xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / nvme / host / core.c
blobf431c32774f3612f5903ff88cb7541b246626ff2
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
35 #include "nvme.h"
36 #include "fabrics.h"
38 #define NVME_MINORS (1U << MINORBITS)
40 unsigned int admin_timeout = 60;
41 module_param(admin_timeout, uint, 0644);
42 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
43 EXPORT_SYMBOL_GPL(admin_timeout);
45 unsigned int nvme_io_timeout = 30;
46 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
47 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
48 EXPORT_SYMBOL_GPL(nvme_io_timeout);
50 static unsigned char shutdown_timeout = 5;
51 module_param(shutdown_timeout, byte, 0644);
52 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
54 static u8 nvme_max_retries = 5;
55 module_param_named(max_retries, nvme_max_retries, byte, 0644);
56 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61 "max power saving latency for new devices; use PM QOS to change per device");
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
72 * nvme_wq - hosts nvme related works that are not reset or delete
73 * nvme_reset_wq - hosts nvme reset works
74 * nvme_delete_wq - hosts nvme delete works
76 * nvme_wq will host works such are scan, aen handling, fw activation,
77 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
78 * runs reset works which also flush works hosted on nvme_wq for
79 * serialization purposes. nvme_delete_wq host controller deletion
80 * works which flush reset works for serialization.
82 struct workqueue_struct *nvme_wq;
83 EXPORT_SYMBOL_GPL(nvme_wq);
85 struct workqueue_struct *nvme_reset_wq;
86 EXPORT_SYMBOL_GPL(nvme_reset_wq);
88 struct workqueue_struct *nvme_delete_wq;
89 EXPORT_SYMBOL_GPL(nvme_delete_wq);
91 static DEFINE_IDA(nvme_subsystems_ida);
92 static LIST_HEAD(nvme_subsystems);
93 static DEFINE_MUTEX(nvme_subsystems_lock);
95 static DEFINE_IDA(nvme_instance_ida);
96 static dev_t nvme_chr_devt;
97 static struct class *nvme_class;
98 static struct class *nvme_subsys_class;
100 static void nvme_ns_remove(struct nvme_ns *ns);
101 static int nvme_revalidate_disk(struct gendisk *disk);
103 static __le32 nvme_get_log_dw10(u8 lid, size_t size)
105 return cpu_to_le32((((size / 4) - 1) << 16) | lid);
108 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
110 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
111 return -EBUSY;
112 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
113 return -EBUSY;
114 return 0;
116 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
118 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
120 int ret;
122 ret = nvme_reset_ctrl(ctrl);
123 if (!ret)
124 flush_work(&ctrl->reset_work);
125 return ret;
127 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
129 static void nvme_delete_ctrl_work(struct work_struct *work)
131 struct nvme_ctrl *ctrl =
132 container_of(work, struct nvme_ctrl, delete_work);
134 flush_work(&ctrl->reset_work);
135 nvme_stop_ctrl(ctrl);
136 nvme_remove_namespaces(ctrl);
137 ctrl->ops->delete_ctrl(ctrl);
138 nvme_uninit_ctrl(ctrl);
139 nvme_put_ctrl(ctrl);
142 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
144 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
145 return -EBUSY;
146 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
147 return -EBUSY;
148 return 0;
150 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
152 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
154 int ret = 0;
157 * Keep a reference until the work is flushed since ->delete_ctrl
158 * can free the controller.
160 nvme_get_ctrl(ctrl);
161 ret = nvme_delete_ctrl(ctrl);
162 if (!ret)
163 flush_work(&ctrl->delete_work);
164 nvme_put_ctrl(ctrl);
165 return ret;
167 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync);
169 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
171 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
174 static blk_status_t nvme_error_status(struct request *req)
176 switch (nvme_req(req)->status & 0x7ff) {
177 case NVME_SC_SUCCESS:
178 return BLK_STS_OK;
179 case NVME_SC_CAP_EXCEEDED:
180 return BLK_STS_NOSPC;
181 case NVME_SC_LBA_RANGE:
182 return BLK_STS_TARGET;
183 case NVME_SC_BAD_ATTRIBUTES:
184 case NVME_SC_ONCS_NOT_SUPPORTED:
185 case NVME_SC_INVALID_OPCODE:
186 case NVME_SC_INVALID_FIELD:
187 case NVME_SC_INVALID_NS:
188 return BLK_STS_NOTSUPP;
189 case NVME_SC_WRITE_FAULT:
190 case NVME_SC_READ_ERROR:
191 case NVME_SC_UNWRITTEN_BLOCK:
192 case NVME_SC_ACCESS_DENIED:
193 case NVME_SC_READ_ONLY:
194 case NVME_SC_COMPARE_FAILED:
195 return BLK_STS_MEDIUM;
196 case NVME_SC_GUARD_CHECK:
197 case NVME_SC_APPTAG_CHECK:
198 case NVME_SC_REFTAG_CHECK:
199 case NVME_SC_INVALID_PI:
200 return BLK_STS_PROTECTION;
201 case NVME_SC_RESERVATION_CONFLICT:
202 return BLK_STS_NEXUS;
203 default:
204 return BLK_STS_IOERR;
208 static inline bool nvme_req_needs_retry(struct request *req)
210 if (blk_noretry_request(req))
211 return false;
212 if (nvme_req(req)->status & NVME_SC_DNR)
213 return false;
214 if (nvme_req(req)->retries >= nvme_max_retries)
215 return false;
216 return true;
219 void nvme_complete_rq(struct request *req)
221 blk_status_t status = nvme_error_status(req);
223 trace_nvme_complete_rq(req);
225 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
226 if (nvme_req_needs_failover(req, status)) {
227 nvme_failover_req(req);
228 return;
231 if (!blk_queue_dying(req->q)) {
232 nvme_req(req)->retries++;
233 blk_mq_requeue_request(req, true);
234 return;
237 blk_mq_end_request(req, status);
239 EXPORT_SYMBOL_GPL(nvme_complete_rq);
241 void nvme_cancel_request(struct request *req, void *data, bool reserved)
243 if (!blk_mq_request_started(req))
244 return;
246 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
247 "Cancelling I/O %d", req->tag);
249 nvme_req(req)->status = NVME_SC_ABORT_REQ;
250 blk_mq_complete_request(req);
253 EXPORT_SYMBOL_GPL(nvme_cancel_request);
255 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
256 enum nvme_ctrl_state new_state)
258 enum nvme_ctrl_state old_state;
259 unsigned long flags;
260 bool changed = false;
262 spin_lock_irqsave(&ctrl->lock, flags);
264 old_state = ctrl->state;
265 switch (new_state) {
266 case NVME_CTRL_ADMIN_ONLY:
267 switch (old_state) {
268 case NVME_CTRL_RECONNECTING:
269 changed = true;
270 /* FALLTHRU */
271 default:
272 break;
274 break;
275 case NVME_CTRL_LIVE:
276 switch (old_state) {
277 case NVME_CTRL_NEW:
278 case NVME_CTRL_RESETTING:
279 case NVME_CTRL_RECONNECTING:
280 changed = true;
281 /* FALLTHRU */
282 default:
283 break;
285 break;
286 case NVME_CTRL_RESETTING:
287 switch (old_state) {
288 case NVME_CTRL_NEW:
289 case NVME_CTRL_LIVE:
290 case NVME_CTRL_ADMIN_ONLY:
291 changed = true;
292 /* FALLTHRU */
293 default:
294 break;
296 break;
297 case NVME_CTRL_RECONNECTING:
298 switch (old_state) {
299 case NVME_CTRL_LIVE:
300 case NVME_CTRL_RESETTING:
301 changed = true;
302 /* FALLTHRU */
303 default:
304 break;
306 break;
307 case NVME_CTRL_DELETING:
308 switch (old_state) {
309 case NVME_CTRL_LIVE:
310 case NVME_CTRL_ADMIN_ONLY:
311 case NVME_CTRL_RESETTING:
312 case NVME_CTRL_RECONNECTING:
313 changed = true;
314 /* FALLTHRU */
315 default:
316 break;
318 break;
319 case NVME_CTRL_DEAD:
320 switch (old_state) {
321 case NVME_CTRL_DELETING:
322 changed = true;
323 /* FALLTHRU */
324 default:
325 break;
327 break;
328 default:
329 break;
332 if (changed)
333 ctrl->state = new_state;
335 spin_unlock_irqrestore(&ctrl->lock, flags);
336 if (changed && ctrl->state == NVME_CTRL_LIVE)
337 nvme_kick_requeue_lists(ctrl);
338 return changed;
340 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
342 static void nvme_free_ns_head(struct kref *ref)
344 struct nvme_ns_head *head =
345 container_of(ref, struct nvme_ns_head, ref);
347 nvme_mpath_remove_disk(head);
348 ida_simple_remove(&head->subsys->ns_ida, head->instance);
349 list_del_init(&head->entry);
350 cleanup_srcu_struct(&head->srcu);
351 kfree(head);
354 static void nvme_put_ns_head(struct nvme_ns_head *head)
356 kref_put(&head->ref, nvme_free_ns_head);
359 static void nvme_free_ns(struct kref *kref)
361 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
363 if (ns->ndev)
364 nvme_nvm_unregister(ns);
366 put_disk(ns->disk);
367 nvme_put_ns_head(ns->head);
368 nvme_put_ctrl(ns->ctrl);
369 kfree(ns);
372 static void nvme_put_ns(struct nvme_ns *ns)
374 kref_put(&ns->kref, nvme_free_ns);
377 struct request *nvme_alloc_request(struct request_queue *q,
378 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
380 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
381 struct request *req;
383 if (qid == NVME_QID_ANY) {
384 req = blk_mq_alloc_request(q, op, flags);
385 } else {
386 req = blk_mq_alloc_request_hctx(q, op, flags,
387 qid ? qid - 1 : 0);
389 if (IS_ERR(req))
390 return req;
392 req->cmd_flags |= REQ_FAILFAST_DRIVER;
393 nvme_req(req)->cmd = cmd;
395 return req;
397 EXPORT_SYMBOL_GPL(nvme_alloc_request);
399 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
401 struct nvme_command c;
403 memset(&c, 0, sizeof(c));
405 c.directive.opcode = nvme_admin_directive_send;
406 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
407 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
408 c.directive.dtype = NVME_DIR_IDENTIFY;
409 c.directive.tdtype = NVME_DIR_STREAMS;
410 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
412 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
415 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
417 return nvme_toggle_streams(ctrl, false);
420 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
422 return nvme_toggle_streams(ctrl, true);
425 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
426 struct streams_directive_params *s, u32 nsid)
428 struct nvme_command c;
430 memset(&c, 0, sizeof(c));
431 memset(s, 0, sizeof(*s));
433 c.directive.opcode = nvme_admin_directive_recv;
434 c.directive.nsid = cpu_to_le32(nsid);
435 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
436 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
437 c.directive.dtype = NVME_DIR_STREAMS;
439 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
442 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
444 struct streams_directive_params s;
445 int ret;
447 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
448 return 0;
449 if (!streams)
450 return 0;
452 ret = nvme_enable_streams(ctrl);
453 if (ret)
454 return ret;
456 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
457 if (ret)
458 return ret;
460 ctrl->nssa = le16_to_cpu(s.nssa);
461 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
462 dev_info(ctrl->device, "too few streams (%u) available\n",
463 ctrl->nssa);
464 nvme_disable_streams(ctrl);
465 return 0;
468 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
469 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
470 return 0;
474 * Check if 'req' has a write hint associated with it. If it does, assign
475 * a valid namespace stream to the write.
