrl
->ctrl_config
= NVME_CC_CSS_NVM
;
1714 ctrl
->ctrl_config
|= (page_shift
- 12) << NVME_CC_MPS_SHIFT
;
1715 ctrl
->ctrl_config
|= NVME_CC_AMS_RR
| NVME_CC_SHN_NONE
;
1716 ctrl
->ctrl_config
|= NVME_CC_IOSQES
| NVME_CC_IOCQES
;
1717 ctrl
->ctrl_config
|= NVME_CC_ENABLE
;
1719 ret
= ctrl
->ops
->reg_write32(ctrl
, NVME_REG_CC
, ctrl
->ctrl_config
);
1722 return nvme_wait_ready(ctrl
, cap
, true);
1724 EXPORT_SYMBOL_GPL(nvme_enable_ctrl
);
1726 int nvme_shutdown_ctrl(struct nvme_ctrl
*ctrl
)
1728 unsigned long timeout
= jiffies
+ (ctrl
->shutdown_timeout
* HZ
);
1732 ctrl
->ctrl_config
&= ~NVME_CC_SHN_MASK
;
1733 ctrl
->ctrl_config
|= NVME_CC_SHN_NORMAL
;
1735 ret
= ctrl
->ops
->reg_write32(ctrl
, NVME_REG_CC
, ctrl
->ctrl_config
);
1739 while ((ret
= ctrl
->ops
->reg_read32(ctrl
, NVME_REG_CSTS
, &csts
)) == 0) {
1740 if ((csts
& NVME_CSTS_SHST_MASK
) == NVME_CSTS_SHST_CMPLT
)
1744 if (fatal_signal_pending(current
))
1746 if (time_after(jiffies
, timeout
)) {
1747 dev_err(ctrl
->device
,
1748 "Device shutdown incomplete; abort shutdown\n");
1755 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl
);
1757 static void nvme_set_queue_limits(struct nvme_ctrl
*ctrl
,
1758 struct request_queue
*q
)
1762 if (ctrl
->max_hw_sectors
) {
1764 (ctrl
->max_hw_sectors
/ (ctrl
->page_size
>> 9)) + 1;
1766 blk_queue_max_hw_sectors(q
, ctrl
->max_hw_sectors
);
1767 blk_queue_max_segments(q
, min_t(u32
, max_segments
, USHRT_MAX
));
1769 if ((ctrl
->quirks
& NVME_QUIRK_STRIPE_SIZE
) &&
1770 is_power_of_2(ctrl
->max_hw_sectors
))
1771 blk_queue_chunk_sectors(q
, ctrl
->max_hw_sectors
);
1772 blk_queue_virt_boundary(q
, ctrl
->page_size
- 1);
1773 if (ctrl
->vwc
& NVME_CTRL_VWC_PRESENT
)
1775 blk_queue_write_cache(q
, vwc
, vwc
);
1778 static int nvme_configure_timestamp(struct nvme_ctrl
*ctrl
)
1783 if (!(ctrl
->oncs
& NVME_CTRL_ONCS_TIMESTAMP
))
1786 ts
= cpu_to_le64(ktime_to_ms(ktime_get_real()));
1787 ret
= nvme_set_features(ctrl
, NVME_FEAT_TIMESTAMP
, 0, &ts
, sizeof(ts
),
1790 dev_warn_once(ctrl
->device
,
1791 "could not set timestamp (%d)\n", ret
);
1795 static int nvme_configure_apst(struct nvme_ctrl
*ctrl
)
1798 * APST (Autonomous Power State Transition) lets us program a
1799 * table of power state transitions that the controller will
1800 * perform automatically. We configure it with a simple
1801 * heuristic: we are willing to spend at most 2% of the time
1802 * transitioning between power states. Therefore, when running
1803 * in any given state, we will enter the next lower-power
1804 * non-operational state after waiting 50 * (enlat + exlat)
1805 * microseconds, as long as that state's exit latency is under
1806 * the requested maximum latency.
1808 * We will not autonomously enter any non-operational state for
1809 * which the total latency exceeds ps_max_latency_us. Users
1810 * can set ps_max_latency_us to zero to turn off APST.
1814 struct nvme_feat_auto_pst
*table
;
1820 * If APST isn't supported or if we haven't been initialized yet,
1821 * then don't do anything.
1826 if (ctrl
->npss
> 31) {
1827 dev_warn(ctrl
->device
, "NPSS is invalid; not using APST\n");
1831 table
= kzalloc(sizeof(*table
), GFP_KERNEL
);
1835 if (!ctrl
->apst_enabled
|| ctrl
->ps_max_latency_us
== 0) {
1836 /* Turn off APST. */
1838 dev_dbg(ctrl
->device
, "APST disabled\n");
1840 __le64 target
= cpu_to_le64(0);
1844 * Walk through all states from lowest- to highest-power.
1845 * According to the spec, lower-numbered states use more
1846 * power. NPSS, despite the name, is the index of the
1847 * lowest-power state, not the number of states.
1849 for (state
= (int)ctrl
->npss
; state
>= 0; state
--) {
1850 u64 total_latency_us
, exit_latency_us
, transition_ms
;
1853 table
->entries
[state
] = target
;
1856 * Don't allow transitions to the deepest state
1857 * if it's quirked off.
1859 if (state
== ctrl
->npss
&&
1860 (ctrl
->quirks
& NVME_QUIRK_NO_DEEPEST_PS
))
1864 * Is this state a useful non-operational state for
1865 * higher-power states to autonomously transition to?
1867 if (!(ctrl
->psd
[state
].flags
&
1868 NVME_PS_FLAGS_NON_OP_STATE
))
1872 (u64
)le32_to_cpu(ctrl
->psd
[state
].exit_lat
);
1873 if (exit_latency_us
> ctrl
->ps_max_latency_us
)
1878 le32_to_cpu(ctrl
->psd
[state
].entry_lat
);
1881 * This state is good. Use it as the APST idle
1882 * target for higher power states.
