xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / scsi / aacraid / aachba.c
blobe7961cbd2c55ab81020084730e8ec19f45aeda7d
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26 * Module Name:
27 * aachba.c
29 * Abstract: Contains Interfaces to manage IOs.
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/uaccess.h>
42 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
43 #include <linux/module.h>
45 #include <asm/unaligned.h>
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_cmnd.h>
49 #include <scsi/scsi_device.h>
50 #include <scsi/scsi_host.h>
52 #include "aacraid.h"
54 /* values for inqd_pdt: Peripheral device type in plain English */
55 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
56 #define INQD_PDT_PROC 0x03 /* Processor device */
57 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
58 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
59 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
60 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
62 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
63 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
66 * Sense codes
69 #define SENCODE_NO_SENSE 0x00
70 #define SENCODE_END_OF_DATA 0x00
71 #define SENCODE_BECOMING_READY 0x04
72 #define SENCODE_INIT_CMD_REQUIRED 0x04
73 #define SENCODE_UNRECOVERED_READ_ERROR 0x11
74 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
75 #define SENCODE_INVALID_COMMAND 0x20
76 #define SENCODE_LBA_OUT_OF_RANGE 0x21
77 #define SENCODE_INVALID_CDB_FIELD 0x24
78 #define SENCODE_LUN_NOT_SUPPORTED 0x25
79 #define SENCODE_INVALID_PARAM_FIELD 0x26
80 #define SENCODE_PARAM_NOT_SUPPORTED 0x26
81 #define SENCODE_PARAM_VALUE_INVALID 0x26
82 #define SENCODE_RESET_OCCURRED 0x29
83 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
84 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F
85 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
86 #define SENCODE_DIAGNOSTIC_FAILURE 0x40
87 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44
88 #define SENCODE_INVALID_MESSAGE_ERROR 0x49
89 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
90 #define SENCODE_OVERLAPPED_COMMAND 0x4E
93 * Additional sense codes
96 #define ASENCODE_NO_SENSE 0x00
97 #define ASENCODE_END_OF_DATA 0x05
98 #define ASENCODE_BECOMING_READY 0x01
99 #define ASENCODE_INIT_CMD_REQUIRED 0x02
100 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
101 #define ASENCODE_INVALID_COMMAND 0x00
102 #define ASENCODE_LBA_OUT_OF_RANGE 0x00
103 #define ASENCODE_INVALID_CDB_FIELD 0x00
104 #define ASENCODE_LUN_NOT_SUPPORTED 0x00
105 #define ASENCODE_INVALID_PARAM_FIELD 0x00
106 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01
107 #define ASENCODE_PARAM_VALUE_INVALID 0x02
108 #define ASENCODE_RESET_OCCURRED 0x00
109 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
110 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03
111 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
112 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80
113 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
114 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00
115 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
116 #define ASENCODE_OVERLAPPED_COMMAND 0x00
118 #define AAC_STAT_GOOD (DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD)
120 #define BYTE0(x) (unsigned char)(x)
121 #define BYTE1(x) (unsigned char)((x) >> 8)
122 #define BYTE2(x) (unsigned char)((x) >> 16)
123 #define BYTE3(x) (unsigned char)((x) >> 24)
125 /* MODE_SENSE data format */
126 typedef struct {
127 struct {
128 u8 data_length;
129 u8 med_type;
130 u8 dev_par;
131 u8 bd_length;
132 } __attribute__((packed)) hd;
133 struct {
134 u8 dens_code;
135 u8 block_count[3];
136 u8 reserved;
137 u8 block_length[3];
138 } __attribute__((packed)) bd;
139 u8 mpc_buf[3];
140 } __attribute__((packed)) aac_modep_data;
142 /* MODE_SENSE_10 data format */
143 typedef struct {
144 struct {
145 u8 data_length[2];
146 u8 med_type;
147 u8 dev_par;
148 u8 rsrvd[2];
149 u8 bd_length[2];
150 } __attribute__((packed)) hd;
151 struct {
152 u8 dens_code;
153 u8 block_count[3];
154 u8 reserved;
155 u8 block_length[3];
156 } __attribute__((packed)) bd;
157 u8 mpc_buf[3];
158 } __attribute__((packed)) aac_modep10_data;
160 /*------------------------------------------------------------------------------
161 * S T R U C T S / T Y P E D E F S
162 *----------------------------------------------------------------------------*/
163 /* SCSI inquiry data */
164 struct inquiry_data {
165 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
166 u8 inqd_dtq; /* RMB | Device Type Qualifier */
167 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
168 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
169 u8 inqd_len; /* Additional length (n-4) */
170 u8 inqd_pad1[2];/* Reserved - must be zero */
171 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
172 u8 inqd_vid[8]; /* Vendor ID */
173 u8 inqd_pid[16];/* Product ID */
174 u8 inqd_prl[4]; /* Product Revision Level */
177 /* Added for VPD 0x83 */
178 struct tvpd_id_descriptor_type_1 {
179 u8 codeset:4; /* VPD_CODE_SET */
180 u8 reserved:4;
181 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */
182 u8 reserved2:4;
183 u8 reserved3;
184 u8 identifierlength;
185 u8 venid[8];
186 u8 productid[16];
187 u8 serialnumber[8]; /* SN in ASCII */
191 struct tvpd_id_descriptor_type_2 {
192 u8 codeset:4; /* VPD_CODE_SET */
193 u8 reserved:4;
194 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */
195 u8 reserved2:4;
196 u8 reserved3;
197 u8 identifierlength;
198 struct teu64id {
199 u32 Serial;
200 /* The serial number supposed to be 40 bits,
201 * bit we only support 32, so make the last byte zero. */
202 u8 reserved;
203 u8 venid[3];
204 } eu64id;
208 struct tvpd_id_descriptor_type_3 {
209 u8 codeset : 4; /* VPD_CODE_SET */
210 u8 reserved : 4;
211 u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */
212 u8 reserved2 : 4;
213 u8 reserved3;
214 u8 identifierlength;
215 u8 Identifier[16];
218 struct tvpd_page83 {
219 u8 DeviceType:5;
220 u8 DeviceTypeQualifier:3;
221 u8 PageCode;
222 u8 reserved;
223 u8 PageLength;
224 struct tvpd_id_descriptor_type_1 type1;
225 struct tvpd_id_descriptor_type_2 type2;
226 struct tvpd_id_descriptor_type_3 type3;
230 * M O D U L E G L O B A L S
233 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap);
234 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg);
235 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg);
236 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
237 struct aac_raw_io2 *rio2, int sg_max);
238 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
239 struct aac_hba_cmd_req *hbacmd,
240 int sg_max, u64 sg_address);
241 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2,
242 int pages, int nseg, int nseg_new);
243 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
244 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd);
245 #ifdef AAC_DETAILED_STATUS_INFO
246 static char *aac_get_status_string(u32 status);
247 #endif
250 * Non dasd selection is handled entirely in aachba now
253 static int nondasd = -1;
254 static int aac_cache = 2; /* WCE=0 to avoid performance problems */
255 static int dacmode = -1;
256 int aac_msi;
257 int aac_commit = -1;
258 int startup_timeout = 180;
259 int aif_timeout = 120;
260 int aac_sync_mode; /* Only Sync. transfer - disabled */
261 int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */
263 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR);
264 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode"
265 " 0=off, 1=on");
266 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR);
267 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list"
268 " 0=off, 1=on");
269 module_param(nondasd, int, S_IRUGO|S_IWUSR);
270 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
271 " 0=off, 1=on");
272 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
273 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
274 "\tbit 0 - Disable FUA in WRITE SCSI commands\n"
275 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
276 "\tbit 2 - Disable only if Battery is protecting Cache");
277 module_param(dacmode, int, S_IRUGO|S_IWUSR);
278 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
279 " 0=off, 1=on");
280 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
281 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
282 " adapter for foreign arrays.\n"
283 "This is typically needed in systems that do not have a BIOS."
284 " 0=off, 1=on");
285 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
286 MODULE_PARM_DESC(msi, "IRQ handling."
287 " 0=PIC(default), 1=MSI, 2=MSI-X)");
288 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
289 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
290 " adapter to have it's kernel up and\n"
291 "running. This is typically adjusted for large systems that do not"
292 " have a BIOS.");
293 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
294 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
295 " applications to pick up AIFs before\n"
296 "deregistering them. This is typically adjusted for heavily burdened"
297 " systems.");
299 int aac_fib_dump;
300 module_param(aac_fib_dump, int, 0644);
301 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on");
303 int numacb = -1;
304 module_param(numacb, int, S_IRUGO|S_IWUSR);
305 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
306 " blocks (FIB) allocated. Valid values are 512 and down. Default is"
307 " to use suggestion from Firmware.");
309 int acbsize = -1;
310 module_param(acbsize, int, S_IRUGO|S_IWUSR);
311 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
312 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
313 " suggestion from Firmware.");
315 int update_interval = 30 * 60;
316 module_param(update_interval, int, S_IRUGO|S_IWUSR);
317 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
318 " updates issued to adapter.");
320 int check_interval = 60;
321 module_param(check_interval, int, S_IRUGO|S_IWUSR);
322 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
323 " checks.");
325 int aac_check_reset = 1;
326 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
327 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
328 " adapter. a value of -1 forces the reset to adapters programmed to"
329 " ignore it.");
331 int expose_physicals = -1;
332 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
333 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
334 " -1=protect 0=off, 1=on");
336 int aac_reset_devices;
337 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
338 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
340 int aac_wwn = 1;
341 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
342 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
343 "\t0 - Disable\n"
344 "\t1 - Array Meta Data Signature (default)\n"
345 "\t2 - Adapter Serial Number");
348 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
349 struct fib *fibptr) {
350 struct scsi_device *device;
352 if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
353 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
354 aac_fib_complete(fibptr);
355 return 0;
357 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
358 device = scsicmd->device;
359 if (unlikely(!device)) {
360 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
361 aac_fib_complete(fibptr);
362 return 0;
364 return 1;
368 * aac_get_config_status - check the adapter configuration
369 * @common: adapter to query
371 * Query config status, and commit the configuration if needed.
373 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
375 int status = 0;
376 struct fib * fibptr;
378 if (!(fibptr = aac_fib_alloc(dev)))
379 return -ENOMEM;
381 aac_fib_init(fibptr);
383 struct aac_get_config_status *dinfo;
384 dinfo = (struct aac_get_config_status *) fib_data(fibptr);
386 dinfo->command = cpu_to_le32(VM_ContainerConfig);
387 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
388 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
391 status = aac_fib_send(ContainerCommand,
392 fibptr,
393 sizeof (struct aac_get_config_status),
394 FsaNormal,
395 1, 1,
396 NULL, NULL);
397 if (status < 0) {
398 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
399 } else {
400 struct aac_get_config_status_resp *reply
401 = (struct aac_get_config_status_resp *) fib_data(fibptr);
402 dprintk((KERN_WARNING
403 "aac_get_config_status: response=%d status=%d action=%d\n",
404 le32_to_cpu(reply->response),
405 le32_to_cpu(reply->status),
406 le32_to_cpu(reply->data.action)));
407 if ((le32_to_cpu(reply->response) != ST_OK) ||
408 (le32_to_cpu(reply->status) != CT_OK) ||
409 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
410 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
411 status = -EINVAL;
414 /* Do not set XferState to zero unless receives a response from F/W */
415 if (status >= 0)
416 aac_fib_complete(fibptr);
418 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
419 if (status >= 0) {
420 if ((aac_commit == 1) || commit_flag) {
421 struct aac_commit_config * dinfo;
422 aac_fib_init(fibptr);
423 dinfo = (struct aac_commit_config *) fib_data(fibptr);
425 dinfo->command = cpu_to_le32(VM_ContainerConfig);
426 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
428 status = aac_fib_send(ContainerCommand,
429 fibptr,
430 sizeof (struct aac_commit_config),
431 FsaNormal,
432 1, 1,
433 NULL, NULL);
434 /* Do not set XferState to zero unless
435 * receives a response from F/W */
436 if (status >= 0)
437 aac_fib_complete(fibptr);
438 } else if (aac_commit == 0) {
439 printk(KERN_WARNING
440 "aac_get_config_status: Foreign device configurations are being ignored\n");
443 /* FIB should be freed only after getting the response from the F/W */
444 if (status != -ERESTARTSYS)
445 aac_fib_free(fibptr);
446 return status;
449 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd)
451 char inq_data;
452 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data));
453 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) {
454 inq_data &= 0xdf;
455 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
460 * aac_get_containers - list containers
461 * @common: adapter to probe
463 * Make a list of all containers on this controller
465 int aac_get_containers(struct aac_dev *dev)
467 struct fsa_dev_info *fsa_dev_ptr;
468 u32 index;
469 int status = 0;
470 struct fib * fibptr;
471 struct aac_get_container_count *dinfo;
472 struct aac_get_container_count_resp *dresp;
473 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
475 if (!(fibptr = aac_fib_alloc(dev)))
476 return -ENOMEM;
478 aac_fib_init(fibptr);
479 dinfo = (struct aac_get_container_count *) fib_data(fibptr);
480 dinfo->command = cpu_to_le32(VM_ContainerConfig);
481 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
483 status = aac_fib_send(ContainerCommand,
484 fibptr,
485 sizeof (struct aac_get_container_count),
486 FsaNormal,
487 1, 1,
488 NULL, NULL);
489 if (status >= 0) {
490 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
491 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
492 if (fibptr->dev->supplement_adapter_info.supported_options2 &
493 AAC_OPTION_SUPPORTED_240_VOLUMES) {
494 maximum_num_containers =
495 le32_to_cpu(dresp->MaxSimpleVolumes);
497 aac_fib_complete(fibptr);
499 /* FIB should be freed only after getting the response from the F/W */
500 if (status != -ERESTARTSYS)
501 aac_fib_free(fibptr);
503 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
504 maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
505 if (dev->fsa_dev == NULL ||
506 dev->maximum_num_containers != maximum_num_containers) {
508 fsa_dev_ptr = dev->fsa_dev;
510 dev->fsa_dev = kcalloc(maximum_num_containers,
511 sizeof(*fsa_dev_ptr), GFP_KERNEL);
513 kfree(fsa_dev_ptr);
514 fsa_dev_ptr = NULL;
517 if (!dev->fsa_dev)
518 return -ENOMEM;
520 dev->maximum_num_containers = maximum_num_containers;
522 for (index = 0; index < dev->maximum_num_containers; index++) {
523 dev->fsa_dev[index].devname[0] = '\0';
524 dev->fsa_dev[index].valid = 0;
526 status = aac_probe_container(dev, index);
528 if (status < 0) {
529 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
530 break;
533 return status;
536 static void get_container_name_callback(void *context, struct fib * fibptr)
538 struct aac_get_name_resp * get_name_reply;
539 struct scsi_cmnd * scsicmd;
541 scsicmd = (struct scsi_cmnd *) context;
543 if (!aac_valid_context(scsicmd, fibptr))
544 return;
546 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
547 BUG_ON(fibptr == NULL);
549 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
550 /* Failure is irrelevant, using default value instead */
551 if ((le32_to_cpu(get_name_reply->status) == CT_OK)
552 && (get_name_reply->data[0] != '\0')) {
553 char *sp = get_name_reply->data;
554 int data_size = FIELD_SIZEOF(struct aac_get_name_resp, data);
556 sp[data_size - 1] = '\0';
557 while (*sp == ' ')
558 ++sp;
559 if (*sp) {
560 struct inquiry_data inq;
561 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
562 int count = sizeof(d);
563 char *dp = d;
564 do {
565 *dp++ = (*sp) ? *sp++ : ' ';
566 } while (--count > 0);
568 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
569 memcpy(inq.inqd_pid, d, sizeof(d));
570 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
574 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
576 aac_fib_complete(fibptr);
577 scsicmd->scsi_done(scsicmd);
581 * aac_get_container_name - get container name, none blocking.
