xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / soc / dove / pmu.c
blob5abb08ffb74dca2ddc1399f0caaedf967bf34b65
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Marvell Dove PMU support
4 */
5 #include <linux/io.h>
6 #include <linux/irq.h>
7 #include <linux/irqdomain.h>
8 #include <linux/of.h>
9 #include <linux/of_irq.h>
10 #include <linux/of_address.h>
11 #include <linux/platform_device.h>
12 #include <linux/pm_domain.h>
13 #include <linux/reset.h>
14 #include <linux/reset-controller.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/soc/dove/pmu.h>
18 #include <linux/spinlock.h>
20 #define NR_PMU_IRQS 7
22 #define PMC_SW_RST 0x30
23 #define PMC_IRQ_CAUSE 0x50
24 #define PMC_IRQ_MASK 0x54
26 #define PMU_PWR 0x10
27 #define PMU_ISO 0x58
29 struct pmu_data {
30 spinlock_t lock;
31 struct device_node *of_node;
32 void __iomem *pmc_base;
33 void __iomem *pmu_base;
34 struct irq_chip_generic *irq_gc;
35 struct irq_domain *irq_domain;
36 #ifdef CONFIG_RESET_CONTROLLER
37 struct reset_controller_dev reset;
38 #endif
42 * The PMU contains a register to reset various subsystems within the
43 * SoC. Export this as a reset controller.
45 #ifdef CONFIG_RESET_CONTROLLER
46 #define rcdev_to_pmu(rcdev) container_of(rcdev, struct pmu_data, reset)
48 static int pmu_reset_reset(struct reset_controller_dev *rc, unsigned long id)
50 struct pmu_data *pmu = rcdev_to_pmu(rc);
51 unsigned long flags;
52 u32 val;
54 spin_lock_irqsave(&pmu->lock, flags);
55 val = readl_relaxed(pmu->pmc_base + PMC_SW_RST);
56 writel_relaxed(val & ~BIT(id), pmu->pmc_base + PMC_SW_RST);
57 writel_relaxed(val | BIT(id), pmu->pmc_base + PMC_SW_RST);
58 spin_unlock_irqrestore(&pmu->lock, flags);
60 return 0;
63 static int pmu_reset_assert(struct reset_controller_dev *rc, unsigned long id)
65 struct pmu_data *pmu = rcdev_to_pmu(rc);
66 unsigned long flags;
67 u32 val = ~BIT(id);
69 spin_lock_irqsave(&pmu->lock, flags);
70 val &= readl_relaxed(pmu->pmc_base + PMC_SW_RST);
71 writel_relaxed(val, pmu->pmc_base + PMC_SW_RST);
72 spin_unlock_irqrestore(&pmu->lock, flags);
74 return 0;
77 static int pmu_reset_deassert(struct reset_controller_dev *rc, unsigned long id)
79 struct pmu_data *pmu = rcdev_to_pmu(rc);
80 unsigned long flags;
81 u32 val = BIT(id);
83 spin_lock_irqsave(&pmu->lock, flags);
84 val |= readl_relaxed(pmu->pmc_base + PMC_SW_RST);
85 writel_relaxed(val, pmu->pmc_base + PMC_SW_RST);
86 spin_unlock_irqrestore(&pmu->lock, flags);
88 return 0;
91 static const struct reset_control_ops pmu_reset_ops = {
92 .reset = pmu_reset_reset,
93 .assert = pmu_reset_assert,
94 .deassert = pmu_reset_deassert,
97 static struct reset_controller_dev pmu_reset __initdata = {
98 .ops = &pmu_reset_ops,
99 .owner = THIS_MODULE,
100 .nr_resets = 32,
103 static void __init pmu_reset_init(struct pmu_data *pmu)
105 int ret;
107 pmu->reset = pmu_reset;
108 pmu->reset.of_node = pmu->of_node;
110 ret = reset_controller_register(&pmu->reset);
111 if (ret)
112 pr_err("pmu: %s failed: %d\n", "reset_controller_register", ret);
114 #else
115 static void __init pmu_reset_init(struct pmu_data *pmu)
118 #endif
120 struct pmu_domain {
121 struct pmu_data *pmu;
122 u32 pwr_mask;
123 u32 rst_mask;
124 u32 iso_mask;
125 struct generic_pm_domain base;
128 #define to_pmu_domain(dom) container_of(dom, struct pmu_domain, base)
131 * This deals with the "old" Marvell sequence of bringing a power domain
132 * down/up, which is: apply power, release reset, disable isolators.
