xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / soc / fsl / qbman / qman.c
blobe4f5bb056fd275b84d18a80ae1917e86baf1e319
1 /* Copyright 2008 - 2016 Freescale Semiconductor, Inc.
3 * Redistribution and use in source and binary forms, with or without
4 * modification, are permitted provided that the following conditions are met:
5 * * Redistributions of source code must retain the above copyright
6 * notice, this list of conditions and the following disclaimer.
7 * * Redistributions in binary form must reproduce the above copyright
8 * notice, this list of conditions and the following disclaimer in the
9 * documentation and/or other materials provided with the distribution.
10 * * Neither the name of Freescale Semiconductor nor the
11 * names of its contributors may be used to endorse or promote products
12 * derived from this software without specific prior written permission.
14 * ALTERNATIVELY, this software may be distributed under the terms of the
15 * GNU General Public License ("GPL") as published by the Free Software
16 * Foundation, either version 2 of that License or (at your option) any
17 * later version.
19 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 #include "qman_priv.h"
33 #define DQRR_MAXFILL 15
34 #define EQCR_ITHRESH 4 /* if EQCR congests, interrupt threshold */
35 #define IRQNAME "QMan portal %d"
36 #define MAX_IRQNAME 16 /* big enough for "QMan portal %d" */
37 #define QMAN_POLL_LIMIT 32
38 #define QMAN_PIRQ_DQRR_ITHRESH 12
39 #define QMAN_PIRQ_MR_ITHRESH 4
40 #define QMAN_PIRQ_IPERIOD 100
42 /* Portal register assists */
44 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
45 /* Cache-inhibited register offsets */
46 #define QM_REG_EQCR_PI_CINH 0x3000
47 #define QM_REG_EQCR_CI_CINH 0x3040
48 #define QM_REG_EQCR_ITR 0x3080
49 #define QM_REG_DQRR_PI_CINH 0x3100
50 #define QM_REG_DQRR_CI_CINH 0x3140
51 #define QM_REG_DQRR_ITR 0x3180
52 #define QM_REG_DQRR_DCAP 0x31C0
53 #define QM_REG_DQRR_SDQCR 0x3200
54 #define QM_REG_DQRR_VDQCR 0x3240
55 #define QM_REG_DQRR_PDQCR 0x3280
56 #define QM_REG_MR_PI_CINH 0x3300
57 #define QM_REG_MR_CI_CINH 0x3340
58 #define QM_REG_MR_ITR 0x3380
59 #define QM_REG_CFG 0x3500
60 #define QM_REG_ISR 0x3600
61 #define QM_REG_IER 0x3640
62 #define QM_REG_ISDR 0x3680
63 #define QM_REG_IIR 0x36C0
64 #define QM_REG_ITPR 0x3740
66 /* Cache-enabled register offsets */
67 #define QM_CL_EQCR 0x0000
68 #define QM_CL_DQRR 0x1000
69 #define QM_CL_MR 0x2000
70 #define QM_CL_EQCR_PI_CENA 0x3000
71 #define QM_CL_EQCR_CI_CENA 0x3040
72 #define QM_CL_DQRR_PI_CENA 0x3100
73 #define QM_CL_DQRR_CI_CENA 0x3140
74 #define QM_CL_MR_PI_CENA 0x3300
75 #define QM_CL_MR_CI_CENA 0x3340
76 #define QM_CL_CR 0x3800
77 #define QM_CL_RR0 0x3900
78 #define QM_CL_RR1 0x3940
80 #else
81 /* Cache-inhibited register offsets */
82 #define QM_REG_EQCR_PI_CINH 0x0000
83 #define QM_REG_EQCR_CI_CINH 0x0004
84 #define QM_REG_EQCR_ITR 0x0008
85 #define QM_REG_DQRR_PI_CINH 0x0040
86 #define QM_REG_DQRR_CI_CINH 0x0044
87 #define QM_REG_DQRR_ITR 0x0048
88 #define QM_REG_DQRR_DCAP 0x0050
89 #define QM_REG_DQRR_SDQCR 0x0054
90 #define QM_REG_DQRR_VDQCR 0x0058
91 #define QM_REG_DQRR_PDQCR 0x005c
92 #define QM_REG_MR_PI_CINH 0x0080
93 #define QM_REG_MR_CI_CINH 0x0084
94 #define QM_REG_MR_ITR 0x0088
95 #define QM_REG_CFG 0x0100
96 #define QM_REG_ISR 0x0e00
97 #define QM_REG_IER 0x0e04
98 #define QM_REG_ISDR 0x0e08
99 #define QM_REG_IIR 0x0e0c
100 #define QM_REG_ITPR 0x0e14
102 /* Cache-enabled register offsets */
103 #define QM_CL_EQCR 0x0000
104 #define QM_CL_DQRR 0x1000
105 #define QM_CL_MR 0x2000
106 #define QM_CL_EQCR_PI_CENA 0x3000
107 #define QM_CL_EQCR_CI_CENA 0x3100
108 #define QM_CL_DQRR_PI_CENA 0x3200
109 #define QM_CL_DQRR_CI_CENA 0x3300
110 #define QM_CL_MR_PI_CENA 0x3400
111 #define QM_CL_MR_CI_CENA 0x3500
112 #define QM_CL_CR 0x3800
113 #define QM_CL_RR0 0x3900
114 #define QM_CL_RR1 0x3940
115 #endif
118 * BTW, the drivers (and h/w programming model) already obtain the required
119 * synchronisation for portal accesses and data-dependencies. Use of barrier()s
120 * or other order-preserving primitives simply degrade performance. Hence the
121 * use of the __raw_*() interfaces, which simply ensure that the compiler treats
122 * the portal registers as volatile
125 /* Cache-enabled ring access */
126 #define qm_cl(base, idx) ((void *)base + ((idx) << 6))
129 * Portal modes.
130 * Enum types;
131 * pmode == production mode
132 * cmode == consumption mode,
133 * dmode == h/w dequeue mode.
134 * Enum values use 3 letter codes. First letter matches the portal mode,
135 * remaining two letters indicate;
136 * ci == cache-inhibited portal register
137 * ce == cache-enabled portal register
138 * vb == in-band valid-bit (cache-enabled)
139 * dc == DCA (Discrete Consumption Acknowledgment), DQRR-only
140 * As for "enum qm_dqrr_dmode", it should be self-explanatory.
142 enum qm_eqcr_pmode { /* matches QCSP_CFG::EPM */
143 qm_eqcr_pci = 0, /* PI index, cache-inhibited */
144 qm_eqcr_pce = 1, /* PI index, cache-enabled */
145 qm_eqcr_pvb = 2 /* valid-bit */
147 enum qm_dqrr_dmode { /* matches QCSP_CFG::DP */
148 qm_dqrr_dpush = 0, /* SDQCR + VDQCR */
149 qm_dqrr_dpull = 1 /* PDQCR */
151 enum qm_dqrr_pmode { /* s/w-only */
152 qm_dqrr_pci, /* reads DQRR_PI_CINH */
153 qm_dqrr_pce, /* reads DQRR_PI_CENA */
154 qm_dqrr_pvb /* reads valid-bit */
156 enum qm_dqrr_cmode { /* matches QCSP_CFG::DCM */
157 qm_dqrr_cci = 0, /* CI index, cache-inhibited */
158 qm_dqrr_cce = 1, /* CI index, cache-enabled */
159 qm_dqrr_cdc = 2 /* Discrete Consumption Acknowledgment */
161 enum qm_mr_pmode { /* s/w-only */
162 qm_mr_pci, /* reads MR_PI_CINH */
163 qm_mr_pce, /* reads MR_PI_CENA */
164 qm_mr_pvb /* reads valid-bit */
166 enum qm_mr_cmode { /* matches QCSP_CFG::MM */
167 qm_mr_cci = 0, /* CI index, cache-inhibited */
168 qm_mr_cce = 1 /* CI index, cache-enabled */
171 /* --- Portal structures --- */
173 #define QM_EQCR_SIZE 8
174 #define QM_DQRR_SIZE 16
175 #define QM_MR_SIZE 8
177 /* "Enqueue Command" */
178 struct qm_eqcr_entry {
179 u8 _ncw_verb; /* writes to this are non-coherent */
180 u8 dca;
181 __be16 seqnum;
182 u8 __reserved[4];
183 __be32 fqid; /* 24-bit */
184 __be32 tag;
185 struct qm_fd fd;
186 u8 __reserved3[32];
187 } __packed;
188 #define QM_EQCR_VERB_VBIT 0x80
189 #define QM_EQCR_VERB_CMD_MASK 0x61 /* but only one value; */
190 #define QM_EQCR_VERB_CMD_ENQUEUE 0x01
191 #define QM_EQCR_SEQNUM_NESN 0x8000 /* Advance NESN */
192 #define QM_EQCR_SEQNUM_NLIS 0x4000 /* More fragments to come */
193 #define QM_EQCR_SEQNUM_SEQMASK 0x3fff /* sequence number goes here */
195 struct qm_eqcr {
196 struct qm_eqcr_entry *ring, *cursor;
197 u8 ci, available, ithresh, vbit;
198 #ifdef CONFIG_FSL_DPAA_CHECKING
199 u32 busy;
200 enum qm_eqcr_pmode pmode;
201 #endif
204 struct qm_dqrr {
205 const struct qm_dqrr_entry *ring, *cursor;
206 u8 pi, ci, fill, ithresh, vbit;
