xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / of / address.c
blobce4d3d8b85de4128b81aeebfa4ee155139135cd3
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) "OF: " fmt
4 #include <linux/device.h>
5 #include <linux/io.h>
6 #include <linux/ioport.h>
7 #include <linux/module.h>
8 #include <linux/of_address.h>
9 #include <linux/pci.h>
10 #include <linux/pci_regs.h>
11 #include <linux/sizes.h>
12 #include <linux/slab.h>
13 #include <linux/string.h>
15 /* Max address size we deal with */
16 #define OF_MAX_ADDR_CELLS 4
17 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
18 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
20 static struct of_bus *of_match_bus(struct device_node *np);
21 static int __of_address_to_resource(struct device_node *dev,
22 const __be32 *addrp, u64 size, unsigned int flags,
23 const char *name, struct resource *r);
25 /* Debug utility */
26 #ifdef DEBUG
27 static void of_dump_addr(const char *s, const __be32 *addr, int na)
29 pr_debug("%s", s);
30 while (na--)
31 pr_cont(" %08x", be32_to_cpu(*(addr++)));
32 pr_cont("\n");
34 #else
35 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
36 #endif
38 /* Callbacks for bus specific translators */
39 struct of_bus {
40 const char *name;
41 const char *addresses;
42 int (*match)(struct device_node *parent);
43 void (*count_cells)(struct device_node *child,
44 int *addrc, int *sizec);
45 u64 (*map)(__be32 *addr, const __be32 *range,
46 int na, int ns, int pna);
47 int (*translate)(__be32 *addr, u64 offset, int na);
48 unsigned int (*get_flags)(const __be32 *addr);
52 * Default translator (generic bus)
55 static void of_bus_default_count_cells(struct device_node *dev,
56 int *addrc, int *sizec)
58 if (addrc)
59 *addrc = of_n_addr_cells(dev);
60 if (sizec)
61 *sizec = of_n_size_cells(dev);
64 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
65 int na, int ns, int pna)
67 u64 cp, s, da;
69 cp = of_read_number(range, na);
70 s = of_read_number(range + na + pna, ns);
71 da = of_read_number(addr, na);
73 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n",
74 (unsigned long long)cp, (unsigned long long)s,
75 (unsigned long long)da);
77 if (da < cp || da >= (cp + s))
78 return OF_BAD_ADDR;
79 return da - cp;
82 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
84 u64 a = of_read_number(addr, na);
85 memset(addr, 0, na * 4);
86 a += offset;
87 if (na > 1)
88 addr[na - 2] = cpu_to_be32(a >> 32);
89 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
91 return 0;
94 static unsigned int of_bus_default_get_flags(const __be32 *addr)
96 return IORESOURCE_MEM;
99 #ifdef CONFIG_PCI
101 * PCI bus specific translator
104 static int of_bus_pci_match(struct device_node *np)
107 * "pciex" is PCI Express
108 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
109 * "ht" is hypertransport
111 return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") ||
112 !strcmp(np->type, "vci") || !strcmp(np->type, "ht");
115 static void of_bus_pci_count_cells(struct device_node *np,
116 int *addrc, int *sizec)
118 if (addrc)
119 *addrc = 3;
120 if (sizec)
121 *sizec = 2;
124 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
126 unsigned int flags = 0;
127 u32 w = be32_to_cpup(addr);
129 switch((w >> 24) & 0x03) {
130 case 0x01:
131 flags |= IORESOURCE_IO;
132 break;
133 case 0x02: /* 32 bits */
134 case 0x03: /* 64 bits */
135 flags |= IORESOURCE_MEM;
136 break;
138 if (w & 0x40000000)
139 flags |= IORESOURCE_PREFETCH;
140 return flags;
143 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
144 int pna)
146 u64 cp, s, da;
147 unsigned int af, rf;
149 af = of_bus_pci_get_flags(addr);
150 rf = of_bus_pci_get_flags(range);
152 /* Check address type match */
153 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
154 return OF_BAD_ADDR;
156 /* Read address values, skipping high cell */
157 cp = of_read_number(range + 1, na - 1);
158 s = of_read_number(range + na + pna, ns);
159 da = of_read_number(addr + 1, na - 1);
161 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n",
162 (unsigned long long)cp, (unsigned long long)s,
163 (unsigned long long)da);
165 if (da < cp || da >= (cp + s))
166 return OF_BAD_ADDR;
167 return da - cp;
170 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