583 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
585 int status;
586 int data_size;
587 struct aac_get_name *dinfo;
588 struct fib * cmd_fibcontext;
589 struct aac_dev * dev;
591 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
593 data_size = FIELD_SIZEOF(struct aac_get_name_resp, data);
595 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
597 aac_fib_init(cmd_fibcontext);
598 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
599 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
601 dinfo->command = cpu_to_le32(VM_ContainerConfig);
602 dinfo->type = cpu_to_le32(CT_READ_NAME);
603 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
604 dinfo->count = cpu_to_le32(data_size - 1);
606 status = aac_fib_send(ContainerCommand,
607 cmd_fibcontext,
608 sizeof(struct aac_get_name_resp),
609 FsaNormal,
610 0, 1,
611 (fib_callback)get_container_name_callback,
612 (void *) scsicmd);
615 * Check that the command queued to the controller
617 if (status == -EINPROGRESS)
618 return 0;
620 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
621 aac_fib_complete(cmd_fibcontext);
622 return -1;
625 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
627 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
629 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
630 return aac_scsi_cmd(scsicmd);
632 scsicmd->result = DID_NO_CONNECT << 16;
633 scsicmd->scsi_done(scsicmd);
634 return 0;
637 static void _aac_probe_container2(void * context, struct fib * fibptr)
639 struct fsa_dev_info *fsa_dev_ptr;
640 int (*callback)(struct scsi_cmnd *);
641 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
642 int i;
645 if (!aac_valid_context(scsicmd, fibptr))
646 return;
648 scsicmd->SCp.Status = 0;
649 fsa_dev_ptr = fibptr->dev->fsa_dev;
650 if (fsa_dev_ptr) {
651 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
652 __le32 sup_options2;
654 fsa_dev_ptr += scmd_id(scsicmd);
655 sup_options2 =
656 fibptr->dev->supplement_adapter_info.supported_options2;
658 if ((le32_to_cpu(dresp->status) == ST_OK) &&
659 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
660 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
661 if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) {
662 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200;
663 fsa_dev_ptr->block_size = 0x200;
664 } else {
665 fsa_dev_ptr->block_size =
666 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size);
668 for (i = 0; i < 16; i++)
669 fsa_dev_ptr->identifier[i] =
670 dresp->mnt[0].fileinfo.bdevinfo
671 .identifier[i];
672 fsa_dev_ptr->valid = 1;
673 /* sense_key holds the current state of the spin-up */
674 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
675 fsa_dev_ptr->sense_data.sense_key = NOT_READY;
676 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
677 fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
678 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
679 fsa_dev_ptr->size
680 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
681 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
682 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
684 if ((fsa_dev_ptr->valid & 1) == 0)
685 fsa_dev_ptr->valid = 0;
686 scsicmd->SCp.Status = le32_to_cpu(dresp->count);
688 aac_fib_complete(fibptr);
689 aac_fib_free(fibptr);
690 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
691 scsicmd->SCp.ptr = NULL;
692 (*callback)(scsicmd);
693 return;
696 static void _aac_probe_container1(void * context, struct fib * fibptr)
698 struct scsi_cmnd * scsicmd;
699 struct aac_mount * dresp;
700 struct aac_query_mount *dinfo;
701 int status;
703 dresp = (struct aac_mount *) fib_data(fibptr);
704 if (!aac_supports_2T(fibptr->dev)) {
705 dresp->mnt[0].capacityhigh = 0;
706 if ((le32_to_cpu(dresp->status) == ST_OK) &&
707 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
708 _aac_probe_container2(context, fibptr);
709 return;
712 scsicmd = (struct scsi_cmnd *) context;
714 if (!aac_valid_context(scsicmd, fibptr))
715 return;
717 aac_fib_init(fibptr);
719 dinfo = (struct aac_query_mount *)fib_data(fibptr);
721 if (fibptr->dev->supplement_adapter_info.supported_options2 &
722 AAC_OPTION_VARIABLE_BLOCK_SIZE)
723 dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
724 else
725 dinfo->command = cpu_to_le32(VM_NameServe64);
727 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
728 dinfo->type = cpu_to_le32(FT_FILESYS);
729 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
731 status = aac_fib_send(ContainerCommand,
732 fibptr,
733 sizeof(struct aac_query_mount),
734 FsaNormal,
735 0, 1,
736 _aac_probe_container2,
737 (void *) scsicmd);
739 * Check that the command queued to the controller
741 if (status < 0 && status != -EINPROGRESS) {
742 /* Inherit results from VM_NameServe, if any */
743 dresp->status = cpu_to_le32(ST_OK);
744 _aac_probe_container2(context, fibptr);
748 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
750 struct fib * fibptr;
751 int status = -ENOMEM;
753 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
754 struct aac_query_mount *dinfo;
756 aac_fib_init(fibptr);
758 dinfo = (struct aac_query_mount *)fib_data(fibptr);
760 if (fibptr->dev->supplement_adapter_info.supported_options2 &
761 AAC_OPTION_VARIABLE_BLOCK_SIZE)
762 dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
763 else
764 dinfo->command = cpu_to_le32(VM_NameServe);
766 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
767 dinfo->type = cpu_to_le32(FT_FILESYS);
768 scsicmd->SCp.ptr = (char *)callback;
769 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
771 status = aac_fib_send(ContainerCommand,
772 fibptr,
773 sizeof(struct aac_query_mount),
774 FsaNormal,
775 0, 1,
776 _aac_probe_container1,
777 (void *) scsicmd);
779 * Check that the command queued to the controller
781 if (status == -EINPROGRESS)
782 return 0;
784 if (status < 0) {
785 scsicmd->SCp.ptr = NULL;
786 aac_fib_complete(fibptr);
787 aac_fib_free(fibptr);
790 if (status < 0) {
791 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
792 if (fsa_dev_ptr) {
793 fsa_dev_ptr += scmd_id(scsicmd);
794 if ((fsa_dev_ptr->valid & 1) == 0) {
795 fsa_dev_ptr->valid = 0;
796 return (*callback)(scsicmd);
800 return status;
804 * aac_probe_container - query a logical volume
805 * @dev: device to query
806 * @cid: container identifier
808 * Queries the controller about the given volume. The volume information
809 * is updated in the struct fsa_dev_info structure rather than returned.
811 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
813 scsicmd->device = NULL;
814 return 0;
817 int aac_probe_container(struct aac_dev *dev, int cid)
819 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
820 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
821 int status;
823 if (!scsicmd || !scsidev) {
824 kfree(scsicmd);
825 kfree(scsidev);
826 return -ENOMEM;
828 scsicmd->list.next = NULL;
829 scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
831 scsicmd->device = scsidev;
832 scsidev->sdev_state = 0;
833 scsidev->id = cid;
834 scsidev->host = dev->scsi_host_ptr;
836 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
837 while (scsicmd->device == scsidev)
838 schedule();
839 kfree(scsidev);
840 status = scsicmd->SCp.Status;
841 kfree(scsicmd);
842 return status;
845 /* Local Structure to set SCSI inquiry data strings */
846 struct scsi_inq {
847 char vid[8]; /* Vendor ID */
848 char pid[16]; /* Product ID */
849 char prl[4]; /* Product Revision Level */
853 * InqStrCopy - string merge
854 * @a: string to copy from
855 * @b: string to copy to
857 * Copy a String from one location to another
858 * without copying \0
861 static void inqstrcpy(char *a, char *b)
864 while (*a != (char)0)
865 *b++ = *a++;
868 static char *container_types[] = {
869 "None",
870 "Volume",
871 "Mirror",
872 "Stripe",
873 "RAID5",
874 "SSRW",
875 "SSRO",
876 "Morph",
877 "Legacy",
878 "RAID4",
879 "RAID10",
880 "RAID00",
881 "V-MIRRORS",
882 "PSEUDO R4",
883 "RAID50",
884 "RAID5D",
885 "RAID5D0",
886 "RAID1E",
887 "RAID6",
888 "RAID60",
889 "Unknown"
892 char * get_container_type(unsigned tindex)
894 if (tindex >= ARRAY_SIZE(container_types))
895 tindex = ARRAY_SIZE(container_types) - 1;
896 return container_types[tindex];
899 /* Function: setinqstr
901 * Arguments: [1] pointer to void [1] int
903 * Purpose: Sets SCSI inquiry data strings for vendor, product
904 * and revision level. Allows strings to be set in platform dependent
905 * files instead of in OS dependent driver source.
908 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
910 struct scsi_inq *str;
911 struct aac_supplement_adapter_info *sup_adap_info;
913 sup_adap_info = &dev->supplement_adapter_info;
914 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
915 memset(str, ' ', sizeof(*str));
917 if (sup_adap_info->adapter_type_text[0]) {
918 int c;
919 char *cp;
920 char *cname = kmemdup(sup_adap_info->adapter_type_text,
921 sizeof(sup_adap_info->adapter_type_text),
922 GFP_ATOMIC);
923 if (!cname)
924 return;
926 cp = cname;
927 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
928 inqstrcpy("SMC", str->vid);
929 else {
930 c = sizeof(str->vid);
931 while (*cp && *cp != ' ' && --c)
932 ++cp;
933 c = *cp;
934 *cp = '\0';
935 inqstrcpy(cname, str->vid);
936 *cp = c;
937 while (*cp && *cp != ' ')
938 ++cp;
940 while (*cp == ' ')
941 ++cp;
942 /* last six chars reserved for vol type */
943 if (strlen(cp) > sizeof(str->pid))
944 cp[sizeof(str->pid)] = '\0';
945 inqstrcpy (cp, str->pid);
947 kfree(cname);
948 } else {
949 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
951 inqstrcpy (mp->vname, str->vid);
952 /* last six chars reserved for vol type */
953 inqstrcpy (mp->model, str->pid);
956 if (tindex < ARRAY_SIZE(container_types)){
957 char *findit = str->pid;
959 for ( ; *findit != ' '; findit++); /* walk till we find a space */
960 /* RAID is superfluous in the context of a RAID device */
961 if (memcmp(findit-4, "RAID", 4) == 0)
962 *(findit -= 4) = ' ';
963 if (((findit - str->pid) + strlen(container_types[tindex]))
964 < (sizeof(str->pid) + sizeof(str->prl)))
965 inqstrcpy (container_types[tindex], findit + 1);
967 inqstrcpy ("V1.0", str->prl);
970 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data,
971 struct aac_dev *dev, struct scsi_cmnd *scsicmd)
973 int container;
975 vpdpage83data->type3.codeset = 1;
976 vpdpage83data->type3.identifiertype = 3;
977 vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3)
978 - 4;
980 for (container = 0; container < dev->maximum_num_containers;
981 container++) {
983 if (scmd_id(scsicmd) == container) {
984 memcpy(vpdpage83data->type3.Identifier,
985 dev->fsa_dev[container].identifier,
986 16);
987 break;
992 static void get_container_serial_callback(void *context, struct fib * fibptr)
994 struct aac_get_serial_resp * get_serial_reply;
995 struct scsi_cmnd * scsicmd;
997 BUG_ON(fibptr == NULL);
999 scsicmd = (struct scsi_cmnd *) context;
1000 if (!aac_valid_context(scsicmd, fibptr))
1001 return;
1003 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
1004 /* Failure is irrelevant, using default value instead */
1005 if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
1006 /*Check to see if it's for VPD 0x83 or 0x80 */
1007 if (scsicmd->cmnd[2] == 0x83) {
1008 /* vpd page 0x83 - Device Identification Page */
1009 struct aac_dev *dev;
1010 int i;
1011 struct tvpd_page83 vpdpage83data;
1013 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1015 memset(((u8 *)&vpdpage83data), 0,
1016 sizeof(vpdpage83data));
1018 /* DIRECT_ACCESS_DEVIC */
1019 vpdpage83data.DeviceType = 0;
1020 /* DEVICE_CONNECTED */
1021 vpdpage83data.DeviceTypeQualifier = 0;
1022 /* VPD_DEVICE_IDENTIFIERS */
1023 vpdpage83data.PageCode = 0x83;
1024 vpdpage83data.reserved = 0;
1025 vpdpage83data.PageLength =
1026 sizeof(vpdpage83data.type1) +
1027 sizeof(vpdpage83data.type2);
1029 /* VPD 83 Type 3 is not supported for ARC */
1030 if (dev->sa_firmware)
1031 vpdpage83data.PageLength +=
1032 sizeof(vpdpage83data.type3);
1034 /* T10 Vendor Identifier Field Format */
1035 /* VpdcodesetAscii */
1036 vpdpage83data.type1.codeset = 2;
1037 /* VpdIdentifierTypeVendorId */
1038 vpdpage83data.type1.identifiertype = 1;
1039 vpdpage83data.type1.identifierlength =
1040 sizeof(vpdpage83data.type1) - 4;
1042 /* "ADAPTEC " for adaptec */
1043 memcpy(vpdpage83data.type1.venid,
1044 "ADAPTEC ",
1045 sizeof(vpdpage83data.type1.venid));
1046 memcpy(vpdpage83data.type1.productid,
1047 "ARRAY ",
1048 sizeof(
1049 vpdpage83data.type1.productid));
1051 /* Convert to ascii based serial number.
1052 * The LSB is the the end.
1054 for (i = 0; i < 8; i++) {
1055 u8 temp =
1056 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF);
1057 if (temp > 0x9) {
1058 vpdpage83data.type1.serialnumber[i] =
1059 'A' + (temp - 0xA);
1060 } else {
1061 vpdpage83data.type1.serialnumber[i] =
1062 '0' + temp;
1066 /* VpdCodeSetBinary */
1067 vpdpage83data.type2.codeset = 1;
1068 /* VpdidentifiertypeEUI64 */
1069 vpdpage83data.type2.identifiertype = 2;
1070 vpdpage83data.type2.identifierlength =
1071 sizeof(vpdpage83data.type2) - 4;
1073 vpdpage83data.type2.eu64id.venid[0] = 0xD0;
1074 vpdpage83data.type2.eu64id.venid[1] = 0;
1075 vpdpage83data.type2.eu64id.venid[2] = 0;
1077 vpdpage83data.type2.eu64id.Serial =
1078 get_serial_reply->uid;
1079 vpdpage83data.type2.eu64id.reserved = 0;
1082 * VpdIdentifierTypeFCPHName
1083 * VPD 0x83 Type 3 not supported for ARC
1085 if (dev->sa_firmware) {
1086 build_vpd83_type3(&vpdpage83data,
1087 dev, scsicmd);
1090 /* Move the inquiry data to the response buffer. */
1091 scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data,
1092 sizeof(vpdpage83data));
1093 } else {
1094 /* It must be for VPD 0x80 */
1095 char sp[13];
1096 /* EVPD bit set */
1097 sp[0] = INQD_PDT_DA;
1098 sp[1] = scsicmd->cmnd[2];
1099 sp[2] = 0;
1100 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
1101 le32_to_cpu(get_serial_reply->uid));
1102 scsi_sg_copy_from_buffer(scsicmd, sp,
1103 sizeof(sp));
1107 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1109 aac_fib_complete(fibptr);
1110 scsicmd->scsi_done(scsicmd);
1114 * aac_get_container_serial - get container serial, none blocking.
1116 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
1118 int status;
1119 struct aac_get_serial *dinfo;
1120 struct fib * cmd_fibcontext;
1121 struct aac_dev * dev;
1123 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1125 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
1127 aac_fib_init(cmd_fibcontext);
1128 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
1130 dinfo->command = cpu_to_le32(VM_ContainerConfig);
1131 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
1132 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
1133 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1135 status = aac_fib_send(ContainerCommand,
1136 cmd_fibcontext,
1137 sizeof(struct aac_get_serial_resp),
1138 FsaNormal,
1139 0, 1,
1140 (fib_callback) get_container_serial_callback,
1141 (void *) scsicmd);
1144 * Check that the command queued to the controller
1146 if (status == -EINPROGRESS)
1147 return 0;
1149 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
1150 aac_fib_complete(cmd_fibcontext);
1151 return -1;
1154 /* Function: setinqserial
1156 * Arguments: [1] pointer to void [1] int
1158 * Purpose: Sets SCSI Unit Serial number.
