xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / nvme / host / pci.c
blob6fe7af00a1f42a7dcb3354ac49db499cef6f9c88
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
15 #include <linux/aer.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/blk-mq-pci.h>
19 #include <linux/dmi.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/mm.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/once.h>
27 #include <linux/pci.h>
28 #include <linux/t10-pi.h>
29 #include <linux/types.h>
30 #include <linux/io-64-nonatomic-lo-hi.h>
31 #include <linux/sed-opal.h>
33 #include "nvme.h"
35 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
36 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
38 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
40 static int use_threaded_interrupts;
41 module_param(use_threaded_interrupts, int, 0);
43 static bool use_cmb_sqes = true;
44 module_param(use_cmb_sqes, bool, 0644);
45 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
47 static unsigned int max_host_mem_size_mb = 128;
48 module_param(max_host_mem_size_mb, uint, 0444);
49 MODULE_PARM_DESC(max_host_mem_size_mb,
50 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
52 static unsigned int sgl_threshold = SZ_32K;
53 module_param(sgl_threshold, uint, 0644);
54 MODULE_PARM_DESC(sgl_threshold,
55 "Use SGLs when average request segment size is larger or equal to "
56 "this size. Use 0 to disable SGLs.");
58 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
59 static const struct kernel_param_ops io_queue_depth_ops = {
60 .set = io_queue_depth_set,
61 .get = param_get_int,
64 static int io_queue_depth = 1024;
65 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
66 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
68 struct nvme_dev;
69 struct nvme_queue;
71 static void nvme_process_cq(struct nvme_queue *nvmeq);
72 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75 * Represents an NVM Express device. Each nvme_dev is a PCI function.
77 struct nvme_dev {
78 struct nvme_queue *queues;
79 struct blk_mq_tag_set tagset;
80 struct blk_mq_tag_set admin_tagset;
81 u32 __iomem *dbs;
82 struct device *dev;
83 struct dma_pool *prp_page_pool;
84 struct dma_pool *prp_small_pool;
85 unsigned online_queues;
86 unsigned max_qid;
87 int q_depth;
88 u32 db_stride;
89 void __iomem *bar;
90 unsigned long bar_mapped_size;
91 struct work_struct remove_work;
92 struct mutex shutdown_lock;
93 bool subsystem;
94 void __iomem *cmb;
95 pci_bus_addr_t cmb_bus_addr;
96 u64 cmb_size;
97 u32 cmbsz;
98 u32 cmbloc;
99 struct nvme_ctrl ctrl;
100 struct completion ioq_wait;
102 /* shadow doorbell buffer support: */
103 u32 *dbbuf_dbs;
104 dma_addr_t dbbuf_dbs_dma_addr;
105 u32 *dbbuf_eis;
106 dma_addr_t dbbuf_eis_dma_addr;
108 /* host memory buffer support: */
109 u64 host_mem_size;
110 u32 nr_host_mem_descs;
111 dma_addr_t host_mem_descs_dma;
112 struct nvme_host_mem_buf_desc *host_mem_descs;
113 void **host_mem_desc_bufs;
116 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
118 int n = 0, ret;
120 ret = kstrtoint(val, 10, &n);
121 if (ret != 0 || n < 2)
122 return -EINVAL;
124 return param_set_int(val, kp);
127 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
129 return qid * 2 * stride;
132 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
134 return (qid * 2 + 1) * stride;
137 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
139 return container_of(ctrl, struct nvme_dev, ctrl);
143 * An NVM Express queue. Each device has at least two (one for admin
144 * commands and one for I/O commands).
146 struct nvme_queue {
147 struct device *q_dmadev;
148 struct nvme_dev *dev;
149 spinlock_t q_lock;
150 struct nvme_command *sq_cmds;
151 struct nvme_command __iomem *sq_cmds_io;
152 volatile struct nvme_completion *cqes;
153 struct blk_mq_tags **tags;
154 dma_addr_t sq_dma_addr;
155 dma_addr_t cq_dma_addr;
156 u32 __iomem *q_db;
157 u16 q_depth;
158 s16 cq_vector;
159 u16 sq_tail;
160 u16 cq_head;
161 u16 qid;
162 u8 cq_phase;
163 u8 cqe_seen;
164 u32 *dbbuf_sq_db;
165 u32 *dbbuf_cq_db;
166 u32 *dbbuf_sq_ei;
167 u32 *dbbuf_cq_ei;
171 * The nvme_iod describes the data in an I/O, including the list of PRP
172 * entries. You can't see it in this data structure because C doesn't let
173 * me express that. Use nvme_init_iod to ensure there's enough space
174 * allocated to store the PRP list.
176 struct nvme_iod {
177 struct nvme_request req;
178 struct nvme_queue *nvmeq;
179 bool use_sgl;
180 int aborted;
181 int npages; /* In the PRP list. 0 means small pool in use */
182 int nents; /* Used in scatterlist */
183 int length; /* Of data, in bytes */
184 dma_addr_t first_dma;
185 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
186 struct scatterlist *sg;
187 struct scatterlist inline_sg[0];
191 * Check we didin't inadvertently grow the command struct
193 static inline void _nvme_check_size(void)
195 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
196 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
197 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
198 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
199 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
200 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
201 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
202 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
203 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
204 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
205 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
206 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
207 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
210 static inline unsigned int nvme_dbbuf_size(u32 stride)
212 return ((num_possible_cpus() + 1) * 8 * stride);
215 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
217 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
219 if (dev->dbbuf_dbs)
220 return 0;
222 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
223 &dev->dbbuf_dbs_dma_addr,
224 GFP_KERNEL);
225 if (!dev->dbbuf_dbs)
226 return -ENOMEM;
227 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
228 &dev->dbbuf_eis_dma_addr,
229 GFP_KERNEL);
230 if (!dev->dbbuf_eis) {
231 dma_free_coherent(dev->dev, mem_size,
232 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
233 dev->dbbuf_dbs = NULL;
234 return -ENOMEM;
237 return 0;
240 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
242 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
244 if (dev->dbbuf_dbs) {
245 dma_free_coherent(dev->dev, mem_size,
246 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
247 dev->dbbuf_dbs = NULL;
249 if (dev->dbbuf_eis) {
250 dma_free_coherent(dev->dev, mem_size,
251 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
252 dev->dbbuf_eis = NULL;
256 static void nvme_dbbuf_init(struct nvme_dev *dev,
257 struct nvme_queue *nvmeq, int qid)
259 if (!dev->dbbuf_dbs || !qid)
260 return;
262 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
263 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
264 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
265 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
268 static void nvme_dbbuf_set(struct nvme_dev *dev)
270 struct nvme_command c;
272 if (!dev->dbbuf_dbs)
273 return;
275 memset(&c, 0, sizeof(c));
276 c.dbbuf.opcode = nvme_admin_dbbuf;
277 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
278 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
280 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
281 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
282 /* Free memory and continue on */
283 nvme_dbbuf_dma_free(dev);
287 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
289 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
292 /* Update dbbuf and return true if an MMIO is required */
293 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
294 volatile u32 *dbbuf_ei)
296 if (dbbuf_db) {
297 u16 old_value;
300 * Ensure that the queue is written before updating
301 * the doorbell in memory
303 wmb();
305 old_value = *dbbuf_db;
306 *dbbuf_db = value;
308 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
309 return false;
312 return true;
316 * Max size of iod being embedded in the request payload
318 #define NVME_INT_PAGES 2
319 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
322 * Will slightly overestimate the number of pages needed. This is OK
323 * as it only leads to a small amount of wasted memory for the lifetime of
324 * the I/O.
326 static int nvme_npages(unsigned size, struct nvme_dev *dev)
328 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
329 dev->ctrl.page_size);
330 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
334 * Calculates the number of pages needed for the SGL segments. For example a 4k
335 * page can accommodate 256 SGL descriptors.