172 return of_bus_default_translate(addr + 1, offset, na - 1);
175 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
176 unsigned int *flags)
178 const __be32 *prop;
179 unsigned int psize;
180 struct device_node *parent;
181 struct of_bus *bus;
182 int onesize, i, na, ns;
184 /* Get parent & match bus type */
185 parent = of_get_parent(dev);
186 if (parent == NULL)
187 return NULL;
188 bus = of_match_bus(parent);
189 if (strcmp(bus->name, "pci")) {
190 of_node_put(parent);
191 return NULL;
193 bus->count_cells(dev, &na, &ns);
194 of_node_put(parent);
195 if (!OF_CHECK_ADDR_COUNT(na))
196 return NULL;
198 /* Get "reg" or "assigned-addresses" property */
199 prop = of_get_property(dev, bus->addresses, &psize);
200 if (prop == NULL)
201 return NULL;
202 psize /= 4;
204 onesize = na + ns;
205 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
206 u32 val = be32_to_cpu(prop[0]);
207 if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
208 if (size)
209 *size = of_read_number(prop + na, ns);
210 if (flags)
211 *flags = bus->get_flags(prop);
212 return prop;
215 return NULL;
217 EXPORT_SYMBOL(of_get_pci_address);
219 int of_pci_address_to_resource(struct device_node *dev, int bar,
220 struct resource *r)
222 const __be32 *addrp;
223 u64 size;
224 unsigned int flags;
226 addrp = of_get_pci_address(dev, bar, &size, &flags);
227 if (addrp == NULL)
228 return -EINVAL;
229 return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
231 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
233 static int parser_init(struct of_pci_range_parser *parser,
234 struct device_node *node, const char *name)
236 const int na = 3, ns = 2;
237 int rlen;
239 parser->node = node;
240 parser->pna = of_n_addr_cells(node);
241 parser->np = parser->pna + na + ns;
243 parser->range = of_get_property(node, name, &rlen);
244 if (parser->range == NULL)
245 return -ENOENT;
247 parser->end = parser->range + rlen / sizeof(__be32);
249 return 0;
252 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
253 struct device_node *node)
255 return parser_init(parser, node, "ranges");
257 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
259 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
260 struct device_node *node)
262 return parser_init(parser, node, "dma-ranges");
264 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
266 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
267 struct of_pci_range *range)
269 const int na = 3, ns = 2;
271 if (!range)
272 return NULL;
274 if (!parser->range || parser->range + parser->np > parser->end)
275 return NULL;
277 range->pci_space = be32_to_cpup(parser->range);
278 range->flags = of_bus_pci_get_flags(parser->range);
279 range->pci_addr = of_read_number(parser->range + 1, ns);
280 range->cpu_addr = of_translate_address(parser->node,
281 parser->range + na);
282 range->size = of_read_number(parser->range + parser->pna + na, ns);
284 parser->range += parser->np;
286 /* Now consume following elements while they are contiguous */
287 while (parser->range + parser->np <= parser->end) {
288 u32 flags;
289 u64 pci_addr, cpu_addr, size;
291 flags = of_bus_pci_get_flags(parser->range);
292 pci_addr = of_read_number(parser->range + 1, ns);
293 cpu_addr = of_translate_address(parser->node,
294 parser->range + na);
295 size = of_read_number(parser->range + parser->pna + na, ns);
297 if (flags != range->flags)
298 break;
299 if (pci_addr != range->pci_addr + range->size ||
300 cpu_addr != range->cpu_addr + range->size)
301 break;
303 range->size += size;
304 parser->range += parser->np;
307 return range;
309 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
312 * of_pci_range_to_resource - Create a resource from an of_pci_range
313 * @range: the PCI range that describes the resource
314 * @np: device node where the range belongs to
315 * @res: pointer to a valid resource that will be updated to
316 * reflect the values contained in the range.
318 * Returns EINVAL if the range cannot be converted to resource.
320 * Note that if the range is an IO range, the resource will be converted
321 * using pci_address_to_pio() which can fail if it is called too early or
322 * if the range cannot be matched to any host bridge IO space (our case here).