477 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
478 struct request *req, u16 *control,
479 u32 *dsmgmt)
481 enum rw_hint streamid = req->write_hint;
483 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
484 streamid = 0;
485 else {
486 streamid--;
487 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
488 return;
490 *control |= NVME_RW_DTYPE_STREAMS;
491 *dsmgmt |= streamid << 16;
494 if (streamid < ARRAY_SIZE(req->q->write_hints))
495 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
498 static inline void nvme_setup_flush(struct nvme_ns *ns,
499 struct nvme_command *cmnd)
501 memset(cmnd, 0, sizeof(*cmnd));
502 cmnd->common.opcode = nvme_cmd_flush;
503 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
506 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
507 struct nvme_command *cmnd)
509 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
510 struct nvme_dsm_range *range;
511 struct bio *bio;
513 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
514 if (!range)
515 return BLK_STS_RESOURCE;
517 __rq_for_each_bio(bio, req) {
518 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
519 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
521 range[n].cattr = cpu_to_le32(0);
522 range[n].nlb = cpu_to_le32(nlb);
523 range[n].slba = cpu_to_le64(slba);
524 n++;
527 if (WARN_ON_ONCE(n != segments)) {
528 kfree(range);
529 return BLK_STS_IOERR;
532 memset(cmnd, 0, sizeof(*cmnd));
533 cmnd->dsm.opcode = nvme_cmd_dsm;
534 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
535 cmnd->dsm.nr = cpu_to_le32(segments - 1);
536 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
538 req->special_vec.bv_page = virt_to_page(range);
539 req->special_vec.bv_offset = offset_in_page(range);
540 req->special_vec.bv_len = sizeof(*range) * segments;
541 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
543 return BLK_STS_OK;
546 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
547 struct request *req, struct nvme_command *cmnd)
549 struct nvme_ctrl *ctrl = ns->ctrl;
550 u16 control = 0;
551 u32 dsmgmt = 0;
553 if (req->cmd_flags & REQ_FUA)
554 control |= NVME_RW_FUA;
555 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
556 control |= NVME_RW_LR;
558 if (req->cmd_flags & REQ_RAHEAD)
559 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
561 memset(cmnd, 0, sizeof(*cmnd));
562 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
563 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
564 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
565 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
567 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
568 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
570 if (ns->ms) {
572 * If formated with metadata, the block layer always provides a
573 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
574 * we enable the PRACT bit for protection information or set the
575 * namespace capacity to zero to prevent any I/O.
577 if (!blk_integrity_rq(req)) {
578 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
579 return BLK_STS_NOTSUPP;
580 control |= NVME_RW_PRINFO_PRACT;
583 switch (ns->pi_type) {
584 case NVME_NS_DPS_PI_TYPE3:
585 control |= NVME_RW_PRINFO_PRCHK_GUARD;
586 break;
587 case NVME_NS_DPS_PI_TYPE1:
588 case NVME_NS_DPS_PI_TYPE2:
589 control |= NVME_RW_PRINFO_PRCHK_GUARD |
590 NVME_RW_PRINFO_PRCHK_REF;
591 cmnd->rw.reftag = cpu_to_le32(
592 nvme_block_nr(ns, blk_rq_pos(req)));
593 break;
597 cmnd->rw.control = cpu_to_le16(control);
598 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
599 return 0;
602 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
603 struct nvme_command *cmd)
605 blk_status_t ret = BLK_STS_OK;
607 if (!(req->rq_flags & RQF_DONTPREP)) {
608 nvme_req(req)->retries = 0;
609 nvme_req(req)->flags = 0;
610 req->rq_flags |= RQF_DONTPREP;
613 switch (req_op(req)) {
614 case REQ_OP_DRV_IN:
615 case REQ_OP_DRV_OUT:
616 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
617 break;
618 case REQ_OP_FLUSH:
619 nvme_setup_flush(ns, cmd);
620 break;
621 case REQ_OP_WRITE_ZEROES:
622 /* currently only aliased to deallocate for a few ctrls: */
623 case REQ_OP_DISCARD:
624 ret = nvme_setup_discard(ns, req, cmd);
625 break;
626 case REQ_OP_READ:
627 case REQ_OP_WRITE:
628 ret = nvme_setup_rw(ns, req, cmd);
629 break;
630 default:
631 WARN_ON_ONCE(1);
632 return BLK_STS_IOERR;
635 cmd->common.command_id = req->tag;
636 if (ns)
637 trace_nvme_setup_nvm_cmd(req->q->id, cmd);
638 else
639 trace_nvme_setup_admin_cmd(cmd);
640 return ret;
642 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
645 * Returns 0 on success. If the result is negative, it's a Linux error code;
646 * if the result is positive, it's an NVM Express status code
648 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
649 union nvme_result *result, void *buffer, unsigned bufflen,
650 unsigned timeout, int qid, int at_head,
651 blk_mq_req_flags_t flags)
653 struct request *req;
654 int ret;
656 req = nvme_alloc_request(q, cmd, flags, qid);
657 if (IS_ERR(req))
658 return PTR_ERR(req);
660 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
662 if (buffer && bufflen) {
663 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
664 if (ret)
665 goto out;
668 blk_execute_rq(req->q, NULL, req, at_head);
669 if (result)
670 *result = nvme_req(req)->result;
671 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
672 ret = -EINTR;
673 else
674 ret = nvme_req(req)->status;
675 out:
676 blk_mq_free_request(req);
677 return ret;
679 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
681 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
682 void *buffer, unsigned bufflen)
684 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
685 NVME_QID_ANY, 0, 0);
687 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
689 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
690 unsigned len, u32 seed, bool write)
692 struct bio_integrity_payload *bip;
693 int ret = -ENOMEM;
694 void *buf;
696 buf = kmalloc(len, GFP_KERNEL);
697 if (!buf)
698 goto out;
700 ret = -EFAULT;
701 if (write && copy_from_user(buf, ubuf, len))
702 goto out_free_meta;
704 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
705 if (IS_ERR(bip)) {
706 ret = PTR_ERR(bip);
707 goto out_free_meta;
710 bip->bip_iter.bi_size = len;
711 bip->bip_iter.bi_sector = seed;
712 ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
713 offset_in_page(buf));
714 if (ret == len)
715 return buf;
716 ret = -ENOMEM;
717 out_free_meta:
718 kfree(buf);
719 out:
720 return ERR_PTR(ret);
723 static int nvme_submit_user_cmd(struct request_queue *q,
724 struct nvme_command *cmd, void __user *ubuffer,
725 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
726 u32 meta_seed, u32 *result, unsigned timeout)
728 bool write = nvme_is_write(cmd);
729 struct nvme_ns *ns = q->queuedata;
730 struct gendisk *disk = ns ? ns->disk : NULL;
731 struct request *req;
732 struct bio *bio = NULL;
733 void *meta = NULL;
734 int ret;
736 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
737 if (IS_ERR(req))
738 return PTR_ERR(req);
740 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
742 if (ubuffer && bufflen) {
743 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
744 GFP_KERNEL);
745 if (ret)
746 goto out;
747 bio = req->bio;
748 bio->bi_disk = disk;
749 if (disk && meta_buffer && meta_len) {
750 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
751 meta_seed, write);
752 if (IS_ERR(meta)) {
753 ret = PTR_ERR(meta);
754 goto out_unmap;
759 blk_execute_rq(req->q, disk, req, 0);
760 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
761 ret = -EINTR;
762 else
763 ret = nvme_req(req)->status;
764 if (result)
765 *result = le32_to_cpu(nvme_req(req)->result.u32);
766 if (meta && !ret && !write) {
767 if (copy_to_user(meta_buffer, meta, meta_len))
768 ret = -EFAULT;
770 kfree(meta);
771 out_unmap:
772 if (bio)
773 blk_rq_unmap_user(bio);
774 out:
775 blk_mq_free_request(req);
776 return ret;
779 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
781 struct nvme_ctrl *ctrl = rq->end_io_data;
783 blk_mq_free_request(rq);
785 if (status) {
786 dev_err(ctrl->device,
787 "failed nvme_keep_alive_end_io error=%d\n",
788 status);
789 return;
792 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
795 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
797 struct nvme_command c;
798 struct request *rq;
800 memset(&c, 0, sizeof(c));
801 c.common.opcode = nvme_admin_keep_alive;
803 rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
804 NVME_QID_ANY);
805 if (IS_ERR(rq))
806 return PTR_ERR(rq);
808 rq->timeout = ctrl->kato * HZ;
809 rq->end_io_data = ctrl;
811 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
813 return 0;
816 static void nvme_keep_alive_work(struct work_struct *work)
818 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
819 struct nvme_ctrl, ka_work);
821 if (nvme_keep_alive(ctrl)) {
822 /* allocation failure, reset the controller */
823 dev_err(ctrl->device, "keep-alive failed\n");
824 nvme_reset_ctrl(ctrl);
825 return;
829 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
831 if (unlikely(ctrl->kato == 0))
832 return;
834 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
835 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
837 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
839 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
841 if (unlikely(ctrl->kato == 0))
842 return;
844 cancel_delayed_work_sync(&ctrl->ka_work);
846 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
848 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
850 struct nvme_command c = { };
851 int error;
853 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
854 c.identify.opcode = nvme_admin_identify;
855 c.identify.cns = NVME_ID_CNS_CTRL;
857 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
858 if (!*id)
859 return -ENOMEM;
861 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
862 sizeof(struct nvme_id_ctrl));
863 if (error)
864 kfree(*id);
865 return error;
868 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
869 struct nvme_ns_ids *ids)
871 struct nvme_command c = { };
872 int status;
873 void *data;
874 int pos;
875 int len;
877 c.identify.opcode = nvme_admin_identify;
878 c.identify.nsid = cpu_to_le32(nsid);
879 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
881 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
882 if (!data)
883 return -ENOMEM;
885 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
886 NVME_IDENTIFY_DATA_SIZE);
887 if (status)
888 goto free_data;
890 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
891 struct nvme_ns_id_desc *cur = data + pos;
893 if (cur->nidl == 0)
894 break;
896 switch (cur->nidt) {
897 case NVME_NIDT_EUI64:
898 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
899 dev_warn(ctrl->device,
900 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
901 cur->nidl);
902 goto free_data;
904 len = NVME_NIDT_EUI64_LEN;
905 memcpy(ids->eui64, data + pos + sizeof(*cur), len);
906 break;
907 case NVME_NIDT_NGUID:
908 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
909 dev_warn(ctrl->device,
910 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
911 cur->nidl);
912 goto free_data;
914 len = NVME_NIDT_NGUID_LEN;
915 memcpy(ids->nguid, data + pos + sizeof(*cur), len);
916 break;
917 case NVME_NIDT_UUID:
918 if (cur->nidl != NVME_NIDT_UUID_LEN) {
919 dev_warn(ctrl->device,
920 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
921 cur->nidl);
922 goto free_data;
924 len = NVME_NIDT_UUID_LEN;
925 uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
926 break;
927 default:
928 /* Skip unnkown types */
929 len = cur->nidl;
930 break;
933 len += sizeof(*cur);
935 free_data:
936 kfree(data);
937 return status;
940 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
942 struct nvme_command c = { };
944 c.identify.opcode = nvme_admin_identify;
945 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
946 c.identify.nsid = cpu_to_le32(nsid);
947 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
950 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
951 unsigned nsid)
953 struct nvme_id_ns *id;
954 struct nvme_command c = { };
955 int error;
957 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
958 c.identify.opcode = nvme_admin_identify;
959 c.identify.nsid = cpu_to_le32(nsid);
960 c.identify.cns = NVME_ID_CNS_NS;
962 id = kmalloc(sizeof(*id), GFP_KERNEL);
963 if (!id)
964 return NULL;
966 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
967 if (error) {
968 dev_warn(ctrl->device, "Identify namespace failed\n");
969 kfree(id);
970 return NULL;
973 return id;
976 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
977 void *buffer, size_t buflen, u32 *result)
979 struct nvme_command c;
980 union nvme_result res;
981 int ret;
983 memset(&c, 0, sizeof(c));
984 c.features.opcode = nvme_admin_set_features;
985 c.features.fid = cpu_to_le32(fid);
986 c.features.dword11 = cpu_to_le32(dword11);
988 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
989 buffer, buflen, 0, NVME_QID_ANY, 0, 0);
990 if (ret >= 0 && result)
991 *result = le32_to_cpu(res.u32);
992 return ret;
995 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
997 u32 q_count = (*count - 1) | ((*count - 1) << 16);
998 u32 result;
999 int status, nr_io_queues;
1001 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1002 &result);
1003 if (status < 0)
1004 return status;
1007 * Degraded controllers might return an error when setting the queue
1008 * count. We still want to be able to bring them online and offer
1009 * access to the admin queue, as that might be only way to fix them up.