337 static int nvme_pci_npages_sgl(unsigned int num_seg)
339 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
342 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
343 unsigned int size, unsigned int nseg, bool use_sgl)
345 size_t alloc_size;
347 if (use_sgl)
348 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
349 else
350 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
352 return alloc_size + sizeof(struct scatterlist) * nseg;
355 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
357 unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
358 NVME_INT_BYTES(dev), NVME_INT_PAGES,
359 use_sgl);
361 return sizeof(struct nvme_iod) + alloc_size;
364 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
365 unsigned int hctx_idx)
367 struct nvme_dev *dev = data;
368 struct nvme_queue *nvmeq = &dev->queues[0];
370 WARN_ON(hctx_idx != 0);
371 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
372 WARN_ON(nvmeq->tags);
374 hctx->driver_data = nvmeq;
375 nvmeq->tags = &dev->admin_tagset.tags[0];
376 return 0;
379 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
381 struct nvme_queue *nvmeq = hctx->driver_data;
383 nvmeq->tags = NULL;
386 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
387 unsigned int hctx_idx)
389 struct nvme_dev *dev = data;
390 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
392 if (!nvmeq->tags)
393 nvmeq->tags = &dev->tagset.tags[hctx_idx];
395 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
396 hctx->driver_data = nvmeq;
397 return 0;
400 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
401 unsigned int hctx_idx, unsigned int numa_node)
403 struct nvme_dev *dev = set->driver_data;
404 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
405 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
406 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
408 BUG_ON(!nvmeq);
409 iod->nvmeq = nvmeq;
410 return 0;
413 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
415 struct nvme_dev *dev = set->driver_data;
417 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
421 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
422 * @nvmeq: The queue to use
423 * @cmd: The command to send
425 * Safe to use from interrupt context
427 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
428 struct nvme_command *cmd)
430 u16 tail = nvmeq->sq_tail;
432 if (nvmeq->sq_cmds_io)
433 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
434 else
435 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
437 if (++tail == nvmeq->q_depth)
438 tail = 0;
439 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
440 nvmeq->dbbuf_sq_ei))
441 writel(tail, nvmeq->q_db);
442 nvmeq->sq_tail = tail;
445 static void **nvme_pci_iod_list(struct request *req)
447 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
448 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
451 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
453 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
454 int nseg = blk_rq_nr_phys_segments(req);
455 unsigned int avg_seg_size;
457 if (nseg == 0)
458 return false;
460 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
462 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
463 return false;
464 if (!iod->nvmeq->qid)
465 return false;
466 if (!sgl_threshold || avg_seg_size < sgl_threshold)
467 return false;
468 return true;
471 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
473 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
474 int nseg = blk_rq_nr_phys_segments(rq);
475 unsigned int size = blk_rq_payload_bytes(rq);
477 iod->use_sgl = nvme_pci_use_sgls(dev, rq);
479 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
480 size_t alloc_size = nvme_pci_iod_alloc_size(dev, size, nseg,
481 iod->use_sgl);
483 iod->sg = kmalloc(alloc_size, GFP_ATOMIC);
484 if (!iod->sg)
485 return BLK_STS_RESOURCE;
486 } else {
487 iod->sg = iod->inline_sg;
490 iod->aborted = 0;
491 iod->npages = -1;
492 iod->nents = 0;
493 iod->length = size;
495 return BLK_STS_OK;
498 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
500 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
501 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
502 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
504 int i;
506 if (iod->npages == 0)
507 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
508 dma_addr);
510 for (i = 0; i < iod->npages; i++) {
511 void *addr = nvme_pci_iod_list(req)[i];
513 if (iod->use_sgl) {
514 struct nvme_sgl_desc *sg_list = addr;
516 next_dma_addr =
517 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
518 } else {
519 __le64 *prp_list = addr;
521 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
524 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
525 dma_addr = next_dma_addr;
528 if (iod->sg != iod->inline_sg)
529 kfree(iod->sg);
532 #ifdef CONFIG_BLK_DEV_INTEGRITY
533 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
535 if (be32_to_cpu(pi->ref_tag) == v)
536 pi->ref_tag = cpu_to_be32(p);
539 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
541 if (be32_to_cpu(pi->ref_tag) == p)
542 pi->ref_tag = cpu_to_be32(v);
546 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
548 * The virtual start sector is the one that was originally submitted by the
549 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
550 * start sector may be different. Remap protection information to match the
551 * physical LBA on writes, and back to the original seed on reads.
553 * Type 0 and 3 do not have a ref tag, so no remapping required.
555 static void nvme_dif_remap(struct request *req,
556 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
558 struct nvme_ns *ns = req->rq_disk->private_data;
559 struct bio_integrity_payload *bip;
560 struct t10_pi_tuple *pi;
561 void *p, *pmap;
562 u32 i, nlb, ts, phys, virt;
564 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
565 return;
567 bip = bio_integrity(req->bio);
568 if (!bip)
569 return;
571 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
573 p = pmap;
574 virt = bip_get_seed(bip);
575 phys = nvme_block_nr(ns, blk_rq_pos(req));
576 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
577 ts = ns->disk->queue->integrity.tuple_size;
579 for (i = 0; i < nlb; i++, virt++, phys++) {
580 pi = (struct t10_pi_tuple *)p;
581 dif_swap(phys, virt, pi);
582 p += ts;
584 kunmap_atomic(pmap);
586 #else /* CONFIG_BLK_DEV_INTEGRITY */
587 static void nvme_dif_remap(struct request *req,
588 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
591 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
594 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
597 #endif
599 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
601 int i;
602 struct scatterlist *sg;
604 for_each_sg(sgl, sg, nents, i) {
605 dma_addr_t phys = sg_phys(sg);
606 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
607 "dma_address:%pad dma_length:%d\n",
608 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
609 sg_dma_len(sg));
613 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
614 struct request *req, struct nvme_rw_command *cmnd)
616 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
617 struct dma_pool *pool;
618 int length = blk_rq_payload_bytes(req);
619 struct scatterlist *sg = iod->sg;
620 int dma_len = sg_dma_len(sg);
621 u64 dma_addr = sg_dma_address(sg);
622 u32 page_size = dev->ctrl.page_size;
623 int offset = dma_addr & (page_size - 1);
624 __le64 *prp_list;
625 void **list = nvme_pci_iod_list(req);
626 dma_addr_t prp_dma;
627 int nprps, i;
629 length -= (page_size - offset);
630 if (length <= 0) {
631 iod->first_dma = 0;
632 goto done;
635 dma_len -= (page_size - offset);
636 if (dma_len) {
637 dma_addr += (page_size - offset);
638 } else {
639 sg = sg_next(sg);
640 dma_addr = sg_dma_address(sg);
641 dma_len = sg_dma_len(sg);
644 if (length <= page_size) {
645 iod->first_dma = dma_addr;
646 goto done;
649 nprps = DIV_ROUND_UP(length, page_size);
650 if (nprps <= (256 / 8)) {
651 pool = dev->prp_small_pool;
652 iod->npages = 0;
653 } else {
654 pool = dev->prp_page_pool;
655 iod->npages = 1;
658 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
659 if (!prp_list) {
660 iod->first_dma = dma_addr;
661 iod->npages = -1;
662 return BLK_STS_RESOURCE;
664 list[0] = prp_list;
665 iod->first_dma = prp_dma;
666 i = 0;
667 for (;;) {
668 if (i == page_size >> 3) {
669 __le64 *old_prp_list = prp_list;
670 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
671 if (!prp_list)
672 return BLK_STS_RESOURCE;
673 list[iod->npages++] = prp_list;
674 prp_list[0] = old_prp_list[i - 1];
675 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
676 i = 1;
678 prp_list[i++] = cpu_to_le64(dma_addr);
679 dma_len -= page_size;
680 dma_addr += page_size;
681 length -= page_size;
682 if (length <= 0)
683 break;
684 if (dma_len > 0)
685 continue;
686 if (unlikely(dma_len < 0))
687 goto bad_sgl;
688 sg = sg_next(sg);
689 dma_addr = sg_dma_address(sg);
690 dma_len = sg_dma_len(sg);
693 done:
694 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
695 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
697 return BLK_STS_OK;
699 bad_sgl:
700 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
701 "Invalid SGL for payload:%d nents:%d\n",
702 blk_rq_payload_bytes(req), iod->nents);
703 return BLK_STS_IOERR;
706 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
707 struct scatterlist *sg)
709 sge->addr = cpu_to_le64(sg_dma_address(sg));
710 sge->length = cpu_to_le32(sg_dma_len(sg));
711 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
714 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
715 dma_addr_t dma_addr, int entries)
717 sge->addr = cpu_to_le64(dma_addr);
718 if (entries < SGES_PER_PAGE) {
719 sge->length = cpu_to_le32(entries * sizeof(*sge));
720 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
721 } else {
722 sge->length = cpu_to_le32(PAGE_SIZE);
723 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
727 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
728 struct request *req, struct nvme_rw_command *cmd, int entries)
730 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
731 struct dma_pool *pool;
732 struct nvme_sgl_desc *sg_list;
733 struct scatterlist *sg = iod->sg;
734 dma_addr_t sgl_dma;
735 int i = 0;
737 /* setting the transfer type as SGL */
738 cmd->flags = NVME_CMD_SGL_METABUF;
740 if (entries == 1) {
741 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
742 return BLK_STS_OK;
745 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
746 pool = dev->prp_small_pool;
747 iod->npages = 0;
748 } else {
749 pool = dev->prp_page_pool;
750 iod->npages = 1;
753 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
754 if (!sg_list) {
755 iod->npages = -1;
756 return BLK_STS_RESOURCE;
759 nvme_pci_iod_list(req)[0] = sg_list;
760 iod->first_dma = sgl_dma;
762 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
764 do {
765 if (i == SGES_PER_PAGE) {
766 struct nvme_sgl_desc *old_sg_desc = sg_list;
767 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
769 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
770 if (!sg_list)
771 return BLK_STS_RESOURCE;
773 i = 0;
774 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
775 sg_list[i++] = *link;
776 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
779 nvme_pci_sgl_set_data(&sg_list[i++], sg);
780 sg = sg_next(sg);
781 } while (--entries > 0);
783 return BLK_STS_OK;
786 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
787 struct nvme_command *cmnd)
789 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
790 struct request_queue *q = req->q;
791 enum dma_data_direction dma_dir = rq_data_dir(req) ?