1884 transition_ms
= total_latency_us
+ 19;
1885 do_div(transition_ms
, 20);
1886 if (transition_ms
> (1 << 24) - 1)
1887 transition_ms
= (1 << 24) - 1;
1889 target
= cpu_to_le64((state
<< 3) |
1890 (transition_ms
<< 8));
1895 if (total_latency_us
> max_lat_us
)
1896 max_lat_us
= total_latency_us
;
1902 dev_dbg(ctrl
->device
, "APST enabled but no non-operational states are available\n");
1904 dev_dbg(ctrl
->device
, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1905 max_ps
, max_lat_us
, (int)sizeof(*table
), table
);
1909 ret
= nvme_set_features(ctrl
, NVME_FEAT_AUTO_PST
, apste
,
1910 table
, sizeof(*table
), NULL
);
1912 dev_err(ctrl
->device
, "failed to set APST feature (%d)\n", ret
);
1918 static void nvme_set_latency_tolerance(struct device
*dev
, s32 val
)
1920 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
1924 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT
:
1925 case PM_QOS_LATENCY_ANY
:
1933 if (ctrl
->ps_max_latency_us
!= latency
) {
1934 ctrl
->ps_max_latency_us
= latency
;
1935 nvme_configure_apst(ctrl
);
1939 struct nvme_core_quirk_entry
{
1941 * NVMe model and firmware strings are padded with spaces. For
1942 * simplicity, strings in the quirk table are padded with NULLs
1948 unsigned long quirks
;
1951 static const struct nvme_core_quirk_entry core_quirks
[] = {
1954 * This Toshiba device seems to die using any APST states. See:
1955 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1958 .mn
= "THNSF5256GPUK TOSHIBA",
1959 .quirks
= NVME_QUIRK_NO_APST
,
1963 /* match is null-terminated but idstr is space-padded. */
1964 static bool string_matches(const char *idstr
, const char *match
, size_t len
)
1971 matchlen
= strlen(match
);
1972 WARN_ON_ONCE(matchlen
> len
);
1974 if (memcmp(idstr
, match
, matchlen
))
1977 for (; matchlen
< len
; matchlen
++)
1978 if (idstr
[matchlen
] != ' ')
1984 static bool quirk_matches(const struct nvme_id_ctrl
*id
,
1985 const struct nvme_core_quirk_entry
*q
)
1987 return q
->vid
== le16_to_cpu(id
->vid
) &&
1988 string_matches(id
->mn
, q
->mn
, sizeof(id
->mn
)) &&
1989 string_matches(id
->fr
, q
->fr
, sizeof(id
->fr
));
1992 static void nvme_init_subnqn(struct nvme_subsystem
*subsys
, struct nvme_ctrl
*ctrl
,
1993 struct nvme_id_ctrl
*id
)
1998 nqnlen
= strnlen(id
->subnqn
, NVMF_NQN_SIZE
);
1999 if (nqnlen
> 0 && nqnlen
< NVMF_NQN_SIZE
) {
2000 strncpy(subsys
->subnqn
, id
->subnqn
, NVMF_NQN_SIZE
);
2004 if (ctrl
->vs
>= NVME_VS(1, 2, 1))
2005 dev_warn(ctrl
->device
, "missing or invalid SUBNQN field.\n");
2007 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2008 off
= snprintf(subsys
->subnqn
, NVMF_NQN_SIZE
,
2009 "nqn.2014.08.org.nvmexpress:%4x%4x",
2010 le16_to_cpu(id
->vid
), le16_to_cpu(id
->ssvid
));
2011 memcpy(subsys
->subnqn
+ off
, id
->sn
, sizeof(id
->sn
));
2012 off
+= sizeof(id
->sn
);
2013 memcpy(subsys
->subnqn
+ off
, id
->mn
, sizeof(id
->mn
));
2014 off
+= sizeof(id
->mn
);
2015 memset(subsys
->subnqn
+ off
, 0, sizeof(subsys
->subnqn
) - off
);
2018 static void __nvme_release_subsystem(struct nvme_subsystem
*subsys
)
2020 ida_simple_remove(&nvme_subsystems_ida
, subsys
->instance
);
2024 static void nvme_release_subsystem(struct device
*dev
)
2026 __nvme_release_subsystem(container_of(dev
, struct nvme_subsystem
, dev
));
2029 static void nvme_destroy_subsystem(struct kref
*ref
)
2031 struct nvme_subsystem
*subsys
=
2032 container_of(ref
, struct nvme_subsystem
, ref
);
2034 mutex_lock(&nvme_subsystems_lock
);
2035 list_del(&subsys
->entry
);
2036 mutex_unlock(&nvme_subsystems_lock
);
2038 ida_destroy(&subsys
->ns_ida
);
2039 device_del(&subsys
->dev
);
2040 put_device(&subsys
->dev
);
2043 static void nvme_put_subsystem(struct nvme_subsystem
*subsys
)
2045 kref_put(&subsys
->ref
, nvme_destroy_subsystem
);
2048 static struct nvme_subsystem
*__nvme_find_get_subsystem(const char *subsysnqn
)
2050 struct nvme_subsystem
*subsys
;
2052 lockdep_assert_held(&nvme_subsystems_lock
);
2054 list_for_each_entry(subsys
, &nvme_subsystems
, entry
) {
2055 if (strcmp(subsys
->subnqn
, subsysnqn
))
2057 if (!kref_get_unless_zero(&subsys
->ref
))
2065 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2066 struct device_attribute subsys_attr_##_name = \
2067 __ATTR(_name, _mode, _show, NULL)
2069 static ssize_t
nvme_subsys_show_nqn(struct device
*dev
,
2070 struct device_attribute
*attr
,
2073 struct nvme_subsystem
*subsys
=
2074 container_of(dev
, struct nvme_subsystem
, dev
);
2076 return snprintf(buf
, PAGE_SIZE
, "%s\n", subsys
->subnqn
);
2078 static SUBSYS_ATTR_RO(subsysnqn
, S_IRUGO
, nvme_subsys_show_nqn
);
2080 #define nvme_subsys_show_str_function(field) \
2081 static ssize_t subsys_##field##_show(struct device *dev, \
2082 struct device_attribute *attr, char *buf) \
2084 struct nvme_subsystem *subsys = \
2085 container_of(dev, struct nvme_subsystem, dev); \
2086 return sprintf(buf, "%.*s\n", \
2087 (int)sizeof(subsys->field), subsys->field); \
2089 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2091 nvme_subsys_show_str_function(model
);
2092 nvme_subsys_show_str_function(serial
);
2093 nvme_subsys_show_str_function(firmware_rev
);
2095 static struct attribute
*nvme_subsys_attrs
[] = {
2096 &subsys_attr_model
.attr
,
2097 &subsys_attr_serial
.attr
,
2098 &subsys_attr_firmware_rev
.attr
,
2099 &subsys_attr_subsysnqn
.attr
,
2103 static struct attribute_group nvme_subsys_attrs_group
= {
2104 .attrs
= nvme_subsys_attrs
,
2107 static const struct attribute_group
*nvme_subsys_attrs_groups
[] = {
2108 &nvme_subsys_attrs_group
,
2112 static int nvme_active_ctrls(struct nvme_subsystem
*subsys
)
2115 struct nvme_ctrl
*ctrl
;
2117 mutex_lock(&subsys
->lock
);
2118 list_for_each_entry(ctrl
, &subsys
->ctrls
, subsys_entry
) {
2119 if (ctrl
->state
!= NVME_CTRL_DELETING
&&
2120 ctrl
->state
!= NVME_CTRL_DEAD
)
2123 mutex_unlock(&subsys
->lock
);
2128 static int nvme_init_subsystem(struct nvme_ctrl
*ctrl
, struct nvme_id_ctrl
*id
)
2130 struct nvme_subsystem
*subsys
, *found
;
2133 subsys
= kzalloc(sizeof(*subsys
), GFP_KERNEL
);
2136 ret
= ida_simple_get(&nvme_subsystems_ida
, 0, 0, GFP_KERNEL
);
2141 subsys
->instance
= ret
;
2142 mutex_init(&subsys
->lock
);
2143 kref_init(&subsys
->ref
);
2144 INIT_LIST_HEAD(&subsys
->ctrls
);
2145 INIT_LIST_HEAD(&subsys
->nsheads
);
2146 nvme_init_subnqn(subsys
, ctrl
, id
);
2147 memcpy(subsys
->serial
, id
->sn
, sizeof(subsys
->serial
));
2148 memcpy(subsys
->model
, id
->mn
, sizeof(subsys
->model
));
2149 memcpy(subsys
->firmware_rev
, id
->fr
, sizeof(subsys
->firmware_rev
));
2150 subsys
->vendor_id
= le16_to_cpu(id
->vid
);
2151 subsys
->cmic
= id
->cmic
;
2153 subsys
->dev
.class = nvme_subsys_class
;
2154 subsys
->dev
.release
= nvme_release_subsystem
;
2155 subsys
->dev
.groups
= nvme_subsys_attrs_groups
;
2156 dev_set_name(&subsys
->dev
, "nvme-subsys%d", subsys
->instance
);
2157 device_initialize(&subsys
->dev
);
2159 mutex_lock(&nvme_subsystems_lock
);
2160 found
= __nvme_find_get_subsystem(subsys
->subnqn
);
2163 * Verify that the subsystem actually supports multiple
2164 * controllers, else bail out.