1011 if (status > 0) {
1012 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1013 *count = 0;
1014 } else {
1015 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1016 *count = min(*count, nr_io_queues);
1019 return 0;
1021 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1023 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1025 struct nvme_user_io io;
1026 struct nvme_command c;
1027 unsigned length, meta_len;
1028 void __user *metadata;
1030 if (copy_from_user(&io, uio, sizeof(io)))
1031 return -EFAULT;
1032 if (io.flags)
1033 return -EINVAL;
1035 switch (io.opcode) {
1036 case nvme_cmd_write:
1037 case nvme_cmd_read:
1038 case nvme_cmd_compare:
1039 break;
1040 default:
1041 return -EINVAL;
1044 length = (io.nblocks + 1) << ns->lba_shift;
1045 meta_len = (io.nblocks + 1) * ns->ms;
1046 metadata = (void __user *)(uintptr_t)io.metadata;
1048 if (ns->ext) {
1049 length += meta_len;
1050 meta_len = 0;
1051 } else if (meta_len) {
1052 if ((io.metadata & 3) || !io.metadata)
1053 return -EINVAL;
1056 memset(&c, 0, sizeof(c));
1057 c.rw.opcode = io.opcode;
1058 c.rw.flags = io.flags;
1059 c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1060 c.rw.slba = cpu_to_le64(io.slba);
1061 c.rw.length = cpu_to_le16(io.nblocks);
1062 c.rw.control = cpu_to_le16(io.control);
1063 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1064 c.rw.reftag = cpu_to_le32(io.reftag);
1065 c.rw.apptag = cpu_to_le16(io.apptag);
1066 c.rw.appmask = cpu_to_le16(io.appmask);
1068 return nvme_submit_user_cmd(ns->queue, &c,
1069 (void __user *)(uintptr_t)io.addr, length,
1070 metadata, meta_len, io.slba, NULL, 0);
1073 static u32 nvme_known_admin_effects(u8 opcode)
1075 switch (opcode) {
1076 case nvme_admin_format_nvm:
1077 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1078 NVME_CMD_EFFECTS_CSE_MASK;
1079 case nvme_admin_sanitize_nvm:
1080 return NVME_CMD_EFFECTS_CSE_MASK;
1081 default:
1082 break;
1084 return 0;
1087 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1088 u8 opcode)
1090 u32 effects = 0;
1092 if (ns) {
1093 if (ctrl->effects)
1094 effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1095 if (effects & ~NVME_CMD_EFFECTS_CSUPP)
1096 dev_warn(ctrl->device,
1097 "IO command:%02x has unhandled effects:%08x\n",
1098 opcode, effects);
1099 return 0;
1102 if (ctrl->effects)
1103 effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1104 else
1105 effects = nvme_known_admin_effects(opcode);
1108 * For simplicity, IO to all namespaces is quiesced even if the command
1109 * effects say only one namespace is affected.
1111 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1112 nvme_start_freeze(ctrl);
1113 nvme_wait_freeze(ctrl);
1115 return effects;
1118 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1120 struct nvme_ns *ns;
1122 mutex_lock(&ctrl->namespaces_mutex);
1123 list_for_each_entry(ns, &ctrl->namespaces, list) {
1124 if (ns->disk && nvme_revalidate_disk(ns->disk))
1125 nvme_ns_remove(ns);
1127 mutex_unlock(&ctrl->namespaces_mutex);
1130 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1133 * Revalidate LBA changes prior to unfreezing. This is necessary to
1134 * prevent memory corruption if a logical block size was changed by
1135 * this command.
1137 if (effects & NVME_CMD_EFFECTS_LBCC)
1138 nvme_update_formats(ctrl);
1139 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK))
1140 nvme_unfreeze(ctrl);
1141 if (effects & NVME_CMD_EFFECTS_CCC)
1142 nvme_init_identify(ctrl);
1143 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1144 nvme_queue_scan(ctrl);
1147 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1148 struct nvme_passthru_cmd __user *ucmd)
1150 struct nvme_passthru_cmd cmd;
1151 struct nvme_command c;
1152 unsigned timeout = 0;
1153 u32 effects;
1154 int status;
1156 if (!capable(CAP_SYS_ADMIN))
1157 return -EACCES;
1158 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1159 return -EFAULT;
1160 if (cmd.flags)
1161 return -EINVAL;
1163 memset(&c, 0, sizeof(c));
1164 c.common.opcode = cmd.opcode;
1165 c.common.flags = cmd.flags;
1166 c.common.nsid = cpu_to_le32(cmd.nsid);
1167 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1168 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1169 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1170 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1171 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1172 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1173 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1174 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1176 if (cmd.timeout_ms)
1177 timeout = msecs_to_jiffies(cmd.timeout_ms);
1179 effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1180 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1181 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1182 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata,
1183 0, &cmd.result, timeout);
1184 nvme_passthru_end(ctrl, effects);
1186 if (status >= 0) {
1187 if (put_user(cmd.result, &ucmd->result))
1188 return -EFAULT;
1191 return status;
1195 * Issue ioctl requests on the first available path. Note that unlike normal
1196 * block layer requests we will not retry failed request on another controller.
1198 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1199 struct nvme_ns_head **head, int *srcu_idx)
1201 #ifdef CONFIG_NVME_MULTIPATH
1202 if (disk->fops == &nvme_ns_head_ops) {
1203 *head = disk->private_data;
1204 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1205 return nvme_find_path(*head);
1207 #endif
1208 *head = NULL;
1209 *srcu_idx = -1;
1210 return disk->private_data;
1213 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1215 if (head)
1216 srcu_read_unlock(&head->srcu, idx);
1219 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg)
1221 switch (cmd) {
1222 case NVME_IOCTL_ID:
1223 force_successful_syscall_return();
1224 return ns->head->ns_id;
1225 case NVME_IOCTL_ADMIN_CMD:
1226 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1227 case NVME_IOCTL_IO_CMD:
1228 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1229 case NVME_IOCTL_SUBMIT_IO:
1230 return nvme_submit_io(ns, (void __user *)arg);
1231 default:
1232 #ifdef CONFIG_NVM
1233 if (ns->ndev)
1234 return nvme_nvm_ioctl(ns, cmd, arg);
1235 #endif
1236 if (is_sed_ioctl(cmd))
1237 return sed_ioctl(ns->ctrl->opal_dev, cmd,
1238 (void __user *) arg);
1239 return -ENOTTY;
1243 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1244 unsigned int cmd, unsigned long arg)
1246 struct nvme_ns_head *head = NULL;
1247 struct nvme_ns *ns;
1248 int srcu_idx, ret;
1250 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1251 if (unlikely(!ns))
1252 ret = -EWOULDBLOCK;
1253 else
1254 ret = nvme_ns_ioctl(ns, cmd, arg);
1255 nvme_put_ns_from_disk(head, srcu_idx);
1256 return ret;
1259 static int nvme_open(struct block_device *bdev, fmode_t mode)
1261 struct nvme_ns *ns = bdev->bd_disk->private_data;
1263 #ifdef CONFIG_NVME_MULTIPATH
1264 /* should never be called due to GENHD_FL_HIDDEN */
1265 if (WARN_ON_ONCE(ns->head->disk))
1266 goto fail;
1267 #endif
1268 if (!kref_get_unless_zero(&ns->kref))
1269 goto fail;
1270 if (!try_module_get(ns->ctrl->ops->module))
1271 goto fail_put_ns;
1273 return 0;
1275 fail_put_ns:
1276 nvme_put_ns(ns);
1277 fail:
1278 return -ENXIO;
1281 static void nvme_release(struct gendisk *disk, fmode_t mode)
1283 struct nvme_ns *ns = disk->private_data;
1285 module_put(ns->ctrl->ops->module);
1286 nvme_put_ns(ns);
1289 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1291 /* some standard values */
1292 geo->heads = 1 << 6;
1293 geo->sectors = 1 << 5;
1294 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1295 return 0;
1298 #ifdef CONFIG_BLK_DEV_INTEGRITY
1299 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1301 struct blk_integrity integrity;
1303 memset(&integrity, 0, sizeof(integrity));
1304 switch (pi_type) {
1305 case NVME_NS_DPS_PI_TYPE3:
1306 integrity.profile = &t10_pi_type3_crc;
1307 integrity.tag_size = sizeof(u16) + sizeof(u32);
1308 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1309 break;
1310 case NVME_NS_DPS_PI_TYPE1:
1311 case NVME_NS_DPS_PI_TYPE2:
1312 integrity.profile = &t10_pi_type1_crc;
1313 integrity.tag_size = sizeof(u16);
1314 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1315 break;
1316 default:
1317 integrity.profile = NULL;
1318 break;
1320 integrity.tuple_size = ms;
1321 blk_integrity_register(disk, &integrity);
1322 blk_queue_max_integrity_segments(disk->queue, 1);
1324 #else
1325 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1328 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1330 static void nvme_set_chunk_size(struct nvme_ns *ns)
1332 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1333 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1336 static void nvme_config_discard(struct nvme_ctrl *ctrl,
1337 unsigned stream_alignment, struct request_queue *queue)
1339 u32 size = queue_logical_block_size(queue);
1341 if (stream_alignment)
1342 size *= stream_alignment;
1344 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1345 NVME_DSM_MAX_RANGES);
1347 queue->limits.discard_alignment = 0;
1348 queue->limits.discard_granularity = size;
1350 blk_queue_max_discard_sectors(queue, UINT_MAX);
1351 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1352 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, queue);
1354 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1355 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1358 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1359 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1361 memset(ids, 0, sizeof(*ids));
1363 if (ctrl->vs >= NVME_VS(1, 1, 0))
1364 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1365 if (ctrl->vs >= NVME_VS(1, 2, 0))
1366 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1367 if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1368 /* Don't treat error as fatal we potentially
1369 * already have a NGUID or EUI-64
1371 if (nvme_identify_ns_descs(ctrl, nsid, ids))
1372 dev_warn(ctrl->device,
1373 "%s: Identify Descriptors failed\n", __func__);
1377 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1379 return !uuid_is_null(&ids->uuid) ||
1380 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1381 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1384 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1386 return uuid_equal(&a->uuid, &b->uuid) &&
1387 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1388 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1391 static void nvme_update_disk_info(struct gendisk *disk,
1392 struct nvme_ns *ns, struct nvme_id_ns *id)
1394 sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9);
1395 unsigned short bs = 1 << ns->lba_shift;
1396 unsigned stream_alignment = 0;
1398 if (ns->ctrl->nr_streams && ns->sws && ns->sgs)
1399 stream_alignment = ns->sws * ns->sgs;
1401 blk_mq_freeze_queue(disk->queue);
1402 blk_integrity_unregister(disk);
1404 blk_queue_logical_block_size(disk->queue, bs);
1405 blk_queue_physical_block_size(disk->queue, bs);
1406 blk_queue_io_min(disk->queue, bs);
1408 if (ns->ms && !ns->ext &&
1409 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1410 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1411 if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk))
1412 capacity = 0;
1413 set_capacity(disk, capacity);
1415 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
1416 nvme_config_discard(ns->ctrl, stream_alignment, disk->queue);
1417 blk_mq_unfreeze_queue(disk->queue);
1420 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1422 struct nvme_ns *ns = disk->private_data;
1425 * If identify namespace failed, use default 512 byte block size so
1426 * block layer can use before failing read/write for 0 capacity.