134 * Later devices apparantly use a different sequence: power up, disable
135 * isolators, assert repair signal, enable SRMA clock, enable AXI clock,
136 * enable module clock, deassert reset.
138 * Note: reading the assembly, it seems that the IO accessors have an
139 * unfortunate side-effect - they cause memory already read into registers
140 * for the if () to be re-read for the bit-set or bit-clear operation.
141 * The code is written to avoid this.
143 static int pmu_domain_power_off(struct generic_pm_domain *domain)
145 struct pmu_domain *pmu_dom = to_pmu_domain(domain);
146 struct pmu_data *pmu = pmu_dom->pmu;
147 unsigned long flags;
148 unsigned int val;
149 void __iomem *pmu_base = pmu->pmu_base;
150 void __iomem *pmc_base = pmu->pmc_base;
152 spin_lock_irqsave(&pmu->lock, flags);
154 /* Enable isolators */
155 if (pmu_dom->iso_mask) {
156 val = ~pmu_dom->iso_mask;
157 val &= readl_relaxed(pmu_base + PMU_ISO);
158 writel_relaxed(val, pmu_base + PMU_ISO);
161 /* Reset unit */
162 if (pmu_dom->rst_mask) {
163 val = ~pmu_dom->rst_mask;
164 val &= readl_relaxed(pmc_base + PMC_SW_RST);
165 writel_relaxed(val, pmc_base + PMC_SW_RST);
168 /* Power down */
169 val = readl_relaxed(pmu_base + PMU_PWR) | pmu_dom->pwr_mask;
170 writel_relaxed(val, pmu_base + PMU_PWR);
172 spin_unlock_irqrestore(&pmu->lock, flags);
174 return 0;
177 static int pmu_domain_power_on(struct generic_pm_domain *domain)
179 struct pmu_domain *pmu_dom = to_pmu_domain(domain);
180 struct pmu_data *pmu = pmu_dom->pmu;
181 unsigned long flags;
182 unsigned int val;
183 void __iomem *pmu_base = pmu->pmu_base;
184 void __iomem *pmc_base = pmu->pmc_base;
186 spin_lock_irqsave(&pmu->lock, flags);
188 /* Power on */
189 val = ~pmu_dom->pwr_mask & readl_relaxed(pmu_base + PMU_PWR);
190 writel_relaxed(val, pmu_base + PMU_PWR);
192 /* Release reset */
193 if (pmu_dom->rst_mask) {
194 val = pmu_dom->rst_mask;
195 val |= readl_relaxed(pmc_base + PMC_SW_RST);
196 writel_relaxed(val, pmc_base + PMC_SW_RST);
199 /* Disable isolators */
200 if (pmu_dom->iso_mask) {
201 val = pmu_dom->iso_mask;
202 val |= readl_relaxed(pmu_base + PMU_ISO);
203 writel_relaxed(val, pmu_base + PMU_ISO);
206 spin_unlock_irqrestore(&pmu->lock, flags);
208 return 0;
211 static void __pmu_domain_register(struct pmu_domain *domain,
212 struct device_node *np)
214 unsigned int val = readl_relaxed(domain->pmu->pmu_base + PMU_PWR);
216 domain->base.power_off = pmu_domain_power_off;
217 domain->base.power_on = pmu_domain_power_on;
219 pm_genpd_init(&domain->base, NULL, !(val & domain->pwr_mask));
221 if (np)
222 of_genpd_add_provider_simple(np, &domain->base);
225 /* PMU IRQ controller */
226 static void pmu_irq_handler(struct irq_desc *desc)
228 struct pmu_data *pmu = irq_desc_get_handler_data(desc);
229 struct irq_chip_generic *gc = pmu->irq_gc;
230 struct irq_domain *domain = pmu->irq_domain;
231 void __iomem *base = gc->reg_base;
232 u32 stat = readl_relaxed(base + PMC_IRQ_CAUSE) & gc->mask_cache;
233 u32 done = ~0;
235 if (stat == 0) {
236 handle_bad_irq(desc);
237 return;
240 while (stat) {
241 u32 hwirq = fls(stat) - 1;
243 stat &= ~(1 << hwirq);
244 done &= ~(1 << hwirq);
246 generic_handle_irq(irq_find_mapping(domain, hwirq));
250 * The PMU mask register is not RW0C: it is RW. This means that
251 * the bits take whatever value is written to them; if you write
252 * a '1', you will set the interrupt.