792 DMA_TO_DEVICE : DMA_FROM_DEVICE;
793 blk_status_t ret = BLK_STS_IOERR;
794 int nr_mapped;
796 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
797 iod->nents = blk_rq_map_sg(q, req, iod->sg);
798 if (!iod->nents)
799 goto out;
801 ret = BLK_STS_RESOURCE;
802 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
803 DMA_ATTR_NO_WARN);
804 if (!nr_mapped)
805 goto out;
807 if (iod->use_sgl)
808 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
809 else
810 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
812 if (ret != BLK_STS_OK)
813 goto out_unmap;
815 ret = BLK_STS_IOERR;
816 if (blk_integrity_rq(req)) {
817 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
818 goto out_unmap;
820 sg_init_table(&iod->meta_sg, 1);
821 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
822 goto out_unmap;
824 if (req_op(req) == REQ_OP_WRITE)
825 nvme_dif_remap(req, nvme_dif_prep);
827 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
828 goto out_unmap;
831 if (blk_integrity_rq(req))
832 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
833 return BLK_STS_OK;
835 out_unmap:
836 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
837 out:
838 return ret;
841 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
843 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
844 enum dma_data_direction dma_dir = rq_data_dir(req) ?
845 DMA_TO_DEVICE : DMA_FROM_DEVICE;
847 if (iod->nents) {
848 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
849 if (blk_integrity_rq(req)) {
850 if (req_op(req) == REQ_OP_READ)
851 nvme_dif_remap(req, nvme_dif_complete);
852 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
856 nvme_cleanup_cmd(req);
857 nvme_free_iod(dev, req);
861 * NOTE: ns is NULL when called on the admin queue.
863 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
864 const struct blk_mq_queue_data *bd)
866 struct nvme_ns *ns = hctx->queue->queuedata;
867 struct nvme_queue *nvmeq = hctx->driver_data;
868 struct nvme_dev *dev = nvmeq->dev;
869 struct request *req = bd->rq;
870 struct nvme_command cmnd;
871 blk_status_t ret;
873 ret = nvme_setup_cmd(ns, req, &cmnd);
874 if (ret)
875 return ret;
877 ret = nvme_init_iod(req, dev);
878 if (ret)
879 goto out_free_cmd;
881 if (blk_rq_nr_phys_segments(req)) {
882 ret = nvme_map_data(dev, req, &cmnd);
883 if (ret)
884 goto out_cleanup_iod;
887 blk_mq_start_request(req);
889 spin_lock_irq(&nvmeq->q_lock);
890 if (unlikely(nvmeq->cq_vector < 0)) {
891 ret = BLK_STS_IOERR;
892 spin_unlock_irq(&nvmeq->q_lock);
893 goto out_cleanup_iod;
895 __nvme_submit_cmd(nvmeq, &cmnd);
896 nvme_process_cq(nvmeq);
897 spin_unlock_irq(&nvmeq->q_lock);
898 return BLK_STS_OK;
899 out_cleanup_iod:
900 nvme_free_iod(dev, req);
901 out_free_cmd:
902 nvme_cleanup_cmd(req);
903 return ret;
906 static void nvme_pci_complete_rq(struct request *req)
908 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
910 nvme_unmap_data(iod->nvmeq->dev, req);
911 nvme_complete_rq(req);
914 /* We read the CQE phase first to check if the rest of the entry is valid */
915 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
916 u16 phase)
918 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
921 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
923 u16 head = nvmeq->cq_head;
925 if (likely(nvmeq->cq_vector >= 0)) {
926 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
927 nvmeq->dbbuf_cq_ei))
928 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
932 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
933 struct nvme_completion *cqe)
935 struct request *req;
937 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
938 dev_warn(nvmeq->dev->ctrl.device,
939 "invalid id %d completed on queue %d\n",
940 cqe->command_id, le16_to_cpu(cqe->sq_id));
941 return;
945 * AEN requests are special as they don't time out and can
946 * survive any kind of queue freeze and often don't respond to
947 * aborts. We don't even bother to allocate a struct request
948 * for them but rather special case them here.
950 if (unlikely(nvmeq->qid == 0 &&
951 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
952 nvme_complete_async_event(&nvmeq->dev->ctrl,
953 cqe->status, &cqe->result);
954 return;
957 nvmeq->cqe_seen = 1;
958 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
959 nvme_end_request(req, cqe->status, cqe->result);
962 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
963 struct nvme_completion *cqe)
965 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
966 *cqe = nvmeq->cqes[nvmeq->cq_head];
968 if (++nvmeq->cq_head == nvmeq->q_depth) {
969 nvmeq->cq_head = 0;
970 nvmeq->cq_phase = !nvmeq->cq_phase;
972 return true;
974 return false;
977 static void nvme_process_cq(struct nvme_queue *nvmeq)
979 struct nvme_completion cqe;
980 int consumed = 0;
982 while (nvme_read_cqe(nvmeq, &cqe)) {
983 nvme_handle_cqe(nvmeq, &cqe);
984 consumed++;
987 if (consumed)
988 nvme_ring_cq_doorbell(nvmeq);
991 static irqreturn_t nvme_irq(int irq, void *data)
993 irqreturn_t result;
994 struct nvme_queue *nvmeq = data;
995 spin_lock(&nvmeq->q_lock);
996 nvme_process_cq(nvmeq);
997 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
998 nvmeq->cqe_seen = 0;
999 spin_unlock(&nvmeq->q_lock);
1000 return result;
1003 static irqreturn_t nvme_irq_check(int irq, void *data)
1005 struct nvme_queue *nvmeq = data;
1006 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
1007 return IRQ_WAKE_THREAD;
1008 return IRQ_NONE;
1011 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
1013 struct nvme_completion cqe;
1014 int found = 0, consumed = 0;
1016 if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
1017 return 0;
1019 spin_lock_irq(&nvmeq->q_lock);
1020 while (nvme_read_cqe(nvmeq, &cqe)) {
1021 nvme_handle_cqe(nvmeq, &cqe);
1022 consumed++;
1024 if (tag == cqe.command_id) {
1025 found = 1;
1026 break;
1030 if (consumed)
1031 nvme_ring_cq_doorbell(nvmeq);
1032 spin_unlock_irq(&nvmeq->q_lock);
1034 return found;
1037 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1039 struct nvme_queue *nvmeq = hctx->driver_data;
1041 return __nvme_poll(nvmeq, tag);
1044 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1046 struct nvme_dev *dev = to_nvme_dev(ctrl);
1047 struct nvme_queue *nvmeq = &dev->queues[0];
1048 struct nvme_command c;
1050 memset(&c, 0, sizeof(c));
1051 c.common.opcode = nvme_admin_async_event;
1052 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1054 spin_lock_irq(&nvmeq->q_lock);
1055 __nvme_submit_cmd(nvmeq, &c);
1056 spin_unlock_irq(&nvmeq->q_lock);
1059 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1061 struct nvme_command c;
1063 memset(&c, 0, sizeof(c));
1064 c.delete_queue.opcode = opcode;
1065 c.delete_queue.qid = cpu_to_le16(id);
1067 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1070 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1071 struct nvme_queue *nvmeq)
1073 struct nvme_command c;
1074 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1077 * Note: we (ab)use the fact that the prp fields survive if no data
1078 * is attached to the request.