1428 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1429 if (ns->lba_shift == 0)
1430 ns->lba_shift = 9;
1431 ns->noiob = le16_to_cpu(id->noiob);
1432 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1433 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1434 /* the PI implementation requires metadata equal t10 pi tuple size */
1435 if (ns->ms == sizeof(struct t10_pi_tuple))
1436 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1437 else
1438 ns->pi_type = 0;
1440 if (ns->noiob)
1441 nvme_set_chunk_size(ns);
1442 nvme_update_disk_info(disk, ns, id);
1443 #ifdef CONFIG_NVME_MULTIPATH
1444 if (ns->head->disk)
1445 nvme_update_disk_info(ns->head->disk, ns, id);
1446 #endif
1449 static int nvme_revalidate_disk(struct gendisk *disk)
1451 struct nvme_ns *ns = disk->private_data;
1452 struct nvme_ctrl *ctrl = ns->ctrl;
1453 struct nvme_id_ns *id;
1454 struct nvme_ns_ids ids;
1455 int ret = 0;
1457 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1458 set_capacity(disk, 0);
1459 return -ENODEV;
1462 id = nvme_identify_ns(ctrl, ns->head->ns_id);
1463 if (!id)
1464 return -ENODEV;
1466 if (id->ncap == 0) {
1467 ret = -ENODEV;
1468 goto out;
1471 __nvme_revalidate_disk(disk, id);
1472 nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1473 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1474 dev_err(ctrl->device,
1475 "identifiers changed for nsid %d\n", ns->head->ns_id);
1476 ret = -ENODEV;
1479 out:
1480 kfree(id);
1481 return ret;
1484 static char nvme_pr_type(enum pr_type type)
1486 switch (type) {
1487 case PR_WRITE_EXCLUSIVE:
1488 return 1;
1489 case PR_EXCLUSIVE_ACCESS:
1490 return 2;
1491 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1492 return 3;
1493 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1494 return 4;
1495 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1496 return 5;
1497 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1498 return 6;
1499 default:
1500 return 0;
1504 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1505 u64 key, u64 sa_key, u8 op)
1507 struct nvme_ns_head *head = NULL;
1508 struct nvme_ns *ns;
1509 struct nvme_command c;
1510 int srcu_idx, ret;
1511 u8 data[16] = { 0, };
1513 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1514 if (unlikely(!ns))
1515 return -EWOULDBLOCK;
1517 put_unaligned_le64(key, &data[0]);
1518 put_unaligned_le64(sa_key, &data[8]);
1520 memset(&c, 0, sizeof(c));
1521 c.common.opcode = op;
1522 c.common.nsid = cpu_to_le32(ns->head->ns_id);
1523 c.common.cdw10[0] = cpu_to_le32(cdw10);
1525 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1526 nvme_put_ns_from_disk(head, srcu_idx);
1527 return ret;
1530 static int nvme_pr_register(struct block_device *bdev, u64 old,
1531 u64 new, unsigned flags)
1533 u32 cdw10;
1535 if (flags & ~PR_FL_IGNORE_KEY)
1536 return -EOPNOTSUPP;
1538 cdw10 = old ? 2 : 0;
1539 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1540 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1541 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1544 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1545 enum pr_type type, unsigned flags)
1547 u32 cdw10;
1549 if (flags & ~PR_FL_IGNORE_KEY)
1550 return -EOPNOTSUPP;
1552 cdw10 = nvme_pr_type(type) << 8;
1553 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1554 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1557 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1558 enum pr_type type, bool abort)
1560 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1561 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1564 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1566 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1567 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1570 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1572 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1573 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1576 static const struct pr_ops nvme_pr_ops = {
1577 .pr_register = nvme_pr_register,
1578 .pr_reserve = nvme_pr_reserve,
1579 .pr_release = nvme_pr_release,
1580 .pr_preempt = nvme_pr_preempt,
1581 .pr_clear = nvme_pr_clear,
1584 #ifdef CONFIG_BLK_SED_OPAL
1585 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1586 bool send)
1588 struct nvme_ctrl *ctrl = data;
1589 struct nvme_command cmd;
1591 memset(&cmd, 0, sizeof(cmd));
1592 if (send)
1593 cmd.common.opcode = nvme_admin_security_send;
1594 else
1595 cmd.common.opcode = nvme_admin_security_recv;
1596 cmd.common.nsid = 0;
1597 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1598 cmd.common.cdw10[1] = cpu_to_le32(len);
1600 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1601 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1603 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1604 #endif /* CONFIG_BLK_SED_OPAL */
1606 static const struct block_device_operations nvme_fops = {
1607 .owner = THIS_MODULE,
1608 .ioctl = nvme_ioctl,
1609 .compat_ioctl = nvme_ioctl,
1610 .open = nvme_open,
1611 .release = nvme_release,
1612 .getgeo = nvme_getgeo,
1613 .revalidate_disk= nvme_revalidate_disk,
1614 .pr_ops = &nvme_pr_ops,
1617 #ifdef CONFIG_NVME_MULTIPATH
1618 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1620 struct nvme_ns_head *head = bdev->bd_disk->private_data;
1622 if (!kref_get_unless_zero(&head->ref))
1623 return -ENXIO;
1624 return 0;
1627 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1629 nvme_put_ns_head(disk->private_data);
1632 const struct block_device_operations nvme_ns_head_ops = {
1633 .owner = THIS_MODULE,
1634 .open = nvme_ns_head_open,
1635 .release = nvme_ns_head_release,
1636 .ioctl = nvme_ioctl,
1637 .compat_ioctl = nvme_ioctl,
1638 .getgeo = nvme_getgeo,
1639 .pr_ops = &nvme_pr_ops,
1641 #endif /* CONFIG_NVME_MULTIPATH */
1643 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1645 unsigned long timeout =
1646 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1647 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1648 int ret;
1650 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1651 if (csts == ~0)
1652 return -ENODEV;
1653 if ((csts & NVME_CSTS_RDY) == bit)
1654 break;
1656 msleep(100);
1657 if (fatal_signal_pending(current))
1658 return -EINTR;
1659 if (time_after(jiffies, timeout)) {
1660 dev_err(ctrl->device,
1661 "Device not ready; aborting %s\n", enabled ?
1662 "initialisation" : "reset");
1663 return -ENODEV;
1667 return ret;
1671 * If the device has been passed off to us in an enabled state, just clear
1672 * the enabled bit. The spec says we should set the 'shutdown notification
1673 * bits', but doing so may cause the device to complete commands to the
1674 * admin queue ... and we don't know what memory that might be pointing at!
1676 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1678 int ret;
1680 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1681 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1683 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1684 if (ret)
1685 return ret;
1687 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1688 msleep(NVME_QUIRK_DELAY_AMOUNT);
1690 return nvme_wait_ready(ctrl, cap, false);
1692 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1694 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1697 * Default to a 4K page size, with the intention to update this
1698 * path in the future to accomodate architectures with differing
1699 * kernel and IO page sizes.
1701 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1702 int ret;
1704 if (page_shift < dev_page_min) {
1705 dev_err(ctrl->device,
1706 "Minimum device page size %u too large for host (%u)\n",
1707 1 << dev_page_min, 1 << page_shift);
1708 return -ENODEV;
1711 ctrl->page_size = 1 << page_shift;
1713 ctrl->ctrl_config = NVME_CC_CSS_NVM;
1714 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1715 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1716 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1717 ctrl->ctrl_config |= NVME_CC_ENABLE;
1719 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1720 if (ret)
1721 return ret;
1722 return nvme_wait_ready(ctrl, cap, true);
1724 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1726 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1728 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1729 u32 csts;
1730 int ret;
1732 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1733 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1735 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1736 if (ret)
1737 return ret;
1739 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1740 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1741 break;
1743 msleep(100);
1744 if (fatal_signal_pending(current))
1745 return -EINTR;
1746 if (time_after(jiffies, timeout)) {
1747 dev_err(ctrl->device,
1748 "Device shutdown incomplete; abort shutdown\n");
1749 return -ENODEV;
1753 return ret;
1755 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1757 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1758 struct request_queue *q)
1760 bool vwc = false;
1762 if (ctrl->max_hw_sectors) {
1763 u32 max_segments =
1764 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1766 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1767 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1769 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1770 is_power_of_2(ctrl->max_hw_sectors))
1771 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1772 blk_queue_virt_boundary(q, ctrl->page_size - 1);
1773 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1774 vwc = true;
1775 blk_queue_write_cache(q, vwc, vwc);
1778 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1780 __le64 ts;
1781 int ret;
1783 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1784 return 0;
1786 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1787 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1788 NULL);
1789 if (ret)
1790 dev_warn_once(ctrl->device,
1791 "could not set timestamp (%d)\n", ret);
1792 return ret;
1795 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1798 * APST (Autonomous Power State Transition) lets us program a
1799 * table of power state transitions that the controller will
1800 * perform automatically. We configure it with a simple
1801 * heuristic: we are willing to spend at most 2% of the time
1802 * transitioning between power states. Therefore, when running
1803 * in any given state, we will enter the next lower-power
1804 * non-operational state after waiting 50 * (enlat + exlat)
1805 * microseconds, as long as that state's exit latency is under
1806 * the requested maximum latency.
1808 * We will not autonomously enter any non-operational state for
1809 * which the total latency exceeds ps_max_latency_us. Users
1810 * can set ps_max_latency_us to zero to turn off APST.
1813 unsigned apste;
1814 struct nvme_feat_auto_pst *table;
1815 u64 max_lat_us = 0;
1816 int max_ps = -1;
1817 int ret;
1820 * If APST isn't supported or if we haven't been initialized yet,
1821 * then don't do anything.
1823 if (!ctrl->apsta)
1824 return 0;
1826 if (ctrl->npss > 31) {
1827 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1828 return 0;
1831 table = kzalloc(sizeof(*table), GFP_KERNEL);
1832 if (!table)
1833 return 0;
1835 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1836 /* Turn off APST. */
1837 apste = 0;
1838 dev_dbg(ctrl->device, "APST disabled\n");
1839 } else {
1840 __le64 target = cpu_to_le64(0);
1841 int state;
1844 * Walk through all states from lowest- to highest-power.
1845 * According to the spec, lower-numbered states use more
1846 * power. NPSS, despite the name, is the index of the
1847 * lowest-power state, not the number of states.
1849 for (state = (int)ctrl->npss; state >= 0; state--) {
1850 u64 total_latency_us, exit_latency_us, transition_ms;
1852 if (target)
1853 table->entries[state] = target;
1856 * Don't allow transitions to the deepest state
1857 * if it's quirked off.
1859 if (state == ctrl->npss &&
1860 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1861 continue;
1864 * Is this state a useful non-operational state for
1865 * higher-power states to autonomously transition to?
1867 if (!(ctrl->psd[state].flags &
1868 NVME_PS_FLAGS_NON_OP_STATE))
1869 continue;
1871 exit_latency_us =
1872 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1873 if (exit_latency_us > ctrl->ps_max_latency_us)
1874 continue;
1876 total_latency_us =
1877 exit_latency_us +
1878 le32_to_cpu(ctrl->psd[state].entry_lat);
1881 * This state is good. Use it as the APST idle
1882 * target for higher power states.