254 * Unfortunately this means there is NO race free way to clear
255 * these interrupts.
257 * So, let's structure the code so that the window is as small as
258 * possible.
260 irq_gc_lock(gc);
261 done &= readl_relaxed(base + PMC_IRQ_CAUSE);
262 writel_relaxed(done, base + PMC_IRQ_CAUSE);
263 irq_gc_unlock(gc);
266 static int __init dove_init_pmu_irq(struct pmu_data *pmu, int irq)
268 const char *name = "pmu_irq";
269 struct irq_chip_generic *gc;
270 struct irq_domain *domain;
271 int ret;
273 /* mask and clear all interrupts */
274 writel(0, pmu->pmc_base + PMC_IRQ_MASK);
275 writel(0, pmu->pmc_base + PMC_IRQ_CAUSE);
277 domain = irq_domain_add_linear(pmu->of_node, NR_PMU_IRQS,
278 &irq_generic_chip_ops, NULL);
279 if (!domain) {
280 pr_err("%s: unable to add irq domain\n", name);
281 return -ENOMEM;
284 ret = irq_alloc_domain_generic_chips(domain, NR_PMU_IRQS, 1, name,
285 handle_level_irq,
286 IRQ_NOREQUEST | IRQ_NOPROBE, 0,
287 IRQ_GC_INIT_MASK_CACHE);
288 if (ret) {
289 pr_err("%s: unable to alloc irq domain gc: %d\n", name, ret);
290 irq_domain_remove(domain);
291 return ret;
294 gc = irq_get_domain_generic_chip(domain, 0);
295 gc->reg_base = pmu->pmc_base;
296 gc->chip_types[0].regs.mask = PMC_IRQ_MASK;
297 gc->chip_types[0].chip.irq_mask = irq_gc_mask_clr_bit;
298 gc->chip_types[0].chip.irq_unmask = irq_gc_mask_set_bit;
300 pmu->irq_domain = domain;
301 pmu->irq_gc = gc;
303 irq_set_handler_data(irq, pmu);
304 irq_set_chained_handler(irq, pmu_irq_handler);
306 return 0;
309 int __init dove_init_pmu_legacy(const struct dove_pmu_initdata *initdata)
311 const struct dove_pmu_domain_initdata *domain_initdata;
312 struct pmu_data *pmu;
313 int ret;
315 pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
316 if (!pmu)
317 return -ENOMEM;
319 spin_lock_init(&pmu->lock);
320 pmu->pmc_base = initdata->pmc_base;
321 pmu->pmu_base = initdata->pmu_base;
323 pmu_reset_init(pmu);
324 for (domain_initdata = initdata->domains; domain_initdata->name;
325 domain_initdata++) {
326 struct pmu_domain *domain;
328 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
329 if (domain) {
330 domain->pmu = pmu;
331 domain->pwr_mask = domain_initdata->pwr_mask;
332 domain->rst_mask = domain_initdata->rst_mask;
333 domain->iso_mask = domain_initdata->iso_mask;
334 domain->base.name = domain_initdata->name;
336 __pmu_domain_register(domain, NULL);
340 ret = dove_init_pmu_irq(pmu, initdata->irq);
341 if (ret)
342 pr_err("dove_init_pmu_irq() failed: %d\n", ret);
344 if (pmu->irq_domain)
345 irq_domain_associate_many(pmu->irq_domain,
346 initdata->irq_domain_start,
347 0, NR_PMU_IRQS);
349 return 0;
353 * pmu: power-manager@d0000 {