1159 * This is a fake. We should read a proper
1160 * serial number from the container. <SuSE>But
1161 * without docs it's quite hard to do it :-)
1162 * So this will have to do in the meantime.</SuSE>
1165 static int setinqserial(struct aac_dev *dev, void *data, int cid)
1168 * This breaks array migration.
1170 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
1171 le32_to_cpu(dev->adapter_info.serial[0]), cid);
1174 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
1175 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
1177 u8 *sense_buf = (u8 *)sense_data;
1178 /* Sense data valid, err code 70h */
1179 sense_buf[0] = 0x70; /* No info field */
1180 sense_buf[1] = 0; /* Segment number, always zero */
1182 sense_buf[2] = sense_key; /* Sense key */
1184 sense_buf[12] = sense_code; /* Additional sense code */
1185 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
1187 if (sense_key == ILLEGAL_REQUEST) {
1188 sense_buf[7] = 10; /* Additional sense length */
1190 sense_buf[15] = bit_pointer;
1191 /* Illegal parameter is in the parameter block */
1192 if (sense_code == SENCODE_INVALID_CDB_FIELD)
1193 sense_buf[15] |= 0xc0;/* Std sense key specific field */
1194 /* Illegal parameter is in the CDB block */
1195 sense_buf[16] = field_pointer >> 8; /* MSB */
1196 sense_buf[17] = field_pointer; /* LSB */
1197 } else
1198 sense_buf[7] = 6; /* Additional sense length */
1201 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1203 if (lba & 0xffffffff00000000LL) {
1204 int cid = scmd_id(cmd);
1205 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1206 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1207 SAM_STAT_CHECK_CONDITION;
1208 set_sense(&dev->fsa_dev[cid].sense_data,
1209 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1210 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1211 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1212 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1213 SCSI_SENSE_BUFFERSIZE));
1214 cmd->scsi_done(cmd);
1215 return 1;
1217 return 0;
1220 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1222 return 0;
1225 static void io_callback(void *context, struct fib * fibptr);
1227 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1229 struct aac_dev *dev = fib->dev;
1230 u16 fibsize, command;
1231 long ret;
1233 aac_fib_init(fib);
1234 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1235 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1236 !dev->sync_mode) {
1237 struct aac_raw_io2 *readcmd2;
1238 readcmd2 = (struct aac_raw_io2 *) fib_data(fib);
1239 memset(readcmd2, 0, sizeof(struct aac_raw_io2));
1240 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1241 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1242 readcmd2->byteCount = cpu_to_le32(count *
1243 dev->fsa_dev[scmd_id(cmd)].block_size);
1244 readcmd2->cid = cpu_to_le16(scmd_id(cmd));
1245 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ);
1246 ret = aac_build_sgraw2(cmd, readcmd2,
1247 dev->scsi_host_ptr->sg_tablesize);
1248 if (ret < 0)
1249 return ret;
1250 command = ContainerRawIo2;
1251 fibsize = sizeof(struct aac_raw_io2) +
1252 ((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1253 } else {
1254 struct aac_raw_io *readcmd;
1255 readcmd = (struct aac_raw_io *) fib_data(fib);
1256 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1257 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1258 readcmd->count = cpu_to_le32(count *
1259 dev->fsa_dev[scmd_id(cmd)].block_size);
1260 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1261 readcmd->flags = cpu_to_le16(RIO_TYPE_READ);
1262 readcmd->bpTotal = 0;
1263 readcmd->bpComplete = 0;
1264 ret = aac_build_sgraw(cmd, &readcmd->sg);
1265 if (ret < 0)
1266 return ret;
1267 command = ContainerRawIo;
1268 fibsize = sizeof(struct aac_raw_io) +
1269 ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw));
1272 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1274 * Now send the Fib to the adapter
1276 return aac_fib_send(command,
1277 fib,
1278 fibsize,
1279 FsaNormal,
1280 0, 1,
1281 (fib_callback) io_callback,
1282 (void *) cmd);
1285 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1287 u16 fibsize;
1288 struct aac_read64 *readcmd;
1289 long ret;
1291 aac_fib_init(fib);
1292 readcmd = (struct aac_read64 *) fib_data(fib);
1293 readcmd->command = cpu_to_le32(VM_CtHostRead64);
1294 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1295 readcmd->sector_count = cpu_to_le16(count);
1296 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1297 readcmd->pad = 0;
1298 readcmd->flags = 0;
1300 ret = aac_build_sg64(cmd, &readcmd->sg);
1301 if (ret < 0)
1302 return ret;
1303 fibsize = sizeof(struct aac_read64) +
1304 ((le32_to_cpu(readcmd->sg.count) - 1) *
1305 sizeof (struct sgentry64));
1306 BUG_ON (fibsize > (fib->dev->max_fib_size -
1307 sizeof(struct aac_fibhdr)));
1309 * Now send the Fib to the adapter
1311 return aac_fib_send(ContainerCommand64,
1312 fib,
1313 fibsize,
1314 FsaNormal,
1315 0, 1,
1316 (fib_callback) io_callback,
1317 (void *) cmd);
1320 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1322 u16 fibsize;
1323 struct aac_read *readcmd;
1324 struct aac_dev *dev = fib->dev;
1325 long ret;
1327 aac_fib_init(fib);
1328 readcmd = (struct aac_read *) fib_data(fib);
1329 readcmd->command = cpu_to_le32(VM_CtBlockRead);
1330 readcmd->cid = cpu_to_le32(scmd_id(cmd));
1331 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1332 readcmd->count = cpu_to_le32(count *
1333 dev->fsa_dev[scmd_id(cmd)].block_size);
1335 ret = aac_build_sg(cmd, &readcmd->sg);
1336 if (ret < 0)
1337 return ret;
1338 fibsize = sizeof(struct aac_read) +
1339 ((le32_to_cpu(readcmd->sg.count) - 1) *
1340 sizeof (struct sgentry));
1341 BUG_ON (fibsize > (fib->dev->max_fib_size -
1342 sizeof(struct aac_fibhdr)));
1344 * Now send the Fib to the adapter
1346 return aac_fib_send(ContainerCommand,
1347 fib,
1348 fibsize,
1349 FsaNormal,
1350 0, 1,
1351 (fib_callback) io_callback,
1352 (void *) cmd);
1355 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1357 struct aac_dev *dev = fib->dev;
1358 u16 fibsize, command;
1359 long ret;
1361 aac_fib_init(fib);
1362 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1363 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1364 !dev->sync_mode) {
1365 struct aac_raw_io2 *writecmd2;
1366 writecmd2 = (struct aac_raw_io2 *) fib_data(fib);
1367 memset(writecmd2, 0, sizeof(struct aac_raw_io2));
1368 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1369 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1370 writecmd2->byteCount = cpu_to_le32(count *
1371 dev->fsa_dev[scmd_id(cmd)].block_size);
1372 writecmd2->cid = cpu_to_le16(scmd_id(cmd));
1373 writecmd2->flags = (fua && ((aac_cache & 5) != 1) &&
1374 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1375 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) :
1376 cpu_to_le16(RIO2_IO_TYPE_WRITE);
1377 ret = aac_build_sgraw2(cmd, writecmd2,
1378 dev->scsi_host_ptr->sg_tablesize);
1379 if (ret < 0)
1380 return ret;
1381 command = ContainerRawIo2;
1382 fibsize = sizeof(struct aac_raw_io2) +
1383 ((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1384 } else {
1385 struct aac_raw_io *writecmd;
1386 writecmd = (struct aac_raw_io *) fib_data(fib);
1387 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1388 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1389 writecmd->count = cpu_to_le32(count *
1390 dev->fsa_dev[scmd_id(cmd)].block_size);
1391 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1392 writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1393 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1394 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) :
1395 cpu_to_le16(RIO_TYPE_WRITE);
1396 writecmd->bpTotal = 0;
1397 writecmd->bpComplete = 0;
1398 ret = aac_build_sgraw(cmd, &writecmd->sg);
1399 if (ret < 0)
1400 return ret;
1401 command = ContainerRawIo;
1402 fibsize = sizeof(struct aac_raw_io) +
1403 ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw));
1406 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1408 * Now send the Fib to the adapter
1410 return aac_fib_send(command,
1411 fib,
1412 fibsize,
1413 FsaNormal,
1414 0, 1,
1415 (fib_callback) io_callback,
1416 (void *) cmd);
1419 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1421 u16 fibsize;
1422 struct aac_write64 *writecmd;
1423 long ret;
1425 aac_fib_init(fib);
1426 writecmd = (struct aac_write64 *) fib_data(fib);
1427 writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1428 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1429 writecmd->sector_count = cpu_to_le16(count);
1430 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1431 writecmd->pad = 0;
1432 writecmd->flags = 0;
1434 ret = aac_build_sg64(cmd, &writecmd->sg);
1435 if (ret < 0)
1436 return ret;
1437 fibsize = sizeof(struct aac_write64) +
1438 ((le32_to_cpu(writecmd->sg.count) - 1) *
1439 sizeof (struct sgentry64));
1440 BUG_ON (fibsize > (fib->dev->max_fib_size -
1441 sizeof(struct aac_fibhdr)));
1443 * Now send the Fib to the adapter
1445 return aac_fib_send(ContainerCommand64,
1446 fib,
1447 fibsize,
1448 FsaNormal,
1449 0, 1,
1450 (fib_callback) io_callback,
1451 (void *) cmd);
1454 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1456 u16 fibsize;
1457 struct aac_write *writecmd;
1458 struct aac_dev *dev = fib->dev;
1459 long ret;
1461 aac_fib_init(fib);
1462 writecmd = (struct aac_write *) fib_data(fib);
1463 writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1464 writecmd->cid = cpu_to_le32(scmd_id(cmd));
1465 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1466 writecmd->count = cpu_to_le32(count *
1467 dev->fsa_dev[scmd_id(cmd)].block_size);
1468 writecmd->sg.count = cpu_to_le32(1);
1469 /* ->stable is not used - it did mean which type of write */
1471 ret = aac_build_sg(cmd, &writecmd->sg);
1472 if (ret < 0)
1473 return ret;
1474 fibsize = sizeof(struct aac_write) +
1475 ((le32_to_cpu(writecmd->sg.count) - 1) *
1476 sizeof (struct sgentry));
1477 BUG_ON (fibsize > (fib->dev->max_fib_size -
1478 sizeof(struct aac_fibhdr)));
1480 * Now send the Fib to the adapter
1482 return aac_fib_send(ContainerCommand,
1483 fib,
1484 fibsize,
1485 FsaNormal,
1486 0, 1,
1487 (fib_callback) io_callback,
1488 (void *) cmd);
1491 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1493 struct aac_srb * srbcmd;
1494 u32 flag;
1495 u32 timeout;
1497 aac_fib_init(fib);
1498 switch(cmd->sc_data_direction){
1499 case DMA_TO_DEVICE:
1500 flag = SRB_DataOut;
1501 break;
1502 case DMA_BIDIRECTIONAL:
1503 flag = SRB_DataIn | SRB_DataOut;
1504 break;
1505 case DMA_FROM_DEVICE:
1506 flag = SRB_DataIn;
1507 break;
1508 case DMA_NONE:
1509 default: /* shuts up some versions of gcc */
1510 flag = SRB_NoDataXfer;
1511 break;
1514 srbcmd = (struct aac_srb*) fib_data(fib);
1515 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1516 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1517 srbcmd->id = cpu_to_le32(scmd_id(cmd));
1518 srbcmd->lun = cpu_to_le32(cmd->device->lun);
1519 srbcmd->flags = cpu_to_le32(flag);
1520 timeout = cmd->request->timeout/HZ;
1521 if (timeout == 0)
1522 timeout = 1;
1523 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
1524 srbcmd->retry_limit = 0; /* Obsolete parameter */
1525 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1526 return srbcmd;
1529 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib,
1530 struct scsi_cmnd *cmd)
1532 struct aac_hba_cmd_req *hbacmd;
1533 struct aac_dev *dev;
1534 int bus, target;
1535 u64 address;
1537 dev = (struct aac_dev *)cmd->device->host->hostdata;
1539 hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va;
1540 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */
1541 /* iu_type is a parameter of aac_hba_send */
1542 switch (cmd->sc_data_direction) {
1543 case DMA_TO_DEVICE:
1544 hbacmd->byte1 = 2;
1545 break;
1546 case DMA_FROM_DEVICE:
1547 case DMA_BIDIRECTIONAL:
1548 hbacmd->byte1 = 1;
1549 break;
1550 case DMA_NONE:
1551 default:
1552 break;
1554 hbacmd->lun[1] = cpu_to_le32(cmd->device->lun);
1556 bus = aac_logical_to_phys(scmd_channel(cmd));
1557 target = scmd_id(cmd);
1558 hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus;
1560 /* we fill in reply_qid later in aac_src_deliver_message */
1561 /* we fill in iu_type, request_id later in aac_hba_send */
1562 /* we fill in emb_data_desc_count later in aac_build_sghba */
1564 memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len);
1565 hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd));
1567 address = (u64)fib->hw_error_pa;
1568 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
1569 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
1570 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
1572 return hbacmd;
1575 static void aac_srb_callback(void *context, struct fib * fibptr);
1577 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1579 u16 fibsize;
1580 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1581 long ret;
1583 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg);
1584 if (ret < 0)
1585 return ret;
1586 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1588 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1589 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1591 * Build Scatter/Gather list
1593 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1594 ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1595 sizeof (struct sgentry64));
1596 BUG_ON (fibsize > (fib->dev->max_fib_size -
1597 sizeof(struct aac_fibhdr)));
1600 * Now send the Fib to the adapter
1602 return aac_fib_send(ScsiPortCommand64, fib,
1603 fibsize, FsaNormal, 0, 1,
1604 (fib_callback) aac_srb_callback,
1605 (void *) cmd);
1608 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1610 u16 fibsize;
1611 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1612 long ret;
1614 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg);
1615 if (ret < 0)
1616 return ret;
1617 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1619 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1620 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1622 * Build Scatter/Gather list
1624 fibsize = sizeof (struct aac_srb) +
1625 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1626 sizeof (struct sgentry));
1627 BUG_ON (fibsize > (fib->dev->max_fib_size -
1628 sizeof(struct aac_fibhdr)));
1631 * Now send the Fib to the adapter
1633 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1634 (fib_callback) aac_srb_callback, (void *) cmd);
1637 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1639 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1640 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1641 return FAILED;
1642 return aac_scsi_32(fib, cmd);
1645 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd)
1647 struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd);
1648 struct aac_dev *dev;
1649 long ret;
1651 dev = (struct aac_dev *)cmd->device->host->hostdata;
1653 ret = aac_build_sghba(cmd, hbacmd,
1654 dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa);
1655 if (ret < 0)
1656 return ret;
1659 * Now send the HBA command to the adapter
1661 fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) *
1662 sizeof(struct aac_hba_sgl);
1664 return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib,
1665 (fib_callback) aac_hba_callback,
1666 (void *) cmd);
1669 static int aac_send_safw_bmic_cmd(struct aac_dev *dev,
1670 struct aac_srb_unit *srbu, void *xfer_buf, int xfer_len)
1672 struct fib *fibptr;
1673 dma_addr_t addr;
1674 int rcode;
1675 int fibsize;
1676 struct aac_srb *srb;
1677 struct aac_srb_reply *srb_reply;
1678 struct sgmap64 *sg64;
1679 u32 vbus;
1680 u32 vid;
1682 if (!dev->sa_firmware)
1683 return 0;
1685 /* allocate FIB */
1686 fibptr = aac_fib_alloc(dev);
1687 if (!fibptr)
1688 return -ENOMEM;
1690 aac_fib_init(fibptr);
1691 fibptr->hw_fib_va->header.XferState &=
1692 ~cpu_to_le32(FastResponseCapable);
1694 fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) +
1695 sizeof(struct sgentry64);
1697 /* allocate DMA buffer for response */
1698 addr = dma_map_single(&dev->pdev->dev, xfer_buf, xfer_len,
1699 DMA_BIDIRECTIONAL);
1700 if (dma_mapping_error(&dev->pdev->dev, addr)) {
1701 rcode = -ENOMEM;
1702 goto fib_error;
1705 srb = fib_data(fibptr);
1706 memcpy(srb, &srbu->srb, sizeof(struct aac_srb));
1708 vbus = (u32)le16_to_cpu(
1709 dev->supplement_adapter_info.virt_device_bus);
1710 vid = (u32)le16_to_cpu(
1711 dev->supplement_adapter_info.virt_device_target);
1713 /* set the common request fields */
1714 srb->channel = cpu_to_le32(vbus);
1715 srb->id = cpu_to_le32(vid);
1716 srb->lun = 0;
1717 srb->function = cpu_to_le32(SRBF_ExecuteScsi);
1718 srb->timeout = 0;
1719 srb->retry_limit = 0;
1720 srb->cdb_size = cpu_to_le32(16);
1721 srb->count = cpu_to_le32(xfer_len);
1723 sg64 = (struct sgmap64 *)&srb->sg;
1724 sg64->count = cpu_to_le32(1);
1725 sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr));
1726 sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr));
1727 sg64->sg[0].count = cpu_to_le32(xfer_len);
1730 * Copy the updated data for other dumping or other usage if needed
1732 memcpy(&srbu->srb, srb, sizeof(struct aac_srb));
1734 /* issue request to the controller */
1735 rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, FsaNormal,
1736 1, 1, NULL, NULL);
1738 if (rcode == -ERESTARTSYS)
1739 rcode = -ERESTART;
1741 if (unlikely(rcode < 0))
1742 goto bmic_error;
1744 srb_reply = (struct aac_srb_reply *)fib_data(fibptr);
1745 memcpy(&srbu->srb_reply, srb_reply, sizeof(struct aac_srb_reply));
1747 bmic_error:
1748 dma_unmap_single(&dev->pdev->dev, addr, xfer_len, DMA_BIDIRECTIONAL);
1749 fib_error:
1750 aac_fib_complete(fibptr);
1751 aac_fib_free(fibptr);
1752 return rcode;
1755 static void aac_set_safw_target_qd(struct aac_dev *dev, int bus, int target)
1758 struct aac_ciss_identify_pd *identify_resp;
1760 if (dev->hba_map[bus][target].devtype != AAC_DEVTYPE_NATIVE_RAW)
1761 return;
1763 identify_resp = dev->hba_map[bus][target].safw_identify_resp;
1764 if (identify_resp == NULL) {
1765 dev->hba_map[bus][target].qd_limit = 32;
1766 return;
1769 if (identify_resp->current_queue_depth_limit <= 0 ||
1770 identify_resp->current_queue_depth_limit > 255)
1771 dev->hba_map[bus][target].qd_limit = 32;
1772 else
1773 dev->hba_map[bus][target].qd_limit =
1774 identify_resp->current_queue_depth_limit;
1777 static int aac_issue_safw_bmic_identify(struct aac_dev *dev,
1778 struct aac_ciss_identify_pd **identify_resp, u32 bus, u32 target)
1780 int rcode = -ENOMEM;
1781 int datasize;
1782 struct aac_srb_unit srbu;
1783 struct aac_srb *srbcmd;
1784 struct aac_ciss_identify_pd *identify_reply;
1786 datasize = sizeof(struct aac_ciss_identify_pd);
1787 identify_reply = kmalloc(datasize, GFP_KERNEL);
1788 if (!identify_reply)
1789 goto out;
1791 memset(&srbu, 0, sizeof(struct aac_srb_unit));
1793 srbcmd = &srbu.srb;
1794 srbcmd->flags = cpu_to_le32(SRB_DataIn);
1795 srbcmd->cdb[0] = 0x26;
1796 srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF);
1797 srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE;
1799 rcode = aac_send_safw_bmic_cmd(dev, &srbu, identify_reply, datasize);
1800 if (unlikely(rcode < 0))
1801 goto mem_free_all;
1803 *identify_resp = identify_reply;
1805 out:
1806 return rcode;
1807 mem_free_all:
1808 kfree(identify_reply);
1809 goto out;
1812 static inline void aac_free_safw_ciss_luns(struct aac_dev *dev)
1814 kfree(dev->safw_phys_luns);
1815 dev->safw_phys_luns = NULL;
1819 * aac_get_safw_ciss_luns() Process topology change
1820 * @dev: aac_dev structure
1822 * Execute a CISS REPORT PHYS LUNS and process the results into
1823 * the current hba_map.