1884 transition_ms = total_latency_us + 19;
1885 do_div(transition_ms, 20);
1886 if (transition_ms > (1 << 24) - 1)
1887 transition_ms = (1 << 24) - 1;
1889 target = cpu_to_le64((state << 3) |
1890 (transition_ms << 8));
1892 if (max_ps == -1)
1893 max_ps = state;
1895 if (total_latency_us > max_lat_us)
1896 max_lat_us = total_latency_us;
1899 apste = 1;
1901 if (max_ps == -1) {
1902 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1903 } else {
1904 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1905 max_ps, max_lat_us, (int)sizeof(*table), table);
1909 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1910 table, sizeof(*table), NULL);
1911 if (ret)
1912 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1914 kfree(table);
1915 return ret;
1918 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1920 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1921 u64 latency;
1923 switch (val) {
1924 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1925 case PM_QOS_LATENCY_ANY:
1926 latency = U64_MAX;
1927 break;
1929 default:
1930 latency = val;
1933 if (ctrl->ps_max_latency_us != latency) {
1934 ctrl->ps_max_latency_us = latency;
1935 nvme_configure_apst(ctrl);
1939 struct nvme_core_quirk_entry {
1941 * NVMe model and firmware strings are padded with spaces. For
1942 * simplicity, strings in the quirk table are padded with NULLs
1943 * instead.
1945 u16 vid;
1946 const char *mn;
1947 const char *fr;
1948 unsigned long quirks;
1951 static const struct nvme_core_quirk_entry core_quirks[] = {
1954 * This Toshiba device seems to die using any APST states. See:
1955 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1957 .vid = 0x1179,
1958 .mn = "THNSF5256GPUK TOSHIBA",
1959 .quirks = NVME_QUIRK_NO_APST,
1963 /* match is null-terminated but idstr is space-padded. */
1964 static bool string_matches(const char *idstr, const char *match, size_t len)
1966 size_t matchlen;
1968 if (!match)
1969 return true;
1971 matchlen = strlen(match);
1972 WARN_ON_ONCE(matchlen > len);
1974 if (memcmp(idstr, match, matchlen))
1975 return false;
1977 for (; matchlen < len; matchlen++)
1978 if (idstr[matchlen] != ' ')
1979 return false;
1981 return true;
1984 static bool quirk_matches(const struct nvme_id_ctrl *id,
1985 const struct nvme_core_quirk_entry *q)
1987 return q->vid == le16_to_cpu(id->vid) &&
1988 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
1989 string_matches(id->fr, q->fr, sizeof(id->fr));
1992 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
1993 struct nvme_id_ctrl *id)
1995 size_t nqnlen;
1996 int off;
1998 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
1999 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2000 strncpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2001 return;
2004 if (ctrl->vs >= NVME_VS(1, 2, 1))
2005 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2007 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2008 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2009 "nqn.2014.08.org.nvmexpress:%4x%4x",
2010 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2011 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2012 off += sizeof(id->sn);
2013 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2014 off += sizeof(id->mn);
2015 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2018 static void __nvme_release_subsystem(struct nvme_subsystem *subsys)
2020 ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
2021 kfree(subsys);
2024 static void nvme_release_subsystem(struct device *dev)
2026 __nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev));
2029 static void nvme_destroy_subsystem(struct kref *ref)
2031 struct nvme_subsystem *subsys =
2032 container_of(ref, struct nvme_subsystem, ref);
2034 mutex_lock(&nvme_subsystems_lock);
2035 list_del(&subsys->entry);
2036 mutex_unlock(&nvme_subsystems_lock);
2038 ida_destroy(&subsys->ns_ida);
2039 device_del(&subsys->dev);
2040 put_device(&subsys->dev);
2043 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2045 kref_put(&subsys->ref, nvme_destroy_subsystem);
2048 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2050 struct nvme_subsystem *subsys;
2052 lockdep_assert_held(&nvme_subsystems_lock);
2054 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2055 if (strcmp(subsys->subnqn, subsysnqn))
2056 continue;
2057 if (!kref_get_unless_zero(&subsys->ref))
2058 continue;
2059 return subsys;
2062 return NULL;
2065 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2066 struct device_attribute subsys_attr_##_name = \
2067 __ATTR(_name, _mode, _show, NULL)
2069 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2070 struct device_attribute *attr,
2071 char *buf)
2073 struct nvme_subsystem *subsys =
2074 container_of(dev, struct nvme_subsystem, dev);
2076 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2078 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2080 #define nvme_subsys_show_str_function(field) \
2081 static ssize_t subsys_##field##_show(struct device *dev, \
2082 struct device_attribute *attr, char *buf) \
2084 struct nvme_subsystem *subsys = \
2085 container_of(dev, struct nvme_subsystem, dev); \
2086 return sprintf(buf, "%.*s\n", \
2087 (int)sizeof(subsys->field), subsys->field); \
2089 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2091 nvme_subsys_show_str_function(model);
2092 nvme_subsys_show_str_function(serial);
2093 nvme_subsys_show_str_function(firmware_rev);
2095 static struct attribute *nvme_subsys_attrs[] = {
2096 &subsys_attr_model.attr,
2097 &subsys_attr_serial.attr,
2098 &subsys_attr_firmware_rev.attr,
2099 &subsys_attr_subsysnqn.attr,
2100 NULL,
2103 static struct attribute_group nvme_subsys_attrs_group = {
2104 .attrs = nvme_subsys_attrs,
2107 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2108 &nvme_subsys_attrs_group,
2109 NULL,
2112 static int nvme_active_ctrls(struct nvme_subsystem *subsys)
2114 int count = 0;
2115 struct nvme_ctrl *ctrl;
2117 mutex_lock(&subsys->lock);
2118 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
2119 if (ctrl->state != NVME_CTRL_DELETING &&
2120 ctrl->state != NVME_CTRL_DEAD)
2121 count++;
2123 mutex_unlock(&subsys->lock);
2125 return count;
2128 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2130 struct nvme_subsystem *subsys, *found;
2131 int ret;
2133 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2134 if (!subsys)
2135 return -ENOMEM;
2136 ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2137 if (ret < 0) {
2138 kfree(subsys);
2139 return ret;
2141 subsys->instance = ret;
2142 mutex_init(&subsys->lock);
2143 kref_init(&subsys->ref);
2144 INIT_LIST_HEAD(&subsys->ctrls);
2145 INIT_LIST_HEAD(&subsys->nsheads);
2146 nvme_init_subnqn(subsys, ctrl, id);
2147 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2148 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2149 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2150 subsys->vendor_id = le16_to_cpu(id->vid);
2151 subsys->cmic = id->cmic;
2153 subsys->dev.class = nvme_subsys_class;
2154 subsys->dev.release = nvme_release_subsystem;
2155 subsys->dev.groups = nvme_subsys_attrs_groups;
2156 dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2157 device_initialize(&subsys->dev);
2159 mutex_lock(&nvme_subsystems_lock);
2160 found = __nvme_find_get_subsystem(subsys->subnqn);
2161 if (found) {
2163 * Verify that the subsystem actually supports multiple
2164 * controllers, else bail out.
2166 if (nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) {
2167 dev_err(ctrl->device,
2168 "ignoring ctrl due to duplicate subnqn (%s).\n",
2169 found->subnqn);
2170 nvme_put_subsystem(found);
2171 ret = -EINVAL;
2172 goto out_unlock;
2175 __nvme_release_subsystem(subsys);
2176 subsys = found;
2177 } else {
2178 ret = device_add(&subsys->dev);
2179 if (ret) {
2180 dev_err(ctrl->device,
2181 "failed to register subsystem device.\n");
2182 goto out_unlock;
2184 ida_init(&subsys->ns_ida);
2185 list_add_tail(&subsys->entry, &nvme_subsystems);
2188 ctrl->subsys = subsys;
2189 mutex_unlock(&nvme_subsystems_lock);
2191 if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2192 dev_name(ctrl->device))) {
2193 dev_err(ctrl->device,
2194 "failed to create sysfs link from subsystem.\n");
2195 /* the transport driver will eventually put the subsystem */
2196 return -EINVAL;
2199 mutex_lock(&subsys->lock);
2200 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2201 mutex_unlock(&subsys->lock);
2203 return 0;
2205 out_unlock:
2206 mutex_unlock(&nvme_subsystems_lock);
2207 put_device(&subsys->dev);
2208 return ret;
2211 static int nvme_get_log(struct nvme_ctrl *ctrl, u8 log_page, void *log,
2212 size_t size)
2214 struct nvme_command c = { };
2216 c.common.opcode = nvme_admin_get_log_page;
2217 c.common.nsid = cpu_to_le32(NVME_NSID_ALL);
2218 c.common.cdw10[0] = nvme_get_log_dw10(log_page, size);
2220 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2223 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2225 int ret;
2227 if (!ctrl->effects)
2228 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2230 if (!ctrl->effects)
2231 return 0;
2233 ret = nvme_get_log(ctrl, NVME_LOG_CMD_EFFECTS, ctrl->effects,
2234 sizeof(*ctrl->effects));
2235 if (ret) {
2236 kfree(ctrl->effects);
2237 ctrl->effects = NULL;
2239 return ret;
2243 * Initialize the cached copies of the Identify data and various controller
2244 * register in our nvme_ctrl structure. This should be called as soon as
2245 * the admin queue is fully up and running.
2247 int nvme_init_identify(struct nvme_ctrl *ctrl)
2249 struct nvme_id_ctrl *id;
2250 u64 cap;
2251 int ret, page_shift;
2252 u32 max_hw_sectors;
2253 bool prev_apst_enabled;
2255 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2256 if (ret) {
2257 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2258 return ret;
2261 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2262 if (ret) {
2263 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2264 return ret;
2266 page_shift = NVME_CAP_MPSMIN(cap) + 12;
2268 if (ctrl->vs >= NVME_VS(1, 1, 0))
2269 ctrl->subsystem = NVME_CAP_NSSRC(cap);
2271 ret = nvme_identify_ctrl(ctrl, &id);
2272 if (ret) {
2273 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2274 return -EIO;
2277 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2278 ret = nvme_get_effects_log(ctrl);
2279 if (ret < 0)
2280 return ret;
2283 if (!ctrl->identified) {
2284 int i;
2286 ret = nvme_init_subsystem(ctrl, id);
2287 if (ret)
2288 goto out_free;
2291 * Check for quirks. Quirk can depend on firmware version,
2292 * so, in principle, the set of quirks present can change
2293 * across a reset. As a possible future enhancement, we
2294 * could re-scan for quirks every time we reinitialize
2295 * the device, but we'd have to make sure that the driver
2296 * behaves intelligently if the quirks change.