323 * To guard against that we try to register the IO range first.
324 * If that fails we know that pci_address_to_pio() will do too.
326 int of_pci_range_to_resource(struct of_pci_range *range,
327 struct device_node *np, struct resource *res)
329 int err;
330 res->flags = range->flags;
331 res->parent = res->child = res->sibling = NULL;
332 res->name = np->full_name;
334 if (res->flags & IORESOURCE_IO) {
335 unsigned long port;
336 err = pci_register_io_range(range->cpu_addr, range->size);
337 if (err)
338 goto invalid_range;
339 port = pci_address_to_pio(range->cpu_addr);
340 if (port == (unsigned long)-1) {
341 err = -EINVAL;
342 goto invalid_range;
344 res->start = port;
345 } else {
346 if ((sizeof(resource_size_t) < 8) &&
347 upper_32_bits(range->cpu_addr)) {
348 err = -EINVAL;
349 goto invalid_range;
352 res->start = range->cpu_addr;
354 res->end = res->start + range->size - 1;
355 return 0;
357 invalid_range:
358 res->start = (resource_size_t)OF_BAD_ADDR;
359 res->end = (resource_size_t)OF_BAD_ADDR;
360 return err;
362 EXPORT_SYMBOL(of_pci_range_to_resource);
363 #endif /* CONFIG_PCI */
366 * ISA bus specific translator
369 static int of_bus_isa_match(struct device_node *np)
371 return !strcmp(np->name, "isa");
374 static void of_bus_isa_count_cells(struct device_node *child,
375 int *addrc, int *sizec)
377 if (addrc)
378 *addrc = 2;
379 if (sizec)
380 *sizec = 1;
383 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
384 int pna)
386 u64 cp, s, da;
388 /* Check address type match */
389 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
390 return OF_BAD_ADDR;
392 /* Read address values, skipping high cell */
393 cp = of_read_number(range + 1, na - 1);
394 s = of_read_number(range + na + pna, ns);
395 da = of_read_number(addr + 1, na - 1);
397 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n",
398 (unsigned long long)cp, (unsigned long long)s,
399 (unsigned long long)da);
401 if (da < cp || da >= (cp + s))
402 return OF_BAD_ADDR;
403 return da - cp;
406 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
408 return of_bus_default_translate(addr + 1, offset, na - 1);
411 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
413 unsigned int flags = 0;
414 u32 w = be32_to_cpup(addr);
416 if (w & 1)
417 flags |= IORESOURCE_IO;
418 else
419 flags |= IORESOURCE_MEM;
420 return flags;
424 * Array of bus specific translators
427 static struct of_bus of_busses[] = {
428 #ifdef CONFIG_PCI
429 /* PCI */
431 .name = "pci",
432 .addresses = "assigned-addresses",
433 .match = of_bus_pci_match,
434 .count_cells = of_bus_pci_count_cells,
435 .map = of_bus_pci_map,
436 .translate = of_bus_pci_translate,
437 .get_flags = of_bus_pci_get_flags,
439 #endif /* CONFIG_PCI */
440 /* ISA */
442 .name = "isa",
443 .addresses = "reg",
444 .match = of_bus_isa_match,
445 .count_cells = of_bus_isa_count_cells,
446 .map = of_bus_isa_map,
447 .translate = of_bus_isa_translate,
448 .get_flags = of_bus_isa_get_flags,
450 /* Default */
452 .name = "default",
453 .addresses = "reg",
454 .match = NULL,
455 .count_cells = of_bus_default_count_cells,
456 .map = of_bus_default_map,
457 .translate = of_bus_default_translate,
458 .get_flags = of_bus_default_get_flags,
462 static struct of_bus *of_match_bus(struct device_node *np)
464 int i;
466 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
467 if (!of_busses[i].match || of_busses[i].match(np))
468 return &of_busses[i];
469 BUG();
470 return NULL;
473 static int of_empty_ranges_quirk(struct device_node *np)
475 if (IS_ENABLED(CONFIG_PPC)) {
476 /* To save cycles, we cache the result for global "Mac" setting */
477 static int quirk_state = -1;
479 /* PA-SEMI sdc DT bug */
480 if (of_device_is_compatible(np, "1682m-sdc"))
481 return true;
483 /* Make quirk cached */
484 if (quirk_state < 0)
485 quirk_state =
486 of_machine_is_compatible("Power Macintosh") ||
487 of_machine_is_compatible("MacRISC");
488 return quirk_state;
490 return false;
493 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
494 struct of_bus *pbus, __be32 *addr,
495 int na, int ns, int pna, const char *rprop)
497 const __be32 *ranges;
498 unsigned int rlen;
499 int rone;
500 u64 offset = OF_BAD_ADDR;
503 * Normally, an absence of a "ranges" property means we are
504 * crossing a non-translatable boundary, and thus the addresses
505 * below the current cannot be converted to CPU physical ones.