1825 static int aac_get_safw_ciss_luns(struct aac_dev *dev)
1827 int rcode = -ENOMEM;
1828 int datasize;
1829 struct aac_srb *srbcmd;
1830 struct aac_srb_unit srbu;
1831 struct aac_ciss_phys_luns_resp *phys_luns;
1833 datasize = sizeof(struct aac_ciss_phys_luns_resp) +
1834 (AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun);
1835 phys_luns = kmalloc(datasize, GFP_KERNEL);
1836 if (phys_luns == NULL)
1837 goto out;
1839 memset(&srbu, 0, sizeof(struct aac_srb_unit));
1841 srbcmd = &srbu.srb;
1842 srbcmd->flags = cpu_to_le32(SRB_DataIn);
1843 srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS;
1844 srbcmd->cdb[1] = 2; /* extended reporting */
1845 srbcmd->cdb[8] = (u8)(datasize >> 8);
1846 srbcmd->cdb[9] = (u8)(datasize);
1848 rcode = aac_send_safw_bmic_cmd(dev, &srbu, phys_luns, datasize);
1849 if (unlikely(rcode < 0))
1850 goto mem_free_all;
1852 if (phys_luns->resp_flag != 2) {
1853 rcode = -ENOMSG;
1854 goto mem_free_all;
1857 dev->safw_phys_luns = phys_luns;
1859 out:
1860 return rcode;
1861 mem_free_all:
1862 kfree(phys_luns);
1863 goto out;
1866 static inline u32 aac_get_safw_phys_lun_count(struct aac_dev *dev)
1868 return get_unaligned_be32(&dev->safw_phys_luns->list_length[0])/24;
1871 static inline u32 aac_get_safw_phys_bus(struct aac_dev *dev, int lun)
1873 return dev->safw_phys_luns->lun[lun].level2[1] & 0x3f;
1876 static inline u32 aac_get_safw_phys_target(struct aac_dev *dev, int lun)
1878 return dev->safw_phys_luns->lun[lun].level2[0];
1881 static inline u32 aac_get_safw_phys_expose_flag(struct aac_dev *dev, int lun)
1883 return dev->safw_phys_luns->lun[lun].bus >> 6;
1886 static inline u32 aac_get_safw_phys_attribs(struct aac_dev *dev, int lun)
1888 return dev->safw_phys_luns->lun[lun].node_ident[9];
1891 static inline u32 aac_get_safw_phys_nexus(struct aac_dev *dev, int lun)
1893 return *((u32 *)&dev->safw_phys_luns->lun[lun].node_ident[12]);
1896 static inline u32 aac_get_safw_phys_device_type(struct aac_dev *dev, int lun)
1898 return dev->safw_phys_luns->lun[lun].node_ident[8];
1901 static inline void aac_free_safw_identify_resp(struct aac_dev *dev,
1902 int bus, int target)
1904 kfree(dev->hba_map[bus][target].safw_identify_resp);
1905 dev->hba_map[bus][target].safw_identify_resp = NULL;
1908 static inline void aac_free_safw_all_identify_resp(struct aac_dev *dev,
1909 int lun_count)
1911 int luns;
1912 int i;
1913 u32 bus;
1914 u32 target;
1916 luns = aac_get_safw_phys_lun_count(dev);
1918 if (luns < lun_count)
1919 lun_count = luns;
1920 else if (lun_count < 0)
1921 lun_count = luns;
1923 for (i = 0; i < lun_count; i++) {
1924 bus = aac_get_safw_phys_bus(dev, i);
1925 target = aac_get_safw_phys_target(dev, i);
1927 aac_free_safw_identify_resp(dev, bus, target);
1931 static int aac_get_safw_attr_all_targets(struct aac_dev *dev)
1933 int i;
1934 int rcode = 0;
1935 u32 lun_count;
1936 u32 bus;
1937 u32 target;
1938 struct aac_ciss_identify_pd *identify_resp = NULL;
1940 lun_count = aac_get_safw_phys_lun_count(dev);
1942 for (i = 0; i < lun_count; ++i) {
1944 bus = aac_get_safw_phys_bus(dev, i);
1945 target = aac_get_safw_phys_target(dev, i);
1947 rcode = aac_issue_safw_bmic_identify(dev,
1948 &identify_resp, bus, target);
1950 if (unlikely(rcode < 0))
1951 goto free_identify_resp;
1953 dev->hba_map[bus][target].safw_identify_resp = identify_resp;
1956 out:
1957 return rcode;
1958 free_identify_resp:
1959 aac_free_safw_all_identify_resp(dev, i);
1960 goto out;
1964 * aac_set_safw_attr_all_targets- update current hba map with data from FW
1965 * @dev: aac_dev structure
1966 * @phys_luns: FW information from report phys luns
1967 * @rescan: Indicates scan type
1969 * Update our hba map with the information gathered from the FW
1971 static void aac_set_safw_attr_all_targets(struct aac_dev *dev)
1973 /* ok and extended reporting */
1974 u32 lun_count, nexus;
1975 u32 i, bus, target;
1976 u8 expose_flag, attribs;
1977 u8 devtype;
1979 lun_count = aac_get_safw_phys_lun_count(dev);
1981 dev->scan_counter++;
1983 for (i = 0; i < lun_count; ++i) {
1985 bus = aac_get_safw_phys_bus(dev, i);
1986 target = aac_get_safw_phys_target(dev, i);
1987 expose_flag = aac_get_safw_phys_expose_flag(dev, i);
1988 attribs = aac_get_safw_phys_attribs(dev, i);
1989 nexus = aac_get_safw_phys_nexus(dev, i);
1991 if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS)
1992 continue;
1994 if (expose_flag != 0) {
1995 devtype = AAC_DEVTYPE_RAID_MEMBER;
1996 goto update_devtype;
1999 if (nexus != 0 && (attribs & 8)) {
2000 devtype = AAC_DEVTYPE_NATIVE_RAW;
2001 dev->hba_map[bus][target].rmw_nexus =
2002 nexus;
2003 } else
2004 devtype = AAC_DEVTYPE_ARC_RAW;
2006 dev->hba_map[bus][target].scan_counter = dev->scan_counter;
2008 aac_set_safw_target_qd(dev, bus, target);
2010 update_devtype:
2011 dev->hba_map[bus][target].devtype = devtype;
2015 static int aac_setup_safw_targets(struct aac_dev *dev)
2017 int rcode = 0;
2019 rcode = aac_get_containers(dev);
2020 if (unlikely(rcode < 0))
2021 goto out;
2023 rcode = aac_get_safw_ciss_luns(dev);
2024 if (unlikely(rcode < 0))
2025 goto out;
2027 rcode = aac_get_safw_attr_all_targets(dev);
2028 if (unlikely(rcode < 0))
2029 goto free_ciss_luns;
2031 aac_set_safw_attr_all_targets(dev);
2033 aac_free_safw_all_identify_resp(dev, -1);
2034 free_ciss_luns:
2035 aac_free_safw_ciss_luns(dev);
2036 out:
2037 return rcode;
2040 int aac_setup_safw_adapter(struct aac_dev *dev)
2042 return aac_setup_safw_targets(dev);
2045 int aac_get_adapter_info(struct aac_dev* dev)
2047 struct fib* fibptr;
2048 int rcode;
2049 u32 tmp, bus, target;
2050 struct aac_adapter_info *info;
2051 struct aac_bus_info *command;
2052 struct aac_bus_info_response *bus_info;
2054 if (!(fibptr = aac_fib_alloc(dev)))
2055 return -ENOMEM;
2057 aac_fib_init(fibptr);
2058 info = (struct aac_adapter_info *) fib_data(fibptr);
2059 memset(info,0,sizeof(*info));
2061 rcode = aac_fib_send(RequestAdapterInfo,
2062 fibptr,
2063 sizeof(*info),
2064 FsaNormal,
2065 -1, 1, /* First `interrupt' command uses special wait */
2066 NULL,
2067 NULL);
2069 if (rcode < 0) {
2070 /* FIB should be freed only after
2071 * getting the response from the F/W */
2072 if (rcode != -ERESTARTSYS) {
2073 aac_fib_complete(fibptr);
2074 aac_fib_free(fibptr);
2076 return rcode;
2078 memcpy(&dev->adapter_info, info, sizeof(*info));
2080 dev->supplement_adapter_info.virt_device_bus = 0xffff;
2081 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
2082 struct aac_supplement_adapter_info * sinfo;
2084 aac_fib_init(fibptr);
2086 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
2088 memset(sinfo,0,sizeof(*sinfo));
2090 rcode = aac_fib_send(RequestSupplementAdapterInfo,
2091 fibptr,
2092 sizeof(*sinfo),
2093 FsaNormal,
2094 1, 1,
2095 NULL,
2096 NULL);
2098 if (rcode >= 0)
2099 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
2100 if (rcode == -ERESTARTSYS) {
2101 fibptr = aac_fib_alloc(dev);
2102 if (!fibptr)
2103 return -ENOMEM;
2108 /* reset all previous mapped devices (i.e. for init. after IOP_RESET) */
2109 for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
2110 for (target = 0; target < AAC_MAX_TARGETS; target++) {
2111 dev->hba_map[bus][target].devtype = 0;
2112 dev->hba_map[bus][target].qd_limit = 0;
2117 * GetBusInfo
2120 aac_fib_init(fibptr);
2122 bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
2124 memset(bus_info, 0, sizeof(*bus_info));
2126 command = (struct aac_bus_info *)bus_info;
2128 command->Command = cpu_to_le32(VM_Ioctl);
2129 command->ObjType = cpu_to_le32(FT_DRIVE);
2130 command->MethodId = cpu_to_le32(1);
2131 command->CtlCmd = cpu_to_le32(GetBusInfo);
2133 rcode = aac_fib_send(ContainerCommand,
2134 fibptr,
2135 sizeof (*bus_info),
2136 FsaNormal,
2137 1, 1,
2138 NULL, NULL);
2140 /* reasoned default */
2141 dev->maximum_num_physicals = 16;
2142 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
2143 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
2144 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
2147 if (!dev->in_reset) {
2148 char buffer[16];
2149 tmp = le32_to_cpu(dev->adapter_info.kernelrev);
2150 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
2151 dev->name,
2152 dev->id,
2153 tmp>>24,
2154 (tmp>>16)&0xff,
2155 tmp&0xff,
2156 le32_to_cpu(dev->adapter_info.kernelbuild),
2157 (int)sizeof(dev->supplement_adapter_info.build_date),
2158 dev->supplement_adapter_info.build_date);
2159 tmp = le32_to_cpu(dev->adapter_info.monitorrev);
2160 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
2161 dev->name, dev->id,
2162 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
2163 le32_to_cpu(dev->adapter_info.monitorbuild));
2164 tmp = le32_to_cpu(dev->adapter_info.biosrev);
2165 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
2166 dev->name, dev->id,
2167 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
2168 le32_to_cpu(dev->adapter_info.biosbuild));
2169 buffer[0] = '\0';
2170 if (aac_get_serial_number(
2171 shost_to_class(dev->scsi_host_ptr), buffer))
2172 printk(KERN_INFO "%s%d: serial %s",
2173 dev->name, dev->id, buffer);
2174 if (dev->supplement_adapter_info.vpd_info.tsid[0]) {
2175 printk(KERN_INFO "%s%d: TSID %.*s\n",
2176 dev->name, dev->id,
2177 (int)sizeof(dev->supplement_adapter_info
2178 .vpd_info.tsid),
2179 dev->supplement_adapter_info.vpd_info.tsid);
2181 if (!aac_check_reset || ((aac_check_reset == 1) &&
2182 (dev->supplement_adapter_info.supported_options2 &
2183 AAC_OPTION_IGNORE_RESET))) {
2184 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
2185 dev->name, dev->id);
2189 dev->cache_protected = 0;
2190 dev->jbod = ((dev->supplement_adapter_info.feature_bits &
2191 AAC_FEATURE_JBOD) != 0);
2192 dev->nondasd_support = 0;
2193 dev->raid_scsi_mode = 0;
2194 if(dev->adapter_info.options & AAC_OPT_NONDASD)
2195 dev->nondasd_support = 1;
2198 * If the firmware supports ROMB RAID/SCSI mode and we are currently
2199 * in RAID/SCSI mode, set the flag. For now if in this mode we will
2200 * force nondasd support on. If we decide to allow the non-dasd flag
2201 * additional changes changes will have to be made to support
2202 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be
2203 * changed to support the new dev->raid_scsi_mode flag instead of
2204 * leaching off of the dev->nondasd_support flag. Also in linit.c the
2205 * function aac_detect will have to be modified where it sets up the
2206 * max number of channels based on the aac->nondasd_support flag only.