207 #ifdef CONFIG_FSL_DPAA_CHECKING
208 enum qm_dqrr_dmode dmode;
209 enum qm_dqrr_pmode pmode;
210 enum qm_dqrr_cmode cmode;
211 #endif
214 struct qm_mr {
215 union qm_mr_entry *ring, *cursor;
216 u8 pi, ci, fill, ithresh, vbit;
217 #ifdef CONFIG_FSL_DPAA_CHECKING
218 enum qm_mr_pmode pmode;
219 enum qm_mr_cmode cmode;
220 #endif
223 /* MC (Management Command) command */
224 /* "FQ" command layout */
225 struct qm_mcc_fq {
226 u8 _ncw_verb;
227 u8 __reserved1[3];
228 __be32 fqid; /* 24-bit */
229 u8 __reserved2[56];
230 } __packed;
232 /* "CGR" command layout */
233 struct qm_mcc_cgr {
234 u8 _ncw_verb;
235 u8 __reserved1[30];
236 u8 cgid;
237 u8 __reserved2[32];
240 #define QM_MCC_VERB_VBIT 0x80
241 #define QM_MCC_VERB_MASK 0x7f /* where the verb contains; */
242 #define QM_MCC_VERB_INITFQ_PARKED 0x40
243 #define QM_MCC_VERB_INITFQ_SCHED 0x41
244 #define QM_MCC_VERB_QUERYFQ 0x44
245 #define QM_MCC_VERB_QUERYFQ_NP 0x45 /* "non-programmable" fields */
246 #define QM_MCC_VERB_QUERYWQ 0x46
247 #define QM_MCC_VERB_QUERYWQ_DEDICATED 0x47
248 #define QM_MCC_VERB_ALTER_SCHED 0x48 /* Schedule FQ */
249 #define QM_MCC_VERB_ALTER_FE 0x49 /* Force Eligible FQ */
250 #define QM_MCC_VERB_ALTER_RETIRE 0x4a /* Retire FQ */
251 #define QM_MCC_VERB_ALTER_OOS 0x4b /* Take FQ out of service */
252 #define QM_MCC_VERB_ALTER_FQXON 0x4d /* FQ XON */
253 #define QM_MCC_VERB_ALTER_FQXOFF 0x4e /* FQ XOFF */
254 #define QM_MCC_VERB_INITCGR 0x50
255 #define QM_MCC_VERB_MODIFYCGR 0x51
256 #define QM_MCC_VERB_CGRTESTWRITE 0x52
257 #define QM_MCC_VERB_QUERYCGR 0x58
258 #define QM_MCC_VERB_QUERYCONGESTION 0x59
259 union qm_mc_command {
260 struct {
261 u8 _ncw_verb; /* writes to this are non-coherent */
262 u8 __reserved[63];
264 struct qm_mcc_initfq initfq;
265 struct qm_mcc_initcgr initcgr;
266 struct qm_mcc_fq fq;
267 struct qm_mcc_cgr cgr;
270 /* MC (Management Command) result */
271 /* "Query FQ" */
272 struct qm_mcr_queryfq {
273 u8 verb;
274 u8 result;
275 u8 __reserved1[8];
276 struct qm_fqd fqd; /* the FQD fields are here */
277 u8 __reserved2[30];
278 } __packed;
280 /* "Alter FQ State Commands" */
281 struct qm_mcr_alterfq {
282 u8 verb;
283 u8 result;
284 u8 fqs; /* Frame Queue Status */
285 u8 __reserved1[61];
287 #define QM_MCR_VERB_RRID 0x80
288 #define QM_MCR_VERB_MASK QM_MCC_VERB_MASK
289 #define QM_MCR_VERB_INITFQ_PARKED QM_MCC_VERB_INITFQ_PARKED
290 #define QM_MCR_VERB_INITFQ_SCHED QM_MCC_VERB_INITFQ_SCHED
291 #define QM_MCR_VERB_QUERYFQ QM_MCC_VERB_QUERYFQ
292 #define QM_MCR_VERB_QUERYFQ_NP QM_MCC_VERB_QUERYFQ_NP
293 #define QM_MCR_VERB_QUERYWQ QM_MCC_VERB_QUERYWQ
294 #define QM_MCR_VERB_QUERYWQ_DEDICATED QM_MCC_VERB_QUERYWQ_DEDICATED
295 #define QM_MCR_VERB_ALTER_SCHED QM_MCC_VERB_ALTER_SCHED
296 #define QM_MCR_VERB_ALTER_FE QM_MCC_VERB_ALTER_FE
297 #define QM_MCR_VERB_ALTER_RETIRE QM_MCC_VERB_ALTER_RETIRE
298 #define QM_MCR_VERB_ALTER_OOS QM_MCC_VERB_ALTER_OOS
299 #define QM_MCR_RESULT_NULL 0x00
300 #define QM_MCR_RESULT_OK 0xf0
301 #define QM_MCR_RESULT_ERR_FQID 0xf1
302 #define QM_MCR_RESULT_ERR_FQSTATE 0xf2
303 #define QM_MCR_RESULT_ERR_NOTEMPTY 0xf3 /* OOS fails if FQ is !empty */
304 #define QM_MCR_RESULT_ERR_BADCHANNEL 0xf4
305 #define QM_MCR_RESULT_PENDING 0xf8
306 #define QM_MCR_RESULT_ERR_BADCOMMAND 0xff
307 #define QM_MCR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */
308 #define QM_MCR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */
309 #define QM_MCR_TIMEOUT 10000 /* us */
310 union qm_mc_result {
311 struct {
312 u8 verb;
313 u8 result;
314 u8 __reserved1[62];
316 struct qm_mcr_queryfq queryfq;
317 struct qm_mcr_alterfq alterfq;
318 struct qm_mcr_querycgr querycgr;
319 struct qm_mcr_querycongestion querycongestion;
320 struct qm_mcr_querywq querywq;
321 struct qm_mcr_queryfq_np queryfq_np;
324 struct qm_mc {
325 union qm_mc_command *cr;
326 union qm_mc_result *rr;
327 u8 rridx, vbit;
328 #ifdef CONFIG_FSL_DPAA_CHECKING
329 enum {
330 /* Can be _mc_start()ed */
331 qman_mc_idle,
332 /* Can be _mc_commit()ed or _mc_abort()ed */
333 qman_mc_user,
334 /* Can only be _mc_retry()ed */
335 qman_mc_hw
336 } state;
337 #endif
340 struct qm_addr {
341 void *ce; /* cache-enabled */
342 __be32 *ce_be; /* same value as above but for direct access */
343 void __iomem *ci; /* cache-inhibited */
346 struct qm_portal {
348 * In the non-CONFIG_FSL_DPAA_CHECKING case, the following stuff up to
349 * and including 'mc' fits within a cacheline (yay!). The 'config' part
350 * is setup-only, so isn't a cause for a concern. In other words, don't
351 * rearrange this structure on a whim, there be dragons ...
353 struct qm_addr addr;
354 struct qm_eqcr eqcr;
355 struct qm_dqrr dqrr;
356 struct qm_mr mr;
357 struct qm_mc mc;
358 } ____cacheline_aligned;
360 /* Cache-inhibited register access. */
361 static inline u32 qm_in(struct qm_portal *p, u32 offset)
363 return ioread32be(p->addr.ci + offset);
366 static inline void qm_out(struct qm_portal *p, u32 offset, u32 val)
368 iowrite32be(val, p->addr.ci + offset);
371 /* Cache Enabled Portal Access */
372 static inline void qm_cl_invalidate(struct qm_portal *p, u32 offset)
374 dpaa_invalidate(p->addr.ce + offset);
377 static inline void qm_cl_touch_ro(struct qm_portal *p, u32 offset)
379 dpaa_touch_ro(p->addr.ce + offset);
382 static inline u32 qm_ce_in(struct qm_portal *p, u32 offset)
384 return be32_to_cpu(*(p->addr.ce_be + (offset/4)));
387 /* --- EQCR API --- */
389 #define EQCR_SHIFT ilog2(sizeof(struct qm_eqcr_entry))
390 #define EQCR_CARRY (uintptr_t)(QM_EQCR_SIZE << EQCR_SHIFT)
392 /* Bit-wise logic to wrap a ring pointer by clearing the "carry bit" */
393 static struct qm_eqcr_entry *eqcr_carryclear(struct qm_eqcr_entry *p)
395 uintptr_t addr = (uintptr_t)p;
397 addr &= ~EQCR_CARRY;
399 return (struct qm_eqcr_entry *)addr;
402 /* Bit-wise logic to convert a ring pointer to a ring index */
403 static int eqcr_ptr2idx(struct qm_eqcr_entry *e)
405 return ((uintptr_t)e >> EQCR_SHIFT) & (QM_EQCR_SIZE - 1);
408 /* Increment the 'cursor' ring pointer, taking 'vbit' into account */
409 static inline void eqcr_inc(struct qm_eqcr *eqcr)
411 /* increment to the next EQCR pointer and handle overflow and 'vbit' */
412 struct qm_eqcr_entry *partial = eqcr->cursor + 1;
414 eqcr->cursor = eqcr_carryclear(partial);
415 if (partial != eqcr->cursor)
416 eqcr->vbit ^= QM_EQCR_VERB_VBIT;
419 static inline int qm_eqcr_init(struct qm_portal *portal,
420 enum qm_eqcr_pmode pmode,
421 unsigned int eq_stash_thresh,
422 int eq_stash_prio)
424 struct qm_eqcr *eqcr = &portal->eqcr;
425 u32 cfg;
426 u8 pi;
428 eqcr->ring = portal->addr.ce + QM_CL_EQCR;
429 eqcr->ci = qm_in(portal, QM_REG_EQCR_CI_CINH) & (QM_EQCR_SIZE - 1);
430 qm_cl_invalidate(portal, QM_CL_EQCR_CI_CENA);
431 pi = qm_in(portal, QM_REG_EQCR_PI_CINH) & (QM_EQCR_SIZE - 1);
432 eqcr->cursor = eqcr->ring + pi;
433 eqcr->vbit = (qm_in(portal, QM_REG_EQCR_PI_CINH) & QM_EQCR_SIZE) ?