506 * Unfortunately, while this is very clear in the spec, it's not
507 * what Apple understood, and they do have things like /uni-n or
508 * /ht nodes with no "ranges" property and a lot of perfectly
509 * useable mapped devices below them. Thus we treat the absence of
510 * "ranges" as equivalent to an empty "ranges" property which means
511 * a 1:1 translation at that level. It's up to the caller not to try
512 * to translate addresses that aren't supposed to be translated in
513 * the first place. --BenH.
515 * As far as we know, this damage only exists on Apple machines, so
516 * This code is only enabled on powerpc. --gcl
518 ranges = of_get_property(parent, rprop, &rlen);
519 if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
520 pr_debug("no ranges; cannot translate\n");
521 return 1;
523 if (ranges == NULL || rlen == 0) {
524 offset = of_read_number(addr, na);
525 memset(addr, 0, pna * 4);
526 pr_debug("empty ranges; 1:1 translation\n");
527 goto finish;
530 pr_debug("walking ranges...\n");
532 /* Now walk through the ranges */
533 rlen /= 4;
534 rone = na + pna + ns;
535 for (; rlen >= rone; rlen -= rone, ranges += rone) {
536 offset = bus->map(addr, ranges, na, ns, pna);
537 if (offset != OF_BAD_ADDR)
538 break;
540 if (offset == OF_BAD_ADDR) {
541 pr_debug("not found !\n");
542 return 1;
544 memcpy(addr, ranges + na, 4 * pna);
546 finish:
547 of_dump_addr("parent translation for:", addr, pna);
548 pr_debug("with offset: %llx\n", (unsigned long long)offset);
550 /* Translate it into parent bus space */
551 return pbus->translate(addr, offset, pna);
555 * Translate an address from the device-tree into a CPU physical address,
556 * this walks up the tree and applies the various bus mappings on the
557 * way.
559 * Note: We consider that crossing any level with #size-cells == 0 to mean
560 * that translation is impossible (that is we are not dealing with a value
561 * that can be mapped to a cpu physical address). This is not really specified
562 * that way, but this is traditionally the way IBM at least do things
564 static u64 __of_translate_address(struct device_node *dev,
565 const __be32 *in_addr, const char *rprop)
567 struct device_node *parent = NULL;
568 struct of_bus *bus, *pbus;
569 __be32 addr[OF_MAX_ADDR_CELLS];
570 int na, ns, pna, pns;
571 u64 result = OF_BAD_ADDR;
573 pr_debug("** translation for device %pOF **\n", dev);
575 /* Increase refcount at current level */
576 of_node_get(dev);
578 /* Get parent & match bus type */
579 parent = of_get_parent(dev);
580 if (parent == NULL)
581 goto bail;
582 bus = of_match_bus(parent);
584 /* Count address cells & copy address locally */
585 bus->count_cells(dev, &na, &ns);
586 if (!OF_CHECK_COUNTS(na, ns)) {
587 pr_debug("Bad cell count for %pOF\n", dev);
588 goto bail;
590 memcpy(addr, in_addr, na * 4);
592 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
593 bus->name, na, ns, parent);
594 of_dump_addr("translating address:", addr, na);
596 /* Translate */
597 for (;;) {
598 /* Switch to parent bus */
599 of_node_put(dev);
600 dev = parent;
601 parent = of_get_parent(dev);
603 /* If root, we have finished */
604 if (parent == NULL) {
605 pr_debug("reached root node\n");
606 result = of_read_number(addr, na);
607 break;
610 /* Get new parent bus and counts */
611 pbus = of_match_bus(parent);
612 pbus->count_cells(dev, &pna, &pns);
613 if (!OF_CHECK_COUNTS(pna, pns)) {
614 pr_err("Bad cell count for %pOF\n", dev);
615 break;
618 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
619 pbus->name, pna, pns, parent);
621 /* Apply bus translation */
622 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
623 break;
625 /* Complete the move up one level */
626 na = pna;