1080 memset(&c, 0, sizeof(c));
1081 c.create_cq.opcode = nvme_admin_create_cq;
1082 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1083 c.create_cq.cqid = cpu_to_le16(qid);
1084 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1085 c.create_cq.cq_flags = cpu_to_le16(flags);
1086 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1088 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1091 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1092 struct nvme_queue *nvmeq)
1094 struct nvme_command c;
1095 int flags = NVME_QUEUE_PHYS_CONTIG;
1098 * Note: we (ab)use the fact that the prp fields survive if no data
1099 * is attached to the request.
1101 memset(&c, 0, sizeof(c));
1102 c.create_sq.opcode = nvme_admin_create_sq;
1103 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1104 c.create_sq.sqid = cpu_to_le16(qid);
1105 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1106 c.create_sq.sq_flags = cpu_to_le16(flags);
1107 c.create_sq.cqid = cpu_to_le16(qid);
1109 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1112 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1114 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1117 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1119 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1122 static void abort_endio(struct request *req, blk_status_t error)
1124 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1125 struct nvme_queue *nvmeq = iod->nvmeq;
1127 dev_warn(nvmeq->dev->ctrl.device,
1128 "Abort status: 0x%x", nvme_req(req)->status);
1129 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1130 blk_mq_free_request(req);
1133 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1136 /* If true, indicates loss of adapter communication, possibly by a
1137 * NVMe Subsystem reset.
1139 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1141 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1142 switch (dev->ctrl.state) {
1143 case NVME_CTRL_RESETTING:
1144 case NVME_CTRL_RECONNECTING:
1145 return false;
1146 default:
1147 break;
1150 /* We shouldn't reset unless the controller is on fatal error state
1151 * _or_ if we lost the communication with it.
1153 if (!(csts & NVME_CSTS_CFS) && !nssro)
1154 return false;
1156 /* If PCI error recovery process is happening, we cannot reset or
1157 * the recovery mechanism will surely fail.
1159 if (pci_channel_offline(to_pci_dev(dev->dev)))
1160 return false;
1162 return true;
1165 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1167 /* Read a config register to help see what died. */
1168 u16 pci_status;
1169 int result;
1171 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1172 &pci_status);
1173 if (result == PCIBIOS_SUCCESSFUL)
1174 dev_warn(dev->ctrl.device,
1175 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1176 csts, pci_status);
1177 else
1178 dev_warn(dev->ctrl.device,
1179 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1180 csts, result);
1183 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1185 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1186 struct nvme_queue *nvmeq = iod->nvmeq;
1187 struct nvme_dev *dev = nvmeq->dev;
1188 struct request *abort_req;
1189 struct nvme_command cmd;
1190 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1193 * Reset immediately if the controller is failed
1195 if (nvme_should_reset(dev, csts)) {
1196 nvme_warn_reset(dev, csts);
1197 nvme_dev_disable(dev, false);
1198 nvme_reset_ctrl(&dev->ctrl);
1199 return BLK_EH_HANDLED;
1203 * Did we miss an interrupt?
1205 if (__nvme_poll(nvmeq, req->tag)) {
1206 dev_warn(dev->ctrl.device,
1207 "I/O %d QID %d timeout, completion polled\n",
1208 req->tag, nvmeq->qid);
1209 return BLK_EH_HANDLED;
1213 * Shutdown immediately if controller times out while starting. The
1214 * reset work will see the pci device disabled when it gets the forced
1215 * cancellation error. All outstanding requests are completed on
1216 * shutdown, so we return BLK_EH_HANDLED.
1218 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1219 dev_warn(dev->ctrl.device,
1220 "I/O %d QID %d timeout, disable controller\n",
1221 req->tag, nvmeq->qid);
1222 nvme_dev_disable(dev, false);
1223 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1224 return BLK_EH_HANDLED;
1228 * Shutdown the controller immediately and schedule a reset if the
1229 * command was already aborted once before and still hasn't been
1230 * returned to the driver, or if this is the admin queue.
1232 if (!nvmeq->qid || iod->aborted) {
1233 dev_warn(dev->ctrl.device,
1234 "I/O %d QID %d timeout, reset controller\n",
1235 req->tag, nvmeq->qid);
1236 nvme_dev_disable(dev, false);
1237 nvme_reset_ctrl(&dev->ctrl);
1240 * Mark the request as handled, since the inline shutdown
1241 * forces all outstanding requests to complete.
1243 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1244 return BLK_EH_HANDLED;
1247 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1248 atomic_inc(&dev->ctrl.abort_limit);
1249 return BLK_EH_RESET_TIMER;
1251 iod->aborted = 1;
1253 memset(&cmd, 0, sizeof(cmd));
1254 cmd.abort.opcode = nvme_admin_abort_cmd;
1255 cmd.abort.cid = req->tag;
1256 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1258 dev_warn(nvmeq->dev->ctrl.device,
1259 "I/O %d QID %d timeout, aborting\n",
1260 req->tag, nvmeq->qid);
1262 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1263 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1264 if (IS_ERR(abort_req)) {
1265 atomic_inc(&dev->ctrl.abort_limit);
1266 return BLK_EH_RESET_TIMER;
1269 abort_req->timeout = ADMIN_TIMEOUT;
1270 abort_req->end_io_data = NULL;
1271 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1274 * The aborted req will be completed on receiving the abort req.
1275 * We enable the timer again. If hit twice, it'll cause a device reset,
1276 * as the device then is in a faulty state.
1278 return BLK_EH_RESET_TIMER;
1281 static void nvme_free_queue(struct nvme_queue *nvmeq)
1283 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1284 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1285 if (nvmeq->sq_cmds)
1286 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1287 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1290 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1292 int i;
1294 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1295 dev->ctrl.queue_count--;
1296 nvme_free_queue(&dev->queues[i]);
1301 * nvme_suspend_queue - put queue into suspended state
1302 * @nvmeq - queue to suspend
1304 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1306 int vector;
1308 spin_lock_irq(&nvmeq->q_lock);
1309 if (nvmeq->cq_vector == -1) {
1310 spin_unlock_irq(&nvmeq->q_lock);
1311 return 1;
1313 vector = nvmeq->cq_vector;
1314 nvmeq->dev->online_queues--;
1315 nvmeq->cq_vector = -1;
1316 spin_unlock_irq(&nvmeq->q_lock);
1318 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1319 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1321 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1323 return 0;
1326 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1328 struct nvme_queue *nvmeq = &dev->queues[0];
1330 if (shutdown)
1331 nvme_shutdown_ctrl(&dev->ctrl);
1332 else
1333 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1335 spin_lock_irq(&nvmeq->q_lock);
1336 nvme_process_cq(nvmeq);
1337 spin_unlock_irq(&nvmeq->q_lock);
1340 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1341 int entry_size)
1343 int q_depth = dev->q_depth;
1344 unsigned q_size_aligned = roundup(q_depth * entry_size,
1345 dev->ctrl.page_size);
1347 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1348 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1349 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1350 q_depth = div_u64(mem_per_q, entry_size);
1353 * Ensure the reduced q_depth is above some threshold where it
1354 * would be better to map queues in system memory with the
1355 * original depth
1357 if (q_depth < 64)
1358 return -ENOMEM;
1361 return q_depth;
1364 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1365 int qid, int depth)
1367 if (qid && dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1368 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1369 dev->ctrl.page_size);
1370 nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1371 nvmeq->sq_cmds_io = dev->cmb + offset;
1372 } else {
1373 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1374 &nvmeq->sq_dma_addr, GFP_KERNEL);
1375 if (!nvmeq->sq_cmds)
1376 return -ENOMEM;
1379 return 0;
1382 static int nvme_alloc_queue(struct nvme_dev *dev, int qid,
1383 int depth, int node)
1385 struct nvme_queue *nvmeq = &dev->queues[qid];
1387 if (dev->ctrl.queue_count > qid)
1388 return 0;
1390 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1391 &nvmeq->cq_dma_addr, GFP_KERNEL);
1392 if (!nvmeq->cqes)
1393 goto free_nvmeq;
1395 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1396 goto free_cqdma;
1398 nvmeq->q_dmadev = dev->dev;
1399 nvmeq->dev = dev;
1400 spin_lock_init(&nvmeq->q_lock);
1401 nvmeq->cq_head = 0;
1402 nvmeq->cq_phase = 1;
1403 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1404 nvmeq->q_depth = depth;
1405 nvmeq->qid = qid;
1406 nvmeq->cq_vector = -1;
1407 dev->ctrl.queue_count++;
1409 return 0;
1411 free_cqdma:
1412 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1413 nvmeq->cq_dma_addr);
1414 free_nvmeq:
1415 return -ENOMEM;
1418 static int queue_request_irq(struct nvme_queue *nvmeq)
1420 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1421 int nr = nvmeq->dev->ctrl.instance;
1423 if (use_threaded_interrupts) {
1424 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1425 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1426 } else {
1427 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1428 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1432 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1434 struct nvme_dev *dev = nvmeq->dev;
1436 spin_lock_irq(&nvmeq->q_lock);
1437 nvmeq->sq_tail = 0;
1438 nvmeq->cq_head = 0;
1439 nvmeq->cq_phase = 1;
1440 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1441 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1442 nvme_dbbuf_init(dev, nvmeq, qid);
1443 dev->online_queues++;
1444 spin_unlock_irq(&nvmeq->q_lock);
1447 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1449 struct nvme_dev *dev = nvmeq->dev;
1450 int result;
1452 nvmeq->cq_vector = qid - 1;
1453 result = adapter_alloc_cq(dev, qid, nvmeq);
1454 if (result < 0)
1455 return result;
1457 result = adapter_alloc_sq(dev, qid, nvmeq);
1458 if (result < 0)
1459 goto release_cq;
1461 nvme_init_queue(nvmeq, qid);
1462 result = queue_request_irq(nvmeq);
1463 if (result < 0)
1464 goto release_sq;
1466 return result;
1468 release_sq:
1469 adapter_delete_sq(dev, qid);
1470 release_cq:
1471 adapter_delete_cq(dev, qid);
1472 return result;
1475 static const struct blk_mq_ops nvme_mq_admin_ops = {
1476 .queue_rq = nvme_queue_rq,
1477 .complete = nvme_pci_complete_rq,
1478 .init_hctx = nvme_admin_init_hctx,
1479 .exit_hctx = nvme_admin_exit_hctx,
1480 .init_request = nvme_init_request,
1481 .timeout = nvme_timeout,
1484 static const struct blk_mq_ops nvme_mq_ops = {
1485 .queue_rq = nvme_queue_rq,
1486 .complete = nvme_pci_complete_rq,
1487 .init_hctx = nvme_init_hctx,
1488 .init_request = nvme_init_request,
1489 .map_queues = nvme_pci_map_queues,
1490 .timeout = nvme_timeout,
1491 .poll = nvme_poll,
1494 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1496 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1498 * If the controller was reset during removal, it's possible
1499 * user requests may be waiting on a stopped queue. Start the
1500 * queue to flush these to completion.