434 QM_EQCR_VERB_VBIT : 0;
435 eqcr->available = QM_EQCR_SIZE - 1 -
436 dpaa_cyc_diff(QM_EQCR_SIZE, eqcr->ci, pi);
437 eqcr->ithresh = qm_in(portal, QM_REG_EQCR_ITR);
438 #ifdef CONFIG_FSL_DPAA_CHECKING
439 eqcr->busy = 0;
440 eqcr->pmode = pmode;
441 #endif
442 cfg = (qm_in(portal, QM_REG_CFG) & 0x00ffffff) |
443 (eq_stash_thresh << 28) | /* QCSP_CFG: EST */
444 (eq_stash_prio << 26) | /* QCSP_CFG: EP */
445 ((pmode & 0x3) << 24); /* QCSP_CFG::EPM */
446 qm_out(portal, QM_REG_CFG, cfg);
447 return 0;
450 static inline unsigned int qm_eqcr_get_ci_stashing(struct qm_portal *portal)
452 return (qm_in(portal, QM_REG_CFG) >> 28) & 0x7;
455 static inline void qm_eqcr_finish(struct qm_portal *portal)
457 struct qm_eqcr *eqcr = &portal->eqcr;
458 u8 pi = qm_in(portal, QM_REG_EQCR_PI_CINH) & (QM_EQCR_SIZE - 1);
459 u8 ci = qm_in(portal, QM_REG_EQCR_CI_CINH) & (QM_EQCR_SIZE - 1);
461 DPAA_ASSERT(!eqcr->busy);
462 if (pi != eqcr_ptr2idx(eqcr->cursor))
463 pr_crit("losing uncommitted EQCR entries\n");
464 if (ci != eqcr->ci)
465 pr_crit("missing existing EQCR completions\n");
466 if (eqcr->ci != eqcr_ptr2idx(eqcr->cursor))
467 pr_crit("EQCR destroyed unquiesced\n");
470 static inline struct qm_eqcr_entry *qm_eqcr_start_no_stash(struct qm_portal
471 *portal)
473 struct qm_eqcr *eqcr = &portal->eqcr;
475 DPAA_ASSERT(!eqcr->busy);
476 if (!eqcr->available)
477 return NULL;
479 #ifdef CONFIG_FSL_DPAA_CHECKING
480 eqcr->busy = 1;
481 #endif
482 dpaa_zero(eqcr->cursor);
483 return eqcr->cursor;
486 static inline struct qm_eqcr_entry *qm_eqcr_start_stash(struct qm_portal
487 *portal)
489 struct qm_eqcr *eqcr = &portal->eqcr;
490 u8 diff, old_ci;
492 DPAA_ASSERT(!eqcr->busy);
493 if (!eqcr->available) {
494 old_ci = eqcr->ci;
495 eqcr->ci = qm_ce_in(portal, QM_CL_EQCR_CI_CENA) &
496 (QM_EQCR_SIZE - 1);
497 diff = dpaa_cyc_diff(QM_EQCR_SIZE, old_ci, eqcr->ci);
498 eqcr->available += diff;
499 if (!diff)
500 return NULL;
502 #ifdef CONFIG_FSL_DPAA_CHECKING
503 eqcr->busy = 1;
504 #endif
505 dpaa_zero(eqcr->cursor);
506 return eqcr->cursor;
509 static inline void eqcr_commit_checks(struct qm_eqcr *eqcr)
511 DPAA_ASSERT(eqcr->busy);
512 DPAA_ASSERT(!(be32_to_cpu(eqcr->cursor->fqid) & ~QM_FQID_MASK));
513 DPAA_ASSERT(eqcr->available >= 1);
516 static inline void qm_eqcr_pvb_commit(struct qm_portal *portal, u8 myverb)
518 struct qm_eqcr *eqcr = &portal->eqcr;
519 struct qm_eqcr_entry *eqcursor;
521 eqcr_commit_checks(eqcr);
522 DPAA_ASSERT(eqcr->pmode == qm_eqcr_pvb);
523 dma_wmb();
524 eqcursor = eqcr->cursor;
525 eqcursor->_ncw_verb = myverb | eqcr->vbit;
526 dpaa_flush(eqcursor);
527 eqcr_inc(eqcr);
528 eqcr->available--;
529 #ifdef CONFIG_FSL_DPAA_CHECKING
530 eqcr->busy = 0;
531 #endif
534 static inline void qm_eqcr_cce_prefetch(struct qm_portal *portal)
536 qm_cl_touch_ro(portal, QM_CL_EQCR_CI_CENA);
539 static inline u8 qm_eqcr_cce_update(struct qm_portal *portal)
541 struct qm_eqcr *eqcr = &portal->eqcr;
542 u8 diff, old_ci = eqcr->ci;
544 eqcr->ci = qm_ce_in(portal, QM_CL_EQCR_CI_CENA) & (QM_EQCR_SIZE - 1);
545 qm_cl_invalidate(portal, QM_CL_EQCR_CI_CENA);
546 diff = dpaa_cyc_diff(QM_EQCR_SIZE, old_ci, eqcr->ci);
547 eqcr->available += diff;
548 return diff;
551 static inline void qm_eqcr_set_ithresh(struct qm_portal *portal, u8 ithresh)
553 struct qm_eqcr *eqcr = &portal->eqcr;
555 eqcr->ithresh = ithresh;
556 qm_out(portal, QM_REG_EQCR_ITR, ithresh);
559 static inline u8 qm_eqcr_get_avail(struct qm_portal *portal)
561 struct qm_eqcr *eqcr = &portal->eqcr;
563 return eqcr->available;
566 static inline u8 qm_eqcr_get_fill(struct qm_portal *portal)
568 struct qm_eqcr *eqcr = &portal->eqcr;
570 return QM_EQCR_SIZE - 1 - eqcr->available;
573 /* --- DQRR API --- */
575 #define DQRR_SHIFT ilog2(sizeof(struct qm_dqrr_entry))
576 #define DQRR_CARRY (uintptr_t)(QM_DQRR_SIZE << DQRR_SHIFT)
578 static const struct qm_dqrr_entry *dqrr_carryclear(
579 const struct qm_dqrr_entry *p)
581 uintptr_t addr = (uintptr_t)p;
583 addr &= ~DQRR_CARRY;
585 return (const struct qm_dqrr_entry *)addr;
588 static inline int dqrr_ptr2idx(const struct qm_dqrr_entry *e)
590 return ((uintptr_t)e >> DQRR_SHIFT) & (QM_DQRR_SIZE - 1);
593 static const struct qm_dqrr_entry *dqrr_inc(const struct qm_dqrr_entry *e)
595 return dqrr_carryclear(e + 1);
598 static inline void qm_dqrr_set_maxfill(struct qm_portal *portal, u8 mf)
600 qm_out(portal, QM_REG_CFG, (qm_in(portal, QM_REG_CFG) & 0xff0fffff) |
601 ((mf & (QM_DQRR_SIZE - 1)) << 20));
604 static inline int qm_dqrr_init(struct qm_portal *portal,
605 const struct qm_portal_config *config,
606 enum qm_dqrr_dmode dmode,
607 enum qm_dqrr_pmode pmode,
608 enum qm_dqrr_cmode cmode, u8 max_fill)
610 struct qm_dqrr *dqrr = &portal->dqrr;
611 u32 cfg;
613 /* Make sure the DQRR will be idle when we enable */
614 qm_out(portal, QM_REG_DQRR_SDQCR, 0);
615 qm_out(portal, QM_REG_DQRR_VDQCR, 0);
616 qm_out(portal, QM_REG_DQRR_PDQCR, 0);
617 dqrr->ring = portal->addr.ce + QM_CL_DQRR;
618 dqrr->pi = qm_in(portal, QM_REG_DQRR_PI_CINH) & (QM_DQRR_SIZE - 1);
619 dqrr->ci = qm_in(portal, QM_REG_DQRR_CI_CINH) & (QM_DQRR_SIZE - 1);
620 dqrr->cursor = dqrr->ring + dqrr->ci;
621 dqrr->fill = dpaa_cyc_diff(QM_DQRR_SIZE, dqrr->ci, dqrr->pi);
622 dqrr->vbit = (qm_in(portal, QM_REG_DQRR_PI_CINH) & QM_DQRR_SIZE) ?
623 QM_DQRR_VERB_VBIT : 0;
624 dqrr->ithresh = qm_in(portal, QM_REG_DQRR_ITR);
625 #ifdef CONFIG_FSL_DPAA_CHECKING
626 dqrr->dmode = dmode;
627 dqrr->pmode = pmode;
628 dqrr->cmode = cmode;
629 #endif
630 /* Invalidate every ring entry before beginning */
631 for (cfg = 0; cfg < QM_DQRR_SIZE; cfg++)
632 dpaa_invalidate(qm_cl(dqrr->ring, cfg));
633 cfg = (qm_in(portal, QM_REG_CFG) & 0xff000f00) |
634 ((max_fill & (QM_DQRR_SIZE - 1)) << 20) | /* DQRR_MF */
635 ((dmode & 1) << 18) | /* DP */
636 ((cmode & 3) << 16) | /* DCM */
637 0xa0 | /* RE+SE */
638 (0 ? 0x40 : 0) | /* Ignore RP */
639 (0 ? 0x10 : 0); /* Ignore SP */
640 qm_out(portal, QM_REG_CFG, cfg);
641 qm_dqrr_set_maxfill(portal, max_fill);
642 return 0;
645 static inline void qm_dqrr_finish(struct qm_portal *portal)
647 #ifdef CONFIG_FSL_DPAA_CHECKING
648 struct qm_dqrr *dqrr = &portal->dqrr;
650 if (dqrr->cmode != qm_dqrr_cdc &&
651 dqrr->ci != dqrr_ptr2idx(dqrr->cursor))
652 pr_crit("Ignoring completed DQRR entries\n");
653 #endif
656 static inline const struct qm_dqrr_entry *qm_dqrr_current(
657 struct qm_portal *portal)
659 struct qm_dqrr *dqrr = &portal->dqrr;
661 if (!dqrr->fill)
662 return NULL;
663 return dqrr->cursor;
666 static inline u8 qm_dqrr_next(struct qm_portal *portal)
668 struct qm_dqrr *dqrr = &portal->dqrr;
670 DPAA_ASSERT(dqrr->fill);
671 dqrr->cursor = dqrr_inc(dqrr->cursor);
672 return --dqrr->fill;
675 static inline void qm_dqrr_pvb_update(struct qm_portal *portal)
677 struct qm_dqrr *dqrr = &portal->dqrr;
678 struct qm_dqrr_entry *res = qm_cl(dqrr->ring, dqrr->pi);
680 DPAA_ASSERT(dqrr->pmode == qm_dqrr_pvb);
681 #ifndef CONFIG_FSL_PAMU
683 * If PAMU is not available we need to invalidate the cache.