2166 if (nvme_active_ctrls(found
) && !(id
->cmic
& (1 << 1))) {
2167 dev_err(ctrl
->device
,
2168 "ignoring ctrl due to duplicate subnqn (%s).\n",
2170 nvme_put_subsystem(found
);
2175 __nvme_release_subsystem(subsys
);
2178 ret
= device_add(&subsys
->dev
);
2180 dev_err(ctrl
->device
,
2181 "failed to register subsystem device.\n");
2184 ida_init(&subsys
->ns_ida
);
2185 list_add_tail(&subsys
->entry
, &nvme_subsystems
);
2188 ctrl
->subsys
= subsys
;
2189 mutex_unlock(&nvme_subsystems_lock
);
2191 if (sysfs_create_link(&subsys
->dev
.kobj
, &ctrl
->device
->kobj
,
2192 dev_name(ctrl
->device
))) {
2193 dev_err(ctrl
->device
,
2194 "failed to create sysfs link from subsystem.\n");
2195 /* the transport driver will eventually put the subsystem */
2199 mutex_lock(&subsys
->lock
);
2200 list_add_tail(&ctrl
->subsys_entry
, &subsys
->ctrls
);
2201 mutex_unlock(&subsys
->lock
);
2206 mutex_unlock(&nvme_subsystems_lock
);
2207 put_device(&subsys
->dev
);
2211 static int nvme_get_log(struct nvme_ctrl
*ctrl
, u8 log_page
, void *log
,
2214 struct nvme_command c
= { };
2216 c
.common
.opcode
= nvme_admin_get_log_page
;
2217 c
.common
.nsid
= cpu_to_le32(NVME_NSID_ALL
);
2218 c
.common
.cdw10
[0] = nvme_get_log_dw10(log_page
, size
);
2220 return nvme_submit_sync_cmd(ctrl
->admin_q
, &c
, log
, size
);
2223 static int nvme_get_effects_log(struct nvme_ctrl
*ctrl
)
2228 ctrl
->effects
= kzalloc(sizeof(*ctrl
->effects
), GFP_KERNEL
);
2233 ret
= nvme_get_log(ctrl
, NVME_LOG_CMD_EFFECTS
, ctrl
->effects
,
2234 sizeof(*ctrl
->effects
));
2236 kfree(ctrl
->effects
);
2237 ctrl
->effects
= NULL
;
2243 * Initialize the cached copies of the Identify data and various controller
2244 * register in our nvme_ctrl structure. This should be called as soon as
2245 * the admin queue is fully up and running.
2247 int nvme_init_identify(struct nvme_ctrl
*ctrl
)
2249 struct nvme_id_ctrl
*id
;
2251 int ret
, page_shift
;
2253 bool prev_apst_enabled
;
2255 ret
= ctrl
->ops
->reg_read32(ctrl
, NVME_REG_VS
, &ctrl
->vs
);
2257 dev_err(ctrl
->device
, "Reading VS failed (%d)\n", ret
);
2261 ret
= ctrl
->ops
->reg_read64(ctrl
, NVME_REG_CAP
, &cap
);
2263 dev_err(ctrl
->device
, "Reading CAP failed (%d)\n", ret
);
2266 page_shift
= NVME_CAP_MPSMIN(cap
) + 12;
2268 if (ctrl
->vs
>= NVME_VS(1, 1, 0))
2269 ctrl
->subsystem
= NVME_CAP_NSSRC(cap
);
2271 ret
= nvme_identify_ctrl(ctrl
, &id
);
2273 dev_err(ctrl
->device
, "Identify Controller failed (%d)\n", ret
);
2277 if (id
->lpa
& NVME_CTRL_LPA_CMD_EFFECTS_LOG
) {
2278 ret
= nvme_get_effects_log(ctrl
);
2283 if (!ctrl
->identified
) {
2286 ret
= nvme_init_subsystem(ctrl
, id
);
2291 * Check for quirks. Quirk can depend on firmware version,
2292 * so, in principle, the set of quirks present can change
2293 * across a reset. As a possible future enhancement, we
2294 * could re-scan for quirks every time we reinitialize
2295 * the device, but we'd have to make sure that the driver
2296 * behaves intelligently if the quirks change.
2298 for (i
= 0; i
< ARRAY_SIZE(core_quirks
); i
++) {
2299 if (quirk_matches(id
, &core_quirks
[i
]))
2300 ctrl
->quirks
|= core_quirks
[i
].quirks
;
2304 if (force_apst
&& (ctrl
->quirks
& NVME_QUIRK_NO_DEEPEST_PS
)) {
2305 dev_warn(ctrl
->device
, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2306 ctrl
->quirks
&= ~NVME_QUIRK_NO_DEEPEST_PS
;
2309 ctrl
->oacs
= le16_to_cpu(id
->oacs
);
2310 ctrl
->oncs
= le16_to_cpup(&id
->oncs
);
2311 atomic_set(&ctrl
->abort_limit
, id
->acl
+ 1);
2312 ctrl
->vwc
= id
->vwc
;
2313 ctrl
->cntlid
= le16_to_cpup(&id
->cntlid
);
2315 max_hw_sectors
= 1 << (id
->mdts
+ page_shift
- 9);
2317 max_hw_sectors
= UINT_MAX
;
2318 ctrl
->max_hw_sectors
=
2319 min_not_zero(ctrl
->max_hw_sectors
, max_hw_sectors
);
2321 nvme_set_queue_limits(ctrl
, ctrl
->admin_q
);
2322 ctrl
->sgls
= le32_to_cpu(id
->sgls
);
2323 ctrl
->kas
= le16_to_cpu(id
->kas
);
2327 u32 transition_time
= le32_to_cpu(id
->rtd3e
) / 1000000;
2329 ctrl
->shutdown_timeout
= clamp_t(unsigned int, transition_time
,
2330 shutdown_timeout
, 60);
2332 if (ctrl
->shutdown_timeout
!= shutdown_timeout
)
2333 dev_info(ctrl
->device
,
2334 "Shutdown timeout set to %u seconds\n",
2335 ctrl
->shutdown_timeout
);
2337 ctrl
->shutdown_timeout
= shutdown_timeout
;
2339 ctrl
->npss
= id
->npss
;
2340 ctrl
->apsta
= id
->apsta
;
2341 prev_apst_enabled
= ctrl
->apst_enabled
;
2342 if (ctrl
->quirks
& NVME_QUIRK_NO_APST
) {
2343 if (force_apst
&& id
->apsta
) {
2344 dev_warn(ctrl
->device
, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2345 ctrl
->apst_enabled
= true;
2347 ctrl
->apst_enabled
= false;
2350 ctrl
->apst_enabled
= id
->apsta
;
2352 memcpy(ctrl
->psd
, id
->psd
, sizeof(ctrl
->psd
));
2354 if (ctrl
->ops
->flags
& NVME_F_FABRICS
) {
2355 ctrl
->icdoff
= le16_to_cpu(id
->icdoff
);
2356 ctrl
->ioccsz
= le32_to_cpu(id
->ioccsz
);
2357 ctrl
->iorcsz
= le32_to_cpu(id
->iorcsz
);
2358 ctrl
->maxcmd
= le16_to_cpu(id
->maxcmd
);
2361 * In fabrics we need to verify the cntlid matches the
2364 if (ctrl
->cntlid
!= le16_to_cpu(id
->cntlid
)) {
2369 if (!ctrl
->opts
->discovery_nqn
&& !ctrl
->kas
) {
2370 dev_err(ctrl
->device
,
2371 "keep-alive support is mandatory for fabrics\n");
2376 ctrl
->cntlid
= le16_to_cpu(id
->cntlid
);
2377 ctrl
->hmpre
= le32_to_cpu(id
->hmpre
);
2378 ctrl
->hmmin
= le32_to_cpu(id
->hmmin
);
2379 ctrl
->hmminds
= le32_to_cpu(id
->hmminds
);
2380 ctrl
->hmmaxd
= le16_to_cpu(id
->hmmaxd
);
2385 if (ctrl
->apst_enabled
&& !prev_apst_enabled
)
2386 dev_pm_qos_expose_latency_tolerance(ctrl
->device
);
2387 else if (!ctrl
->apst_enabled
&& prev_apst_enabled
)
2388 dev_pm_qos_hide_latency_tolerance(ctrl
->device
);
2390 ret
= nvme_configure_apst(ctrl
);
2394 ret
= nvme_configure_timestamp(ctrl
);
2398 ret
= nvme_configure_directives(ctrl
);
2402 ctrl
->identified
= true;
2410 EXPORT_SYMBOL_GPL(nvme_init_identify
);
2412 static int nvme_dev_open(struct inode
*inode
, struct file
*file
)
2414 struct nvme_ctrl
*ctrl
=
2415 container_of(inode
->i_cdev
, struct nvme_ctrl
, cdev
);
2417 switch (ctrl
->state
) {
2418 case NVME_CTRL_LIVE
:
2419 case NVME_CTRL_ADMIN_ONLY
:
2422 return -EWOULDBLOCK
;
2425 file
->private_data
= ctrl
;
2429 static int nvme_dev_user_cmd(struct nvme_ctrl
*ctrl
, void __user
*argp
)
2434 mutex_lock(&ctrl
->namespaces_mutex
);
2435 if (list_empty(&ctrl
->namespaces
)) {
2440 ns
= list_first_entry(&ctrl
->namespaces
, struct nvme_ns
, list
);
2441 if (ns
!= list_last_entry(&ctrl
->namespaces
, struct nvme_ns
, list
)) {
2442 dev_warn(ctrl
->device
,
2443 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2448 dev_warn(ctrl
->device
,