627 ns = pns;
628 bus = pbus;
630 of_dump_addr("one level translation:", addr, na);
632 bail:
633 of_node_put(parent);
634 of_node_put(dev);
636 return result;
639 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
641 return __of_translate_address(dev, in_addr, "ranges");
643 EXPORT_SYMBOL(of_translate_address);
645 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
647 return __of_translate_address(dev, in_addr, "dma-ranges");
649 EXPORT_SYMBOL(of_translate_dma_address);
651 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
652 unsigned int *flags)
654 const __be32 *prop;
655 unsigned int psize;
656 struct device_node *parent;
657 struct of_bus *bus;
658 int onesize, i, na, ns;
660 /* Get parent & match bus type */
661 parent = of_get_parent(dev);
662 if (parent == NULL)
663 return NULL;
664 bus = of_match_bus(parent);
665 bus->count_cells(dev, &na, &ns);
666 of_node_put(parent);
667 if (!OF_CHECK_ADDR_COUNT(na))
668 return NULL;
670 /* Get "reg" or "assigned-addresses" property */
671 prop = of_get_property(dev, bus->addresses, &psize);
672 if (prop == NULL)
673 return NULL;
674 psize /= 4;
676 onesize = na + ns;
677 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
678 if (i == index) {
679 if (size)
680 *size = of_read_number(prop + na, ns);
681 if (flags)
682 *flags = bus->get_flags(prop);
683 return prop;
685 return NULL;
687 EXPORT_SYMBOL(of_get_address);
689 static int __of_address_to_resource(struct device_node *dev,
690 const __be32 *addrp, u64 size, unsigned int flags,
691 const char *name, struct resource *r)
693 u64 taddr;
695 if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
696 return -EINVAL;
697 taddr = of_translate_address(dev, addrp);
698 if (taddr == OF_BAD_ADDR)
699 return -EINVAL;
700 memset(r, 0, sizeof(struct resource));
701 if (flags & IORESOURCE_IO) {
702 unsigned long port;
703 port = pci_address_to_pio(taddr);
704 if (port == (unsigned long)-1)
705 return -EINVAL;
706 r->start = port;
707 r->end = port + size - 1;
708 } else {
709 r->start = taddr;
710 r->end = taddr + size - 1;
712 r->flags = flags;
713 r->name = name ? name : dev->full_name;
715 return 0;
719 * of_address_to_resource - Translate device tree address and return as resource
721 * Note that if your address is a PIO address, the conversion will fail if
722 * the physical address can't be internally converted to an IO token with
723 * pci_address_to_pio(), that is because it's either called too early or it
724 * can't be matched to any host bridge IO space
726 int of_address_to_resource(struct device_node *dev, int index,
727 struct resource *r)
729 const __be32 *addrp;
730 u64 size;
731 unsigned int flags;
732 const char *name = NULL;
734 addrp = of_get_address(dev, index, &size, &flags);
735 if (addrp == NULL)
736 return -EINVAL;
738 /* Get optional "reg-names" property to add a name to a resource */
739 of_property_read_string_index(dev, "reg-names", index, &name);
741 return __of_address_to_resource(dev, addrp, size, flags, name, r);
743 EXPORT_SYMBOL_GPL(of_address_to_resource);
745 struct device_node *of_find_matching_node_by_address(struct device_node *from,
746 const struct of_device_id *matches,
747 u64 base_address)
749 struct device_node *dn = of_find_matching_node(from, matches);
750 struct resource res;
752 while (dn) {
753 if (!of_address_to_resource(dn, 0, &res) &&
754 res.start == base_address)
755 return dn;
757 dn = of_find_matching_node(dn, matches);
760 return NULL;
765 * of_iomap - Maps the memory mapped IO for a given device_node
766 * @device: the device whose io range will be mapped
767 * @index: index of the io range
769 * Returns a pointer to the mapped memory
771 void __iomem *of_iomap(struct device_node *np, int index)