684 * When PAMU is available the cache is updated by stash
686 dpaa_invalidate_touch_ro(res);
687 #endif
688 if ((res->verb & QM_DQRR_VERB_VBIT) == dqrr->vbit) {
689 dqrr->pi = (dqrr->pi + 1) & (QM_DQRR_SIZE - 1);
690 if (!dqrr->pi)
691 dqrr->vbit ^= QM_DQRR_VERB_VBIT;
692 dqrr->fill++;
696 static inline void qm_dqrr_cdc_consume_1ptr(struct qm_portal *portal,
697 const struct qm_dqrr_entry *dq,
698 int park)
700 __maybe_unused struct qm_dqrr *dqrr = &portal->dqrr;
701 int idx = dqrr_ptr2idx(dq);
703 DPAA_ASSERT(dqrr->cmode == qm_dqrr_cdc);
704 DPAA_ASSERT((dqrr->ring + idx) == dq);
705 DPAA_ASSERT(idx < QM_DQRR_SIZE);
706 qm_out(portal, QM_REG_DQRR_DCAP, (0 << 8) | /* DQRR_DCAP::S */
707 ((park ? 1 : 0) << 6) | /* DQRR_DCAP::PK */
708 idx); /* DQRR_DCAP::DCAP_CI */
711 static inline void qm_dqrr_cdc_consume_n(struct qm_portal *portal, u32 bitmask)
713 __maybe_unused struct qm_dqrr *dqrr = &portal->dqrr;
715 DPAA_ASSERT(dqrr->cmode == qm_dqrr_cdc);
716 qm_out(portal, QM_REG_DQRR_DCAP, (1 << 8) | /* DQRR_DCAP::S */
717 (bitmask << 16)); /* DQRR_DCAP::DCAP_CI */
720 static inline void qm_dqrr_sdqcr_set(struct qm_portal *portal, u32 sdqcr)
722 qm_out(portal, QM_REG_DQRR_SDQCR, sdqcr);
725 static inline void qm_dqrr_vdqcr_set(struct qm_portal *portal, u32 vdqcr)
727 qm_out(portal, QM_REG_DQRR_VDQCR, vdqcr);
730 static inline void qm_dqrr_set_ithresh(struct qm_portal *portal, u8 ithresh)
732 qm_out(portal, QM_REG_DQRR_ITR, ithresh);
735 /* --- MR API --- */
737 #define MR_SHIFT ilog2(sizeof(union qm_mr_entry))
738 #define MR_CARRY (uintptr_t)(QM_MR_SIZE << MR_SHIFT)
740 static union qm_mr_entry *mr_carryclear(union qm_mr_entry *p)
742 uintptr_t addr = (uintptr_t)p;
744 addr &= ~MR_CARRY;
746 return (union qm_mr_entry *)addr;
749 static inline int mr_ptr2idx(const union qm_mr_entry *e)
751 return ((uintptr_t)e >> MR_SHIFT) & (QM_MR_SIZE - 1);
754 static inline union qm_mr_entry *mr_inc(union qm_mr_entry *e)
756 return mr_carryclear(e + 1);
759 static inline int qm_mr_init(struct qm_portal *portal, enum qm_mr_pmode pmode,
760 enum qm_mr_cmode cmode)
762 struct qm_mr *mr = &portal->mr;
763 u32 cfg;
765 mr->ring = portal->addr.ce + QM_CL_MR;
766 mr->pi = qm_in(portal, QM_REG_MR_PI_CINH) & (QM_MR_SIZE - 1);
767 mr->ci = qm_in(portal, QM_REG_MR_CI_CINH) & (QM_MR_SIZE - 1);
768 mr->cursor = mr->ring + mr->ci;
769 mr->fill = dpaa_cyc_diff(QM_MR_SIZE, mr->ci, mr->pi);
770 mr->vbit = (qm_in(portal, QM_REG_MR_PI_CINH) & QM_MR_SIZE)
771 ? QM_MR_VERB_VBIT : 0;
772 mr->ithresh = qm_in(portal, QM_REG_MR_ITR);
773 #ifdef CONFIG_FSL_DPAA_CHECKING
774 mr->pmode = pmode;
775 mr->cmode = cmode;
776 #endif
777 cfg = (qm_in(portal, QM_REG_CFG) & 0xfffff0ff) |
778 ((cmode & 1) << 8); /* QCSP_CFG:MM */
779 qm_out(portal, QM_REG_CFG, cfg);
780 return 0;
783 static inline void qm_mr_finish(struct qm_portal *portal)
785 struct qm_mr *mr = &portal->mr;
787 if (mr->ci != mr_ptr2idx(mr->cursor))
788 pr_crit("Ignoring completed MR entries\n");
791 static inline const union qm_mr_entry *qm_mr_current(struct qm_portal *portal)
793 struct qm_mr *mr = &portal->mr;
795 if (!mr->fill)
796 return NULL;
797 return mr->cursor;
800 static inline int qm_mr_next(struct qm_portal *portal)
802 struct qm_mr *mr = &portal->mr;
804 DPAA_ASSERT(mr->fill);
805 mr->cursor = mr_inc(mr->cursor);
806 return --mr->fill;
809 static inline void qm_mr_pvb_update(struct qm_portal *portal)
811 struct qm_mr *mr = &portal->mr;
812 union qm_mr_entry *res = qm_cl(mr->ring, mr->pi);
814 DPAA_ASSERT(mr->pmode == qm_mr_pvb);
816 if ((res->verb & QM_MR_VERB_VBIT) == mr->vbit) {
817 mr->pi = (mr->pi + 1) & (QM_MR_SIZE - 1);
818 if (!mr->pi)
819 mr->vbit ^= QM_MR_VERB_VBIT;
820 mr->fill++;
821 res = mr_inc(res);
823 dpaa_invalidate_touch_ro(res);
826 static inline void qm_mr_cci_consume(struct qm_portal *portal, u8 num)
828 struct qm_mr *mr = &portal->mr;
830 DPAA_ASSERT(mr->cmode == qm_mr_cci);
831 mr->ci = (mr->ci + num) & (QM_MR_SIZE - 1);
832 qm_out(portal, QM_REG_MR_CI_CINH, mr->ci);
835 static inline void qm_mr_cci_consume_to_current(struct qm_portal *portal)
837 struct qm_mr *mr = &portal->mr;
839 DPAA_ASSERT(mr->cmode == qm_mr_cci);
840 mr->ci = mr_ptr2idx(mr->cursor);
841 qm_out(portal, QM_REG_MR_CI_CINH, mr->ci);
844 static inline void qm_mr_set_ithresh(struct qm_portal *portal, u8 ithresh)
846 qm_out(portal, QM_REG_MR_ITR, ithresh);
849 /* --- Management command API --- */
851 static inline int qm_mc_init(struct qm_portal *portal)
853 struct qm_mc *mc = &portal->mc;
855 mc->cr = portal->addr.ce + QM_CL_CR;
856 mc->rr = portal->addr.ce + QM_CL_RR0;
857 mc->rridx = (mc->cr->_ncw_verb & QM_MCC_VERB_VBIT)
858 ? 0 : 1;
859 mc->vbit = mc->rridx ? QM_MCC_VERB_VBIT : 0;
860 #ifdef CONFIG_FSL_DPAA_CHECKING
861 mc->state = qman_mc_idle;
862 #endif
863 return 0;
866 static inline void qm_mc_finish(struct qm_portal *portal)
868 #ifdef CONFIG_FSL_DPAA_CHECKING
869 struct qm_mc *mc = &portal->mc;
871 DPAA_ASSERT(mc->state == qman_mc_idle);
872 if (mc->state != qman_mc_idle)
873 pr_crit("Losing incomplete MC command\n");
874 #endif
877 static inline union qm_mc_command *qm_mc_start(struct qm_portal *portal)
879 struct qm_mc *mc = &portal->mc;
881 DPAA_ASSERT(mc->state == qman_mc_idle);
882 #ifdef CONFIG_FSL_DPAA_CHECKING
883 mc->state = qman_mc_user;
884 #endif
885 dpaa_zero(mc->cr);
886 return mc->cr;
889 static inline void qm_mc_commit(struct qm_portal *portal, u8 myverb)
891 struct qm_mc *mc = &portal->mc;
892 union qm_mc_result *rr = mc->rr + mc->rridx;
894 DPAA_ASSERT(mc->state == qman_mc_user);
895 dma_wmb();
896 mc->cr->_ncw_verb = myverb | mc->vbit;
897 dpaa_flush(mc->cr);
898 dpaa_invalidate_touch_ro(rr);
899 #ifdef CONFIG_FSL_DPAA_CHECKING
900 mc->state = qman_mc_hw;
901 #endif
904 static inline union qm_mc_result *qm_mc_result(struct qm_portal *portal)
906 struct qm_mc *mc = &portal->mc;
907 union qm_mc_result *rr = mc->rr + mc->rridx;
909 DPAA_ASSERT(mc->state == qman_mc_hw);
911 * The inactive response register's verb byte always returns zero until
912 * its command is submitted and completed. This includes the valid-bit,
913 * in case you were wondering...
915 if (!rr->verb) {
916 dpaa_invalidate_touch_ro(rr);
917 return NULL;
919 mc->rridx ^= 1;
920 mc->vbit ^= QM_MCC_VERB_VBIT;
921 #ifdef CONFIG_FSL_DPAA_CHECKING
922 mc->state = qman_mc_idle;
923 #endif
924 return rr;
927 static inline int qm_mc_result_timeout(struct qm_portal *portal,
928 union qm_mc_result **mcr)
930 int timeout = QM_MCR_TIMEOUT;
932 do {
933 *mcr = qm_mc_result(portal);
934 if (*mcr)
935 break;
936 udelay(1);
937 } while (--timeout);
939 return timeout;
942 static inline void fq_set(struct qman_fq *fq, u32 mask)
944 fq->flags |= mask;
947 static inline void fq_clear(struct qman_fq *fq, u32 mask)
949 fq->flags &= ~mask;
952 static inline int fq_isset(struct qman_fq *fq, u32 mask)
954 return fq->flags & mask;
957 static inline int fq_isclear(struct qman_fq *fq, u32 mask)
959 return !(fq->flags & mask);
962 struct qman_portal {
963 struct qm_portal p;
964 /* PORTAL_BITS_*** - dynamic, strictly internal */
965 unsigned long bits;
966 /* interrupt sources processed by portal_isr(), configurable */
967 unsigned long irq_sources;
968 u32 use_eqcr_ci_stashing;
969 /* only 1 volatile dequeue at a time */
970 struct qman_fq *vdqcr_owned;
971 u32 sdqcr;
972 /* probing time config params for cpu-affine portals */
973 const struct qm_portal_config *config;
974 /* 2-element array. cgrs[0] is mask, cgrs[1] is snapshot. */
975 struct qman_cgrs *cgrs;
976 /* linked-list of CSCN handlers. */
977 struct list_head cgr_cbs;
978 /* list lock */
979 spinlock_t cgr_lock;
980 struct work_struct congestion_work;
981 struct work_struct mr_work;
982 char irqname[MAX_IRQNAME];
985 static cpumask_t affine_mask;
986 static DEFINE_SPINLOCK(affine_mask_lock);
987 static u16 affine_channels[NR_CPUS];
988 static DEFINE_PER_CPU(struct qman_portal, qman_affine_portal);
989 struct qman_portal *affine_portals[NR_CPUS];
991 static inline struct qman_portal *get_affine_portal(void)
993 return &get_cpu_var(qman_affine_portal);
996 static inline void put_affine_portal(void)
998 put_cpu_var(qman_affine_portal);
1001 static struct workqueue_struct *qm_portal_wq;
1003 int qman_wq_alloc(void)
1005 qm_portal_wq = alloc_workqueue("qman_portal_wq", 0, 1);
1006 if (!qm_portal_wq)
1007 return -ENOMEM;
1008 return 0;
1012 * This is what everything can wait on, even if it migrates to a different cpu
1013 * to the one whose affine portal it is waiting on.
1015 static DECLARE_WAIT_QUEUE_HEAD(affine_queue);
1017 static struct qman_fq **fq_table;
1018 static u32 num_fqids;
1020 int qman_alloc_fq_table(u32 _num_fqids)
1022 num_fqids = _num_fqids;
1024 fq_table = vzalloc(num_fqids * 2 * sizeof(struct qman_fq *));
1025 if (!fq_table)
1026 return -ENOMEM;
1028 pr_debug("Allocated fq lookup table at %p, entry count %u\n",
1029 fq_table, num_fqids * 2);
1030 return 0;
1033 static struct qman_fq *idx_to_fq(u32 idx)
1035 struct qman_fq *fq;
1037 #ifdef CONFIG_FSL_DPAA_CHECKING
1038 if (WARN_ON(idx >= num_fqids * 2))
1039 return NULL;
1040 #endif
1041 fq = fq_table[idx];
1042 DPAA_ASSERT(!fq || idx == fq->idx);
1044 return fq;
1048 * Only returns full-service fq objects, not enqueue-only
1049 * references (QMAN_FQ_FLAG_NO_MODIFY).