2298 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2299 if (quirk_matches(id, &core_quirks[i]))
2300 ctrl->quirks |= core_quirks[i].quirks;
2304 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2305 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2306 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2309 ctrl->oacs = le16_to_cpu(id->oacs);
2310 ctrl->oncs = le16_to_cpup(&id->oncs);
2311 atomic_set(&ctrl->abort_limit, id->acl + 1);
2312 ctrl->vwc = id->vwc;
2313 ctrl->cntlid = le16_to_cpup(&id->cntlid);
2314 if (id->mdts)
2315 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2316 else
2317 max_hw_sectors = UINT_MAX;
2318 ctrl->max_hw_sectors =
2319 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2321 nvme_set_queue_limits(ctrl, ctrl->admin_q);
2322 ctrl->sgls = le32_to_cpu(id->sgls);
2323 ctrl->kas = le16_to_cpu(id->kas);
2325 if (id->rtd3e) {
2326 /* us -> s */
2327 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2329 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2330 shutdown_timeout, 60);
2332 if (ctrl->shutdown_timeout != shutdown_timeout)
2333 dev_info(ctrl->device,
2334 "Shutdown timeout set to %u seconds\n",
2335 ctrl->shutdown_timeout);
2336 } else
2337 ctrl->shutdown_timeout = shutdown_timeout;
2339 ctrl->npss = id->npss;
2340 ctrl->apsta = id->apsta;
2341 prev_apst_enabled = ctrl->apst_enabled;
2342 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2343 if (force_apst && id->apsta) {
2344 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2345 ctrl->apst_enabled = true;
2346 } else {
2347 ctrl->apst_enabled = false;
2349 } else {
2350 ctrl->apst_enabled = id->apsta;
2352 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2354 if (ctrl->ops->flags & NVME_F_FABRICS) {
2355 ctrl->icdoff = le16_to_cpu(id->icdoff);
2356 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2357 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2358 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2361 * In fabrics we need to verify the cntlid matches the
2362 * admin connect
2364 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2365 ret = -EINVAL;
2366 goto out_free;
2369 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2370 dev_err(ctrl->device,
2371 "keep-alive support is mandatory for fabrics\n");
2372 ret = -EINVAL;
2373 goto out_free;
2375 } else {
2376 ctrl->cntlid = le16_to_cpu(id->cntlid);
2377 ctrl->hmpre = le32_to_cpu(id->hmpre);
2378 ctrl->hmmin = le32_to_cpu(id->hmmin);
2379 ctrl->hmminds = le32_to_cpu(id->hmminds);
2380 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2383 kfree(id);
2385 if (ctrl->apst_enabled && !prev_apst_enabled)
2386 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2387 else if (!ctrl->apst_enabled && prev_apst_enabled)
2388 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2390 ret = nvme_configure_apst(ctrl);
2391 if (ret < 0)
2392 return ret;
2394 ret = nvme_configure_timestamp(ctrl);
2395 if (ret < 0)
2396 return ret;
2398 ret = nvme_configure_directives(ctrl);
2399 if (ret < 0)
2400 return ret;
2402 ctrl->identified = true;
2404 return 0;
2406 out_free:
2407 kfree(id);
2408 return ret;
2410 EXPORT_SYMBOL_GPL(nvme_init_identify);
2412 static int nvme_dev_open(struct inode *inode, struct file *file)
2414 struct nvme_ctrl *ctrl =
2415 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2417 switch (ctrl->state) {
2418 case NVME_CTRL_LIVE:
2419 case NVME_CTRL_ADMIN_ONLY:
2420 break;
2421 default:
2422 return -EWOULDBLOCK;
2425 file->private_data = ctrl;
2426 return 0;
2429 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2431 struct nvme_ns *ns;
2432 int ret;
2434 mutex_lock(&ctrl->namespaces_mutex);
2435 if (list_empty(&ctrl->namespaces)) {
2436 ret = -ENOTTY;
2437 goto out_unlock;
2440 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2441 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2442 dev_warn(ctrl->device,
2443 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2444 ret = -EINVAL;
2445 goto out_unlock;
2448 dev_warn(ctrl->device,
2449 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2450 kref_get(&ns->kref);
2451 mutex_unlock(&ctrl->namespaces_mutex);
2453 ret = nvme_user_cmd(ctrl, ns, argp);
2454 nvme_put_ns(ns);
2455 return ret;
2457 out_unlock:
2458 mutex_unlock(&ctrl->namespaces_mutex);
2459 return ret;
2462 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2463 unsigned long arg)
2465 struct nvme_ctrl *ctrl = file->private_data;
2466 void __user *argp = (void __user *)arg;
2468 switch (cmd) {
2469 case NVME_IOCTL_ADMIN_CMD:
2470 return nvme_user_cmd(ctrl, NULL, argp);
2471 case NVME_IOCTL_IO_CMD:
2472 return nvme_dev_user_cmd(ctrl, argp);
2473 case NVME_IOCTL_RESET:
2474 dev_warn(ctrl->device, "resetting controller\n");
2475 return nvme_reset_ctrl_sync(ctrl);
2476 case NVME_IOCTL_SUBSYS_RESET:
2477 return nvme_reset_subsystem(ctrl);
2478 case NVME_IOCTL_RESCAN:
2479 nvme_queue_scan(ctrl);
2480 return 0;
2481 default:
2482 return -ENOTTY;
2486 static const struct file_operations nvme_dev_fops = {
2487 .owner = THIS_MODULE,
2488 .open = nvme_dev_open,
2489 .unlocked_ioctl = nvme_dev_ioctl,
2490 .compat_ioctl = nvme_dev_ioctl,
2493 static ssize_t nvme_sysfs_reset(struct device *dev,
2494 struct device_attribute *attr, const char *buf,
2495 size_t count)
2497 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2498 int ret;
2500 ret = nvme_reset_ctrl_sync(ctrl);
2501 if (ret < 0)
2502 return ret;
2503 return count;
2505 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2507 static ssize_t nvme_sysfs_rescan(struct device *dev,
2508 struct device_attribute *attr, const char *buf,
2509 size_t count)
2511 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2513 nvme_queue_scan(ctrl);
2514 return count;
2516 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2518 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2520 struct gendisk *disk = dev_to_disk(dev);
2522 if (disk->fops == &nvme_fops)
2523 return nvme_get_ns_from_dev(dev)->head;
2524 else
2525 return disk->private_data;
2528 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2529 char *buf)
2531 struct nvme_ns_head *head = dev_to_ns_head(dev);
2532 struct nvme_ns_ids *ids = &head->ids;
2533 struct nvme_subsystem *subsys = head->subsys;
2534 int serial_len = sizeof(subsys->serial);
2535 int model_len = sizeof(subsys->model);
2537 if (!uuid_is_null(&ids->uuid))
2538 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2540 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2541 return sprintf(buf, "eui.%16phN\n", ids->nguid);
2543 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2544 return sprintf(buf, "eui.%8phN\n", ids->eui64);
2546 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2547 subsys->serial[serial_len - 1] == '\0'))
2548 serial_len--;
2549 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2550 subsys->model[model_len - 1] == '\0'))
2551 model_len--;
2553 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2554 serial_len, subsys->serial, model_len, subsys->model,
2555 head->ns_id);
2557 static DEVICE_ATTR_RO(wwid);
2559 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2560 char *buf)
2562 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2564 static DEVICE_ATTR_RO(nguid);
2566 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2567 char *buf)
2569 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2571 /* For backward compatibility expose the NGUID to userspace if
2572 * we have no UUID set
2574 if (uuid_is_null(&ids->uuid)) {
2575 printk_ratelimited(KERN_WARNING
2576 "No UUID available providing old NGUID\n");
2577 return sprintf(buf, "%pU\n", ids->nguid);
2579 return sprintf(buf, "%pU\n", &ids->uuid);
2581 static DEVICE_ATTR_RO(uuid);
2583 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2584 char *buf)
2586 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2588 static DEVICE_ATTR_RO(eui);
2590 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2591 char *buf)
2593 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2595 static DEVICE_ATTR_RO(nsid);
2597 static struct attribute *nvme_ns_id_attrs[] = {
2598 &dev_attr_wwid.attr,
2599 &dev_attr_uuid.attr,
2600 &dev_attr_nguid.attr,
2601 &dev_attr_eui.attr,
2602 &dev_attr_nsid.attr,
2603 NULL,
2606 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2607 struct attribute *a, int n)
2609 struct device *dev = container_of(kobj, struct device, kobj);
2610 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2612 if (a == &dev_attr_uuid.attr) {
2613 if (uuid_is_null(&ids->uuid) &&
2614 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2615 return 0;
2617 if (a == &dev_attr_nguid.attr) {
2618 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2619 return 0;
2621 if (a == &dev_attr_eui.attr) {
2622 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2623 return 0;
2625 return a->mode;
2628 const struct attribute_group nvme_ns_id_attr_group = {
2629 .attrs = nvme_ns_id_attrs,
2630 .is_visible = nvme_ns_id_attrs_are_visible,
2633 #define nvme_show_str_function(field) \
2634 static ssize_t field##_show(struct device *dev, \
2635 struct device_attribute *attr, char *buf) \
2637 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2638 return sprintf(buf, "%.*s\n", \
2639 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
2641 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2643 nvme_show_str_function(model);
2644 nvme_show_str_function(serial);
2645 nvme_show_str_function(firmware_rev);
2647 #define nvme_show_int_function(field) \
2648 static ssize_t field##_show(struct device *dev, \
2649 struct device_attribute *attr, char *buf) \
2651 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2652 return sprintf(buf, "%d\n", ctrl->field); \
2654 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2656 nvme_show_int_function(cntlid);
2658 static ssize_t nvme_sysfs_delete(struct device *dev,
2659 struct device_attribute *attr, const char *buf,
2660 size_t count)
2662 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2664 if (device_remove_file_self(dev, attr))
2665 nvme_delete_ctrl_sync(ctrl);
2666 return count;
2668 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2670 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2671 struct device_attribute *attr,
2672 char *buf)
2674 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2676 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2678 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2680 static ssize_t nvme_sysfs_show_state(struct device *dev,
2681 struct device_attribute *attr,
2682 char *buf)
2684 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2685 static const char *const state_name[] = {
2686 [NVME_CTRL_NEW] = "new",
2687 [NVME_CTRL_LIVE] = "live",
2688 [NVME_CTRL_ADMIN_ONLY] = "only-admin",
2689 [NVME_CTRL_RESETTING] = "resetting",
2690 [NVME_CTRL_RECONNECTING]= "reconnecting",
2691 [NVME_CTRL_DELETING] = "deleting",
2692 [NVME_CTRL_DEAD] = "dead",
2695 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2696 state_name[ctrl->state])
2697 return sprintf(buf, "%s\n", state_name[ctrl->state]);
2699 return sprintf(buf, "unknown state\n");
2702 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2704 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2705 struct device_attribute *attr,
2706 char *buf)
2708 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2710 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
2712 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2714 static ssize_t nvme_sysfs_show_address(struct device *dev,
2715 struct device_attribute *attr,
2716 char *buf)
2718 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2720 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2722 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2724 static struct attribute *nvme_dev_attrs[] = {