773 struct resource res;
775 if (of_address_to_resource(np, index, &res))
776 return NULL;
778 return ioremap(res.start, resource_size(&res));
780 EXPORT_SYMBOL(of_iomap);
783 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
784 * for a given device_node
785 * @device: the device whose io range will be mapped
786 * @index: index of the io range
787 * @name: name of the resource
789 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
790 * error code on failure. Usage example:
792 * base = of_io_request_and_map(node, 0, "foo");
793 * if (IS_ERR(base))
794 * return PTR_ERR(base);
796 void __iomem *of_io_request_and_map(struct device_node *np, int index,
797 const char *name)
799 struct resource res;
800 void __iomem *mem;
802 if (of_address_to_resource(np, index, &res))
803 return IOMEM_ERR_PTR(-EINVAL);
805 if (!request_mem_region(res.start, resource_size(&res), name))
806 return IOMEM_ERR_PTR(-EBUSY);
808 mem = ioremap(res.start, resource_size(&res));
809 if (!mem) {
810 release_mem_region(res.start, resource_size(&res));
811 return IOMEM_ERR_PTR(-ENOMEM);
814 return mem;
816 EXPORT_SYMBOL(of_io_request_and_map);
819 * of_dma_get_range - Get DMA range info
820 * @np: device node to get DMA range info
821 * @dma_addr: pointer to store initial DMA address of DMA range
822 * @paddr: pointer to store initial CPU address of DMA range
823 * @size: pointer to store size of DMA range
825 * Look in bottom up direction for the first "dma-ranges" property
826 * and parse it.
827 * dma-ranges format:
828 * DMA addr (dma_addr) : naddr cells
829 * CPU addr (phys_addr_t) : pna cells
830 * size : nsize cells
832 * It returns -ENODEV if "dma-ranges" property was not found
833 * for this device in DT.
835 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
837 struct device_node *node = of_node_get(np);
838 const __be32 *ranges = NULL;
839 int len, naddr, nsize, pna;
840 int ret = 0;
841 u64 dmaaddr;
843 if (!node)
844 return -EINVAL;
846 while (1) {
847 naddr = of_n_addr_cells(node);
848 nsize = of_n_size_cells(node);
849 node = of_get_next_parent(node);
850 if (!node)
851 break;
853 ranges = of_get_property(node, "dma-ranges", &len);
855 /* Ignore empty ranges, they imply no translation required */
856 if (ranges && len > 0)
857 break;
860 * At least empty ranges has to be defined for parent node if
861 * DMA is supported
863 if (!ranges)
864 break;
867 if (!ranges) {
868 pr_debug("no dma-ranges found for node(%pOF)\n", np);
869 ret = -ENODEV;
870 goto out;
873 len /= sizeof(u32);
875 pna = of_n_addr_cells(node);
877 /* dma-ranges format:
878 * DMA addr : naddr cells
879 * CPU addr : pna cells
880 * size : nsize cells
882 dmaaddr = of_read_number(ranges, naddr);
883 *paddr = of_translate_dma_address(np, ranges);
884 if (*paddr == OF_BAD_ADDR) {
885 pr_err("translation of DMA address(%pad) to CPU address failed node(%pOF)\n",
886 dma_addr, np);
887 ret = -EINVAL;
888 goto out;
890 *dma_addr = dmaaddr;
892 *size = of_read_number(ranges + naddr + pna, nsize);
894 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
895 *dma_addr, *paddr, *size);
897 out:
898 of_node_put(node);
900 return ret;
902 EXPORT_SYMBOL_GPL(of_dma_get_range);
905 * of_dma_is_coherent - Check if device is coherent
906 * @np: device node
908 * It returns true if "dma-coherent" property was found
909 * for this device in DT.
911 bool of_dma_is_coherent(struct device_node *np)
913 struct device_node *node = of_node_get(np);
915 while (node) {
916 if (of_property_read_bool(node, "dma-coherent")) {
917 of_node_put(node);
918 return true;
920 node = of_get_next_parent(node);
922 of_node_put(node);
923 return false;
925 EXPORT_SYMBOL_GPL(of_dma_is_coherent);