2449 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2450 kref_get(&ns
->kref
);
2451 mutex_unlock(&ctrl
->namespaces_mutex
);
2453 ret
= nvme_user_cmd(ctrl
, ns
, argp
);
2458 mutex_unlock(&ctrl
->namespaces_mutex
);
2462 static long nvme_dev_ioctl(struct file
*file
, unsigned int cmd
,
2465 struct nvme_ctrl
*ctrl
= file
->private_data
;
2466 void __user
*argp
= (void __user
*)arg
;
2469 case NVME_IOCTL_ADMIN_CMD
:
2470 return nvme_user_cmd(ctrl
, NULL
, argp
);
2471 case NVME_IOCTL_IO_CMD
:
2472 return nvme_dev_user_cmd(ctrl
, argp
);
2473 case NVME_IOCTL_RESET
:
2474 dev_warn(ctrl
->device
, "resetting controller\n");
2475 return nvme_reset_ctrl_sync(ctrl
);
2476 case NVME_IOCTL_SUBSYS_RESET
:
2477 return nvme_reset_subsystem(ctrl
);
2478 case NVME_IOCTL_RESCAN
:
2479 nvme_queue_scan(ctrl
);
2486 static const struct file_operations nvme_dev_fops
= {
2487 .owner
= THIS_MODULE
,
2488 .open
= nvme_dev_open
,
2489 .unlocked_ioctl
= nvme_dev_ioctl
,
2490 .compat_ioctl
= nvme_dev_ioctl
,
2493 static ssize_t
nvme_sysfs_reset(struct device
*dev
,
2494 struct device_attribute
*attr
, const char *buf
,
2497 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2500 ret
= nvme_reset_ctrl_sync(ctrl
);
2505 static DEVICE_ATTR(reset_controller
, S_IWUSR
, NULL
, nvme_sysfs_reset
);
2507 static ssize_t
nvme_sysfs_rescan(struct device
*dev
,
2508 struct device_attribute
*attr
, const char *buf
,
2511 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2513 nvme_queue_scan(ctrl
);
2516 static DEVICE_ATTR(rescan_controller
, S_IWUSR
, NULL
, nvme_sysfs_rescan
);
2518 static inline struct nvme_ns_head
*dev_to_ns_head(struct device
*dev
)
2520 struct gendisk
*disk
= dev_to_disk(dev
);
2522 if (disk
->fops
== &nvme_fops
)
2523 return nvme_get_ns_from_dev(dev
)->head
;
2525 return disk
->private_data
;
2528 static ssize_t
wwid_show(struct device
*dev
, struct device_attribute
*attr
,
2531 struct nvme_ns_head
*head
= dev_to_ns_head(dev
);
2532 struct nvme_ns_ids
*ids
= &head
->ids
;
2533 struct nvme_subsystem
*subsys
= head
->subsys
;
2534 int serial_len
= sizeof(subsys
->serial
);
2535 int model_len
= sizeof(subsys
->model
);
2537 if (!uuid_is_null(&ids
->uuid
))
2538 return sprintf(buf
, "uuid.%pU\n", &ids
->uuid
);
2540 if (memchr_inv(ids
->nguid
, 0, sizeof(ids
->nguid
)))
2541 return sprintf(buf
, "eui.%16phN\n", ids
->nguid
);
2543 if (memchr_inv(ids
->eui64
, 0, sizeof(ids
->eui64
)))
2544 return sprintf(buf
, "eui.%8phN\n", ids
->eui64
);
2546 while (serial_len
> 0 && (subsys
->serial
[serial_len
- 1] == ' ' ||
2547 subsys
->serial
[serial_len
- 1] == '\0'))
2549 while (model_len
> 0 && (subsys
->model
[model_len
- 1] == ' ' ||
2550 subsys
->model
[model_len
- 1] == '\0'))
2553 return sprintf(buf
, "nvme.%04x-%*phN-%*phN-%08x\n", subsys
->vendor_id
,
2554 serial_len
, subsys
->serial
, model_len
, subsys
->model
,
2557 static DEVICE_ATTR_RO(wwid
);
2559 static ssize_t
nguid_show(struct device
*dev
, struct device_attribute
*attr
,
2562 return sprintf(buf
, "%pU\n", dev_to_ns_head(dev
)->ids
.nguid
);
2564 static DEVICE_ATTR_RO(nguid
);
2566 static ssize_t
uuid_show(struct device
*dev
, struct device_attribute
*attr
,
2569 struct nvme_ns_ids
*ids
= &dev_to_ns_head(dev
)->ids
;
2571 /* For backward compatibility expose the NGUID to userspace if
2572 * we have no UUID set
2574 if (uuid_is_null(&ids
->uuid
)) {
2575 printk_ratelimited(KERN_WARNING
2576 "No UUID available providing old NGUID\n");
2577 return sprintf(buf
, "%pU\n", ids
->nguid
);
2579 return sprintf(buf
, "%pU\n", &ids
->uuid
);
2581 static DEVICE_ATTR_RO(uuid
);
2583 static ssize_t
eui_show(struct device
*dev
, struct device_attribute
*attr
,
2586 return sprintf(buf
, "%8ph\n", dev_to_ns_head(dev
)->ids
.eui64
);
2588 static DEVICE_ATTR_RO(eui
);
2590 static ssize_t
nsid_show(struct device
*dev
, struct device_attribute
*attr
,
2593 return sprintf(buf
, "%d\n", dev_to_ns_head(dev
)->ns_id
);
2595 static DEVICE_ATTR_RO(nsid
);
2597 static struct attribute
*nvme_ns_id_attrs
[] = {
2598 &dev_attr_wwid
.attr
,
2599 &dev_attr_uuid
.attr
,
2600 &dev_attr_nguid
.attr
,
2602 &dev_attr_nsid
.attr
,
2606 static umode_t
nvme_ns_id_attrs_are_visible(struct kobject
*kobj
,
2607 struct attribute
*a
, int n
)
2609 struct device
*dev
= container_of(kobj
, struct device
, kobj
);
2610 struct nvme_ns_ids
*ids
= &dev_to_ns_head(dev
)->ids
;
2612 if (a
== &dev_attr_uuid
.attr
) {
2613 if (uuid_is_null(&ids
->uuid
) &&
2614 !memchr_inv(ids
->nguid
, 0, sizeof(ids
->nguid
)))
2617 if (a
== &dev_attr_nguid
.attr
) {
2618 if (!memchr_inv(ids
->nguid
, 0, sizeof(ids
->nguid
)))
2621 if (a
== &dev_attr_eui
.attr
) {
2622 if (!memchr_inv(ids
->eui64
, 0, sizeof(ids
->eui64
)))
2628 const struct attribute_group nvme_ns_id_attr_group
= {
2629 .attrs
= nvme_ns_id_attrs
,
2630 .is_visible
= nvme_ns_id_attrs_are_visible
,
2633 #define nvme_show_str_function(field) \
2634 static ssize_t field##_show(struct device *dev, \
2635 struct device_attribute *attr, char *buf) \
2637 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2638 return sprintf(buf, "%.*s\n", \
2639 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
2641 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2643 nvme_show_str_function(model
);
2644 nvme_show_str_function(serial
);
2645 nvme_show_str_function(firmware_rev
);
2647 #define nvme_show_int_function(field) \
2648 static ssize_t field##_show(struct device *dev, \
2649 struct device_attribute *attr, char *buf) \
2651 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2652 return sprintf(buf, "%d\n", ctrl->field); \
2654 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2656 nvme_show_int_function(cntlid
);
2658 static ssize_t
nvme_sysfs_delete(struct device
*dev
,
2659 struct device_attribute
*attr
, const char *buf
,
2662 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2664 if (device_remove_file_self(dev
, attr
))
2665 nvme_delete_ctrl_sync(ctrl
);
2668 static DEVICE_ATTR(delete_controller
, S_IWUSR
, NULL
, nvme_sysfs_delete
);
2670 static ssize_t
nvme_sysfs_show_transport(struct device
*dev
,
2671 struct device_attribute
*attr
,
2674 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2676 return snprintf(buf
, PAGE_SIZE
, "%s\n", ctrl
->ops
->name
);
2678 static DEVICE_ATTR(transport
, S_IRUGO
, nvme_sysfs_show_transport
, NULL
);
2680 static ssize_t
nvme_sysfs_show_state(struct device
*dev
,
2681 struct device_attribute
*attr
,
2684 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2685 static const char *const state_name
[] = {
2686 [NVME_CTRL_NEW
] = "new",
2687 [NVME_CTRL_LIVE
] = "live",
2688 [NVME_CTRL_ADMIN_ONLY
] = "only-admin",
2689 [NVME_CTRL_RESETTING
] = "resetting",