2208 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
2209 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
2210 dev->nondasd_support = 1;
2211 dev->raid_scsi_mode = 1;
2213 if (dev->raid_scsi_mode != 0)
2214 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
2215 dev->name, dev->id);
2217 if (nondasd != -1)
2218 dev->nondasd_support = (nondasd!=0);
2219 if (dev->nondasd_support && !dev->in_reset)
2220 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
2222 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
2223 dev->needs_dac = 1;
2224 dev->dac_support = 0;
2225 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
2226 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
2227 if (!dev->in_reset)
2228 printk(KERN_INFO "%s%d: 64bit support enabled.\n",
2229 dev->name, dev->id);
2230 dev->dac_support = 1;
2233 if(dacmode != -1) {
2234 dev->dac_support = (dacmode!=0);
2237 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */
2238 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks
2239 & AAC_QUIRK_SCSI_32)) {
2240 dev->nondasd_support = 0;
2241 dev->jbod = 0;
2242 expose_physicals = 0;
2245 if (dev->dac_support) {
2246 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64))) {
2247 if (!dev->in_reset)
2248 dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n");
2249 } else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32))) {
2250 dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n");
2251 dev->dac_support = 0;
2252 } else {
2253 dev_info(&dev->pdev->dev, "No suitable DMA available\n");
2254 rcode = -ENOMEM;
2258 * Deal with configuring for the individualized limits of each packet
2259 * interface.
2261 dev->a_ops.adapter_scsi = (dev->dac_support)
2262 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
2263 ? aac_scsi_32_64
2264 : aac_scsi_64)
2265 : aac_scsi_32;
2266 if (dev->raw_io_interface) {
2267 dev->a_ops.adapter_bounds = (dev->raw_io_64)
2268 ? aac_bounds_64
2269 : aac_bounds_32;
2270 dev->a_ops.adapter_read = aac_read_raw_io;
2271 dev->a_ops.adapter_write = aac_write_raw_io;
2272 } else {
2273 dev->a_ops.adapter_bounds = aac_bounds_32;
2274 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
2275 sizeof(struct aac_fibhdr) -
2276 sizeof(struct aac_write) + sizeof(struct sgentry)) /
2277 sizeof(struct sgentry);
2278 if (dev->dac_support) {
2279 dev->a_ops.adapter_read = aac_read_block64;
2280 dev->a_ops.adapter_write = aac_write_block64;
2282 * 38 scatter gather elements
2284 dev->scsi_host_ptr->sg_tablesize =
2285 (dev->max_fib_size -
2286 sizeof(struct aac_fibhdr) -
2287 sizeof(struct aac_write64) +
2288 sizeof(struct sgentry64)) /
2289 sizeof(struct sgentry64);
2290 } else {
2291 dev->a_ops.adapter_read = aac_read_block;
2292 dev->a_ops.adapter_write = aac_write_block;
2294 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
2295 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
2297 * Worst case size that could cause sg overflow when
2298 * we break up SG elements that are larger than 64KB.
2299 * Would be nice if we could tell the SCSI layer what
2300 * the maximum SG element size can be. Worst case is
2301 * (sg_tablesize-1) 4KB elements with one 64KB
2302 * element.
2303 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB
2305 dev->scsi_host_ptr->max_sectors =
2306 (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
2309 if (!dev->sync_mode && dev->sa_firmware &&
2310 dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE)
2311 dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize =
2312 HBA_MAX_SG_SEPARATE;
2314 /* FIB should be freed only after getting the response from the F/W */
2315 if (rcode != -ERESTARTSYS) {
2316 aac_fib_complete(fibptr);
2317 aac_fib_free(fibptr);
2320 return rcode;
2324 static void io_callback(void *context, struct fib * fibptr)
2326 struct aac_dev *dev;
2327 struct aac_read_reply *readreply;
2328 struct scsi_cmnd *scsicmd;
2329 u32 cid;
2331 scsicmd = (struct scsi_cmnd *) context;
2333 if (!aac_valid_context(scsicmd, fibptr))
2334 return;
2336 dev = fibptr->dev;
2337 cid = scmd_id(scsicmd);
2339 if (nblank(dprintk(x))) {
2340 u64 lba;
2341 switch (scsicmd->cmnd[0]) {
2342 case WRITE_6:
2343 case READ_6:
2344 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2345 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2346 break;
2347 case WRITE_16:
2348 case READ_16:
2349 lba = ((u64)scsicmd->cmnd[2] << 56) |
2350 ((u64)scsicmd->cmnd[3] << 48) |
2351 ((u64)scsicmd->cmnd[4] << 40) |
2352 ((u64)scsicmd->cmnd[5] << 32) |
2353 ((u64)scsicmd->cmnd[6] << 24) |
2354 (scsicmd->cmnd[7] << 16) |
2355 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2356 break;
2357 case WRITE_12:
2358 case READ_12:
2359 lba = ((u64)scsicmd->cmnd[2] << 24) |
2360 (scsicmd->cmnd[3] << 16) |
2361 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2362 break;
2363 default:
2364 lba = ((u64)scsicmd->cmnd[2] << 24) |
2365 (scsicmd->cmnd[3] << 16) |
2366 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2367 break;
2369 printk(KERN_DEBUG
2370 "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
2371 smp_processor_id(), (unsigned long long)lba, jiffies);
2374 BUG_ON(fibptr == NULL);
2376 scsi_dma_unmap(scsicmd);
2378 readreply = (struct aac_read_reply *)fib_data(fibptr);
2379 switch (le32_to_cpu(readreply->status)) {
2380 case ST_OK:
2381 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2382 SAM_STAT_GOOD;
2383 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
2384 break;
2385 case ST_NOT_READY:
2386 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2387 SAM_STAT_CHECK_CONDITION;
2388 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
2389 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
2390 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2391 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2392 SCSI_SENSE_BUFFERSIZE));
2393 break;
2394 case ST_MEDERR:
2395 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2396 SAM_STAT_CHECK_CONDITION;
2397 set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR,
2398 SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0);
2399 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2400 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2401 SCSI_SENSE_BUFFERSIZE));
2402 break;
2403 default:
2404 #ifdef AAC_DETAILED_STATUS_INFO
2405 printk(KERN_WARNING "io_callback: io failed, status = %d\n",
2406 le32_to_cpu(readreply->status));
2407 #endif
2408 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2409 SAM_STAT_CHECK_CONDITION;
2410 set_sense(&dev->fsa_dev[cid].sense_data,
2411 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2412 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2413 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2414 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2415 SCSI_SENSE_BUFFERSIZE));
2416 break;
2418 aac_fib_complete(fibptr);
2420 scsicmd->scsi_done(scsicmd);
2423 static int aac_read(struct scsi_cmnd * scsicmd)
2425 u64 lba;
2426 u32 count;
2427 int status;
2428 struct aac_dev *dev;
2429 struct fib * cmd_fibcontext;
2430 int cid;
2432 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2434 * Get block address and transfer length
2436 switch (scsicmd->cmnd[0]) {
2437 case READ_6:
2438 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
2440 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2441 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2442 count = scsicmd->cmnd[4];
2444 if (count == 0)
2445 count = 256;
2446 break;
2447 case READ_16:
2448 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
2450 lba = ((u64)scsicmd->cmnd[2] << 56) |
2451 ((u64)scsicmd->cmnd[3] << 48) |
2452 ((u64)scsicmd->cmnd[4] << 40) |
2453 ((u64)scsicmd->cmnd[5] << 32) |
2454 ((u64)scsicmd->cmnd[6] << 24) |
2455 (scsicmd->cmnd[7] << 16) |
2456 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2457 count = (scsicmd->cmnd[10] << 24) |
2458 (scsicmd->cmnd[11] << 16) |
2459 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2460 break;
2461 case READ_12:
2462 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
2464 lba = ((u64)scsicmd->cmnd[2] << 24) |
2465 (scsicmd->cmnd[3] << 16) |
2466 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2467 count = (scsicmd->cmnd[6] << 24) |
2468 (scsicmd->cmnd[7] << 16) |
2469 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2470 break;
2471 default:
2472 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
2474 lba = ((u64)scsicmd->cmnd[2] << 24) |
2475 (scsicmd->cmnd[3] << 16) |
2476 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2477 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2478 break;
2481 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2482 cid = scmd_id(scsicmd);
2483 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2484 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2485 SAM_STAT_CHECK_CONDITION;
2486 set_sense(&dev->fsa_dev[cid].sense_data,
2487 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2488 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2489 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2490 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2491 SCSI_SENSE_BUFFERSIZE));
2492 scsicmd->scsi_done(scsicmd);
2493 return 1;
2496 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
2497 smp_processor_id(), (unsigned long long)lba, jiffies));
2498 if (aac_adapter_bounds(dev,scsicmd,lba))
2499 return 0;
2501 * Alocate and initialize a Fib
2503 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2504 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2505 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
2508 * Check that the command queued to the controller
2510 if (status == -EINPROGRESS)
2511 return 0;
2513 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
2515 * For some reason, the Fib didn't queue, return QUEUE_FULL
2517 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2518 scsicmd->scsi_done(scsicmd);
2519 aac_fib_complete(cmd_fibcontext);
2520 aac_fib_free(cmd_fibcontext);
2521 return 0;
2524 static int aac_write(struct scsi_cmnd * scsicmd)
2526 u64 lba;
2527 u32 count;
2528 int fua;
2529 int status;
2530 struct aac_dev *dev;
2531 struct fib * cmd_fibcontext;
2532 int cid;
2534 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2536 * Get block address and transfer length
2538 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
2540 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2541 count = scsicmd->cmnd[4];
2542 if (count == 0)
2543 count = 256;
2544 fua = 0;
2545 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
2546 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
2548 lba = ((u64)scsicmd->cmnd[2] << 56) |
2549 ((u64)scsicmd->cmnd[3] << 48) |
2550 ((u64)scsicmd->cmnd[4] << 40) |
2551 ((u64)scsicmd->cmnd[5] << 32) |
2552 ((u64)scsicmd->cmnd[6] << 24) |
2553 (scsicmd->cmnd[7] << 16) |
2554 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2555 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
2556 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2557 fua = scsicmd->cmnd[1] & 0x8;
2558 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
2559 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
2561 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
2562 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2563 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
2564 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2565 fua = scsicmd->cmnd[1] & 0x8;
2566 } else {
2567 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
2568 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2569 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2570 fua = scsicmd->cmnd[1] & 0x8;
2573 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2574 cid = scmd_id(scsicmd);
2575 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2576 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2577 SAM_STAT_CHECK_CONDITION;
2578 set_sense(&dev->fsa_dev[cid].sense_data,
2579 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2580 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2581 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2582 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2583 SCSI_SENSE_BUFFERSIZE));
2584 scsicmd->scsi_done(scsicmd);
2585 return 1;
2588 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
2589 smp_processor_id(), (unsigned long long)lba, jiffies));
2590 if (aac_adapter_bounds(dev,scsicmd,lba))
2591 return 0;
2593 * Allocate and initialize a Fib then setup a BlockWrite command
2595 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2596 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2597 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
2600 * Check that the command queued to the controller
2602 if (status == -EINPROGRESS)
2603 return 0;
2605 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
2607 * For some reason, the Fib didn't queue, return QUEUE_FULL
2609 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2610 scsicmd->scsi_done(scsicmd);
2612 aac_fib_complete(cmd_fibcontext);
2613 aac_fib_free(cmd_fibcontext);
2614 return 0;
2617 static void synchronize_callback(void *context, struct fib *fibptr)
2619 struct aac_synchronize_reply *synchronizereply;
2620 struct scsi_cmnd *cmd;
2622 cmd = context;
2624 if (!aac_valid_context(cmd, fibptr))
2625 return;
2627 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
2628 smp_processor_id(), jiffies));
2629 BUG_ON(fibptr == NULL);
2632 synchronizereply = fib_data(fibptr);
2633 if (le32_to_cpu(synchronizereply->status) == CT_OK)
2634 cmd->result = DID_OK << 16 |
2635 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2636 else {
2637 struct scsi_device *sdev = cmd->device;
2638 struct aac_dev *dev = fibptr->dev;
2639 u32 cid = sdev_id(sdev);
2640 printk(KERN_WARNING
2641 "synchronize_callback: synchronize failed, status = %d\n",
2642 le32_to_cpu(synchronizereply->status));
2643 cmd->result = DID_OK << 16 |
2644 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2645 set_sense(&dev->fsa_dev[cid].sense_data,
2646 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2647 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2648 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2649 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2650 SCSI_SENSE_BUFFERSIZE));
2653 aac_fib_complete(fibptr);
2654 aac_fib_free(fibptr);
2655 cmd->scsi_done(cmd);
2658 static int aac_synchronize(struct scsi_cmnd *scsicmd)
2660 int status;
2661 struct fib *cmd_fibcontext;
2662 struct aac_synchronize *synchronizecmd;
2663 struct scsi_cmnd *cmd;
2664 struct scsi_device *sdev = scsicmd->device;
2665 int active = 0;
2666 struct aac_dev *aac;
2667 u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
2668 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2669 u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2670 unsigned long flags;
2673 * Wait for all outstanding queued commands to complete to this
2674 * specific target (block).