1502 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1503 blk_cleanup_queue(dev->ctrl.admin_q);
1504 blk_mq_free_tag_set(&dev->admin_tagset);
1508 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1510 if (!dev->ctrl.admin_q) {
1511 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1512 dev->admin_tagset.nr_hw_queues = 1;
1514 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1515 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1516 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1517 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1518 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1519 dev->admin_tagset.driver_data = dev;
1521 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1522 return -ENOMEM;
1523 dev->ctrl.admin_tagset = &dev->admin_tagset;
1525 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1526 if (IS_ERR(dev->ctrl.admin_q)) {
1527 blk_mq_free_tag_set(&dev->admin_tagset);
1528 return -ENOMEM;
1530 if (!blk_get_queue(dev->ctrl.admin_q)) {
1531 nvme_dev_remove_admin(dev);
1532 dev->ctrl.admin_q = NULL;
1533 return -ENODEV;
1535 } else
1536 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1538 return 0;
1541 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1543 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1546 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1548 struct pci_dev *pdev = to_pci_dev(dev->dev);
1550 if (size <= dev->bar_mapped_size)
1551 return 0;
1552 if (size > pci_resource_len(pdev, 0))
1553 return -ENOMEM;
1554 if (dev->bar)
1555 iounmap(dev->bar);
1556 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1557 if (!dev->bar) {
1558 dev->bar_mapped_size = 0;
1559 return -ENOMEM;
1561 dev->bar_mapped_size = size;
1562 dev->dbs = dev->bar + NVME_REG_DBS;
1564 return 0;
1567 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1569 int result;
1570 u32 aqa;
1571 struct nvme_queue *nvmeq;
1573 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1574 if (result < 0)
1575 return result;
1577 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1578 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1580 if (dev->subsystem &&
1581 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1582 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1584 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1585 if (result < 0)
1586 return result;
1588 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1589 dev_to_node(dev->dev));
1590 if (result)
1591 return result;
1593 nvmeq = &dev->queues[0];
1594 aqa = nvmeq->q_depth - 1;
1595 aqa |= aqa << 16;
1597 writel(aqa, dev->bar + NVME_REG_AQA);
1598 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1599 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1601 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1602 if (result)
1603 return result;
1605 nvmeq->cq_vector = 0;
1606 nvme_init_queue(nvmeq, 0);
1607 result = queue_request_irq(nvmeq);
1608 if (result) {
1609 nvmeq->cq_vector = -1;
1610 return result;
1613 return result;
1616 static int nvme_create_io_queues(struct nvme_dev *dev)
1618 unsigned i, max;
1619 int ret = 0;
1621 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1622 /* vector == qid - 1, match nvme_create_queue */
1623 if (nvme_alloc_queue(dev, i, dev->q_depth,
1624 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1625 ret = -ENOMEM;
1626 break;
1630 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1631 for (i = dev->online_queues; i <= max; i++) {
1632 ret = nvme_create_queue(&dev->queues[i], i);
1633 if (ret)
1634 break;
1638 * Ignore failing Create SQ/CQ commands, we can continue with less
1639 * than the desired amount of queues, and even a controller without
1640 * I/O queues can still be used to issue admin commands. This might
1641 * be useful to upgrade a buggy firmware for example.
1643 return ret >= 0 ? 0 : ret;
1646 static ssize_t nvme_cmb_show(struct device *dev,
1647 struct device_attribute *attr,
1648 char *buf)
1650 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1652 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1653 ndev->cmbloc, ndev->cmbsz);
1655 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1657 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1659 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1661 return 1ULL << (12 + 4 * szu);
1664 static u32 nvme_cmb_size(struct nvme_dev *dev)
1666 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1669 static void nvme_map_cmb(struct nvme_dev *dev)
1671 u64 size, offset;
1672 resource_size_t bar_size;
1673 struct pci_dev *pdev = to_pci_dev(dev->dev);
1674 int bar;
1676 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1677 if (!dev->cmbsz)
1678 return;
1679 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1681 if (!use_cmb_sqes)
1682 return;
1684 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1685 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1686 bar = NVME_CMB_BIR(dev->cmbloc);
1687 bar_size = pci_resource_len(pdev, bar);
1689 if (offset > bar_size)
1690 return;
1693 * Controllers may support a CMB size larger than their BAR,
1694 * for example, due to being behind a bridge. Reduce the CMB to
1695 * the reported size of the BAR
1697 if (size > bar_size - offset)
1698 size = bar_size - offset;
1700 dev->cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1701 if (!dev->cmb)
1702 return;
1703 dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1704 dev->cmb_size = size;
1706 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1707 &dev_attr_cmb.attr, NULL))
1708 dev_warn(dev->ctrl.device,
1709 "failed to add sysfs attribute for CMB\n");
1712 static inline void nvme_release_cmb(struct nvme_dev *dev)
1714 if (dev->cmb) {
1715 iounmap(dev->cmb);
1716 dev->cmb = NULL;
1717 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1718 &dev_attr_cmb.attr, NULL);
1719 dev->cmbsz = 0;
1723 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1725 u64 dma_addr = dev->host_mem_descs_dma;
1726 struct nvme_command c;
1727 int ret;
1729 memset(&c, 0, sizeof(c));
1730 c.features.opcode = nvme_admin_set_features;
1731 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1732 c.features.dword11 = cpu_to_le32(bits);
1733 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1734 ilog2(dev->ctrl.page_size));
1735 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1736 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1737 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1739 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1740 if (ret) {
1741 dev_warn(dev->ctrl.device,
1742 "failed to set host mem (err %d, flags %#x).\n",
1743 ret, bits);
1745 return ret;
1748 static void nvme_free_host_mem(struct nvme_dev *dev)
1750 int i;
1752 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1753 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1754 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1756 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1757 le64_to_cpu(desc->addr));
1760 kfree(dev->host_mem_desc_bufs);
1761 dev->host_mem_desc_bufs = NULL;
1762 dma_free_coherent(dev->dev,
1763 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1764 dev->host_mem_descs, dev->host_mem_descs_dma);
1765 dev->host_mem_descs = NULL;
1766 dev->nr_host_mem_descs = 0;
1769 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1770 u32 chunk_size)
1772 struct nvme_host_mem_buf_desc *descs;
1773 u32 max_entries, len;
1774 dma_addr_t descs_dma;
1775 int i = 0;
1776 void **bufs;
1777 u64 size, tmp;
1779 tmp = (preferred + chunk_size - 1);
1780 do_div(tmp, chunk_size);
1781 max_entries = tmp;
1783 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1784 max_entries = dev->ctrl.hmmaxd;
1786 descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1787 &descs_dma, GFP_KERNEL);
1788 if (!descs)
1789 goto out;
1791 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1792 if (!bufs)
1793 goto out_free_descs;
1795 for (size = 0; size < preferred && i < max_entries; size += len) {
1796 dma_addr_t dma_addr;
1798 len = min_t(u64, chunk_size, preferred - size);
1799 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1800 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1801 if (!bufs[i])
1802 break;
1804 descs[i].addr = cpu_to_le64(dma_addr);
1805 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1806 i++;
1809 if (!size)
1810 goto out_free_bufs;
1812 dev->nr_host_mem_descs = i;
1813 dev->host_mem_size = size;
1814 dev->host_mem_descs = descs;
1815 dev->host_mem_descs_dma = descs_dma;
1816 dev->host_mem_desc_bufs = bufs;
1817 return 0;
1819 out_free_bufs:
1820 while (--i >= 0) {
1821 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1823 dma_free_coherent(dev->dev, size, bufs[i],
1824 le64_to_cpu(descs[i].addr));
1827 kfree(bufs);
1828 out_free_descs:
1829 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1830 descs_dma);
1831 out:
1832 dev->host_mem_descs = NULL;
1833 return -ENOMEM;
1836 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1838 u32 chunk_size;
1840 /* start big and work our way down */
1841 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1842 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1843 chunk_size /= 2) {
1844 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1845 if (!min || dev->host_mem_size >= min)
1846 return 0;
1847 nvme_free_host_mem(dev);
1851 return -ENOMEM;
1854 static int nvme_setup_host_mem(struct nvme_dev *dev)
1856 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1857 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1858 u64 min = (u64)dev->ctrl.hmmin * 4096;
1859 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1860 int ret;
1862 preferred = min(preferred, max);
1863 if (min > max) {
1864 dev_warn(dev->ctrl.device,
1865 "min host memory (%lld MiB) above limit (%d MiB).\n",
1866 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1867 nvme_free_host_mem(dev);
1868 return 0;
1872 * If we already have a buffer allocated check if we can reuse it.