1051 static struct qman_fq *fqid_to_fq(u32 fqid)
1053 return idx_to_fq(fqid * 2);
1056 static struct qman_fq *tag_to_fq(u32 tag)
1058 #if BITS_PER_LONG == 64
1059 return idx_to_fq(tag);
1060 #else
1061 return (struct qman_fq *)tag;
1062 #endif
1065 static u32 fq_to_tag(struct qman_fq *fq)
1067 #if BITS_PER_LONG == 64
1068 return fq->idx;
1069 #else
1070 return (u32)fq;
1071 #endif
1074 static u32 __poll_portal_slow(struct qman_portal *p, u32 is);
1075 static inline unsigned int __poll_portal_fast(struct qman_portal *p,
1076 unsigned int poll_limit);
1077 static void qm_congestion_task(struct work_struct *work);
1078 static void qm_mr_process_task(struct work_struct *work);
1080 static irqreturn_t portal_isr(int irq, void *ptr)
1082 struct qman_portal *p = ptr;
1084 u32 clear = QM_DQAVAIL_MASK | p->irq_sources;
1085 u32 is = qm_in(&p->p, QM_REG_ISR) & p->irq_sources;
1087 if (unlikely(!is))
1088 return IRQ_NONE;
1090 /* DQRR-handling if it's interrupt-driven */
1091 if (is & QM_PIRQ_DQRI)
1092 __poll_portal_fast(p, QMAN_POLL_LIMIT);
1093 /* Handling of anything else that's interrupt-driven */
1094 clear |= __poll_portal_slow(p, is);
1095 qm_out(&p->p, QM_REG_ISR, clear);
1096 return IRQ_HANDLED;
1099 static int drain_mr_fqrni(struct qm_portal *p)
1101 const union qm_mr_entry *msg;
1102 loop:
1103 msg = qm_mr_current(p);
1104 if (!msg) {
1106 * if MR was full and h/w had other FQRNI entries to produce, we
1107 * need to allow it time to produce those entries once the
1108 * existing entries are consumed. A worst-case situation
1109 * (fully-loaded system) means h/w sequencers may have to do 3-4
1110 * other things before servicing the portal's MR pump, each of
1111 * which (if slow) may take ~50 qman cycles (which is ~200
1112 * processor cycles). So rounding up and then multiplying this
1113 * worst-case estimate by a factor of 10, just to be
1114 * ultra-paranoid, goes as high as 10,000 cycles. NB, we consume
1115 * one entry at a time, so h/w has an opportunity to produce new
1116 * entries well before the ring has been fully consumed, so
1117 * we're being *really* paranoid here.
1119 msleep(1);
1120 msg = qm_mr_current(p);
1121 if (!msg)
1122 return 0;
1124 if ((msg->verb & QM_MR_VERB_TYPE_MASK) != QM_MR_VERB_FQRNI) {
1125 /* We aren't draining anything but FQRNIs */
1126 pr_err("Found verb 0x%x in MR\n", msg->verb);
1127 return -1;
1129 qm_mr_next(p);
1130 qm_mr_cci_consume(p, 1);
1131 goto loop;
1134 static int qman_create_portal(struct qman_portal *portal,
1135 const struct qm_portal_config *c,
1136 const struct qman_cgrs *cgrs)
1138 struct qm_portal *p;
1139 int ret;
1140 u32 isdr;
1142 p = &portal->p;
1144 #ifdef CONFIG_FSL_PAMU
1145 /* PAMU is required for stashing */
1146 portal->use_eqcr_ci_stashing = ((qman_ip_rev >= QMAN_REV30) ? 1 : 0);
1147 #else
1148 portal->use_eqcr_ci_stashing = 0;
1149 #endif
1151 * prep the low-level portal struct with the mapped addresses from the
1152 * config, everything that follows depends on it and "config" is more
1153 * for (de)reference
1155 p->addr.ce = c->addr_virt_ce;
1156 p->addr.ce_be = c->addr_virt_ce;
1157 p->addr.ci = c->addr_virt_ci;
1159 * If CI-stashing is used, the current defaults use a threshold of 3,
1160 * and stash with high-than-DQRR priority.
1162 if (qm_eqcr_init(p, qm_eqcr_pvb,
1163 portal->use_eqcr_ci_stashing ? 3 : 0, 1)) {
1164 dev_err(c->dev, "EQCR initialisation failed\n");
1165 goto fail_eqcr;
1167 if (qm_dqrr_init(p, c, qm_dqrr_dpush, qm_dqrr_pvb,
1168 qm_dqrr_cdc, DQRR_MAXFILL)) {
1169 dev_err(c->dev, "DQRR initialisation failed\n");
1170 goto fail_dqrr;
1172 if (qm_mr_init(p, qm_mr_pvb, qm_mr_cci)) {
1173 dev_err(c->dev, "MR initialisation failed\n");
1174 goto fail_mr;
1176 if (qm_mc_init(p)) {
1177 dev_err(c->dev, "MC initialisation failed\n");
1178 goto fail_mc;
1180 /* static interrupt-gating controls */
1181 qm_dqrr_set_ithresh(p, QMAN_PIRQ_DQRR_ITHRESH);
1182 qm_mr_set_ithresh(p, QMAN_PIRQ_MR_ITHRESH);
1183 qm_out(p, QM_REG_ITPR, QMAN_PIRQ_IPERIOD);
1184 portal->cgrs = kmalloc(2 * sizeof(*cgrs), GFP_KERNEL);
1185 if (!portal->cgrs)
1186 goto fail_cgrs;
1187 /* initial snapshot is no-depletion */
1188 qman_cgrs_init(&portal->cgrs[1]);
1189 if (cgrs)
1190 portal->cgrs[0] = *cgrs;
1191 else
1192 /* if the given mask is NULL, assume all CGRs can be seen */
1193 qman_cgrs_fill(&portal->cgrs[0]);
1194 INIT_LIST_HEAD(&portal->cgr_cbs);
1195 spin_lock_init(&portal->cgr_lock);
1196 INIT_WORK(&portal->congestion_work, qm_congestion_task);
1197 INIT_WORK(&portal->mr_work, qm_mr_process_task);
1198 portal->bits = 0;
1199 portal->sdqcr = QM_SDQCR_SOURCE_CHANNELS | QM_SDQCR_COUNT_UPTO3 |
1200 QM_SDQCR_DEDICATED_PRECEDENCE | QM_SDQCR_TYPE_PRIO_QOS |
1201 QM_SDQCR_TOKEN_SET(0xab) | QM_SDQCR_CHANNELS_DEDICATED;
1202 isdr = 0xffffffff;
1203 qm_out(p, QM_REG_ISDR, isdr);
1204 portal->irq_sources = 0;
1205 qm_out(p, QM_REG_IER, 0);
1206 qm_out(p, QM_REG_ISR, 0xffffffff);
1207 snprintf(portal->irqname, MAX_IRQNAME, IRQNAME, c->cpu);
1208 if (request_irq(c->irq, portal_isr, 0, portal->irqname, portal)) {
1209 dev_err(c->dev, "request_irq() failed\n");
1210 goto fail_irq;
1212 if (c->cpu != -1 && irq_can_set_affinity(c->irq) &&
1213 irq_set_affinity(c->irq, cpumask_of(c->cpu))) {
1214 dev_err(c->dev, "irq_set_affinity() failed\n");
1215 goto fail_affinity;
1218 /* Need EQCR to be empty before continuing */
1219 isdr &= ~QM_PIRQ_EQCI;
1220 qm_out(p, QM_REG_ISDR, isdr);
1221 ret = qm_eqcr_get_fill(p);
1222 if (ret) {
1223 dev_err(c->dev, "EQCR unclean\n");
1224 goto fail_eqcr_empty;
1226 isdr &= ~(QM_PIRQ_DQRI | QM_PIRQ_MRI);
1227 qm_out(p, QM_REG_ISDR, isdr);
1228 if (qm_dqrr_current(p)) {
1229 dev_err(c->dev, "DQRR unclean\n");
1230 qm_dqrr_cdc_consume_n(p, 0xffff);
1232 if (qm_mr_current(p) && drain_mr_fqrni(p)) {
1233 /* special handling, drain just in case it's a few FQRNIs */
1234 const union qm_mr_entry *e = qm_mr_current(p);
1236 dev_err(c->dev, "MR dirty, VB 0x%x, rc 0x%x, addr 0x%llx\n",
1237 e->verb, e->ern.rc, qm_fd_addr_get64(&e->ern.fd));
1238 goto fail_dqrr_mr_empty;
1240 /* Success */
1241 portal->config = c;
1242 qm_out(p, QM_REG_ISDR, 0);
1243 qm_out(p, QM_REG_IIR, 0);
1244 /* Write a sane SDQCR */
1245 qm_dqrr_sdqcr_set(p, portal->sdqcr);
1246 return 0;
1248 fail_dqrr_mr_empty:
1249 fail_eqcr_empty:
1250 fail_affinity:
1251 free_irq(c->irq, portal);
1252 fail_irq:
1253 kfree(portal->cgrs);
1254 fail_cgrs:
1255 qm_mc_finish(p);
1256 fail_mc:
1257 qm_mr_finish(p);
1258 fail_mr:
1259 qm_dqrr_finish(p);
1260 fail_dqrr:
1261 qm_eqcr_finish(p);
1262 fail_eqcr:
1263 return -EIO;
1266 struct qman_portal *qman_create_affine_portal(const struct qm_portal_config *c,
1267 const struct qman_cgrs *cgrs)
1269 struct qman_portal *portal;
1270 int err;
1272 portal = &per_cpu(qman_affine_portal, c->cpu);
1273 err = qman_create_portal(portal, c, cgrs);
1274 if (err)
1275 return NULL;
1277 spin_lock(&affine_mask_lock);
1278 cpumask_set_cpu(c->cpu, &affine_mask);
1279 affine_channels[c->cpu] = c->channel;
1280 affine_portals[c->cpu] = portal;
1281 spin_unlock(&affine_mask_lock);
1283 return portal;
1286 static void qman_destroy_portal(struct qman_portal *qm)
1288 const struct qm_portal_config *pcfg;
1290 /* Stop dequeues on the portal */
1291 qm_dqrr_sdqcr_set(&qm->p, 0);
1294 * NB we do this to "quiesce" EQCR. If we add enqueue-completions or
1295 * something related to QM_PIRQ_EQCI, this may need fixing.
1296 * Also, due to the prefetching model used for CI updates in the enqueue
1297 * path, this update will only invalidate the CI cacheline *after*
1298 * working on it, so we need to call this twice to ensure a full update
1299 * irrespective of where the enqueue processing was at when the teardown
1300 * began.