2690 [NVME_CTRL_RECONNECTING
]= "reconnecting",
2691 [NVME_CTRL_DELETING
] = "deleting",
2692 [NVME_CTRL_DEAD
] = "dead",
2695 if ((unsigned)ctrl
->state
< ARRAY_SIZE(state_name
) &&
2696 state_name
[ctrl
->state
])
2697 return sprintf(buf
, "%s\n", state_name
[ctrl
->state
]);
2699 return sprintf(buf
, "unknown state\n");
2702 static DEVICE_ATTR(state
, S_IRUGO
, nvme_sysfs_show_state
, NULL
);
2704 static ssize_t
nvme_sysfs_show_subsysnqn(struct device
*dev
,
2705 struct device_attribute
*attr
,
2708 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2710 return snprintf(buf
, PAGE_SIZE
, "%s\n", ctrl
->subsys
->subnqn
);
2712 static DEVICE_ATTR(subsysnqn
, S_IRUGO
, nvme_sysfs_show_subsysnqn
, NULL
);
2714 static ssize_t
nvme_sysfs_show_address(struct device
*dev
,
2715 struct device_attribute
*attr
,
2718 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2720 return ctrl
->ops
->get_address(ctrl
, buf
, PAGE_SIZE
);
2722 static DEVICE_ATTR(address
, S_IRUGO
, nvme_sysfs_show_address
, NULL
);
2724 static struct attribute
*nvme_dev_attrs
[] = {
2725 &dev_attr_reset_controller
.attr
,
2726 &dev_attr_rescan_controller
.attr
,
2727 &dev_attr_model
.attr
,
2728 &dev_attr_serial
.attr
,
2729 &dev_attr_firmware_rev
.attr
,
2730 &dev_attr_cntlid
.attr
,
2731 &dev_attr_delete_controller
.attr
,
2732 &dev_attr_transport
.attr
,
2733 &dev_attr_subsysnqn
.attr
,
2734 &dev_attr_address
.attr
,
2735 &dev_attr_state
.attr
,
2739 static umode_t
nvme_dev_attrs_are_visible(struct kobject
*kobj
,
2740 struct attribute
*a
, int n
)
2742 struct device
*dev
= container_of(kobj
, struct device
, kobj
);
2743 struct nvme_ctrl
*ctrl
= dev_get_drvdata(dev
);
2745 if (a
== &dev_attr_delete_controller
.attr
&& !ctrl
->ops
->delete_ctrl
)
2747 if (a
== &dev_attr_address
.attr
&& !ctrl
->ops
->get_address
)
2753 static struct attribute_group nvme_dev_attrs_group
= {
2754 .attrs
= nvme_dev_attrs
,
2755 .is_visible
= nvme_dev_attrs_are_visible
,
2758 static const struct attribute_group
*nvme_dev_attr_groups
[] = {
2759 &nvme_dev_attrs_group
,
2763 static struct nvme_ns_head
*__nvme_find_ns_head(struct nvme_subsystem
*subsys
,
2766 struct nvme_ns_head
*h
;
2768 lockdep_assert_held(&subsys
->lock
);
2770 list_for_each_entry(h
, &subsys
->nsheads
, entry
) {
2771 if (h
->ns_id
== nsid
&& kref_get_unless_zero(&h
->ref
))
2778 static int __nvme_check_ids(struct nvme_subsystem
*subsys
,
2779 struct nvme_ns_head
*new)
2781 struct nvme_ns_head
*h
;
2783 lockdep_assert_held(&subsys
->lock
);
2785 list_for_each_entry(h
, &subsys
->nsheads
, entry
) {
2786 if (nvme_ns_ids_valid(&new->ids
) &&
2787 nvme_ns_ids_equal(&new->ids
, &h
->ids
))
2794 static struct nvme_ns_head
*nvme_alloc_ns_head(struct nvme_ctrl
*ctrl
,
2795 unsigned nsid
, struct nvme_id_ns
*id
)
2797 struct nvme_ns_head
*head
;
2800 head
= kzalloc(sizeof(*head
), GFP_KERNEL
);
2803 ret
= ida_simple_get(&ctrl
->subsys
->ns_ida
, 1, 0, GFP_KERNEL
);
2806 head
->instance
= ret
;
2807 INIT_LIST_HEAD(&head
->list
);
2808 init_srcu_struct(&head
->srcu
);
2809 head
->subsys
= ctrl
->subsys
;
2811 kref_init(&head
->ref
);
2813 nvme_report_ns_ids(ctrl
, nsid
, id
, &head
->ids
);
2815 ret
= __nvme_check_ids(ctrl
->subsys
, head
);
2817 dev_err(ctrl
->device
,
2818 "duplicate IDs for nsid %d\n", nsid
);
2819 goto out_cleanup_srcu
;
2822 ret
= nvme_mpath_alloc_disk(ctrl
, head
);
2824 goto out_cleanup_srcu
;
2826 list_add_tail(&head
->entry
, &ctrl
->subsys
->nsheads
);
2829 cleanup_srcu_struct(&head
->srcu
);
2830 ida_simple_remove(&ctrl
->subsys
->ns_ida
, head
->instance
);
2834 return ERR_PTR(ret
);
2837 static int nvme_init_ns_head(struct nvme_ns
*ns
, unsigned nsid
,
2838 struct nvme_id_ns
*id
, bool *new)
2840 struct nvme_ctrl
*ctrl
= ns
->ctrl
;
2841 bool is_shared
= id
->nmic
& (1 << 0);
2842 struct nvme_ns_head
*head
= NULL
;
2845 mutex_lock(&ctrl
->subsys
->lock
);
2847 head
= __nvme_find_ns_head(ctrl
->subsys
, nsid
);
2849 head
= nvme_alloc_ns_head(ctrl
, nsid
, id
);
2851 ret
= PTR_ERR(head
);
2857 struct nvme_ns_ids ids
;
2859 nvme_report_ns_ids(ctrl
, nsid
, id
, &ids
);
2860 if (!nvme_ns_ids_equal(&head
->ids
, &ids
)) {
2861 dev_err(ctrl
->device
,
2862 "IDs don't match for shared namespace %d\n",
2871 list_add_tail(&ns
->siblings
, &head
->list
);
2875 mutex_unlock(&ctrl
->subsys
->lock
);
2879 static int ns_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
2881 struct nvme_ns
*nsa
= container_of(a
, struct nvme_ns
, list
);
2882 struct nvme_ns
*nsb
= container_of(b
, struct nvme_ns
, list
);
2884 return nsa
->head
->ns_id
- nsb
->head
->ns_id
;
2887 static struct nvme_ns
*nvme_find_get_ns(struct nvme_ctrl
*ctrl
, unsigned nsid
)
2889 struct nvme_ns
*ns
, *ret
= NULL
;
2891 mutex_lock(&ctrl
->namespaces_mutex
);
2892 list_for_each_entry(ns
, &ctrl
->namespaces
, list
) {
2893 if (ns
->head
->ns_id
== nsid
) {
2894 if (!kref_get_unless_zero(&ns
->kref
))
2899 if (ns
->head
->ns_id
> nsid
)
2902 mutex_unlock(&ctrl
->namespaces_mutex
);
2906 static int nvme_setup_streams_ns(struct nvme_ctrl
*ctrl
, struct nvme_ns
*ns
)
2908 struct streams_directive_params s
;
2911 if (!ctrl
->nr_streams
)
2914 ret
= nvme_get_stream_params(ctrl
, &s
, ns
->head
->ns_id
);
2918 ns
->sws
= le32_to_cpu(s
.sws
);
2919 ns
->sgs
= le16_to_cpu(s
.sgs
);
2922 unsigned int bs
= 1 << ns
->lba_shift
;
2924 blk_queue_io_min(ns
->queue
, bs
* ns
->sws
);
2926 blk_queue_io_opt(ns
->queue
, bs
* ns
->sws
* ns
->sgs
);
2932 static void nvme_alloc_ns(struct nvme_ctrl
*ctrl
, unsigned nsid
)
2935 struct gendisk
*disk
;
2936 struct nvme_id_ns
*id
;
2937 char disk_name
[DISK_NAME_LEN
];
2938 int node
= dev_to_node(ctrl
->dev
), flags
= GENHD_FL_EXT_DEVT
;
2941 ns
= kzalloc_node(sizeof(*ns
), GFP_KERNEL
, node
);
2945 ns
->queue
= blk_mq_init_queue(ctrl
->tagset
);
2946 if (IS_ERR(ns
->queue
))
2948 queue_flag_set_unlocked(QUEUE_FLAG_NONROT
, ns
->queue
);
2949 ns
->queue
->queuedata
= ns
;
2952 kref_init(&ns
->kref
);
2953 ns
->lba_shift
= 9; /* set to a default value for 512 until disk is validated */
2955 blk_queue_logical_block_size(ns
->queue
, 1 << ns
->lba_shift
);
2956 nvme_set_queue_limits(ctrl
, ns
->queue
);
2958 id
= nvme_identify_ns(ctrl
, nsid
);
2960 goto out_free_queue
;
2965 if (nvme_init_ns_head(ns
, nsid
, id
, &new))
2967 nvme_setup_streams_ns(ctrl
, ns
);
2969 #ifdef CONFIG_NVME_MULTIPATH
2971 * If multipathing is enabled we need to always use the subsystem
2972 * instance number for numbering our devices to avoid conflicts
2973 * between subsystems that have multiple controllers and thus use
2974 * the multipath-aware subsystem node and those that have a single
2975 * controller and use the controller node directly.