2676 spin_lock_irqsave(&sdev->list_lock, flags);
2677 list_for_each_entry(cmd, &sdev->cmd_list, list)
2678 if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
2679 u64 cmnd_lba;
2680 u32 cmnd_count;
2682 if (cmd->cmnd[0] == WRITE_6) {
2683 cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
2684 (cmd->cmnd[2] << 8) |
2685 cmd->cmnd[3];
2686 cmnd_count = cmd->cmnd[4];
2687 if (cmnd_count == 0)
2688 cmnd_count = 256;
2689 } else if (cmd->cmnd[0] == WRITE_16) {
2690 cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
2691 ((u64)cmd->cmnd[3] << 48) |
2692 ((u64)cmd->cmnd[4] << 40) |
2693 ((u64)cmd->cmnd[5] << 32) |
2694 ((u64)cmd->cmnd[6] << 24) |
2695 (cmd->cmnd[7] << 16) |
2696 (cmd->cmnd[8] << 8) |
2697 cmd->cmnd[9];
2698 cmnd_count = (cmd->cmnd[10] << 24) |
2699 (cmd->cmnd[11] << 16) |
2700 (cmd->cmnd[12] << 8) |
2701 cmd->cmnd[13];
2702 } else if (cmd->cmnd[0] == WRITE_12) {
2703 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2704 (cmd->cmnd[3] << 16) |
2705 (cmd->cmnd[4] << 8) |
2706 cmd->cmnd[5];
2707 cmnd_count = (cmd->cmnd[6] << 24) |
2708 (cmd->cmnd[7] << 16) |
2709 (cmd->cmnd[8] << 8) |
2710 cmd->cmnd[9];
2711 } else if (cmd->cmnd[0] == WRITE_10) {
2712 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2713 (cmd->cmnd[3] << 16) |
2714 (cmd->cmnd[4] << 8) |
2715 cmd->cmnd[5];
2716 cmnd_count = (cmd->cmnd[7] << 8) |
2717 cmd->cmnd[8];
2718 } else
2719 continue;
2720 if (((cmnd_lba + cmnd_count) < lba) ||
2721 (count && ((lba + count) < cmnd_lba)))
2722 continue;
2723 ++active;
2724 break;
2727 spin_unlock_irqrestore(&sdev->list_lock, flags);
2730 * Yield the processor (requeue for later)
2732 if (active)
2733 return SCSI_MLQUEUE_DEVICE_BUSY;
2735 aac = (struct aac_dev *)sdev->host->hostdata;
2736 if (aac->in_reset)
2737 return SCSI_MLQUEUE_HOST_BUSY;
2740 * Allocate and initialize a Fib
2742 if (!(cmd_fibcontext = aac_fib_alloc(aac)))
2743 return SCSI_MLQUEUE_HOST_BUSY;
2745 aac_fib_init(cmd_fibcontext);
2747 synchronizecmd = fib_data(cmd_fibcontext);
2748 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
2749 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
2750 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
2751 synchronizecmd->count =
2752 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
2753 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2756 * Now send the Fib to the adapter
2758 status = aac_fib_send(ContainerCommand,
2759 cmd_fibcontext,
2760 sizeof(struct aac_synchronize),
2761 FsaNormal,
2762 0, 1,
2763 (fib_callback)synchronize_callback,
2764 (void *)scsicmd);
2767 * Check that the command queued to the controller
2769 if (status == -EINPROGRESS)
2770 return 0;
2772 printk(KERN_WARNING
2773 "aac_synchronize: aac_fib_send failed with status: %d.\n", status);
2774 aac_fib_complete(cmd_fibcontext);
2775 aac_fib_free(cmd_fibcontext);
2776 return SCSI_MLQUEUE_HOST_BUSY;
2779 static void aac_start_stop_callback(void *context, struct fib *fibptr)
2781 struct scsi_cmnd *scsicmd = context;
2783 if (!aac_valid_context(scsicmd, fibptr))
2784 return;
2786 BUG_ON(fibptr == NULL);
2788 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2790 aac_fib_complete(fibptr);
2791 aac_fib_free(fibptr);
2792 scsicmd->scsi_done(scsicmd);
2795 static int aac_start_stop(struct scsi_cmnd *scsicmd)
2797 int status;
2798 struct fib *cmd_fibcontext;
2799 struct aac_power_management *pmcmd;
2800 struct scsi_device *sdev = scsicmd->device;
2801 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
2803 if (!(aac->supplement_adapter_info.supported_options2 &
2804 AAC_OPTION_POWER_MANAGEMENT)) {
2805 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2806 SAM_STAT_GOOD;
2807 scsicmd->scsi_done(scsicmd);
2808 return 0;
2811 if (aac->in_reset)
2812 return SCSI_MLQUEUE_HOST_BUSY;
2815 * Allocate and initialize a Fib
2817 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd);
2819 aac_fib_init(cmd_fibcontext);
2821 pmcmd = fib_data(cmd_fibcontext);
2822 pmcmd->command = cpu_to_le32(VM_ContainerConfig);
2823 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
2824 /* Eject bit ignored, not relevant */
2825 pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
2826 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
2827 pmcmd->cid = cpu_to_le32(sdev_id(sdev));
2828 pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
2829 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
2830 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2833 * Now send the Fib to the adapter
2835 status = aac_fib_send(ContainerCommand,
2836 cmd_fibcontext,
2837 sizeof(struct aac_power_management),
2838 FsaNormal,
2839 0, 1,
2840 (fib_callback)aac_start_stop_callback,
2841 (void *)scsicmd);
2844 * Check that the command queued to the controller
2846 if (status == -EINPROGRESS)
2847 return 0;
2849 aac_fib_complete(cmd_fibcontext);
2850 aac_fib_free(cmd_fibcontext);
2851 return SCSI_MLQUEUE_HOST_BUSY;
2855 * aac_scsi_cmd() - Process SCSI command
2856 * @scsicmd: SCSI command block
2858 * Emulate a SCSI command and queue the required request for the
2859 * aacraid firmware.
2862 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2864 u32 cid, bus;
2865 struct Scsi_Host *host = scsicmd->device->host;
2866 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2867 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2869 if (fsa_dev_ptr == NULL)
2870 return -1;
2872 * If the bus, id or lun is out of range, return fail
2873 * Test does not apply to ID 16, the pseudo id for the controller
2874 * itself.
2876 cid = scmd_id(scsicmd);
2877 if (cid != host->this_id) {
2878 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2879 if((cid >= dev->maximum_num_containers) ||
2880 (scsicmd->device->lun != 0)) {
2881 scsicmd->result = DID_NO_CONNECT << 16;
2882 goto scsi_done_ret;
2886 * If the target container doesn't exist, it may have
2887 * been newly created
2889 if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2890 (fsa_dev_ptr[cid].sense_data.sense_key ==
2891 NOT_READY)) {
2892 switch (scsicmd->cmnd[0]) {
2893 case SERVICE_ACTION_IN_16:
2894 if (!(dev->raw_io_interface) ||
2895 !(dev->raw_io_64) ||
2896 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2897 break;
2898 case INQUIRY:
2899 case READ_CAPACITY:
2900 case TEST_UNIT_READY:
2901 if (dev->in_reset)
2902 return -1;
2903 return _aac_probe_container(scsicmd,
2904 aac_probe_container_callback2);
2905 default:
2906 break;
2909 } else { /* check for physical non-dasd devices */
2910 bus = aac_logical_to_phys(scmd_channel(scsicmd));
2912 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS &&
2913 dev->hba_map[bus][cid].devtype
2914 == AAC_DEVTYPE_NATIVE_RAW) {
2915 if (dev->in_reset)
2916 return -1;
2917 return aac_send_hba_fib(scsicmd);
2918 } else if (dev->nondasd_support || expose_physicals ||
2919 dev->jbod) {
2920 if (dev->in_reset)
2921 return -1;
2922 return aac_send_srb_fib(scsicmd);
2923 } else {
2924 scsicmd->result = DID_NO_CONNECT << 16;
2925 goto scsi_done_ret;
2930 * else Command for the controller itself
2932 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
2933 (scsicmd->cmnd[0] != TEST_UNIT_READY))
2935 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2936 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2937 set_sense(&dev->fsa_dev[cid].sense_data,
2938 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2939 ASENCODE_INVALID_COMMAND, 0, 0);
2940 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2941 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2942 SCSI_SENSE_BUFFERSIZE));
2943 goto scsi_done_ret;
2946 switch (scsicmd->cmnd[0]) {
2947 case READ_6:
2948 case READ_10:
2949 case READ_12:
2950 case READ_16:
2951 if (dev->in_reset)
2952 return -1;
2953 return aac_read(scsicmd);
2955 case WRITE_6:
2956 case WRITE_10:
2957 case WRITE_12:
2958 case WRITE_16:
2959 if (dev->in_reset)
2960 return -1;
2961 return aac_write(scsicmd);
2963 case SYNCHRONIZE_CACHE:
2964 if (((aac_cache & 6) == 6) && dev->cache_protected) {
2965 scsicmd->result = AAC_STAT_GOOD;
2966 break;
2968 /* Issue FIB to tell Firmware to flush it's cache */
2969 if ((aac_cache & 6) != 2)
2970 return aac_synchronize(scsicmd);
2971 case INQUIRY:
2973 struct inquiry_data inq_data;
2975 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2976 memset(&inq_data, 0, sizeof (struct inquiry_data));
2978 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2979 char *arr = (char *)&inq_data;
2981 /* EVPD bit set */
2982 arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2983 INQD_PDT_PROC : INQD_PDT_DA;
2984 if (scsicmd->cmnd[2] == 0) {
2985 /* supported vital product data pages */
2986 arr[3] = 3;
2987 arr[4] = 0x0;
2988 arr[5] = 0x80;
2989 arr[6] = 0x83;
2990 arr[1] = scsicmd->cmnd[2];
2991 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2992 sizeof(inq_data));
2993 scsicmd->result = AAC_STAT_GOOD;
2994 } else if (scsicmd->cmnd[2] == 0x80) {
2995 /* unit serial number page */
2996 arr[3] = setinqserial(dev, &arr[4],
2997 scmd_id(scsicmd));
2998 arr[1] = scsicmd->cmnd[2];
2999 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
3000 sizeof(inq_data));
3001 if (aac_wwn != 2)
3002 return aac_get_container_serial(
3003 scsicmd);
3004 scsicmd->result = AAC_STAT_GOOD;
3005 } else if (scsicmd->cmnd[2] == 0x83) {
3006 /* vpd page 0x83 - Device Identification Page */
3007 char *sno = (char *)&inq_data;
3008 sno[3] = setinqserial(dev, &sno[4],
3009 scmd_id(scsicmd));
3010 if (aac_wwn != 2)
3011 return aac_get_container_serial(
3012 scsicmd);
3013 scsicmd->result = AAC_STAT_GOOD;
3014 } else {
3015 /* vpd page not implemented */
3016 scsicmd->result = DID_OK << 16 |
3017 COMMAND_COMPLETE << 8 |
3018 SAM_STAT_CHECK_CONDITION;
3019 set_sense(&dev->fsa_dev[cid].sense_data,
3020 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
3021 ASENCODE_NO_SENSE, 7, 2);
3022 memcpy(scsicmd->sense_buffer,
3023 &dev->fsa_dev[cid].sense_data,
3024 min_t(size_t,
3025 sizeof(dev->fsa_dev[cid].sense_data),
3026 SCSI_SENSE_BUFFERSIZE));
3028 break;
3030 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
3031 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
3032 inq_data.inqd_len = 31;
3033 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
3034 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
3036 * Set the Vendor, Product, and Revision Level
3037 * see: <vendor>.c i.e. aac.c
3039 if (cid == host->this_id) {
3040 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
3041 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */
3042 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
3043 sizeof(inq_data));
3044 scsicmd->result = AAC_STAT_GOOD;
3045 break;
3047 if (dev->in_reset)
3048 return -1;
3049 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
3050 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
3051 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
3052 return aac_get_container_name(scsicmd);
3054 case SERVICE_ACTION_IN_16:
3055 if (!(dev->raw_io_interface) ||
3056 !(dev->raw_io_64) ||
3057 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
3058 break;
3060 u64 capacity;
3061 char cp[13];
3062 unsigned int alloc_len;
3064 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
3065 capacity = fsa_dev_ptr[cid].size - 1;
3066 cp[0] = (capacity >> 56) & 0xff;
3067 cp[1] = (capacity >> 48) & 0xff;
3068 cp[2] = (capacity >> 40) & 0xff;
3069 cp[3] = (capacity >> 32) & 0xff;
3070 cp[4] = (capacity >> 24) & 0xff;
3071 cp[5] = (capacity >> 16) & 0xff;
3072 cp[6] = (capacity >> 8) & 0xff;
3073 cp[7] = (capacity >> 0) & 0xff;
3074 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
3075 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3076 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3077 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff;
3078 cp[12] = 0;
3080 alloc_len = ((scsicmd->cmnd[10] << 24)
3081 + (scsicmd->cmnd[11] << 16)
3082 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
3084 alloc_len = min_t(size_t, alloc_len, sizeof(cp));
3085 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
3086 if (alloc_len < scsi_bufflen(scsicmd))
3087 scsi_set_resid(scsicmd,
3088 scsi_bufflen(scsicmd) - alloc_len);
3090 /* Do not cache partition table for arrays */
3091 scsicmd->device->removable = 1;
3093 scsicmd->result = AAC_STAT_GOOD;
3094 break;
3097 case READ_CAPACITY:
3099 u32 capacity;
3100 char cp[8];
3102 dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
3103 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3104 capacity = fsa_dev_ptr[cid].size - 1;
3105 else
3106 capacity = (u32)-1;
3108 cp[0] = (capacity >> 24) & 0xff;
3109 cp[1] = (capacity >> 16) & 0xff;
3110 cp[2] = (capacity >> 8) & 0xff;
3111 cp[3] = (capacity >> 0) & 0xff;
3112 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
3113 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3114 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3115 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff;
3116 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
3117 /* Do not cache partition table for arrays */
3118 scsicmd->device->removable = 1;
3119 scsicmd->result = AAC_STAT_GOOD;
3120 break;
3123 case MODE_SENSE:
3125 int mode_buf_length = 4;
3126 u32 capacity;
3127 aac_modep_data mpd;
3129 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3130 capacity = fsa_dev_ptr[cid].size - 1;
3131 else
3132 capacity = (u32)-1;
3134 dprintk((KERN_DEBUG "MODE SENSE command.\n"));
3135 memset((char *)&mpd, 0, sizeof(aac_modep_data));
3137 /* Mode data length */
3138 mpd.hd.data_length = sizeof(mpd.hd) - 1;
3139 /* Medium type - default */
3140 mpd.hd.med_type = 0;
3141 /* Device-specific param,
3142 bit 8: 0/1 = write enabled/protected
3143 bit 4: 0/1 = FUA enabled */
3144 mpd.hd.dev_par = 0;
3146 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3147 mpd.hd.dev_par = 0x10;
3148 if (scsicmd->cmnd[1] & 0x8)
3149 mpd.hd.bd_length = 0; /* Block descriptor length */
3150 else {
3151 mpd.hd.bd_length = sizeof(mpd.bd);
3152 mpd.hd.data_length += mpd.hd.bd_length;
3153 mpd.bd.block_length[0] =
3154 (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3155 mpd.bd.block_length[1] =
3156 (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3157 mpd.bd.block_length[2] =
3158 fsa_dev_ptr[cid].block_size & 0xff;
3160 mpd.mpc_buf[0] = scsicmd->cmnd[2];
3161 if (scsicmd->cmnd[2] == 0x1C) {
3162 /* page length */
3163 mpd.mpc_buf[1] = 0xa;
3164 /* Mode data length */
3165 mpd.hd.data_length = 23;
3166 } else {
3167 /* Mode data length */
3168 mpd.hd.data_length = 15;
3171 if (capacity > 0xffffff) {
3172 mpd.bd.block_count[0] = 0xff;
3173 mpd.bd.block_count[1] = 0xff;
3174 mpd.bd.block_count[2] = 0xff;
3175 } else {
3176 mpd.bd.block_count[0] = (capacity >> 16) & 0xff;
3177 mpd.bd.block_count[1] = (capacity >> 8) & 0xff;
3178 mpd.bd.block_count[2] = capacity & 0xff;
3181 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3182 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3183 mpd.hd.data_length += 3;
3184 mpd.mpc_buf[0] = 8;
3185 mpd.mpc_buf[1] = 1;
3186 mpd.mpc_buf[2] = ((aac_cache & 6) == 2)
3187 ? 0 : 0x04; /* WCE */
3188 mode_buf_length = sizeof(mpd);
3191 if (mode_buf_length > scsicmd->cmnd[4])
3192 mode_buf_length = scsicmd->cmnd[4];
3193 else
3194 mode_buf_length = sizeof(mpd);
3195 scsi_sg_copy_from_buffer(scsicmd,
3196 (char *)&mpd,
3197 mode_buf_length);
3198 scsicmd->result = AAC_STAT_GOOD;
3199 break;
3201 case MODE_SENSE_10:
3203 u32 capacity;
3204 int mode_buf_length = 8;
3205 aac_modep10_data mpd10;
3207 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3208 capacity = fsa_dev_ptr[cid].size - 1;
3209 else
3210 capacity = (u32)-1;
3212 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
3213 memset((char *)&mpd10, 0, sizeof(aac_modep10_data));
3214 /* Mode data length (MSB) */
3215 mpd10.hd.data_length[0] = 0;
3216 /* Mode data length (LSB) */
3217 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1;
3218 /* Medium type - default */
3219 mpd10.hd.med_type = 0;
3220 /* Device-specific param,
3221 bit 8: 0/1 = write enabled/protected
3222 bit 4: 0/1 = FUA enabled */
3223 mpd10.hd.dev_par = 0;
3225 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3226 mpd10.hd.dev_par = 0x10;