1302 qm_eqcr_cce_update(&qm->p);
1303 qm_eqcr_cce_update(&qm->p);
1304 pcfg = qm->config;
1306 free_irq(pcfg->irq, qm);
1308 kfree(qm->cgrs);
1309 qm_mc_finish(&qm->p);
1310 qm_mr_finish(&qm->p);
1311 qm_dqrr_finish(&qm->p);
1312 qm_eqcr_finish(&qm->p);
1314 qm->config = NULL;
1317 const struct qm_portal_config *qman_destroy_affine_portal(void)
1319 struct qman_portal *qm = get_affine_portal();
1320 const struct qm_portal_config *pcfg;
1321 int cpu;
1323 pcfg = qm->config;
1324 cpu = pcfg->cpu;
1326 qman_destroy_portal(qm);
1328 spin_lock(&affine_mask_lock);
1329 cpumask_clear_cpu(cpu, &affine_mask);
1330 spin_unlock(&affine_mask_lock);
1331 put_affine_portal();
1332 return pcfg;
1335 /* Inline helper to reduce nesting in __poll_portal_slow() */
1336 static inline void fq_state_change(struct qman_portal *p, struct qman_fq *fq,
1337 const union qm_mr_entry *msg, u8 verb)
1339 switch (verb) {
1340 case QM_MR_VERB_FQRL:
1341 DPAA_ASSERT(fq_isset(fq, QMAN_FQ_STATE_ORL));
1342 fq_clear(fq, QMAN_FQ_STATE_ORL);
1343 break;
1344 case QM_MR_VERB_FQRN:
1345 DPAA_ASSERT(fq->state == qman_fq_state_parked ||
1346 fq->state == qman_fq_state_sched);
1347 DPAA_ASSERT(fq_isset(fq, QMAN_FQ_STATE_CHANGING));
1348 fq_clear(fq, QMAN_FQ_STATE_CHANGING);
1349 if (msg->fq.fqs & QM_MR_FQS_NOTEMPTY)
1350 fq_set(fq, QMAN_FQ_STATE_NE);
1351 if (msg->fq.fqs & QM_MR_FQS_ORLPRESENT)
1352 fq_set(fq, QMAN_FQ_STATE_ORL);
1353 fq->state = qman_fq_state_retired;
1354 break;
1355 case QM_MR_VERB_FQPN:
1356 DPAA_ASSERT(fq->state == qman_fq_state_sched);
1357 DPAA_ASSERT(fq_isclear(fq, QMAN_FQ_STATE_CHANGING));
1358 fq->state = qman_fq_state_parked;
1362 static void qm_congestion_task(struct work_struct *work)
1364 struct qman_portal *p = container_of(work, struct qman_portal,
1365 congestion_work);
1366 struct qman_cgrs rr, c;
1367 union qm_mc_result *mcr;
1368 struct qman_cgr *cgr;
1370 spin_lock(&p->cgr_lock);
1371 qm_mc_start(&p->p);
1372 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYCONGESTION);
1373 if (!qm_mc_result_timeout(&p->p, &mcr)) {
1374 spin_unlock(&p->cgr_lock);
1375 dev_crit(p->config->dev, "QUERYCONGESTION timeout\n");
1376 qman_p_irqsource_add(p, QM_PIRQ_CSCI);
1377 return;
1379 /* mask out the ones I'm not interested in */
1380 qman_cgrs_and(&rr, (struct qman_cgrs *)&mcr->querycongestion.state,
1381 &p->cgrs[0]);
1382 /* check previous snapshot for delta, enter/exit congestion */
1383 qman_cgrs_xor(&c, &rr, &p->cgrs[1]);
1384 /* update snapshot */
1385 qman_cgrs_cp(&p->cgrs[1], &rr);
1386 /* Invoke callback */
1387 list_for_each_entry(cgr, &p->cgr_cbs, node)
1388 if (cgr->cb && qman_cgrs_get(&c, cgr->cgrid))
1389 cgr->cb(p, cgr, qman_cgrs_get(&rr, cgr->cgrid));
1390 spin_unlock(&p->cgr_lock);
1391 qman_p_irqsource_add(p, QM_PIRQ_CSCI);
1394 static void qm_mr_process_task(struct work_struct *work)
1396 struct qman_portal *p = container_of(work, struct qman_portal,
1397 mr_work);
1398 const union qm_mr_entry *msg;
1399 struct qman_fq *fq;
1400 u8 verb, num = 0;
1402 preempt_disable();
1404 while (1) {
1405 qm_mr_pvb_update(&p->p);
1406 msg = qm_mr_current(&p->p);
1407 if (!msg)
1408 break;
1410 verb = msg->verb & QM_MR_VERB_TYPE_MASK;
1411 /* The message is a software ERN iff the 0x20 bit is clear */
1412 if (verb & 0x20) {
1413 switch (verb) {
1414 case QM_MR_VERB_FQRNI:
1415 /* nada, we drop FQRNIs on the floor */
1416 break;
1417 case QM_MR_VERB_FQRN:
1418 case QM_MR_VERB_FQRL:
1419 /* Lookup in the retirement table */
1420 fq = fqid_to_fq(qm_fqid_get(&msg->fq));
1421 if (WARN_ON(!fq))
1422 break;
1423 fq_state_change(p, fq, msg, verb);
1424 if (fq->cb.fqs)
1425 fq->cb.fqs(p, fq, msg);
1426 break;
1427 case QM_MR_VERB_FQPN:
1428 /* Parked */
1429 fq = tag_to_fq(be32_to_cpu(msg->fq.context_b));
1430 fq_state_change(p, fq, msg, verb);
1431 if (fq->cb.fqs)
1432 fq->cb.fqs(p, fq, msg);
1433 break;
1434 case QM_MR_VERB_DC_ERN:
1435 /* DCP ERN */
1436 pr_crit_once("Leaking DCP ERNs!\n");
1437 break;
1438 default:
1439 pr_crit("Invalid MR verb 0x%02x\n", verb);
1441 } else {
1442 /* Its a software ERN */
1443 fq = tag_to_fq(be32_to_cpu(msg->ern.tag));
1444 fq->cb.ern(p, fq, msg);
1446 num++;
1447 qm_mr_next(&p->p);
1450 qm_mr_cci_consume(&p->p, num);
1451 qman_p_irqsource_add(p, QM_PIRQ_MRI);
1452 preempt_enable();
1455 static u32 __poll_portal_slow(struct qman_portal *p, u32 is)
1457 if (is & QM_PIRQ_CSCI) {
1458 qman_p_irqsource_remove(p, QM_PIRQ_CSCI);
1459 queue_work_on(smp_processor_id(), qm_portal_wq,
1460 &p->congestion_work);
1463 if (is & QM_PIRQ_EQRI) {
1464 qm_eqcr_cce_update(&p->p);
1465 qm_eqcr_set_ithresh(&p->p, 0);
1466 wake_up(&affine_queue);
1469 if (is & QM_PIRQ_MRI) {
1470 qman_p_irqsource_remove(p, QM_PIRQ_MRI);
1471 queue_work_on(smp_processor_id(), qm_portal_wq,
1472 &p->mr_work);
1475 return is;
1479 * remove some slowish-path stuff from the "fast path" and make sure it isn't
1480 * inlined.
1482 static noinline void clear_vdqcr(struct qman_portal *p, struct qman_fq *fq)
1484 p->vdqcr_owned = NULL;
1485 fq_clear(fq, QMAN_FQ_STATE_VDQCR);
1486 wake_up(&affine_queue);
1490 * The only states that would conflict with other things if they ran at the
1491 * same time on the same cpu are:
1493 * (i) setting/clearing vdqcr_owned, and
1494 * (ii) clearing the NE (Not Empty) flag.
1496 * Both are safe. Because;
1498 * (i) this clearing can only occur after qman_volatile_dequeue() has set the
1499 * vdqcr_owned field (which it does before setting VDQCR), and
1500 * qman_volatile_dequeue() blocks interrupts and preemption while this is
1501 * done so that we can't interfere.
1502 * (ii) the NE flag is only cleared after qman_retire_fq() has set it, and as
1503 * with (i) that API prevents us from interfering until it's safe.
1505 * The good thing is that qman_volatile_dequeue() and qman_retire_fq() run far
1506 * less frequently (ie. per-FQ) than __poll_portal_fast() does, so the nett
1507 * advantage comes from this function not having to "lock" anything at all.
1509 * Note also that the callbacks are invoked at points which are safe against the
1510 * above potential conflicts, but that this function itself is not re-entrant
1511 * (this is because the function tracks one end of each FIFO in the portal and
1512 * we do *not* want to lock that). So the consequence is that it is safe for
1513 * user callbacks to call into any QMan API.
1515 static inline unsigned int __poll_portal_fast(struct qman_portal *p,
1516 unsigned int poll_limit)
1518 const struct qm_dqrr_entry *dq;
1519 struct qman_fq *fq;
1520 enum qman_cb_dqrr_result res;
1521 unsigned int limit = 0;
1523 do {
1524 qm_dqrr_pvb_update(&p->p);
1525 dq = qm_dqrr_current(&p->p);
1526 if (!dq)
1527 break;
1529 if (dq->stat & QM_DQRR_STAT_UNSCHEDULED) {
1531 * VDQCR: don't trust context_b as the FQ may have
1532 * been configured for h/w consumption and we're
1533 * draining it post-retirement.
1535 fq = p->vdqcr_owned;
1537 * We only set QMAN_FQ_STATE_NE when retiring, so we
1538 * only need to check for clearing it when doing
1539 * volatile dequeues. It's one less thing to check
1540 * in the critical path (SDQCR).
1542 if (dq->stat & QM_DQRR_STAT_FQ_EMPTY)
1543 fq_clear(fq, QMAN_FQ_STATE_NE);
1545 * This is duplicated from the SDQCR code, but we
1546 * have stuff to do before *and* after this callback,
1547 * and we don't want multiple if()s in the critical
1548 * path (SDQCR).
1550 res = fq->cb.dqrr(p, fq, dq);
1551 if (res == qman_cb_dqrr_stop)
1552 break;
1553 /* Check for VDQCR completion */
1554 if (dq->stat & QM_DQRR_STAT_DQCR_EXPIRED)
1555 clear_vdqcr(p, fq);
1556 } else {
1557 /* SDQCR: context_b points to the FQ */
1558 fq = tag_to_fq(be32_to_cpu(dq->context_b));
1559 /* Now let the callback do its stuff */
1560 res = fq->cb.dqrr(p, fq, dq);
1562 * The callback can request that we exit without
1563 * consuming this entry nor advancing;
1565 if (res == qman_cb_dqrr_stop)
1566 break;
1568 /* Interpret 'dq' from a driver perspective. */
1570 * Parking isn't possible unless HELDACTIVE was set. NB,
1571 * FORCEELIGIBLE implies HELDACTIVE, so we only need to
1572 * check for HELDACTIVE to cover both.
1574 DPAA_ASSERT((dq->stat & QM_DQRR_STAT_FQ_HELDACTIVE) ||
1575 (res != qman_cb_dqrr_park));
1576 /* just means "skip it, I'll consume it myself later on" */
1577 if (res != qman_cb_dqrr_defer)
1578 qm_dqrr_cdc_consume_1ptr(&p->p, dq,
1579 res == qman_cb_dqrr_park);
1580 /* Move forward */
1581 qm_dqrr_next(&p->p);
1583 * Entry processed and consumed, increment our counter. The
1584 * callback can request that we exit after consuming the
1585 * entry, and we also exit if we reach our processing limit,
1586 * so loop back only if neither of these conditions is met.