1874 if (dev->host_mem_descs) {
1875 if (dev->host_mem_size >= min)
1876 enable_bits |= NVME_HOST_MEM_RETURN;
1877 else
1878 nvme_free_host_mem(dev);
1881 if (!dev->host_mem_descs) {
1882 if (nvme_alloc_host_mem(dev, min, preferred)) {
1883 dev_warn(dev->ctrl.device,
1884 "failed to allocate host memory buffer.\n");
1885 return 0; /* controller must work without HMB */
1888 dev_info(dev->ctrl.device,
1889 "allocated %lld MiB host memory buffer.\n",
1890 dev->host_mem_size >> ilog2(SZ_1M));
1893 ret = nvme_set_host_mem(dev, enable_bits);
1894 if (ret)
1895 nvme_free_host_mem(dev);
1896 return ret;
1899 static int nvme_setup_io_queues(struct nvme_dev *dev)
1901 struct nvme_queue *adminq = &dev->queues[0];
1902 struct pci_dev *pdev = to_pci_dev(dev->dev);
1903 int result, nr_io_queues;
1904 unsigned long size;
1906 nr_io_queues = num_present_cpus();
1907 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1908 if (result < 0)
1909 return result;
1911 if (nr_io_queues == 0)
1912 return 0;
1914 if (dev->cmb && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1915 result = nvme_cmb_qdepth(dev, nr_io_queues,
1916 sizeof(struct nvme_command));
1917 if (result > 0)
1918 dev->q_depth = result;
1919 else
1920 nvme_release_cmb(dev);
1923 do {
1924 size = db_bar_size(dev, nr_io_queues);
1925 result = nvme_remap_bar(dev, size);
1926 if (!result)
1927 break;
1928 if (!--nr_io_queues)
1929 return -ENOMEM;
1930 } while (1);
1931 adminq->q_db = dev->dbs;
1933 /* Deregister the admin queue's interrupt */
1934 pci_free_irq(pdev, 0, adminq);
1937 * If we enable msix early due to not intx, disable it again before
1938 * setting up the full range we need.
1940 pci_free_irq_vectors(pdev);
1941 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1942 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1943 if (nr_io_queues <= 0)
1944 return -EIO;
1945 dev->max_qid = nr_io_queues;
1948 * Should investigate if there's a performance win from allocating
1949 * more queues than interrupt vectors; it might allow the submission
1950 * path to scale better, even if the receive path is limited by the
1951 * number of interrupts.
1954 result = queue_request_irq(adminq);
1955 if (result) {
1956 adminq->cq_vector = -1;
1957 return result;
1959 return nvme_create_io_queues(dev);
1962 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1964 struct nvme_queue *nvmeq = req->end_io_data;
1966 blk_mq_free_request(req);
1967 complete(&nvmeq->dev->ioq_wait);
1970 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1972 struct nvme_queue *nvmeq = req->end_io_data;
1974 if (!error) {
1975 unsigned long flags;
1978 * We might be called with the AQ q_lock held
1979 * and the I/O queue q_lock should always
1980 * nest inside the AQ one.
1982 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1983 SINGLE_DEPTH_NESTING);
1984 nvme_process_cq(nvmeq);
1985 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1988 nvme_del_queue_end(req, error);
1991 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1993 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1994 struct request *req;
1995 struct nvme_command cmd;
1997 memset(&cmd, 0, sizeof(cmd));
1998 cmd.delete_queue.opcode = opcode;
1999 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2001 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2002 if (IS_ERR(req))
2003 return PTR_ERR(req);
2005 req->timeout = ADMIN_TIMEOUT;
2006 req->end_io_data = nvmeq;
2008 blk_execute_rq_nowait(q, NULL, req, false,
2009 opcode == nvme_admin_delete_cq ?
2010 nvme_del_cq_end : nvme_del_queue_end);
2011 return 0;
2014 static void nvme_disable_io_queues(struct nvme_dev *dev)
2016 int pass, queues = dev->online_queues - 1;
2017 unsigned long timeout;
2018 u8 opcode = nvme_admin_delete_sq;
2020 for (pass = 0; pass < 2; pass++) {
2021 int sent = 0, i = queues;
2023 reinit_completion(&dev->ioq_wait);
2024 retry:
2025 timeout = ADMIN_TIMEOUT;
2026 for (; i > 0; i--, sent++)
2027 if (nvme_delete_queue(&dev->queues[i], opcode))
2028 break;
2030 while (sent--) {
2031 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2032 if (timeout == 0)
2033 return;
2034 if (i)
2035 goto retry;
2037 opcode = nvme_admin_delete_cq;
2042 * return error value only when tagset allocation failed
2044 static int nvme_dev_add(struct nvme_dev *dev)
2046 int ret;
2048 if (!dev->ctrl.tagset) {
2049 dev->tagset.ops = &nvme_mq_ops;
2050 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2051 dev->tagset.timeout = NVME_IO_TIMEOUT;
2052 dev->tagset.numa_node = dev_to_node(dev->dev);
2053 dev->tagset.queue_depth =
2054 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2055 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2056 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2057 dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2058 nvme_pci_cmd_size(dev, true));
2060 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2061 dev->tagset.driver_data = dev;
2063 ret = blk_mq_alloc_tag_set(&dev->tagset);
2064 if (ret) {
2065 dev_warn(dev->ctrl.device,
2066 "IO queues tagset allocation failed %d\n", ret);
2067 return ret;
2069 dev->ctrl.tagset = &dev->tagset;
2071 nvme_dbbuf_set(dev);
2072 } else {
2073 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2075 /* Free previously allocated queues that are no longer usable */
2076 nvme_free_queues(dev, dev->online_queues);
2079 return 0;
2082 static int nvme_pci_enable(struct nvme_dev *dev)
2084 int result = -ENOMEM;
2085 struct pci_dev *pdev = to_pci_dev(dev->dev);
2087 if (pci_enable_device_mem(pdev))
2088 return result;
2090 pci_set_master(pdev);
2092 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2093 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2094 goto disable;
2096 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2097 result = -ENODEV;
2098 goto disable;
2102 * Some devices and/or platforms don't advertise or work with INTx
2103 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2104 * adjust this later.