2977 if (ns
->head
->disk
) {
2978 sprintf(disk_name
, "nvme%dc%dn%d", ctrl
->subsys
->instance
,
2979 ctrl
->cntlid
, ns
->head
->instance
);
2980 flags
= GENHD_FL_HIDDEN
;
2982 sprintf(disk_name
, "nvme%dn%d", ctrl
->subsys
->instance
,
2983 ns
->head
->instance
);
2987 * But without the multipath code enabled, multiple controller per
2988 * subsystems are visible as devices and thus we cannot use the
2989 * subsystem instance.
2991 sprintf(disk_name
, "nvme%dn%d", ctrl
->instance
, ns
->head
->instance
);
2994 if ((ctrl
->quirks
& NVME_QUIRK_LIGHTNVM
) && id
->vs
[0] == 0x1) {
2995 if (nvme_nvm_register(ns
, disk_name
, node
)) {
2996 dev_warn(ctrl
->device
, "LightNVM init failure\n");
3001 disk
= alloc_disk_node(0, node
);
3005 disk
->fops
= &nvme_fops
;
3006 disk
->private_data
= ns
;
3007 disk
->queue
= ns
->queue
;
3008 disk
->flags
= flags
;
3009 memcpy(disk
->disk_name
, disk_name
, DISK_NAME_LEN
);
3012 __nvme_revalidate_disk(disk
, id
);
3014 mutex_lock(&ctrl
->namespaces_mutex
);
3015 list_add_tail(&ns
->list
, &ctrl
->namespaces
);
3016 mutex_unlock(&ctrl
->namespaces_mutex
);
3018 nvme_get_ctrl(ctrl
);
3022 device_add_disk(ctrl
->device
, ns
->disk
);
3023 if (sysfs_create_group(&disk_to_dev(ns
->disk
)->kobj
,
3024 &nvme_ns_id_attr_group
))
3025 pr_warn("%s: failed to create sysfs group for identification\n",
3026 ns
->disk
->disk_name
);
3027 if (ns
->ndev
&& nvme_nvm_register_sysfs(ns
))
3028 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
3029 ns
->disk
->disk_name
);
3032 nvme_mpath_add_disk(ns
->head
);
3033 nvme_mpath_add_disk_links(ns
);
3036 mutex_lock(&ctrl
->subsys
->lock
);
3037 list_del_rcu(&ns
->siblings
);
3038 mutex_unlock(&ctrl
->subsys
->lock
);
3042 blk_cleanup_queue(ns
->queue
);
3047 static void nvme_ns_remove(struct nvme_ns
*ns
)
3049 if (test_and_set_bit(NVME_NS_REMOVING
, &ns
->flags
))
3052 if (ns
->disk
&& ns
->disk
->flags
& GENHD_FL_UP
) {
3053 nvme_mpath_remove_disk_links(ns
);
3054 sysfs_remove_group(&disk_to_dev(ns
->disk
)->kobj
,
3055 &nvme_ns_id_attr_group
);
3057 nvme_nvm_unregister_sysfs(ns
);
3058 del_gendisk(ns
->disk
);
3059 blk_cleanup_queue(ns
->queue
);
3060 if (blk_get_integrity(ns
->disk
))
3061 blk_integrity_unregister(ns
->disk
);
3064 mutex_lock(&ns
->ctrl
->subsys
->lock
);
3065 nvme_mpath_clear_current_path(ns
);
3066 list_del_rcu(&ns
->siblings
);
3067 mutex_unlock(&ns
->ctrl
->subsys
->lock
);
3069 mutex_lock(&ns
->ctrl
->namespaces_mutex
);
3070 list_del_init(&ns
->list
);
3071 mutex_unlock(&ns
->ctrl
->namespaces_mutex
);
3073 synchronize_srcu(&ns
->head
->srcu
);
3074 nvme_mpath_check_last_path(ns
);
3078 static void nvme_validate_ns(struct nvme_ctrl
*ctrl
, unsigned nsid
)
3082 ns
= nvme_find_get_ns(ctrl
, nsid
);
3084 if (ns
->disk
&& revalidate_disk(ns
->disk
))
3088 nvme_alloc_ns(ctrl
, nsid
);
3091 static void nvme_remove_invalid_namespaces(struct nvme_ctrl
*ctrl
,
3094 struct nvme_ns
*ns
, *next
;
3096 list_for_each_entry_safe(ns
, next
, &ctrl
->namespaces
, list
) {
3097 if (ns
->head
->ns_id
> nsid
)
3102 static int nvme_scan_ns_list(struct nvme_ctrl
*ctrl
, unsigned nn
)
3106 unsigned i
, j
, nsid
, prev
= 0, num_lists
= DIV_ROUND_UP(nn
, 1024);
3109 ns_list
= kzalloc(0x1000, GFP_KERNEL
);
3113 for (i
= 0; i
< num_lists
; i
++) {
3114 ret
= nvme_identify_ns_list(ctrl
, prev
, ns_list
);
3118 for (j
= 0; j
< min(nn
, 1024U); j
++) {
3119 nsid
= le32_to_cpu(ns_list
[j
]);
3123 nvme_validate_ns(ctrl
, nsid
);
3125 while (++prev
< nsid
) {
3126 ns
= nvme_find_get_ns(ctrl
, prev
);
3136 nvme_remove_invalid_namespaces(ctrl
, prev
);
3142 static void nvme_scan_ns_sequential(struct nvme_ctrl
*ctrl
, unsigned nn
)
3146 for (i
= 1; i
<= nn
; i
++)
3147 nvme_validate_ns(ctrl
, i
);
3149 nvme_remove_invalid_namespaces(ctrl
, nn
);
3152 static void nvme_scan_work(struct work_struct
*work
)
3154 struct nvme_ctrl
*ctrl
=
3155 container_of(work
, struct nvme_ctrl
, scan_work
);
3156 struct nvme_id_ctrl
*id
;
3159 if (ctrl
->state
!= NVME_CTRL_LIVE
)
3162 WARN_ON_ONCE(!ctrl
->tagset
);
3164 if (nvme_identify_ctrl(ctrl
, &id
))
3167 nn
= le32_to_cpu(id
->nn
);
3168 if (ctrl
->vs
>= NVME_VS(1, 1, 0) &&
3169 !(ctrl
->quirks
& NVME_QUIRK_IDENTIFY_CNS
)) {
3170 if (!nvme_scan_ns_list(ctrl
, nn
))
3173 nvme_scan_ns_sequential(ctrl
, nn
);
3175 mutex_lock(&ctrl
->namespaces_mutex
);
3176 list_sort(NULL
, &ctrl
->namespaces
, ns_cmp
);
3177 mutex_unlock(&ctrl
->namespaces_mutex
);
3181 void nvme_queue_scan(struct nvme_ctrl
*ctrl
)
3184 * Only new queue scan work when admin and IO queues are both alive
3186 if (ctrl
->state
== NVME_CTRL_LIVE
)
3187 queue_work(nvme_wq
, &ctrl
->scan_work
);
3189 EXPORT_SYMBOL_GPL(nvme_queue_scan
);
3192 * This function iterates the namespace list unlocked to allow recovery from
3193 * controller failure. It is up to the caller to ensure the namespace list is
3194 * not modified by scan work while this function is executing.