2725 &dev_attr_reset_controller.attr,
2726 &dev_attr_rescan_controller.attr,
2727 &dev_attr_model.attr,
2728 &dev_attr_serial.attr,
2729 &dev_attr_firmware_rev.attr,
2730 &dev_attr_cntlid.attr,
2731 &dev_attr_delete_controller.attr,
2732 &dev_attr_transport.attr,
2733 &dev_attr_subsysnqn.attr,
2734 &dev_attr_address.attr,
2735 &dev_attr_state.attr,
2736 NULL
2739 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2740 struct attribute *a, int n)
2742 struct device *dev = container_of(kobj, struct device, kobj);
2743 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2745 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2746 return 0;
2747 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2748 return 0;
2750 return a->mode;
2753 static struct attribute_group nvme_dev_attrs_group = {
2754 .attrs = nvme_dev_attrs,
2755 .is_visible = nvme_dev_attrs_are_visible,
2758 static const struct attribute_group *nvme_dev_attr_groups[] = {
2759 &nvme_dev_attrs_group,
2760 NULL,
2763 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
2764 unsigned nsid)
2766 struct nvme_ns_head *h;
2768 lockdep_assert_held(&subsys->lock);
2770 list_for_each_entry(h, &subsys->nsheads, entry) {
2771 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
2772 return h;
2775 return NULL;
2778 static int __nvme_check_ids(struct nvme_subsystem *subsys,
2779 struct nvme_ns_head *new)
2781 struct nvme_ns_head *h;
2783 lockdep_assert_held(&subsys->lock);
2785 list_for_each_entry(h, &subsys->nsheads, entry) {
2786 if (nvme_ns_ids_valid(&new->ids) &&
2787 nvme_ns_ids_equal(&new->ids, &h->ids))
2788 return -EINVAL;
2791 return 0;
2794 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
2795 unsigned nsid, struct nvme_id_ns *id)
2797 struct nvme_ns_head *head;
2798 int ret = -ENOMEM;
2800 head = kzalloc(sizeof(*head), GFP_KERNEL);
2801 if (!head)
2802 goto out;
2803 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
2804 if (ret < 0)
2805 goto out_free_head;
2806 head->instance = ret;
2807 INIT_LIST_HEAD(&head->list);
2808 init_srcu_struct(&head->srcu);
2809 head->subsys = ctrl->subsys;
2810 head->ns_id = nsid;
2811 kref_init(&head->ref);
2813 nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
2815 ret = __nvme_check_ids(ctrl->subsys, head);
2816 if (ret) {
2817 dev_err(ctrl->device,
2818 "duplicate IDs for nsid %d\n", nsid);
2819 goto out_cleanup_srcu;
2822 ret = nvme_mpath_alloc_disk(ctrl, head);
2823 if (ret)
2824 goto out_cleanup_srcu;
2826 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
2827 return head;
2828 out_cleanup_srcu:
2829 cleanup_srcu_struct(&head->srcu);
2830 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
2831 out_free_head:
2832 kfree(head);
2833 out:
2834 return ERR_PTR(ret);
2837 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
2838 struct nvme_id_ns *id, bool *new)
2840 struct nvme_ctrl *ctrl = ns->ctrl;
2841 bool is_shared = id->nmic & (1 << 0);
2842 struct nvme_ns_head *head = NULL;
2843 int ret = 0;
2845 mutex_lock(&ctrl->subsys->lock);
2846 if (is_shared)
2847 head = __nvme_find_ns_head(ctrl->subsys, nsid);
2848 if (!head) {
2849 head = nvme_alloc_ns_head(ctrl, nsid, id);
2850 if (IS_ERR(head)) {
2851 ret = PTR_ERR(head);
2852 goto out_unlock;
2855 *new = true;
2856 } else {
2857 struct nvme_ns_ids ids;
2859 nvme_report_ns_ids(ctrl, nsid, id, &ids);
2860 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
2861 dev_err(ctrl->device,
2862 "IDs don't match for shared namespace %d\n",
2863 nsid);
2864 ret = -EINVAL;
2865 goto out_unlock;
2868 *new = false;
2871 list_add_tail(&ns->siblings, &head->list);
2872 ns->head = head;
2874 out_unlock:
2875 mutex_unlock(&ctrl->subsys->lock);
2876 return ret;
2879 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2881 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2882 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2884 return nsa->head->ns_id - nsb->head->ns_id;
2887 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2889 struct nvme_ns *ns, *ret = NULL;
2891 mutex_lock(&ctrl->namespaces_mutex);
2892 list_for_each_entry(ns, &ctrl->namespaces, list) {
2893 if (ns->head->ns_id == nsid) {
2894 if (!kref_get_unless_zero(&ns->kref))
2895 continue;
2896 ret = ns;
2897 break;
2899 if (ns->head->ns_id > nsid)
2900 break;
2902 mutex_unlock(&ctrl->namespaces_mutex);
2903 return ret;
2906 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
2908 struct streams_directive_params s;
2909 int ret;
2911 if (!ctrl->nr_streams)
2912 return 0;
2914 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
2915 if (ret)
2916 return ret;
2918 ns->sws = le32_to_cpu(s.sws);
2919 ns->sgs = le16_to_cpu(s.sgs);
2921 if (ns->sws) {
2922 unsigned int bs = 1 << ns->lba_shift;
2924 blk_queue_io_min(ns->queue, bs * ns->sws);
2925 if (ns->sgs)
2926 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
2929 return 0;
2932 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2934 struct nvme_ns *ns;
2935 struct gendisk *disk;
2936 struct nvme_id_ns *id;
2937 char disk_name[DISK_NAME_LEN];
2938 int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT;
2939 bool new = true;
2941 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2942 if (!ns)
2943 return;
2945 ns->queue = blk_mq_init_queue(ctrl->tagset);
2946 if (IS_ERR(ns->queue))
2947 goto out_free_ns;
2948 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2949 ns->queue->queuedata = ns;
2950 ns->ctrl = ctrl;
2952 kref_init(&ns->kref);
2953 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2955 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2956 nvme_set_queue_limits(ctrl, ns->queue);
2958 id = nvme_identify_ns(ctrl, nsid);
2959 if (!id)
2960 goto out_free_queue;
2962 if (id->ncap == 0)
2963 goto out_free_id;
2965 if (nvme_init_ns_head(ns, nsid, id, &new))
2966 goto out_free_id;
2967 nvme_setup_streams_ns(ctrl, ns);
2969 #ifdef CONFIG_NVME_MULTIPATH
2971 * If multipathing is enabled we need to always use the subsystem
2972 * instance number for numbering our devices to avoid conflicts
2973 * between subsystems that have multiple controllers and thus use
2974 * the multipath-aware subsystem node and those that have a single
2975 * controller and use the controller node directly.
2977 if (ns->head->disk) {
2978 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
2979 ctrl->cntlid, ns->head->instance);
2980 flags = GENHD_FL_HIDDEN;
2981 } else {
2982 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance,
2983 ns->head->instance);
2985 #else
2987 * But without the multipath code enabled, multiple controller per
2988 * subsystems are visible as devices and thus we cannot use the
2989 * subsystem instance.
2991 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
2992 #endif
2994 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
2995 if (nvme_nvm_register(ns, disk_name, node)) {
2996 dev_warn(ctrl->device, "LightNVM init failure\n");
2997 goto out_unlink_ns;
3001 disk = alloc_disk_node(0, node);
3002 if (!disk)
3003 goto out_unlink_ns;
3005 disk->fops = &nvme_fops;
3006 disk->private_data = ns;
3007 disk->queue = ns->queue;
3008 disk->flags = flags;
3009 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3010 ns->disk = disk;
3012 __nvme_revalidate_disk(disk, id);
3014 mutex_lock(&ctrl->namespaces_mutex);
3015 list_add_tail(&ns->list, &ctrl->namespaces);
3016 mutex_unlock(&ctrl->namespaces_mutex);
3018 nvme_get_ctrl(ctrl);
3020 kfree(id);
3022 device_add_disk(ctrl->device, ns->disk);
3023 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
3024 &nvme_ns_id_attr_group))
3025 pr_warn("%s: failed to create sysfs group for identification\n",
3026 ns->disk->disk_name);
3027 if (ns->ndev && nvme_nvm_register_sysfs(ns))
3028 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
3029 ns->disk->disk_name);
3031 if (new)
3032 nvme_mpath_add_disk(ns->head);
3033 nvme_mpath_add_disk_links(ns);
3034 return;
3035 out_unlink_ns:
3036 mutex_lock(&ctrl->subsys->lock);
3037 list_del_rcu(&ns->siblings);
3038 mutex_unlock(&ctrl->subsys->lock);
3039 out_free_id:
3040 kfree(id);
3041 out_free_queue:
3042 blk_cleanup_queue(ns->queue);
3043 out_free_ns:
3044 kfree(ns);
3047 static void nvme_ns_remove(struct nvme_ns *ns)
3049 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3050 return;
3052 if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3053 nvme_mpath_remove_disk_links(ns);
3054 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
3055 &nvme_ns_id_attr_group);
3056 if (ns->ndev)
3057 nvme_nvm_unregister_sysfs(ns);
3058 del_gendisk(ns->disk);
3059 blk_cleanup_queue(ns->queue);
3060 if (blk_get_integrity(ns->disk))
3061 blk_integrity_unregister(ns->disk);
3064 mutex_lock(&ns->ctrl->subsys->lock);
3065 nvme_mpath_clear_current_path(ns);
3066 list_del_rcu(&ns->siblings);
3067 mutex_unlock(&ns->ctrl->subsys->lock);
3069 mutex_lock(&ns->ctrl->namespaces_mutex);
3070 list_del_init(&ns->list);
3071 mutex_unlock(&ns->ctrl->namespaces_mutex);
3073 synchronize_srcu(&ns->head->srcu);
3074 nvme_mpath_check_last_path(ns);
3075 nvme_put_ns(ns);
3078 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3080 struct nvme_ns *ns;
3082 ns = nvme_find_get_ns(ctrl, nsid);
3083 if (ns) {
3084 if (ns->disk && revalidate_disk(ns->disk))
3085 nvme_ns_remove(ns);
3086 nvme_put_ns(ns);
3087 } else
3088 nvme_alloc_ns(ctrl, nsid);
3091 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3092 unsigned nsid)
3094 struct nvme_ns *ns, *next;
3096 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3097 if (ns->head->ns_id > nsid)
3098 nvme_ns_remove(ns);
3102 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3104 struct nvme_ns *ns;
3105 __le32 *ns_list;
3106 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
3107 int ret = 0;
3109 ns_list = kzalloc(0x1000, GFP_KERNEL);
3110 if (!ns_list)
3111 return -ENOMEM;
3113 for (i = 0; i < num_lists; i++) {
3114 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3115 if (ret)
3116 goto free;
3118 for (j = 0; j < min(nn, 1024U); j++) {
3119 nsid = le32_to_cpu(ns_list[j]);
3120 if (!nsid)
3121 goto out;
3123 nvme_validate_ns(ctrl, nsid);
3125 while (++prev < nsid) {
3126 ns = nvme_find_get_ns(ctrl, prev);
3127 if (ns) {
3128 nvme_ns_remove(ns);
3129 nvme_put_ns(ns);
3133 nn -= j;
3135 out:
3136 nvme_remove_invalid_namespaces(ctrl, prev);
3137 free:
3138 kfree(ns_list);
3139 return ret;
3142 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3144 unsigned i;
3146 for (i = 1; i <= nn; i++)
3147 nvme_validate_ns(ctrl, i);
3149 nvme_remove_invalid_namespaces(ctrl, nn);
3152 static void nvme_scan_work(struct work_struct *work)
3154 struct nvme_ctrl *ctrl =
3155 container_of(work, struct nvme_ctrl, scan_work);
3156 struct nvme_id_ctrl *id;
3157 unsigned nn;
3159 if (ctrl->state != NVME_CTRL_LIVE)
3160 return;
3162 WARN_ON_ONCE(!ctrl->tagset);
3164 if (nvme_identify_ctrl(ctrl, &id))
3165 return;
3167 nn = le32_to_cpu(id->nn);
3168 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3169 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3170 if (!nvme_scan_ns_list(ctrl, nn))
3171 goto done;
3173 nvme_scan_ns_sequential(ctrl, nn);
3174 done:
3175 mutex_lock(&ctrl->namespaces_mutex);
3176 list_sort(NULL, &ctrl->namespaces, ns_cmp);
3177 mutex_unlock(&ctrl->namespaces_mutex);
3178 kfree(id);
3181 void nvme_queue_scan(struct nvme_ctrl *ctrl)
3184 * Only new queue scan work when admin and IO queues are both alive
3186 if (ctrl->state == NVME_CTRL_LIVE)
3187 queue_work(nvme_wq, &ctrl->scan_work);
3189 EXPORT_SYMBOL_GPL(nvme_queue_scan);
3192 * This function iterates the namespace list unlocked to allow recovery from
3193 * controller failure. It is up to the caller to ensure the namespace list is
3194 * not modified by scan work while this function is executing.