2106 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2107 if (result < 0)
2108 return result;
2110 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2112 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2113 io_queue_depth);
2114 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2115 dev->dbs = dev->bar + 4096;
2118 * Temporary fix for the Apple controller found in the MacBook8,1 and
2119 * some MacBook7,1 to avoid controller resets and data loss.
2121 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2122 dev->q_depth = 2;
2123 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2124 "set queue depth=%u to work around controller resets\n",
2125 dev->q_depth);
2126 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2127 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2128 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2129 dev->q_depth = 64;
2130 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2131 "set queue depth=%u\n", dev->q_depth);
2134 nvme_map_cmb(dev);
2136 pci_enable_pcie_error_reporting(pdev);
2137 pci_save_state(pdev);
2138 return 0;
2140 disable:
2141 pci_disable_device(pdev);
2142 return result;
2145 static void nvme_dev_unmap(struct nvme_dev *dev)
2147 if (dev->bar)
2148 iounmap(dev->bar);
2149 pci_release_mem_regions(to_pci_dev(dev->dev));
2152 static void nvme_pci_disable(struct nvme_dev *dev)
2154 struct pci_dev *pdev = to_pci_dev(dev->dev);
2156 nvme_release_cmb(dev);
2157 pci_free_irq_vectors(pdev);
2159 if (pci_is_enabled(pdev)) {
2160 pci_disable_pcie_error_reporting(pdev);
2161 pci_disable_device(pdev);
2165 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2167 int i;
2168 bool dead = true;
2169 struct pci_dev *pdev = to_pci_dev(dev->dev);
2171 mutex_lock(&dev->shutdown_lock);
2172 if (pci_is_enabled(pdev)) {
2173 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2175 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2176 dev->ctrl.state == NVME_CTRL_RESETTING)
2177 nvme_start_freeze(&dev->ctrl);
2178 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2179 pdev->error_state != pci_channel_io_normal);
2183 * Give the controller a chance to complete all entered requests if
2184 * doing a safe shutdown.
2186 if (!dead) {
2187 if (shutdown)
2188 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2191 * If the controller is still alive tell it to stop using the
2192 * host memory buffer. In theory the shutdown / reset should
2193 * make sure that it doesn't access the host memoery anymore,
2194 * but I'd rather be safe than sorry..
2196 if (dev->host_mem_descs)
2197 nvme_set_host_mem(dev, 0);
2200 nvme_stop_queues(&dev->ctrl);
2202 if (!dead) {
2203 nvme_disable_io_queues(dev);
2204 nvme_disable_admin_queue(dev, shutdown);
2206 for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
2207 nvme_suspend_queue(&dev->queues[i]);
2209 nvme_pci_disable(dev);
2211 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2212 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2215 * The driver will not be starting up queues again if shutting down so
2216 * must flush all entered requests to their failed completion to avoid
2217 * deadlocking blk-mq hot-cpu notifier.
2219 if (shutdown)
2220 nvme_start_queues(&dev->ctrl);
2221 mutex_unlock(&dev->shutdown_lock);
2224 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2226 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2227 PAGE_SIZE, PAGE_SIZE, 0);
2228 if (!dev->prp_page_pool)
2229 return -ENOMEM;
2231 /* Optimisation for I/Os between 4k and 128k */
2232 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2233 256, 256, 0);
2234 if (!dev->prp_small_pool) {
2235 dma_pool_destroy(dev->prp_page_pool);
2236 return -ENOMEM;
2238 return 0;
2241 static void nvme_release_prp_pools(struct nvme_dev *dev)
2243 dma_pool_destroy(dev->prp_page_pool);
2244 dma_pool_destroy(dev->prp_small_pool);
2247 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2249 struct nvme_dev *dev = to_nvme_dev(ctrl);
2251 nvme_dbbuf_dma_free(dev);
2252 put_device(dev->dev);
2253 if (dev->tagset.tags)
2254 blk_mq_free_tag_set(&dev->tagset);
2255 if (dev->ctrl.admin_q)
2256 blk_put_queue(dev->ctrl.admin_q);
2257 kfree(dev->queues);
2258 free_opal_dev(dev->ctrl.opal_dev);
2259 kfree(dev);
2262 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2264 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2266 nvme_get_ctrl(&dev->ctrl);
2267 nvme_dev_disable(dev, false);
2268 if (!queue_work(nvme_wq, &dev->remove_work))
2269 nvme_put_ctrl(&dev->ctrl);
2272 static void nvme_reset_work(struct work_struct *work)
2274 struct nvme_dev *dev =
2275 container_of(work, struct nvme_dev, ctrl.reset_work);
2276 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2277 int result = -ENODEV;
2278 enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2280 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2281 goto out;
2284 * If we're called to reset a live controller first shut it down before
2285 * moving on.
2287 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2288 nvme_dev_disable(dev, false);
2291 * Introduce RECONNECTING state from nvme-fc/rdma transports to mark the
2292 * initializing procedure here.
2294 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RECONNECTING)) {
2295 dev_warn(dev->ctrl.device,
2296 "failed to mark controller RECONNECTING\n");
2297 goto out;
2300 result = nvme_pci_enable(dev);
2301 if (result)
2302 goto out;
2304 result = nvme_pci_configure_admin_queue(dev);
2305 if (result)
2306 goto out;
2308 result = nvme_alloc_admin_tags(dev);
2309 if (result)
2310 goto out;
2312 result = nvme_init_identify(&dev->ctrl);
2313 if (result)
2314 goto out;
2316 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2317 if (!dev->ctrl.opal_dev)
2318 dev->ctrl.opal_dev =
2319 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2320 else if (was_suspend)
2321 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2322 } else {
2323 free_opal_dev(dev->ctrl.opal_dev);
2324 dev->ctrl.opal_dev = NULL;
2327 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2328 result = nvme_dbbuf_dma_alloc(dev);
2329 if (result)
2330 dev_warn(dev->dev,
2331 "unable to allocate dma for dbbuf\n");
2334 if (dev->ctrl.hmpre) {
2335 result = nvme_setup_host_mem(dev);
2336 if (result < 0)
2337 goto out;
2340 result = nvme_setup_io_queues(dev);
2341 if (result)
2342 goto out;
2345 * Keep the controller around but remove all namespaces if we don't have
2346 * any working I/O queue.
2348 if (dev->online_queues < 2) {
2349 dev_warn(dev->ctrl.device, "IO queues not created\n");
2350 nvme_kill_queues(&dev->ctrl);
2351 nvme_remove_namespaces(&dev->ctrl);
2352 new_state = NVME_CTRL_ADMIN_ONLY;
2353 } else {
2354 nvme_start_queues(&dev->ctrl);
2355 nvme_wait_freeze(&dev->ctrl);
2356 /* hit this only when allocate tagset fails */
2357 if (nvme_dev_add(dev))
2358 new_state = NVME_CTRL_ADMIN_ONLY;
2359 nvme_unfreeze(&dev->ctrl);
2363 * If only admin queue live, keep it to do further investigation or
2364 * recovery.
2366 if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2367 dev_warn(dev->ctrl.device,
2368 "failed to mark controller state %d\n", new_state);
2369 goto out;
2372 nvme_start_ctrl(&dev->ctrl);
2373 return;
2375 out:
2376 nvme_remove_dead_ctrl(dev, result);
2379 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2381 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2382 struct pci_dev *pdev = to_pci_dev(dev->dev);
2384 nvme_kill_queues(&dev->ctrl);
2385 if (pci_get_drvdata(pdev))
2386 device_release_driver(&pdev->dev);
2387 nvme_put_ctrl(&dev->ctrl);
2390 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2392 *val = readl(to_nvme_dev(ctrl)->bar + off);
2393 return 0;
2396 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2398 writel(val, to_nvme_dev(ctrl)->bar + off);
2399 return 0;
2402 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2404 *val = readq(to_nvme_dev(ctrl)->bar + off);
2405 return 0;
2408 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2409 .name = "pcie",
2410 .module = THIS_MODULE,
2411 .flags = NVME_F_METADATA_SUPPORTED,
2412 .reg_read32 = nvme_pci_reg_read32,
2413 .reg_write32 = nvme_pci_reg_write32,
2414 .reg_read64 = nvme_pci_reg_read64,
2415 .free_ctrl = nvme_pci_free_ctrl,
2416 .submit_async_event = nvme_pci_submit_async_event,
2419 static int nvme_dev_map(struct nvme_dev *dev)
2421 struct pci_dev *pdev = to_pci_dev(dev->dev);
2423 if (pci_request_mem_regions(pdev, "nvme"))
2424 return -ENODEV;
2426 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2427 goto release;
2429 return 0;
2430 release:
2431 pci_release_mem_regions(pdev);
2432 return -ENODEV;
2435 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2437 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2439 * Several Samsung devices seem to drop off the PCIe bus
2440 * randomly when APST is on and uses the deepest sleep state.