3196 void nvme_remove_namespaces(struct nvme_ctrl
*ctrl
)
3198 struct nvme_ns
*ns
, *next
;
3201 * The dead states indicates the controller was not gracefully
3202 * disconnected. In that case, we won't be able to flush any data while
3203 * removing the namespaces' disks; fail all the queues now to avoid
3204 * potentially having to clean up the failed sync later.
3206 if (ctrl
->state
== NVME_CTRL_DEAD
)
3207 nvme_kill_queues(ctrl
);
3209 list_for_each_entry_safe(ns
, next
, &ctrl
->namespaces
, list
)
3212 EXPORT_SYMBOL_GPL(nvme_remove_namespaces
);
3214 static void nvme_aen_uevent(struct nvme_ctrl
*ctrl
)
3216 char *envp
[2] = { NULL
, NULL
};
3217 u32 aen_result
= ctrl
->aen_result
;
3219 ctrl
->aen_result
= 0;
3223 envp
[0] = kasprintf(GFP_KERNEL
, "NVME_AEN=%#08x", aen_result
);
3226 kobject_uevent_env(&ctrl
->device
->kobj
, KOBJ_CHANGE
, envp
);
3230 static void nvme_async_event_work(struct work_struct
*work
)
3232 struct nvme_ctrl
*ctrl
=
3233 container_of(work
, struct nvme_ctrl
, async_event_work
);
3235 nvme_aen_uevent(ctrl
);
3236 ctrl
->ops
->submit_async_event(ctrl
);
3239 static bool nvme_ctrl_pp_status(struct nvme_ctrl
*ctrl
)
3244 if (ctrl
->ops
->reg_read32(ctrl
, NVME_REG_CSTS
, &csts
))
3250 return ((ctrl
->ctrl_config
& NVME_CC_ENABLE
) && (csts
& NVME_CSTS_PP
));
3253 static void nvme_get_fw_slot_info(struct nvme_ctrl
*ctrl
)
3255 struct nvme_fw_slot_info_log
*log
;
3257 log
= kmalloc(sizeof(*log
), GFP_KERNEL
);
3261 if (nvme_get_log(ctrl
, NVME_LOG_FW_SLOT
, log
, sizeof(*log
)))
3262 dev_warn(ctrl
->device
,
3263 "Get FW SLOT INFO log error\n");
3267 static void nvme_fw_act_work(struct work_struct
*work
)
3269 struct nvme_ctrl
*ctrl
= container_of(work
,
3270 struct nvme_ctrl
, fw_act_work
);
3271 unsigned long fw_act_timeout
;
3274 fw_act_timeout
= jiffies
+
3275 msecs_to_jiffies(ctrl
->mtfa
* 100);
3277 fw_act_timeout
= jiffies
+
3278 msecs_to_jiffies(admin_timeout
* 1000);
3280 nvme_stop_queues(ctrl
);
3281 while (nvme_ctrl_pp_status(ctrl
)) {
3282 if (time_after(jiffies
, fw_act_timeout
)) {
3283 dev_warn(ctrl
->device
,
3284 "Fw activation timeout, reset controller\n");
3285 nvme_reset_ctrl(ctrl
);
3291 if (ctrl
->state
!= NVME_CTRL_LIVE
)
3294 nvme_start_queues(ctrl
);
3295 /* read FW slot information to clear the AER */
3296 nvme_get_fw_slot_info(ctrl
);
3299 void nvme_complete_async_event(struct nvme_ctrl
*ctrl
, __le16 status
,
3300 union nvme_result
*res
)
3302 u32 result
= le32_to_cpu(res
->u32
);
3304 if (le16_to_cpu(status
) >> 1 != NVME_SC_SUCCESS
)
3307 switch (result
& 0x7) {
3308 case NVME_AER_ERROR
:
3309 case NVME_AER_SMART
:
3312 ctrl
->aen_result
= result
;
3318 switch (result
& 0xff07) {
3319 case NVME_AER_NOTICE_NS_CHANGED
:
3320 dev_info(ctrl
->device
, "rescanning\n");
3321 nvme_queue_scan(ctrl
);
3323 case NVME_AER_NOTICE_FW_ACT_STARTING
:
3324 queue_work(nvme_wq
, &ctrl
->fw_act_work
);
3327 dev_warn(ctrl
->device
, "async event result %08x\n", result
);
3329 queue_work(nvme_wq
, &ctrl
->async_event_work
);
3331 EXPORT_SYMBOL_GPL(nvme_complete_async_event
);
3333 void nvme_stop_ctrl(struct nvme_ctrl
*ctrl
)
3335 nvme_stop_keep_alive(ctrl
);
3336 flush_work(&ctrl
->async_event_work
);
3337 flush_work(&ctrl
->scan_work
);
3338 cancel_work_sync(&ctrl
->fw_act_work
);
3340 EXPORT_SYMBOL_GPL(nvme_stop_ctrl
);
3342 void nvme_start_ctrl(struct nvme_ctrl
*ctrl
)
3345 nvme_start_keep_alive(ctrl
);
3347 if (ctrl
->queue_count
> 1) {
3348 nvme_queue_scan(ctrl
);
3349 queue_work(nvme_wq
, &ctrl
->async_event_work
);
3350 nvme_start_queues(ctrl
);
3353 EXPORT_SYMBOL_GPL(nvme_start_ctrl
);
3355 void nvme_uninit_ctrl(struct nvme_ctrl
*ctrl
)
3357 cdev_device_del(&ctrl
->cdev
, ctrl
->device
);
3359 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl
);
3361 static void nvme_free_ctrl(struct device
*dev
)
3363 struct nvme_ctrl
*ctrl
=
3364 container_of(dev
, struct nvme_ctrl
, ctrl_device
);
3365 struct nvme_subsystem
*subsys
= ctrl
->subsys
;
3367 ida_simple_remove(&nvme_instance_ida
, ctrl
->instance
);
3368 kfree(ctrl
->effects
);
3371 mutex_lock(&subsys
->lock
);
3372 list_del(&ctrl
->subsys_entry
);
3373 mutex_unlock(&subsys
->lock
);
3374 sysfs_remove_link(&subsys
->dev
.kobj
, dev_name(ctrl
->device
));
3377 ctrl
->ops
->free_ctrl(ctrl
);
3380 nvme_put_subsystem(subsys
);
3384 * Initialize a NVMe controller structures. This needs to be called during
3385 * earliest initialization so that we have the initialized structured around
3388 int nvme_init_ctrl(struct nvme_ctrl
*ctrl
, struct device
*dev
,
3389 const struct nvme_ctrl_ops
*ops
, unsigned long quirks
)
3393 ctrl
->state
= NVME_CTRL_NEW
;
3394 spin_lock_init(&ctrl
->lock
);
3395 INIT_LIST_HEAD(&ctrl
->namespaces
);
3396 mutex_init(&ctrl
->namespaces_mutex
);
3399 ctrl
->quirks
= quirks
;
3400 INIT_WORK(&ctrl
->scan_work
, nvme_scan_work
);
3401 INIT_WORK(&ctrl
->async_event_work
, nvme_async_event_work
);
3402 INIT_WORK(&ctrl
->fw_act_work
, nvme_fw_act_work
);
3403 INIT_WORK(&ctrl
->delete_work
, nvme_delete_ctrl_work
);
3405 ret
= ida_simple_get(&nvme_instance_ida
, 0, 0, GFP_KERNEL
);
3408 ctrl
->instance
= ret
;
3410 device_initialize(&ctrl
->ctrl_device
);
3411 ctrl
->device
= &ctrl
->ctrl_device
;
3412 ctrl
->device
->devt
= MKDEV(MAJOR(nvme_chr_devt
), ctrl
->instance
);
3413 ctrl
->device
->class = nvme_class
;
3414 ctrl
->device
->parent
= ctrl
->dev
;
3415 ctrl
->device
->groups
= nvme_dev_attr_groups
;
3416 ctrl
->device
->release
= nvme_free_ctrl
;
3417 dev_set_drvdata(ctrl
->device
, ctrl
);
3418 ret
= dev_set_name(ctrl
->device
, "nvme%d", ctrl
->instance
);
3420 goto out_release_instance
;
3422 cdev_init(&ctrl
->cdev
, &nvme_dev_fops
);
3423 ctrl
->cdev
.owner
= ops
->module
;
3424 ret
= cdev_device_add(&ctrl
->cdev
, ctrl
->device
);
3429 * Initialize latency tolerance controls. The sysfs files won't
3430 * be visible to userspace unless the device actually supports APST.