3227 mpd10.hd.rsrvd[0] = 0; /* reserved */
3228 mpd10.hd.rsrvd[1] = 0; /* reserved */
3229 if (scsicmd->cmnd[1] & 0x8) {
3230 /* Block descriptor length (MSB) */
3231 mpd10.hd.bd_length[0] = 0;
3232 /* Block descriptor length (LSB) */
3233 mpd10.hd.bd_length[1] = 0;
3234 } else {
3235 mpd10.hd.bd_length[0] = 0;
3236 mpd10.hd.bd_length[1] = sizeof(mpd10.bd);
3238 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1];
3240 mpd10.bd.block_length[0] =
3241 (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3242 mpd10.bd.block_length[1] =
3243 (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3244 mpd10.bd.block_length[2] =
3245 fsa_dev_ptr[cid].block_size & 0xff;
3247 if (capacity > 0xffffff) {
3248 mpd10.bd.block_count[0] = 0xff;
3249 mpd10.bd.block_count[1] = 0xff;
3250 mpd10.bd.block_count[2] = 0xff;
3251 } else {
3252 mpd10.bd.block_count[0] =
3253 (capacity >> 16) & 0xff;
3254 mpd10.bd.block_count[1] =
3255 (capacity >> 8) & 0xff;
3256 mpd10.bd.block_count[2] =
3257 capacity & 0xff;
3260 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3261 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3262 mpd10.hd.data_length[1] += 3;
3263 mpd10.mpc_buf[0] = 8;
3264 mpd10.mpc_buf[1] = 1;
3265 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2)
3266 ? 0 : 0x04; /* WCE */
3267 mode_buf_length = sizeof(mpd10);
3268 if (mode_buf_length > scsicmd->cmnd[8])
3269 mode_buf_length = scsicmd->cmnd[8];
3271 scsi_sg_copy_from_buffer(scsicmd,
3272 (char *)&mpd10,
3273 mode_buf_length);
3275 scsicmd->result = AAC_STAT_GOOD;
3276 break;
3278 case REQUEST_SENSE:
3279 dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
3280 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3281 sizeof(struct sense_data));
3282 memset(&dev->fsa_dev[cid].sense_data, 0,
3283 sizeof(struct sense_data));
3284 scsicmd->result = AAC_STAT_GOOD;
3285 break;
3287 case ALLOW_MEDIUM_REMOVAL:
3288 dprintk((KERN_DEBUG "LOCK command.\n"));
3289 if (scsicmd->cmnd[4])
3290 fsa_dev_ptr[cid].locked = 1;
3291 else
3292 fsa_dev_ptr[cid].locked = 0;
3294 scsicmd->result = AAC_STAT_GOOD;
3295 break;
3297 * These commands are all No-Ops
3299 case TEST_UNIT_READY:
3300 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
3301 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3302 SAM_STAT_CHECK_CONDITION;
3303 set_sense(&dev->fsa_dev[cid].sense_data,
3304 NOT_READY, SENCODE_BECOMING_READY,
3305 ASENCODE_BECOMING_READY, 0, 0);
3306 memcpy(scsicmd->sense_buffer,
3307 &dev->fsa_dev[cid].sense_data,
3308 min_t(size_t,
3309 sizeof(dev->fsa_dev[cid].sense_data),
3310 SCSI_SENSE_BUFFERSIZE));
3311 break;
3313 case RESERVE:
3314 case RELEASE:
3315 case REZERO_UNIT:
3316 case REASSIGN_BLOCKS:
3317 case SEEK_10:
3318 scsicmd->result = AAC_STAT_GOOD;
3319 break;
3321 case START_STOP:
3322 return aac_start_stop(scsicmd);
3324 /* FALLTHRU */
3325 default:
3327 * Unhandled commands
3329 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n",
3330 scsicmd->cmnd[0]));
3331 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3332 SAM_STAT_CHECK_CONDITION;
3333 set_sense(&dev->fsa_dev[cid].sense_data,
3334 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
3335 ASENCODE_INVALID_COMMAND, 0, 0);
3336 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3337 min_t(size_t,
3338 sizeof(dev->fsa_dev[cid].sense_data),
3339 SCSI_SENSE_BUFFERSIZE));
3342 scsi_done_ret:
3344 scsicmd->scsi_done(scsicmd);
3345 return 0;
3348 static int query_disk(struct aac_dev *dev, void __user *arg)
3350 struct aac_query_disk qd;
3351 struct fsa_dev_info *fsa_dev_ptr;
3353 fsa_dev_ptr = dev->fsa_dev;
3354 if (!fsa_dev_ptr)
3355 return -EBUSY;
3356 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
3357 return -EFAULT;
3358 if (qd.cnum == -1) {
3359 if (qd.id < 0 || qd.id >= dev->maximum_num_containers)
3360 return -EINVAL;
3361 qd.cnum = qd.id;
3362 } else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) {
3363 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
3364 return -EINVAL;
3365 qd.instance = dev->scsi_host_ptr->host_no;
3366 qd.bus = 0;
3367 qd.id = CONTAINER_TO_ID(qd.cnum);
3368 qd.lun = CONTAINER_TO_LUN(qd.cnum);
3370 else return -EINVAL;
3372 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
3373 qd.locked = fsa_dev_ptr[qd.cnum].locked;
3374 qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
3376 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
3377 qd.unmapped = 1;
3378 else
3379 qd.unmapped = 0;
3381 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
3382 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
3384 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
3385 return -EFAULT;
3386 return 0;
3389 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
3391 struct aac_delete_disk dd;
3392 struct fsa_dev_info *fsa_dev_ptr;
3394 fsa_dev_ptr = dev->fsa_dev;
3395 if (!fsa_dev_ptr)
3396 return -EBUSY;
3398 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3399 return -EFAULT;
3401 if (dd.cnum >= dev->maximum_num_containers)
3402 return -EINVAL;
3404 * Mark this container as being deleted.
3406 fsa_dev_ptr[dd.cnum].deleted = 1;
3408 * Mark the container as no longer valid
3410 fsa_dev_ptr[dd.cnum].valid = 0;
3411 return 0;
3414 static int delete_disk(struct aac_dev *dev, void __user *arg)
3416 struct aac_delete_disk dd;
3417 struct fsa_dev_info *fsa_dev_ptr;
3419 fsa_dev_ptr = dev->fsa_dev;
3420 if (!fsa_dev_ptr)
3421 return -EBUSY;
3423 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3424 return -EFAULT;
3426 if (dd.cnum >= dev->maximum_num_containers)
3427 return -EINVAL;
3429 * If the container is locked, it can not be deleted by the API.
3431 if (fsa_dev_ptr[dd.cnum].locked)
3432 return -EBUSY;
3433 else {
3435 * Mark the container as no longer being valid.
3437 fsa_dev_ptr[dd.cnum].valid = 0;
3438 fsa_dev_ptr[dd.cnum].devname[0] = '\0';
3439 return 0;
3443 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
3445 switch (cmd) {
3446 case FSACTL_QUERY_DISK:
3447 return query_disk(dev, arg);
3448 case FSACTL_DELETE_DISK:
3449 return delete_disk(dev, arg);
3450 case FSACTL_FORCE_DELETE_DISK:
3451 return force_delete_disk(dev, arg);
3452 case FSACTL_GET_CONTAINERS:
3453 return aac_get_containers(dev);
3454 default:
3455 return -ENOTTY;
3461 * aac_srb_callback
3462 * @context: the context set in the fib - here it is scsi cmd
3463 * @fibptr: pointer to the fib
3465 * Handles the completion of a scsi command to a non dasd device
3469 static void aac_srb_callback(void *context, struct fib * fibptr)
3471 struct aac_dev *dev;
3472 struct aac_srb_reply *srbreply;
3473 struct scsi_cmnd *scsicmd;
3475 scsicmd = (struct scsi_cmnd *) context;
3477 if (!aac_valid_context(scsicmd, fibptr))
3478 return;
3480 BUG_ON(fibptr == NULL);
3482 dev = fibptr->dev;
3484 srbreply = (struct aac_srb_reply *) fib_data(fibptr);
3486 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
3488 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3489 /* fast response */
3490 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS);
3491 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD);
3492 } else {
3494 * Calculate resid for sg
3496 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
3497 - le32_to_cpu(srbreply->data_xfer_length));
3501 scsi_dma_unmap(scsicmd);
3503 /* expose physical device if expose_physicald flag is on */
3504 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01)
3505 && expose_physicals > 0)
3506 aac_expose_phy_device(scsicmd);
3509 * First check the fib status
3512 if (le32_to_cpu(srbreply->status) != ST_OK) {
3513 int len;
3515 pr_warn("aac_srb_callback: srb failed, status = %d\n",
3516 le32_to_cpu(srbreply->status));
3517 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3518 SCSI_SENSE_BUFFERSIZE);
3519 scsicmd->result = DID_ERROR << 16
3520 | COMMAND_COMPLETE << 8
3521 | SAM_STAT_CHECK_CONDITION;
3522 memcpy(scsicmd->sense_buffer,
3523 srbreply->sense_data, len);
3527 * Next check the srb status
3529 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) {
3530 case SRB_STATUS_ERROR_RECOVERY:
3531 case SRB_STATUS_PENDING:
3532 case SRB_STATUS_SUCCESS:
3533 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3534 break;
3535 case SRB_STATUS_DATA_OVERRUN:
3536 switch (scsicmd->cmnd[0]) {
3537 case READ_6:
3538 case WRITE_6:
3539 case READ_10:
3540 case WRITE_10:
3541 case READ_12:
3542 case WRITE_12:
3543 case READ_16:
3544 case WRITE_16:
3545 if (le32_to_cpu(srbreply->data_xfer_length)
3546 < scsicmd->underflow)
3547 pr_warn("aacraid: SCSI CMD underflow\n");
3548 else
3549 pr_warn("aacraid: SCSI CMD Data Overrun\n");
3550 scsicmd->result = DID_ERROR << 16
3551 | COMMAND_COMPLETE << 8;
3552 break;
3553 case INQUIRY:
3554 scsicmd->result = DID_OK << 16
3555 | COMMAND_COMPLETE << 8;
3556 break;
3557 default:
3558 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3559 break;
3561 break;
3562 case SRB_STATUS_ABORTED:
3563 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3564 break;
3565 case SRB_STATUS_ABORT_FAILED:
3567 * Not sure about this one - but assuming the
3568 * hba was trying to abort for some reason
3570 scsicmd->result = DID_ERROR << 16 | ABORT << 8;
3571 break;
3572 case SRB_STATUS_PARITY_ERROR:
3573 scsicmd->result = DID_PARITY << 16
3574 | MSG_PARITY_ERROR << 8;
3575 break;
3576 case SRB_STATUS_NO_DEVICE:
3577 case SRB_STATUS_INVALID_PATH_ID:
3578 case SRB_STATUS_INVALID_TARGET_ID:
3579 case SRB_STATUS_INVALID_LUN:
3580 case SRB_STATUS_SELECTION_TIMEOUT:
3581 scsicmd->result = DID_NO_CONNECT << 16
3582 | COMMAND_COMPLETE << 8;
3583 break;
3585 case SRB_STATUS_COMMAND_TIMEOUT:
3586 case SRB_STATUS_TIMEOUT:
3587 scsicmd->result = DID_TIME_OUT << 16
3588 | COMMAND_COMPLETE << 8;
3589 break;
3591 case SRB_STATUS_BUSY:
3592 scsicmd->result = DID_BUS_BUSY << 16
3593 | COMMAND_COMPLETE << 8;
3594 break;
3596 case SRB_STATUS_BUS_RESET:
3597 scsicmd->result = DID_RESET << 16
3598 | COMMAND_COMPLETE << 8;
3599 break;
3601 case SRB_STATUS_MESSAGE_REJECTED:
3602 scsicmd->result = DID_ERROR << 16
3603 | MESSAGE_REJECT << 8;
3604 break;
3605 case SRB_STATUS_REQUEST_FLUSHED:
3606 case SRB_STATUS_ERROR:
3607 case SRB_STATUS_INVALID_REQUEST:
3608 case SRB_STATUS_REQUEST_SENSE_FAILED:
3609 case SRB_STATUS_NO_HBA:
3610 case SRB_STATUS_UNEXPECTED_BUS_FREE:
3611 case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
3612 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
3613 case SRB_STATUS_DELAYED_RETRY:
3614 case SRB_STATUS_BAD_FUNCTION:
3615 case SRB_STATUS_NOT_STARTED:
3616 case SRB_STATUS_NOT_IN_USE:
3617 case SRB_STATUS_FORCE_ABORT:
3618 case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
3619 default:
3620 #ifdef AAC_DETAILED_STATUS_INFO
3621 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n",
3622 le32_to_cpu(srbreply->srb_status) & 0x3F,
3623 aac_get_status_string(
3624 le32_to_cpu(srbreply->srb_status) & 0x3F),
3625 scsicmd->cmnd[0],
3626 le32_to_cpu(srbreply->scsi_status));
3627 #endif
3629 * When the CC bit is SET by the host in ATA pass thru CDB,
3630 * driver is supposed to return DID_OK
3632 * When the CC bit is RESET by the host, driver should
3633 * return DID_ERROR
3635 if ((scsicmd->cmnd[0] == ATA_12)
3636 || (scsicmd->cmnd[0] == ATA_16)) {
3638 if (scsicmd->cmnd[2] & (0x01 << 5)) {
3639 scsicmd->result = DID_OK << 16
3640 | COMMAND_COMPLETE << 8;
3641 break;
3642 } else {
3643 scsicmd->result = DID_ERROR << 16
3644 | COMMAND_COMPLETE << 8;
3645 break;
3647 } else {
3648 scsicmd->result = DID_ERROR << 16
3649 | COMMAND_COMPLETE << 8;
3650 break;
3653 if (le32_to_cpu(srbreply->scsi_status)
3654 == SAM_STAT_CHECK_CONDITION) {
3655 int len;
3657 scsicmd->result |= SAM_STAT_CHECK_CONDITION;
3658 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3659 SCSI_SENSE_BUFFERSIZE);
3660 #ifdef AAC_DETAILED_STATUS_INFO
3661 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n",
3662 le32_to_cpu(srbreply->status), len);
3663 #endif
3664 memcpy(scsicmd->sense_buffer,
3665 srbreply->sense_data, len);
3669 * OR in the scsi status (already shifted up a bit)
3671 scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
3673 aac_fib_complete(fibptr);
3674 scsicmd->scsi_done(scsicmd);
3677 static void hba_resp_task_complete(struct aac_dev *dev,
3678 struct scsi_cmnd *scsicmd,
3679 struct aac_hba_resp *err) {
3681 scsicmd->result = err->status;
3682 /* set residual count */
3683 scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count));
3685 switch (err->status) {
3686 case SAM_STAT_GOOD:
3687 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
3688 break;
3689 case SAM_STAT_CHECK_CONDITION:
3691 int len;
3693 len = min_t(u8, err->sense_response_data_len,
3694 SCSI_SENSE_BUFFERSIZE);
3695 if (len)
3696 memcpy(scsicmd->sense_buffer,
3697 err->sense_response_buf, len);
3698 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
3699 break;
3701 case SAM_STAT_BUSY:
3702 scsicmd->result |= DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
3703 break;
3704 case SAM_STAT_TASK_ABORTED:
3705 scsicmd->result |= DID_ABORT << 16 | ABORT << 8;
3706 break;
3707 case SAM_STAT_RESERVATION_CONFLICT:
3708 case SAM_STAT_TASK_SET_FULL:
3709 default:
3710 scsicmd->result |= DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3711 break;
3715 static void hba_resp_task_failure(struct aac_dev *dev,
3716 struct scsi_cmnd *scsicmd,
3717 struct aac_hba_resp *err)
3719 switch (err->status) {
3720 case HBA_RESP_STAT_HBAMODE_DISABLED:
3722 u32 bus, cid;
3724 bus = aac_logical_to_phys(scmd_channel(scsicmd));
3725 cid = scmd_id(scsicmd);
3726 if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) {
3727 dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW;
3728 dev->hba_map[bus][cid].rmw_nexus = 0xffffffff;
3730 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3731 break;
3733 case HBA_RESP_STAT_IO_ERROR:
3734 case HBA_RESP_STAT_NO_PATH_TO_DEVICE:
3735 scsicmd->result = DID_OK << 16 |
3736 COMMAND_COMPLETE << 8 | SAM_STAT_BUSY;
3737 break;
3738 case HBA_RESP_STAT_IO_ABORTED:
3739 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3740 break;
3741 case HBA_RESP_STAT_INVALID_DEVICE:
3742 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3743 break;
3744 case HBA_RESP_STAT_UNDERRUN:
3745 /* UNDERRUN is OK */
3746 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3747 break;
3748 case HBA_RESP_STAT_OVERRUN:
3749 default:
3750 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3751 break;
3757 * aac_hba_callback
3758 * @context: the context set in the fib - here it is scsi cmd
3759 * @fibptr: pointer to the fib
3761 * Handles the completion of a native HBA scsi command
3764 void aac_hba_callback(void *context, struct fib *fibptr)
3766 struct aac_dev *dev;
3767 struct scsi_cmnd *scsicmd;
3769 struct aac_hba_resp *err =
3770 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err;
3772 scsicmd = (struct scsi_cmnd *) context;
3774 if (!aac_valid_context(scsicmd, fibptr))
3775 return;
3777 WARN_ON(fibptr == NULL);
3778 dev = fibptr->dev;
3780 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF))
3781 scsi_dma_unmap(scsicmd);
3783 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3784 /* fast response */
3785 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3786 goto out;
3789 switch (err->service_response) {
3790 case HBA_RESP_SVCRES_TASK_COMPLETE:
3791 hba_resp_task_complete(dev, scsicmd, err);
3792 break;
3793 case HBA_RESP_SVCRES_FAILURE:
3794 hba_resp_task_failure(dev, scsicmd, err);
3795 break;
3796 case HBA_RESP_SVCRES_TMF_REJECTED:
3797 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
3798 break;
3799 case HBA_RESP_SVCRES_TMF_LUN_INVALID:
3800 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3801 break;
3802 case HBA_RESP_SVCRES_TMF_COMPLETE:
3803 case HBA_RESP_SVCRES_TMF_SUCCEEDED:
3804 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3805 break;
3806 default:
3807 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3808 break;
3811 out:
3812 aac_fib_complete(fibptr);
3814 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)
3815 scsicmd->SCp.sent_command = 1;
3816 else
3817 scsicmd->scsi_done(scsicmd);
3822 * aac_send_srb_fib
3823 * @scsicmd: the scsi command block
3825 * This routine will form a FIB and fill in the aac_srb from the
3826 * scsicmd passed in.