2441 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2442 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2443 * 950 PRO 256GB", but it seems to be restricted to two Dell
2444 * laptops.
2446 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2447 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2448 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2449 return NVME_QUIRK_NO_DEEPEST_PS;
2450 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2452 * Samsung SSD 960 EVO drops off the PCIe bus after system
2453 * suspend on a Ryzen board, ASUS PRIME B350M-A.
2455 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2456 dmi_match(DMI_BOARD_NAME, "PRIME B350M-A"))
2457 return NVME_QUIRK_NO_APST;
2460 return 0;
2463 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2465 int node, result = -ENOMEM;
2466 struct nvme_dev *dev;
2467 unsigned long quirks = id->driver_data;
2469 node = dev_to_node(&pdev->dev);
2470 if (node == NUMA_NO_NODE)
2471 set_dev_node(&pdev->dev, first_memory_node);
2473 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2474 if (!dev)
2475 return -ENOMEM;
2477 dev->queues = kcalloc_node(num_possible_cpus() + 1,
2478 sizeof(struct nvme_queue), GFP_KERNEL, node);
2479 if (!dev->queues)
2480 goto free;
2482 dev->dev = get_device(&pdev->dev);
2483 pci_set_drvdata(pdev, dev);
2485 result = nvme_dev_map(dev);
2486 if (result)
2487 goto put_pci;
2489 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2490 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2491 mutex_init(&dev->shutdown_lock);
2492 init_completion(&dev->ioq_wait);
2494 result = nvme_setup_prp_pools(dev);
2495 if (result)
2496 goto unmap;
2498 quirks |= check_vendor_combination_bug(pdev);
2500 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2501 quirks);
2502 if (result)
2503 goto release_pools;
2505 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2507 nvme_reset_ctrl(&dev->ctrl);
2509 return 0;
2511 release_pools:
2512 nvme_release_prp_pools(dev);
2513 unmap:
2514 nvme_dev_unmap(dev);
2515 put_pci:
2516 put_device(dev->dev);
2517 free:
2518 kfree(dev->queues);
2519 kfree(dev);
2520 return result;
2523 static void nvme_reset_prepare(struct pci_dev *pdev)
2525 struct nvme_dev *dev = pci_get_drvdata(pdev);
2526 nvme_dev_disable(dev, false);
2529 static void nvme_reset_done(struct pci_dev *pdev)
2531 struct nvme_dev *dev = pci_get_drvdata(pdev);
2532 nvme_reset_ctrl_sync(&dev->ctrl);
2535 static void nvme_shutdown(struct pci_dev *pdev)
2537 struct nvme_dev *dev = pci_get_drvdata(pdev);
2538 nvme_dev_disable(dev, true);
2542 * The driver's remove may be called on a device in a partially initialized
2543 * state. This function must not have any dependencies on the device state in
2544 * order to proceed.
2546 static void nvme_remove(struct pci_dev *pdev)
2548 struct nvme_dev *dev = pci_get_drvdata(pdev);
2550 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2552 cancel_work_sync(&dev->ctrl.reset_work);
2553 pci_set_drvdata(pdev, NULL);
2555 if (!pci_device_is_present(pdev)) {
2556 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2557 nvme_dev_disable(dev, false);
2560 flush_work(&dev->ctrl.reset_work);
2561 nvme_stop_ctrl(&dev->ctrl);
2562 nvme_remove_namespaces(&dev->ctrl);
2563 nvme_dev_disable(dev, true);
2564 nvme_free_host_mem(dev);
2565 nvme_dev_remove_admin(dev);
2566 nvme_free_queues(dev, 0);
2567 nvme_uninit_ctrl(&dev->ctrl);
2568 nvme_release_prp_pools(dev);
2569 nvme_dev_unmap(dev);
2570 nvme_put_ctrl(&dev->ctrl);
2573 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2575 int ret = 0;
2577 if (numvfs == 0) {
2578 if (pci_vfs_assigned(pdev)) {
2579 dev_warn(&pdev->dev,
2580 "Cannot disable SR-IOV VFs while assigned\n");
2581 return -EPERM;
2583 pci_disable_sriov(pdev);
2584 return 0;
2587 ret = pci_enable_sriov(pdev, numvfs);
2588 return ret ? ret : numvfs;
2591 #ifdef CONFIG_PM_SLEEP
2592 static int nvme_suspend(struct device *dev)
2594 struct pci_dev *pdev = to_pci_dev(dev);
2595 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2597 nvme_dev_disable(ndev, true);
2598 return 0;
2601 static int nvme_resume(struct device *dev)
2603 struct pci_dev *pdev = to_pci_dev(dev);
2604 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2606 nvme_reset_ctrl(&ndev->ctrl);
2607 return 0;
2609 #endif
2611 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2613 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2614 pci_channel_state_t state)
2616 struct nvme_dev *dev = pci_get_drvdata(pdev);
2619 * A frozen channel requires a reset. When detected, this method will
2620 * shutdown the controller to quiesce. The controller will be restarted
2621 * after the slot reset through driver's slot_reset callback.
2623 switch (state) {
2624 case pci_channel_io_normal:
2625 return PCI_ERS_RESULT_CAN_RECOVER;
2626 case pci_channel_io_frozen:
2627 dev_warn(dev->ctrl.device,
2628 "frozen state error detected, reset controller\n");
2629 nvme_dev_disable(dev, false);
2630 return PCI_ERS_RESULT_NEED_RESET;
2631 case pci_channel_io_perm_failure:
2632 dev_warn(dev->ctrl.device,
2633 "failure state error detected, request disconnect\n");
2634 return PCI_ERS_RESULT_DISCONNECT;
2636 return PCI_ERS_RESULT_NEED_RESET;
2639 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2641 struct nvme_dev *dev = pci_get_drvdata(pdev);
2643 dev_info(dev->ctrl.device, "restart after slot reset\n");
2644 pci_restore_state(pdev);
2645 nvme_reset_ctrl(&dev->ctrl);
2646 return PCI_ERS_RESULT_RECOVERED;
2649 static void nvme_error_resume(struct pci_dev *pdev)
2651 pci_cleanup_aer_uncorrect_error_status(pdev);
2654 static const struct pci_error_handlers nvme_err_handler = {
2655 .error_detected = nvme_error_detected,
2656 .slot_reset = nvme_slot_reset,
2657 .resume = nvme_error_resume,
2658 .reset_prepare = nvme_reset_prepare,
2659 .reset_done = nvme_reset_done,
2662 static const struct pci_device_id nvme_id_table[] = {
2663 { PCI_VDEVICE(INTEL, 0x0953),
2664 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2665 NVME_QUIRK_DEALLOCATE_ZEROES, },
2666 { PCI_VDEVICE(INTEL, 0x0a53),
2667 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2668 NVME_QUIRK_DEALLOCATE_ZEROES, },
2669 { PCI_VDEVICE(INTEL, 0x0a54),
2670 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2671 NVME_QUIRK_DEALLOCATE_ZEROES, },
2672 { PCI_VDEVICE(INTEL, 0x0a55),
2673 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2674 NVME_QUIRK_DEALLOCATE_ZEROES, },
2675 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2676 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2677 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2678 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2679 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2680 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2681 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
2682 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2683 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2684 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2685 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2686 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2687 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2688 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2689 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
2690 .driver_data = NVME_QUIRK_LIGHTNVM, },
2691 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
2692 .driver_data = NVME_QUIRK_LIGHTNVM, },
2693 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2694 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2695 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2696 { 0, }
2698 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2700 static struct pci_driver nvme_driver = {
2701 .name = "nvme",
2702 .id_table = nvme_id_table,
2703 .probe = nvme_probe,
2704 .remove = nvme_remove,
2705 .shutdown = nvme_shutdown,
2706 .driver = {
2707 .pm = &nvme_dev_pm_ops,
2709 .sriov_configure = nvme_pci_sriov_configure,
2710 .err_handler = &nvme_err_handler,
2713 static int __init nvme_init(void)
2715 return pci_register_driver(&nvme_driver);
2718 static void __exit nvme_exit(void)
2720 pci_unregister_driver(&nvme_driver);
2721 flush_workqueue(nvme_wq);
2722 _nvme_check_size();
2725 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2726 MODULE_LICENSE("GPL");
2727 MODULE_VERSION("1.0");
2728 module_init(nvme_init);
2729 module_exit(nvme_exit);