3432 ctrl
->device
->power
.set_latency_tolerance
= nvme_set_latency_tolerance
;
3433 dev_pm_qos_update_user_latency_tolerance(ctrl
->device
,
3434 min(default_ps_max_latency_us
, (unsigned long)S32_MAX
));
3438 kfree_const(dev
->kobj
.name
);
3439 out_release_instance
:
3440 ida_simple_remove(&nvme_instance_ida
, ctrl
->instance
);
3444 EXPORT_SYMBOL_GPL(nvme_init_ctrl
);
3447 * nvme_kill_queues(): Ends all namespace queues
3448 * @ctrl: the dead controller that needs to end
3450 * Call this function when the driver determines it is unable to get the
3451 * controller in a state capable of servicing IO.
3453 void nvme_kill_queues(struct nvme_ctrl
*ctrl
)
3457 mutex_lock(&ctrl
->namespaces_mutex
);
3459 /* Forcibly unquiesce queues to avoid blocking dispatch */
3461 blk_mq_unquiesce_queue(ctrl
->admin_q
);
3463 list_for_each_entry(ns
, &ctrl
->namespaces
, list
) {
3465 * Revalidating a dead namespace sets capacity to 0. This will
3466 * end buffered writers dirtying pages that can't be synced.
3468 if (!ns
->disk
|| test_and_set_bit(NVME_NS_DEAD
, &ns
->flags
))
3470 revalidate_disk(ns
->disk
);
3471 blk_set_queue_dying(ns
->queue
);
3473 /* Forcibly unquiesce queues to avoid blocking dispatch */
3474 blk_mq_unquiesce_queue(ns
->queue
);
3476 mutex_unlock(&ctrl
->namespaces_mutex
);
3478 EXPORT_SYMBOL_GPL(nvme_kill_queues
);
3480 void nvme_unfreeze(struct nvme_ctrl
*ctrl
)
3484 mutex_lock(&ctrl
->namespaces_mutex
);
3485 list_for_each_entry(ns
, &ctrl
->namespaces
, list
)
3486 blk_mq_unfreeze_queue(ns
->queue
);
3487 mutex_unlock(&ctrl
->namespaces_mutex
);
3489 EXPORT_SYMBOL_GPL(nvme_unfreeze
);
3491 void nvme_wait_freeze_timeout(struct nvme_ctrl
*ctrl
, long timeout
)
3495 mutex_lock(&ctrl
->namespaces_mutex
);
3496 list_for_each_entry(ns
, &ctrl
->namespaces
, list
) {
3497 timeout
= blk_mq_freeze_queue_wait_timeout(ns
->queue
, timeout
);
3501 mutex_unlock(&ctrl
->namespaces_mutex
);
3503 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout
);
3505 void nvme_wait_freeze(struct nvme_ctrl
*ctrl
)
3509 mutex_lock(&ctrl
->namespaces_mutex
);
3510 list_for_each_entry(ns
, &ctrl
->namespaces
, list
)
3511 blk_mq_freeze_queue_wait(ns
->queue
);
3512 mutex_unlock(&ctrl
->namespaces_mutex
);
3514 EXPORT_SYMBOL_GPL(nvme_wait_freeze
);
3516 void nvme_start_freeze(struct nvme_ctrl
*ctrl
)
3520 mutex_lock(&ctrl
->namespaces_mutex
);
3521 list_for_each_entry(ns
, &ctrl
->namespaces
, list
)
3522 blk_freeze_queue_start(ns
->queue
);
3523 mutex_unlock(&ctrl
->namespaces_mutex
);
3525 EXPORT_SYMBOL_GPL(nvme_start_freeze
);
3527 void nvme_stop_queues(struct nvme_ctrl
*ctrl
)
3531 mutex_lock(&ctrl
->namespaces_mutex
);
3532 list_for_each_entry(ns
, &ctrl
->namespaces
, list
)
3533 blk_mq_quiesce_queue(ns
->queue
);
3534 mutex_unlock(&ctrl
->namespaces_mutex
);
3536 EXPORT_SYMBOL_GPL(nvme_stop_queues
);
3538 void nvme_start_queues(struct nvme_ctrl
*ctrl
)
3542 mutex_lock(&ctrl
->namespaces_mutex
);
3543 list_for_each_entry(ns
, &ctrl
->namespaces
, list
)
3544 blk_mq_unquiesce_queue(ns
->queue
);
3545 mutex_unlock(&ctrl
->namespaces_mutex
);
3547 EXPORT_SYMBOL_GPL(nvme_start_queues
);
3549 int nvme_reinit_tagset(struct nvme_ctrl
*ctrl
, struct blk_mq_tag_set
*set
)
3551 if (!ctrl
->ops
->reinit_request
)
3554 return blk_mq_tagset_iter(set
, set
->driver_data
,
3555 ctrl
->ops
->reinit_request
);
3557 EXPORT_SYMBOL_GPL(nvme_reinit_tagset
);
3559 int __init
nvme_core_init(void)
3561 int result
= -ENOMEM
;
3563 nvme_wq
= alloc_workqueue("nvme-wq",
3564 WQ_UNBOUND
| WQ_MEM_RECLAIM
| WQ_SYSFS
, 0);
3568 nvme_reset_wq
= alloc_workqueue("nvme-reset-wq",
3569 WQ_UNBOUND
| WQ_MEM_RECLAIM
| WQ_SYSFS
, 0);
3573 nvme_delete_wq
= alloc_workqueue("nvme-delete-wq",
3574 WQ_UNBOUND
| WQ_MEM_RECLAIM
| WQ_SYSFS
, 0);
3575 if (!nvme_delete_wq
)
3576 goto destroy_reset_wq
;
3578 result
= alloc_chrdev_region(&nvme_chr_devt
, 0, NVME_MINORS
, "nvme");
3580 goto destroy_delete_wq
;
3582 nvme_class
= class_create(THIS_MODULE
, "nvme");
3583 if (IS_ERR(nvme_class
)) {
3584 result
= PTR_ERR(nvme_class
);
3585 goto unregister_chrdev
;
3588 nvme_subsys_class
= class_create(THIS_MODULE
, "nvme-subsystem");
3589 if (IS_ERR(nvme_subsys_class
)) {
3590 result
= PTR_ERR(nvme_subsys_class
);
3596 class_destroy(nvme_class
);
3598 unregister_chrdev_region(nvme_chr_devt
, NVME_MINORS
);
3600 destroy_workqueue(nvme_delete_wq
);
3602 destroy_workqueue(nvme_reset_wq
);
3604 destroy_workqueue(nvme_wq
);
3609 void nvme_core_exit(void)
3611 ida_destroy(&nvme_subsystems_ida
);
3612 class_destroy(nvme_subsys_class
);
3613 class_destroy(nvme_class
);
3614 unregister_chrdev_region(nvme_chr_devt
, NVME_MINORS
);
3615 destroy_workqueue(nvme_delete_wq
);
3616 destroy_workqueue(nvme_reset_wq
);
3617 destroy_workqueue(nvme_wq
);
3620 MODULE_LICENSE("GPL");
3621 MODULE_VERSION("1.0");
3622 module_init(nvme_core_init
);
3623 module_exit(nvme_core_exit
);