1588 } while (++limit < poll_limit && res != qman_cb_dqrr_consume_stop);
1590 return limit;
1593 void qman_p_irqsource_add(struct qman_portal *p, u32 bits)
1595 unsigned long irqflags;
1597 local_irq_save(irqflags);
1598 p->irq_sources |= bits & QM_PIRQ_VISIBLE;
1599 qm_out(&p->p, QM_REG_IER, p->irq_sources);
1600 local_irq_restore(irqflags);
1602 EXPORT_SYMBOL(qman_p_irqsource_add);
1604 void qman_p_irqsource_remove(struct qman_portal *p, u32 bits)
1606 unsigned long irqflags;
1607 u32 ier;
1610 * Our interrupt handler only processes+clears status register bits that
1611 * are in p->irq_sources. As we're trimming that mask, if one of them
1612 * were to assert in the status register just before we remove it from
1613 * the enable register, there would be an interrupt-storm when we
1614 * release the IRQ lock. So we wait for the enable register update to
1615 * take effect in h/w (by reading it back) and then clear all other bits
1616 * in the status register. Ie. we clear them from ISR once it's certain
1617 * IER won't allow them to reassert.
1619 local_irq_save(irqflags);
1620 bits &= QM_PIRQ_VISIBLE;
1621 p->irq_sources &= ~bits;
1622 qm_out(&p->p, QM_REG_IER, p->irq_sources);
1623 ier = qm_in(&p->p, QM_REG_IER);
1625 * Using "~ier" (rather than "bits" or "~p->irq_sources") creates a
1626 * data-dependency, ie. to protect against re-ordering.
1628 qm_out(&p->p, QM_REG_ISR, ~ier);
1629 local_irq_restore(irqflags);
1631 EXPORT_SYMBOL(qman_p_irqsource_remove);
1633 const cpumask_t *qman_affine_cpus(void)
1635 return &affine_mask;
1637 EXPORT_SYMBOL(qman_affine_cpus);
1639 u16 qman_affine_channel(int cpu)
1641 if (cpu < 0) {
1642 struct qman_portal *portal = get_affine_portal();
1644 cpu = portal->config->cpu;
1645 put_affine_portal();
1647 WARN_ON(!cpumask_test_cpu(cpu, &affine_mask));
1648 return affine_channels[cpu];
1650 EXPORT_SYMBOL(qman_affine_channel);
1652 struct qman_portal *qman_get_affine_portal(int cpu)
1654 return affine_portals[cpu];
1656 EXPORT_SYMBOL(qman_get_affine_portal);
1658 int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit)
1660 return __poll_portal_fast(p, limit);
1662 EXPORT_SYMBOL(qman_p_poll_dqrr);
1664 void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools)
1666 unsigned long irqflags;
1668 local_irq_save(irqflags);
1669 pools &= p->config->pools;
1670 p->sdqcr |= pools;
1671 qm_dqrr_sdqcr_set(&p->p, p->sdqcr);
1672 local_irq_restore(irqflags);
1674 EXPORT_SYMBOL(qman_p_static_dequeue_add);
1676 /* Frame queue API */
1678 static const char *mcr_result_str(u8 result)
1680 switch (result) {
1681 case QM_MCR_RESULT_NULL:
1682 return "QM_MCR_RESULT_NULL";
1683 case QM_MCR_RESULT_OK:
1684 return "QM_MCR_RESULT_OK";
1685 case QM_MCR_RESULT_ERR_FQID:
1686 return "QM_MCR_RESULT_ERR_FQID";
1687 case QM_MCR_RESULT_ERR_FQSTATE:
1688 return "QM_MCR_RESULT_ERR_FQSTATE";
1689 case QM_MCR_RESULT_ERR_NOTEMPTY:
1690 return "QM_MCR_RESULT_ERR_NOTEMPTY";
1691 case QM_MCR_RESULT_PENDING:
1692 return "QM_MCR_RESULT_PENDING";
1693 case QM_MCR_RESULT_ERR_BADCOMMAND:
1694 return "QM_MCR_RESULT_ERR_BADCOMMAND";
1696 return "<unknown MCR result>";
1699 int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq)
1701 if (flags & QMAN_FQ_FLAG_DYNAMIC_FQID) {
1702 int ret = qman_alloc_fqid(&fqid);
1704 if (ret)
1705 return ret;
1707 fq->fqid = fqid;
1708 fq->flags = flags;
1709 fq->state = qman_fq_state_oos;
1710 fq->cgr_groupid = 0;
1712 /* A context_b of 0 is allegedly special, so don't use that fqid */
1713 if (fqid == 0 || fqid >= num_fqids) {
1714 WARN(1, "bad fqid %d\n", fqid);
1715 return -EINVAL;
1718 fq->idx = fqid * 2;
1719 if (flags & QMAN_FQ_FLAG_NO_MODIFY)
1720 fq->idx++;
1722 WARN_ON(fq_table[fq->idx]);
1723 fq_table[fq->idx] = fq;
1725 return 0;
1727 EXPORT_SYMBOL(qman_create_fq);
1729 void qman_destroy_fq(struct qman_fq *fq)
1732 * We don't need to lock the FQ as it is a pre-condition that the FQ be
1733 * quiesced. Instead, run some checks.
1735 switch (fq->state) {
1736 case qman_fq_state_parked:
1737 case qman_fq_state_oos:
1738 if (fq_isset(fq, QMAN_FQ_FLAG_DYNAMIC_FQID))
1739 qman_release_fqid(fq->fqid);
1741 DPAA_ASSERT(fq_table[fq->idx]);
1742 fq_table[fq->idx] = NULL;
1743 return;
1744 default:
1745 break;
1747 DPAA_ASSERT(NULL == "qman_free_fq() on unquiesced FQ!");
1749 EXPORT_SYMBOL(qman_destroy_fq);
1751 u32 qman_fq_fqid(struct qman_fq *fq)
1753 return fq->fqid;
1755 EXPORT_SYMBOL(qman_fq_fqid);
1757 int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts)
1759 union qm_mc_command *mcc;
1760 union qm_mc_result *mcr;
1761 struct qman_portal *p;
1762 u8 res, myverb;
1763 int ret = 0;
1765 myverb = (flags & QMAN_INITFQ_FLAG_SCHED)
1766 ? QM_MCC_VERB_INITFQ_SCHED : QM_MCC_VERB_INITFQ_PARKED;
1768 if (fq->state != qman_fq_state_oos &&
1769 fq->state != qman_fq_state_parked)
1770 return -EINVAL;
1771 #ifdef CONFIG_FSL_DPAA_CHECKING
1772 if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY))
1773 return -EINVAL;
1774 #endif
1775 if (opts && (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_OAC)) {
1776 /* And can't be set at the same time as TDTHRESH */
1777 if (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_TDTHRESH)
1778 return -EINVAL;
1780 /* Issue an INITFQ_[PARKED|SCHED] management command */
1781 p = get_affine_portal();
1782 if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) ||
1783 (fq->state != qman_fq_state_oos &&
1784 fq->state != qman_fq_state_parked)) {
1785 ret = -EBUSY;
1786 goto out;
1788 mcc = qm_mc_start(&p->p);
1789 if (opts)
1790 mcc->initfq = *opts;
1791 qm_fqid_set(&mcc->fq, fq->fqid);
1792 mcc->initfq.count = 0;
1794 * If the FQ does *not* have the TO_DCPORTAL flag, context_b is set as a
1795 * demux pointer. Otherwise, the caller-provided value is allowed to
1796 * stand, don't overwrite it.
1798 if (fq_isclear(fq, QMAN_FQ_FLAG_TO_DCPORTAL)) {
1799 dma_addr_t phys_fq;
1801 mcc->initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTB);
1802 mcc->initfq.fqd.context_b = cpu_to_be32(fq_to_tag(fq));
1804 * and the physical address - NB, if the user wasn't trying to
1805 * set CONTEXTA, clear the stashing settings.
1807 if (!(be16_to_cpu(mcc->initfq.we_mask) &
1808 QM_INITFQ_WE_CONTEXTA)) {
1809 mcc->initfq.we_mask |=
1810 cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1811 memset(&mcc->initfq.fqd.context_a, 0,
1812 sizeof(mcc->initfq.fqd.context_a));
1813 } else {
1814 struct qman_portal *p = qman_dma_portal;
1816 phys_fq = dma_map_single(p->config->dev, fq,
1817 sizeof(*fq), DMA_TO_DEVICE);
1818 if (dma_mapping_error(p->config->dev, phys_fq)) {
1819 dev_err(p->config->dev, "dma_mapping failed\n");
1820 ret = -EIO;
1821 goto out;
1824 qm_fqd_stashing_set64(&mcc->initfq.fqd, phys_fq);
1827 if (flags & QMAN_INITFQ_FLAG_LOCAL) {
1828 int wq = 0;
1830 if (!(be16_to_cpu(mcc->initfq.we_mask) &
1831 QM_INITFQ_WE_DESTWQ)) {
1832 mcc->initfq.we_mask |=
1833 cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1834 wq = 4;
1836 qm_fqd_set_destwq(&mcc->initfq.fqd, p->config->channel, wq);
1838 qm_mc_commit(&p->p, myverb);
1839 if (!qm_mc_result_timeout(&p->p, &mcr)) {
1840 dev_err(p->config->dev, "MCR timeout\n");
1841 ret = -ETIMEDOUT;
1842 goto out;
1845 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == myverb);
1846 res = mcr->result;
1847 if (res != QM_MCR_RESULT_OK) {
1848 ret = -EIO;
1849 goto out;
1851 if (opts) {
1852 if (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_FQCTRL) {
1853 if (be16_to_cpu(opts->fqd.fq_ctrl) & QM_FQCTRL_CGE)
1854 fq_set(fq, QMAN_FQ_STATE_CGR_EN);
1855 else
1856 fq_clear(fq, QMAN_FQ_STATE_CGR_EN);
1858 if (be16_to_cpu(opts->we_mask) & QM_INITFQ_WE_CGID)
1859 fq->cgr_groupid = opts->fqd.cgid;
1861 fq->state = (flags & QMAN_INITFQ_FLAG_SCHED) ?