3196 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3198 struct nvme_ns *ns, *next;
3201 * The dead states indicates the controller was not gracefully
3202 * disconnected. In that case, we won't be able to flush any data while
3203 * removing the namespaces' disks; fail all the queues now to avoid
3204 * potentially having to clean up the failed sync later.
3206 if (ctrl->state == NVME_CTRL_DEAD)
3207 nvme_kill_queues(ctrl);
3209 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
3210 nvme_ns_remove(ns);
3212 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3214 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3216 char *envp[2] = { NULL, NULL };
3217 u32 aen_result = ctrl->aen_result;
3219 ctrl->aen_result = 0;
3220 if (!aen_result)
3221 return;
3223 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3224 if (!envp[0])
3225 return;
3226 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3227 kfree(envp[0]);
3230 static void nvme_async_event_work(struct work_struct *work)
3232 struct nvme_ctrl *ctrl =
3233 container_of(work, struct nvme_ctrl, async_event_work);
3235 nvme_aen_uevent(ctrl);
3236 ctrl->ops->submit_async_event(ctrl);
3239 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3242 u32 csts;
3244 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3245 return false;
3247 if (csts == ~0)
3248 return false;
3250 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3253 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3255 struct nvme_fw_slot_info_log *log;
3257 log = kmalloc(sizeof(*log), GFP_KERNEL);
3258 if (!log)
3259 return;
3261 if (nvme_get_log(ctrl, NVME_LOG_FW_SLOT, log, sizeof(*log)))
3262 dev_warn(ctrl->device,
3263 "Get FW SLOT INFO log error\n");
3264 kfree(log);
3267 static void nvme_fw_act_work(struct work_struct *work)
3269 struct nvme_ctrl *ctrl = container_of(work,
3270 struct nvme_ctrl, fw_act_work);
3271 unsigned long fw_act_timeout;
3273 if (ctrl->mtfa)
3274 fw_act_timeout = jiffies +
3275 msecs_to_jiffies(ctrl->mtfa * 100);
3276 else
3277 fw_act_timeout = jiffies +
3278 msecs_to_jiffies(admin_timeout * 1000);
3280 nvme_stop_queues(ctrl);
3281 while (nvme_ctrl_pp_status(ctrl)) {
3282 if (time_after(jiffies, fw_act_timeout)) {
3283 dev_warn(ctrl->device,
3284 "Fw activation timeout, reset controller\n");
3285 nvme_reset_ctrl(ctrl);
3286 break;
3288 msleep(100);
3291 if (ctrl->state != NVME_CTRL_LIVE)
3292 return;
3294 nvme_start_queues(ctrl);
3295 /* read FW slot information to clear the AER */
3296 nvme_get_fw_slot_info(ctrl);
3299 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3300 union nvme_result *res)
3302 u32 result = le32_to_cpu(res->u32);
3304 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3305 return;
3307 switch (result & 0x7) {
3308 case NVME_AER_ERROR:
3309 case NVME_AER_SMART:
3310 case NVME_AER_CSS:
3311 case NVME_AER_VS:
3312 ctrl->aen_result = result;
3313 break;
3314 default:
3315 break;
3318 switch (result & 0xff07) {
3319 case NVME_AER_NOTICE_NS_CHANGED:
3320 dev_info(ctrl->device, "rescanning\n");
3321 nvme_queue_scan(ctrl);
3322 break;
3323 case NVME_AER_NOTICE_FW_ACT_STARTING:
3324 queue_work(nvme_wq, &ctrl->fw_act_work);
3325 break;
3326 default:
3327 dev_warn(ctrl->device, "async event result %08x\n", result);
3329 queue_work(nvme_wq, &ctrl->async_event_work);
3331 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3333 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3335 nvme_stop_keep_alive(ctrl);
3336 flush_work(&ctrl->async_event_work);
3337 flush_work(&ctrl->scan_work);
3338 cancel_work_sync(&ctrl->fw_act_work);
3340 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3342 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3344 if (ctrl->kato)
3345 nvme_start_keep_alive(ctrl);
3347 if (ctrl->queue_count > 1) {
3348 nvme_queue_scan(ctrl);
3349 queue_work(nvme_wq, &ctrl->async_event_work);
3350 nvme_start_queues(ctrl);
3353 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3355 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3357 cdev_device_del(&ctrl->cdev, ctrl->device);
3359 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3361 static void nvme_free_ctrl(struct device *dev)
3363 struct nvme_ctrl *ctrl =
3364 container_of(dev, struct nvme_ctrl, ctrl_device);
3365 struct nvme_subsystem *subsys = ctrl->subsys;
3367 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3368 kfree(ctrl->effects);
3370 if (subsys) {
3371 mutex_lock(&subsys->lock);
3372 list_del(&ctrl->subsys_entry);
3373 mutex_unlock(&subsys->lock);
3374 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3377 ctrl->ops->free_ctrl(ctrl);
3379 if (subsys)
3380 nvme_put_subsystem(subsys);
3384 * Initialize a NVMe controller structures. This needs to be called during
3385 * earliest initialization so that we have the initialized structured around
3386 * during probing.
3388 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3389 const struct nvme_ctrl_ops *ops, unsigned long quirks)
3391 int ret;
3393 ctrl->state = NVME_CTRL_NEW;
3394 spin_lock_init(&ctrl->lock);
3395 INIT_LIST_HEAD(&ctrl->namespaces);
3396 mutex_init(&ctrl->namespaces_mutex);
3397 ctrl->dev = dev;
3398 ctrl->ops = ops;
3399 ctrl->quirks = quirks;
3400 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3401 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3402 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3403 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3405 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3406 if (ret < 0)
3407 goto out;
3408 ctrl->instance = ret;
3410 device_initialize(&ctrl->ctrl_device);
3411 ctrl->device = &ctrl->ctrl_device;
3412 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3413 ctrl->device->class = nvme_class;
3414 ctrl->device->parent = ctrl->dev;
3415 ctrl->device->groups = nvme_dev_attr_groups;
3416 ctrl->device->release = nvme_free_ctrl;
3417 dev_set_drvdata(ctrl->device, ctrl);
3418 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3419 if (ret)
3420 goto out_release_instance;
3422 cdev_init(&ctrl->cdev, &nvme_dev_fops);
3423 ctrl->cdev.owner = ops->module;
3424 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3425 if (ret)
3426 goto out_free_name;
3429 * Initialize latency tolerance controls. The sysfs files won't
3430 * be visible to userspace unless the device actually supports APST.
3432 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3433 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3434 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3436 return 0;
3437 out_free_name:
3438 kfree_const(dev->kobj.name);
3439 out_release_instance:
3440 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3441 out:
3442 return ret;
3444 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3447 * nvme_kill_queues(): Ends all namespace queues
3448 * @ctrl: the dead controller that needs to end
3450 * Call this function when the driver determines it is unable to get the
3451 * controller in a state capable of servicing IO.
3453 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3455 struct nvme_ns *ns;
3457 mutex_lock(&ctrl->namespaces_mutex);
3459 /* Forcibly unquiesce queues to avoid blocking dispatch */
3460 if (ctrl->admin_q)
3461 blk_mq_unquiesce_queue(ctrl->admin_q);
3463 list_for_each_entry(ns, &ctrl->namespaces, list) {
3465 * Revalidating a dead namespace sets capacity to 0. This will
3466 * end buffered writers dirtying pages that can't be synced.
3468 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
3469 continue;
3470 revalidate_disk(ns->disk);
3471 blk_set_queue_dying(ns->queue);
3473 /* Forcibly unquiesce queues to avoid blocking dispatch */
3474 blk_mq_unquiesce_queue(ns->queue);
3476 mutex_unlock(&ctrl->namespaces_mutex);
3478 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3480 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3482 struct nvme_ns *ns;
3484 mutex_lock(&ctrl->namespaces_mutex);
3485 list_for_each_entry(ns, &ctrl->namespaces, list)
3486 blk_mq_unfreeze_queue(ns->queue);
3487 mutex_unlock(&ctrl->namespaces_mutex);
3489 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3491 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3493 struct nvme_ns *ns;
3495 mutex_lock(&ctrl->namespaces_mutex);
3496 list_for_each_entry(ns, &ctrl->namespaces, list) {
3497 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3498 if (timeout <= 0)
3499 break;
3501 mutex_unlock(&ctrl->namespaces_mutex);
3503 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3505 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3507 struct nvme_ns *ns;
3509 mutex_lock(&ctrl->namespaces_mutex);
3510 list_for_each_entry(ns, &ctrl->namespaces, list)
3511 blk_mq_freeze_queue_wait(ns->queue);
3512 mutex_unlock(&ctrl->namespaces_mutex);
3514 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3516 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3518 struct nvme_ns *ns;
3520 mutex_lock(&ctrl->namespaces_mutex);
3521 list_for_each_entry(ns, &ctrl->namespaces, list)
3522 blk_freeze_queue_start(ns->queue);
3523 mutex_unlock(&ctrl->namespaces_mutex);
3525 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3527 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3529 struct nvme_ns *ns;
3531 mutex_lock(&ctrl->namespaces_mutex);
3532 list_for_each_entry(ns, &ctrl->namespaces, list)
3533 blk_mq_quiesce_queue(ns->queue);
3534 mutex_unlock(&ctrl->namespaces_mutex);
3536 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3538 void nvme_start_queues(struct nvme_ctrl *ctrl)
3540 struct nvme_ns *ns;
3542 mutex_lock(&ctrl->namespaces_mutex);
3543 list_for_each_entry(ns, &ctrl->namespaces, list)
3544 blk_mq_unquiesce_queue(ns->queue);
3545 mutex_unlock(&ctrl->namespaces_mutex);
3547 EXPORT_SYMBOL_GPL(nvme_start_queues);
3549 int nvme_reinit_tagset(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set)
3551 if (!ctrl->ops->reinit_request)
3552 return 0;
3554 return blk_mq_tagset_iter(set, set->driver_data,
3555 ctrl->ops->reinit_request);
3557 EXPORT_SYMBOL_GPL(nvme_reinit_tagset);
3559 int __init nvme_core_init(void)
3561 int result = -ENOMEM;
3563 nvme_wq = alloc_workqueue("nvme-wq",
3564 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3565 if (!nvme_wq)
3566 goto out;
3568 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
3569 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3570 if (!nvme_reset_wq)
3571 goto destroy_wq;
3573 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
3574 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3575 if (!nvme_delete_wq)
3576 goto destroy_reset_wq;
3578 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
3579 if (result < 0)
3580 goto destroy_delete_wq;
3582 nvme_class = class_create(THIS_MODULE, "nvme");
3583 if (IS_ERR(nvme_class)) {
3584 result = PTR_ERR(nvme_class);
3585 goto unregister_chrdev;
3588 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
3589 if (IS_ERR(nvme_subsys_class)) {
3590 result = PTR_ERR(nvme_subsys_class);
3591 goto destroy_class;
3593 return 0;
3595 destroy_class:
3596 class_destroy(nvme_class);
3597 unregister_chrdev:
3598 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3599 destroy_delete_wq:
3600 destroy_workqueue(nvme_delete_wq);
3601 destroy_reset_wq:
3602 destroy_workqueue(nvme_reset_wq);
3603 destroy_wq:
3604 destroy_workqueue(nvme_wq);
3605 out:
3606 return result;
3609 void nvme_core_exit(void)
3611 ida_destroy(&nvme_subsystems_ida);
3612 class_destroy(nvme_subsys_class);
3613 class_destroy(nvme_class);
3614 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3615 destroy_workqueue(nvme_delete_wq);
3616 destroy_workqueue(nvme_reset_wq);
3617 destroy_workqueue(nvme_wq);
3620 MODULE_LICENSE("GPL");
3621 MODULE_VERSION("1.0");
3622 module_init(nvme_core_init);
3623 module_exit(nvme_core_exit);