3829 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
3831 struct fib* cmd_fibcontext;
3832 struct aac_dev* dev;
3833 int status;
3835 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3836 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3837 scsicmd->device->lun > 7) {
3838 scsicmd->result = DID_NO_CONNECT << 16;
3839 scsicmd->scsi_done(scsicmd);
3840 return 0;
3844 * Allocate and initialize a Fib then setup a BlockWrite command
3846 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3847 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3848 status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
3851 * Check that the command queued to the controller
3853 if (status == -EINPROGRESS)
3854 return 0;
3856 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
3857 aac_fib_complete(cmd_fibcontext);
3858 aac_fib_free(cmd_fibcontext);
3860 return -1;
3865 * aac_send_hba_fib
3866 * @scsicmd: the scsi command block
3868 * This routine will form a FIB and fill in the aac_hba_cmd_req from the
3869 * scsicmd passed in.
3871 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd)
3873 struct fib *cmd_fibcontext;
3874 struct aac_dev *dev;
3875 int status;
3877 dev = shost_priv(scsicmd->device->host);
3878 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3879 scsicmd->device->lun > AAC_MAX_LUN - 1) {
3880 scsicmd->result = DID_NO_CONNECT << 16;
3881 scsicmd->scsi_done(scsicmd);
3882 return 0;
3886 * Allocate and initialize a Fib then setup a BlockWrite command
3888 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3889 if (!cmd_fibcontext)
3890 return -1;
3892 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3893 status = aac_adapter_hba(cmd_fibcontext, scsicmd);
3896 * Check that the command queued to the controller
3898 if (status == -EINPROGRESS)
3899 return 0;
3901 pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n",
3902 status);
3903 aac_fib_complete(cmd_fibcontext);
3904 aac_fib_free(cmd_fibcontext);
3906 return -1;
3910 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg)
3912 struct aac_dev *dev;
3913 unsigned long byte_count = 0;
3914 int nseg;
3915 struct scatterlist *sg;
3916 int i;
3918 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3919 // Get rid of old data
3920 psg->count = 0;
3921 psg->sg[0].addr = 0;
3922 psg->sg[0].count = 0;
3924 nseg = scsi_dma_map(scsicmd);
3925 if (nseg <= 0)
3926 return nseg;
3928 psg->count = cpu_to_le32(nseg);
3930 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3931 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
3932 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
3933 byte_count += sg_dma_len(sg);
3935 /* hba wants the size to be exact */
3936 if (byte_count > scsi_bufflen(scsicmd)) {
3937 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3938 (byte_count - scsi_bufflen(scsicmd));
3939 psg->sg[i-1].count = cpu_to_le32(temp);
3940 byte_count = scsi_bufflen(scsicmd);
3942 /* Check for command underflow */
3943 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3944 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3945 byte_count, scsicmd->underflow);
3948 return byte_count;
3952 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg)
3954 struct aac_dev *dev;
3955 unsigned long byte_count = 0;
3956 u64 addr;
3957 int nseg;
3958 struct scatterlist *sg;
3959 int i;
3961 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3962 // Get rid of old data
3963 psg->count = 0;
3964 psg->sg[0].addr[0] = 0;
3965 psg->sg[0].addr[1] = 0;
3966 psg->sg[0].count = 0;
3968 nseg = scsi_dma_map(scsicmd);
3969 if (nseg <= 0)
3970 return nseg;
3972 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3973 int count = sg_dma_len(sg);
3974 addr = sg_dma_address(sg);
3975 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
3976 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
3977 psg->sg[i].count = cpu_to_le32(count);
3978 byte_count += count;
3980 psg->count = cpu_to_le32(nseg);
3981 /* hba wants the size to be exact */
3982 if (byte_count > scsi_bufflen(scsicmd)) {
3983 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3984 (byte_count - scsi_bufflen(scsicmd));
3985 psg->sg[i-1].count = cpu_to_le32(temp);
3986 byte_count = scsi_bufflen(scsicmd);
3988 /* Check for command underflow */
3989 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3990 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3991 byte_count, scsicmd->underflow);
3994 return byte_count;
3997 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg)
3999 unsigned long byte_count = 0;
4000 int nseg;
4001 struct scatterlist *sg;
4002 int i;
4004 // Get rid of old data
4005 psg->count = 0;
4006 psg->sg[0].next = 0;
4007 psg->sg[0].prev = 0;
4008 psg->sg[0].addr[0] = 0;
4009 psg->sg[0].addr[1] = 0;
4010 psg->sg[0].count = 0;
4011 psg->sg[0].flags = 0;
4013 nseg = scsi_dma_map(scsicmd);
4014 if (nseg <= 0)
4015 return nseg;
4017 scsi_for_each_sg(scsicmd, sg, nseg, i) {
4018 int count = sg_dma_len(sg);
4019 u64 addr = sg_dma_address(sg);
4020 psg->sg[i].next = 0;
4021 psg->sg[i].prev = 0;
4022 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
4023 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
4024 psg->sg[i].count = cpu_to_le32(count);
4025 psg->sg[i].flags = 0;
4026 byte_count += count;
4028 psg->count = cpu_to_le32(nseg);
4029 /* hba wants the size to be exact */
4030 if (byte_count > scsi_bufflen(scsicmd)) {
4031 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
4032 (byte_count - scsi_bufflen(scsicmd));
4033 psg->sg[i-1].count = cpu_to_le32(temp);
4034 byte_count = scsi_bufflen(scsicmd);
4036 /* Check for command underflow */
4037 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4038 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
4039 byte_count, scsicmd->underflow);
4042 return byte_count;
4045 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
4046 struct aac_raw_io2 *rio2, int sg_max)
4048 unsigned long byte_count = 0;
4049 int nseg;
4050 struct scatterlist *sg;
4051 int i, conformable = 0;
4052 u32 min_size = PAGE_SIZE, cur_size;
4054 nseg = scsi_dma_map(scsicmd);
4055 if (nseg <= 0)
4056 return nseg;
4058 scsi_for_each_sg(scsicmd, sg, nseg, i) {
4059 int count = sg_dma_len(sg);
4060 u64 addr = sg_dma_address(sg);
4062 BUG_ON(i >= sg_max);
4063 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32));
4064 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff));
4065 cur_size = cpu_to_le32(count);
4066 rio2->sge[i].length = cur_size;
4067 rio2->sge[i].flags = 0;
4068 if (i == 0) {
4069 conformable = 1;
4070 rio2->sgeFirstSize = cur_size;
4071 } else if (i == 1) {
4072 rio2->sgeNominalSize = cur_size;
4073 min_size = cur_size;
4074 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) {
4075 conformable = 0;
4076 if (cur_size < min_size)
4077 min_size = cur_size;
4079 byte_count += count;
4082 /* hba wants the size to be exact */
4083 if (byte_count > scsi_bufflen(scsicmd)) {
4084 u32 temp = le32_to_cpu(rio2->sge[i-1].length) -
4085 (byte_count - scsi_bufflen(scsicmd));
4086 rio2->sge[i-1].length = cpu_to_le32(temp);
4087 byte_count = scsi_bufflen(scsicmd);
4090 rio2->sgeCnt = cpu_to_le32(nseg);
4091 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212);
4092 /* not conformable: evaluate required sg elements */
4093 if (!conformable) {
4094 int j, nseg_new = nseg, err_found;
4095 for (i = min_size / PAGE_SIZE; i >= 1; --i) {
4096 err_found = 0;
4097 nseg_new = 2;
4098 for (j = 1; j < nseg - 1; ++j) {
4099 if (rio2->sge[j].length % (i*PAGE_SIZE)) {
4100 err_found = 1;
4101 break;
4103 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE));
4105 if (!err_found)
4106 break;
4108 if (i > 0 && nseg_new <= sg_max) {
4109 int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new);
4111 if (ret < 0)
4112 return ret;
4114 } else
4115 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
4117 /* Check for command underflow */
4118 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4119 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
4120 byte_count, scsicmd->underflow);
4123 return byte_count;
4126 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new)
4128 struct sge_ieee1212 *sge;
4129 int i, j, pos;
4130 u32 addr_low;
4132 if (aac_convert_sgl == 0)
4133 return 0;
4135 sge = kmalloc(nseg_new * sizeof(struct sge_ieee1212), GFP_ATOMIC);
4136 if (sge == NULL)
4137 return -ENOMEM;
4139 for (i = 1, pos = 1; i < nseg-1; ++i) {
4140 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) {
4141 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE;
4142 sge[pos].addrLow = addr_low;
4143 sge[pos].addrHigh = rio2->sge[i].addrHigh;
4144 if (addr_low < rio2->sge[i].addrLow)
4145 sge[pos].addrHigh++;
4146 sge[pos].length = pages * PAGE_SIZE;
4147 sge[pos].flags = 0;
4148 pos++;
4151 sge[pos] = rio2->sge[nseg-1];
4152 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212));
4154 kfree(sge);
4155 rio2->sgeCnt = cpu_to_le32(nseg_new);
4156 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
4157 rio2->sgeNominalSize = pages * PAGE_SIZE;
4158 return 0;
4161 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
4162 struct aac_hba_cmd_req *hbacmd,
4163 int sg_max,
4164 u64 sg_address)
4166 unsigned long byte_count = 0;
4167 int nseg;
4168 struct scatterlist *sg;
4169 int i;
4170 u32 cur_size;
4171 struct aac_hba_sgl *sge;
4173 nseg = scsi_dma_map(scsicmd);
4174 if (nseg <= 0) {
4175 byte_count = nseg;
4176 goto out;
4179 if (nseg > HBA_MAX_SG_EMBEDDED)
4180 sge = &hbacmd->sge[2];
4181 else
4182 sge = &hbacmd->sge[0];
4184 scsi_for_each_sg(scsicmd, sg, nseg, i) {
4185 int count = sg_dma_len(sg);
4186 u64 addr = sg_dma_address(sg);
4188 WARN_ON(i >= sg_max);
4189 sge->addr_hi = cpu_to_le32((u32)(addr>>32));
4190 sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff));
4191 cur_size = cpu_to_le32(count);
4192 sge->len = cur_size;
4193 sge->flags = 0;
4194 byte_count += count;
4195 sge++;
4198 sge--;
4199 /* hba wants the size to be exact */
4200 if (byte_count > scsi_bufflen(scsicmd)) {
4201 u32 temp;
4203 temp = le32_to_cpu(sge->len) - byte_count
4204 - scsi_bufflen(scsicmd);
4205 sge->len = cpu_to_le32(temp);
4206 byte_count = scsi_bufflen(scsicmd);
4209 if (nseg <= HBA_MAX_SG_EMBEDDED) {
4210 hbacmd->emb_data_desc_count = cpu_to_le32(nseg);
4211 sge->flags = cpu_to_le32(0x40000000);
4212 } else {
4213 /* not embedded */
4214 hbacmd->sge[0].flags = cpu_to_le32(0x80000000);
4215 hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1);
4216 hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32);
4217 hbacmd->sge[0].addr_lo =
4218 cpu_to_le32((u32)(sg_address & 0xffffffff));
4221 /* Check for command underflow */
4222 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4223 pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n",
4224 byte_count, scsicmd->underflow);
4226 out:
4227 return byte_count;
4230 #ifdef AAC_DETAILED_STATUS_INFO
4232 struct aac_srb_status_info {
4233 u32 status;
4234 char *str;
4238 static struct aac_srb_status_info srb_status_info[] = {
4239 { SRB_STATUS_PENDING, "Pending Status"},
4240 { SRB_STATUS_SUCCESS, "Success"},
4241 { SRB_STATUS_ABORTED, "Aborted Command"},
4242 { SRB_STATUS_ABORT_FAILED, "Abort Failed"},
4243 { SRB_STATUS_ERROR, "Error Event"},
4244 { SRB_STATUS_BUSY, "Device Busy"},
4245 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
4246 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
4247 { SRB_STATUS_NO_DEVICE, "No Device"},
4248 { SRB_STATUS_TIMEOUT, "Timeout"},
4249 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
4250 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
4251 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
4252 { SRB_STATUS_BUS_RESET, "Bus Reset"},
4253 { SRB_STATUS_PARITY_ERROR, "Parity Error"},
4254 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
4255 { SRB_STATUS_NO_HBA, "No HBA"},
4256 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
4257 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
4258 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
4259 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
4260 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
4261 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
4262 { SRB_STATUS_INVALID_LUN, "Invalid LUN"},
4263 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
4264 { SRB_STATUS_BAD_FUNCTION, "Bad Function"},
4265 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
4266 { SRB_STATUS_NOT_STARTED, "Not Started"},
4267 { SRB_STATUS_NOT_IN_USE, "Not In Use"},
4268 { SRB_STATUS_FORCE_ABORT, "Force Abort"},
4269 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
4270 { 0xff, "Unknown Error"}
4273 char *aac_get_status_string(u32 status)
4275 int i;
4277 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
4278 if (srb_status_info[i].status == status)
4279 return srb_status_info[i].str;
4281 return "Bad Status Code";
4284 #endif