354 * compatible = "marvell,dove-pmu";
355 * reg = <0xd0000 0x8000> <0xd8000 0x8000>;
356 * interrupts = <33>;
357 * interrupt-controller;
358 * #reset-cells = 1;
359 * vpu_domain: vpu-domain {
360 * #power-domain-cells = <0>;
361 * marvell,pmu_pwr_mask = <0x00000008>;
362 * marvell,pmu_iso_mask = <0x00000001>;
363 * resets = <&pmu 16>;
364 * };
365 * gpu_domain: gpu-domain {
366 * #power-domain-cells = <0>;
367 * marvell,pmu_pwr_mask = <0x00000004>;
368 * marvell,pmu_iso_mask = <0x00000002>;
369 * resets = <&pmu 18>;
370 * };
371 * };
373 int __init dove_init_pmu(void)
375 struct device_node *np_pmu, *domains_node, *np;
376 struct pmu_data *pmu;
377 int ret, parent_irq;
379 /* Lookup the PMU node */
380 np_pmu = of_find_compatible_node(NULL, NULL, "marvell,dove-pmu");
381 if (!np_pmu)
382 return 0;
384 domains_node = of_get_child_by_name(np_pmu, "domains");
385 if (!domains_node) {
386 pr_err("%s: failed to find domains sub-node\n", np_pmu->name);
387 return 0;
390 pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
391 if (!pmu)
392 return -ENOMEM;
394 spin_lock_init(&pmu->lock);
395 pmu->of_node = np_pmu;
396 pmu->pmc_base = of_iomap(pmu->of_node, 0);
397 pmu->pmu_base = of_iomap(pmu->of_node, 1);
398 if (!pmu->pmc_base || !pmu->pmu_base) {
399 pr_err("%s: failed to map PMU\n", np_pmu->name);
400 iounmap(pmu->pmu_base);
401 iounmap(pmu->pmc_base);
402 kfree(pmu);
403 return -ENOMEM;
406 pmu_reset_init(pmu);
408 for_each_available_child_of_node(domains_node, np) {
409 struct of_phandle_args args;
410 struct pmu_domain *domain;
412 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
413 if (!domain)
414 break;
416 domain->pmu = pmu;
417 domain->base.name = kstrdup(np->name, GFP_KERNEL);
418 if (!domain->base.name) {
419 kfree(domain);
420 break;
423 of_property_read_u32(np, "marvell,pmu_pwr_mask",
424 &domain->pwr_mask);
425 of_property_read_u32(np, "marvell,pmu_iso_mask",
426 &domain->iso_mask);
429 * We parse the reset controller property directly here
430 * to ensure that we can operate when the reset controller
431 * support is not configured into the kernel.
433 ret = of_parse_phandle_with_args(np, "resets", "#reset-cells",
434 0, &args);
435 if (ret == 0) {
436 if (args.np == pmu->of_node)
437 domain->rst_mask = BIT(args.args[0]);
438 of_node_put(args.np);
441 __pmu_domain_register(domain, np);
444 /* Loss of the interrupt controller is not a fatal error. */
445 parent_irq = irq_of_parse_and_map(pmu->of_node, 0);
446 if (!parent_irq) {
447 pr_err("%s: no interrupt specified\n", np_pmu->name);
448 } else {
449 ret = dove_init_pmu_irq(pmu, parent_irq);
450 if (ret)
451 pr_err("dove_init_pmu_irq() failed: %d\n", ret);
454 return 0;