1862 qman_fq_state_sched : qman_fq_state_parked;
1864 out:
1865 put_affine_portal();
1866 return ret;
1868 EXPORT_SYMBOL(qman_init_fq);
1870 int qman_schedule_fq(struct qman_fq *fq)
1872 union qm_mc_command *mcc;
1873 union qm_mc_result *mcr;
1874 struct qman_portal *p;
1875 int ret = 0;
1877 if (fq->state != qman_fq_state_parked)
1878 return -EINVAL;
1879 #ifdef CONFIG_FSL_DPAA_CHECKING
1880 if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY))
1881 return -EINVAL;
1882 #endif
1883 /* Issue a ALTERFQ_SCHED management command */
1884 p = get_affine_portal();
1885 if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) ||
1886 fq->state != qman_fq_state_parked) {
1887 ret = -EBUSY;
1888 goto out;
1890 mcc = qm_mc_start(&p->p);
1891 qm_fqid_set(&mcc->fq, fq->fqid);
1892 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_SCHED);
1893 if (!qm_mc_result_timeout(&p->p, &mcr)) {
1894 dev_err(p->config->dev, "ALTER_SCHED timeout\n");
1895 ret = -ETIMEDOUT;
1896 goto out;
1899 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_SCHED);
1900 if (mcr->result != QM_MCR_RESULT_OK) {
1901 ret = -EIO;
1902 goto out;
1904 fq->state = qman_fq_state_sched;
1905 out:
1906 put_affine_portal();
1907 return ret;
1909 EXPORT_SYMBOL(qman_schedule_fq);
1911 int qman_retire_fq(struct qman_fq *fq, u32 *flags)
1913 union qm_mc_command *mcc;
1914 union qm_mc_result *mcr;
1915 struct qman_portal *p;
1916 int ret;
1917 u8 res;
1919 if (fq->state != qman_fq_state_parked &&
1920 fq->state != qman_fq_state_sched)
1921 return -EINVAL;
1922 #ifdef CONFIG_FSL_DPAA_CHECKING
1923 if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY))
1924 return -EINVAL;
1925 #endif
1926 p = get_affine_portal();
1927 if (fq_isset(fq, QMAN_FQ_STATE_CHANGING) ||
1928 fq->state == qman_fq_state_retired ||
1929 fq->state == qman_fq_state_oos) {
1930 ret = -EBUSY;
1931 goto out;
1933 mcc = qm_mc_start(&p->p);
1934 qm_fqid_set(&mcc->fq, fq->fqid);
1935 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_RETIRE);
1936 if (!qm_mc_result_timeout(&p->p, &mcr)) {
1937 dev_crit(p->config->dev, "ALTER_RETIRE timeout\n");
1938 ret = -ETIMEDOUT;
1939 goto out;
1942 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_RETIRE);
1943 res = mcr->result;
1945 * "Elegant" would be to treat OK/PENDING the same way; set CHANGING,
1946 * and defer the flags until FQRNI or FQRN (respectively) show up. But
1947 * "Friendly" is to process OK immediately, and not set CHANGING. We do
1948 * friendly, otherwise the caller doesn't necessarily have a fully
1949 * "retired" FQ on return even if the retirement was immediate. However
1950 * this does mean some code duplication between here and
1951 * fq_state_change().
1953 if (res == QM_MCR_RESULT_OK) {
1954 ret = 0;
1955 /* Process 'fq' right away, we'll ignore FQRNI */
1956 if (mcr->alterfq.fqs & QM_MCR_FQS_NOTEMPTY)
1957 fq_set(fq, QMAN_FQ_STATE_NE);
1958 if (mcr->alterfq.fqs & QM_MCR_FQS_ORLPRESENT)
1959 fq_set(fq, QMAN_FQ_STATE_ORL);
1960 if (flags)
1961 *flags = fq->flags;
1962 fq->state = qman_fq_state_retired;
1963 if (fq->cb.fqs) {
1965 * Another issue with supporting "immediate" retirement
1966 * is that we're forced to drop FQRNIs, because by the
1967 * time they're seen it may already be "too late" (the
1968 * fq may have been OOS'd and free()'d already). But if
1969 * the upper layer wants a callback whether it's
1970 * immediate or not, we have to fake a "MR" entry to
1971 * look like an FQRNI...
1973 union qm_mr_entry msg;
1975 msg.verb = QM_MR_VERB_FQRNI;
1976 msg.fq.fqs = mcr->alterfq.fqs;
1977 qm_fqid_set(&msg.fq, fq->fqid);
1978 msg.fq.context_b = cpu_to_be32(fq_to_tag(fq));
1979 fq->cb.fqs(p, fq, &msg);
1981 } else if (res == QM_MCR_RESULT_PENDING) {
1982 ret = 1;
1983 fq_set(fq, QMAN_FQ_STATE_CHANGING);
1984 } else {
1985 ret = -EIO;
1987 out:
1988 put_affine_portal();
1989 return ret;
1991 EXPORT_SYMBOL(qman_retire_fq);
1993 int qman_oos_fq(struct qman_fq *fq)
1995 union qm_mc_command *mcc;
1996 union qm_mc_result *mcr;
1997 struct qman_portal *p;
1998 int ret = 0;
2000 if (fq->state != qman_fq_state_retired)
2001 return -EINVAL;
2002 #ifdef CONFIG_FSL_DPAA_CHECKING
2003 if (fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY))
2004 return -EINVAL;
2005 #endif
2006 p = get_affine_portal();
2007 if (fq_isset(fq, QMAN_FQ_STATE_BLOCKOOS) ||
2008 fq->state != qman_fq_state_retired) {
2009 ret = -EBUSY;
2010 goto out;
2012 mcc = qm_mc_start(&p->p);
2013 qm_fqid_set(&mcc->fq, fq->fqid);
2014 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS);
2015 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2016 ret = -ETIMEDOUT;
2017 goto out;
2019 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_OOS);
2020 if (mcr->result != QM_MCR_RESULT_OK) {
2021 ret = -EIO;
2022 goto out;
2024 fq->state = qman_fq_state_oos;
2025 out:
2026 put_affine_portal();
2027 return ret;
2029 EXPORT_SYMBOL(qman_oos_fq);
2031 int qman_query_fq(struct qman_fq *fq, struct qm_fqd *fqd)
2033 union qm_mc_command *mcc;
2034 union qm_mc_result *mcr;
2035 struct qman_portal *p = get_affine_portal();
2036 int ret = 0;
2038 mcc = qm_mc_start(&p->p);
2039 qm_fqid_set(&mcc->fq, fq->fqid);
2040 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ);
2041 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2042 ret = -ETIMEDOUT;
2043 goto out;
2046 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ);
2047 if (mcr->result == QM_MCR_RESULT_OK)
2048 *fqd = mcr->queryfq.fqd;
2049 else
2050 ret = -EIO;
2051 out:
2052 put_affine_portal();
2053 return ret;
2056 int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np)
2058 union qm_mc_command *mcc;
2059 union qm_mc_result *mcr;
2060 struct qman_portal *p = get_affine_portal();
2061 int ret = 0;
2063 mcc = qm_mc_start(&p->p);
2064 qm_fqid_set(&mcc->fq, fq->fqid);
2065 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP);
2066 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2067 ret = -ETIMEDOUT;
2068 goto out;
2071 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ_NP);
2072 if (mcr->result == QM_MCR_RESULT_OK)
2073 *np = mcr->queryfq_np;
2074 else if (mcr->result == QM_MCR_RESULT_ERR_FQID)
2075 ret = -ERANGE;
2076 else
2077 ret = -EIO;
2078 out:
2079 put_affine_portal();
2080 return ret;
2082 EXPORT_SYMBOL(qman_query_fq_np);
2084 static int qman_query_cgr(struct qman_cgr *cgr,
2085 struct qm_mcr_querycgr *cgrd)
2087 union qm_mc_command *mcc;
2088 union qm_mc_result *mcr;
2089 struct qman_portal *p = get_affine_portal();
2090 int ret = 0;
2092 mcc = qm_mc_start(&p->p);
2093 mcc->cgr.cgid = cgr->cgrid;
2094 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYCGR);
2095 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2096 ret = -ETIMEDOUT;
2097 goto out;
2099 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCC_VERB_QUERYCGR);
2100 if (mcr->result == QM_MCR_RESULT_OK)
2101 *cgrd = mcr->querycgr;
2102 else {
2103 dev_err(p->config->dev, "QUERY_CGR failed: %s\n",
2104 mcr_result_str(mcr->result));
2105 ret = -EIO;
2107 out:
2108 put_affine_portal();
2109 return ret;
2112 int qman_query_cgr_congested(struct qman_cgr *cgr, bool *result)
2114 struct qm_mcr_querycgr query_cgr;
2115 int err;
2117 err = qman_query_cgr(cgr, &query_cgr);
2118 if (err)
2119 return err;
2121 *result = !!query_cgr.cgr.cs;
2122 return 0;
2124 EXPORT_SYMBOL(qman_query_cgr_congested);
2126 /* internal function used as a wait_event() expression */
2127 static int set_p_vdqcr(struct qman_portal *p, struct qman_fq *fq, u32 vdqcr)
2129 unsigned long irqflags;
2130 int ret = -EBUSY;
2132 local_irq_save(irqflags);
2133 if (p->vdqcr_owned)
2134 goto out;
2135 if (fq_isset(fq, QMAN_FQ_STATE_VDQCR))
2136 goto out;
2138 fq_set(fq, QMAN_FQ_STATE_VDQCR);
2139 p->vdqcr_owned = fq;
2140 qm_dqrr_vdqcr_set(&p->p, vdqcr);
2141 ret = 0;
2142 out:
2143 local_irq_restore(irqflags);
2144 return ret;
2147 static int set_vdqcr(struct qman_portal **p, struct qman_fq *fq, u32 vdqcr)
2149 int ret;
2151 *p = get_affine_portal();
2152 ret = set_p_vdqcr(*p, fq, vdqcr);
2153 put_affine_portal();
2154 return ret;
2157 static int wait_vdqcr_start(struct qman_portal **p, struct qman_fq *fq,
2158 u32 vdqcr, u32 flags)
2160 int ret = 0;
2162 if (flags & QMAN_VOLATILE_FLAG_WAIT_INT)
2163 ret = wait_event_interruptible(affine_queue,
2164 !set_vdqcr(p, fq, vdqcr));
2165 else
2166 wait_event(affine_queue, !set_vdqcr(p, fq, vdqcr));
2167 return ret;
2170 int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr)
2172 struct qman_portal *p;
2173 int ret;
2175 if (fq->state != qman_fq_state_parked &&
2176 fq->state != qman_fq_state_retired)
2177 return -EINVAL;
2178 if (vdqcr & QM_VDQCR_FQID_MASK)
2179 return -EINVAL;
2180 if (fq_isset(fq, QMAN_FQ_STATE_VDQCR))
2181 return -EBUSY;
2182 vdqcr = (vdqcr & ~QM_VDQCR_FQID_MASK) | fq->fqid;
2183 if (flags & QMAN_VOLATILE_FLAG_WAIT)
2184 ret = wait_vdqcr_start(&p, fq, vdqcr, flags);
2185 else
2186 ret = set_vdqcr(&p, fq, vdqcr);
2187 if (ret)
2188 return ret;
2189 /* VDQCR is set */
2190 if (flags & QMAN_VOLATILE_FLAG_FINISH) {
2191 if (flags & QMAN_VOLATILE_FLAG_WAIT_INT)
2193 * NB: don't propagate any error - the caller wouldn't
2194 * know whether the VDQCR was issued or not. A signal
2195 * could arrive after returning anyway, so the caller
2196 * can check signal_pending() if that's an issue.
2198 wait_event_interruptible(affine_queue,
2199 !fq_isset(fq, QMAN_FQ_STATE_VDQCR));
2200 else
2201 wait_event(affine_queue,
2202 !fq_isset(fq, QMAN_FQ_STATE_VDQCR));
2204 return 0;
2206 EXPORT_SYMBOL(qman_volatile_dequeue);
2208 static void update_eqcr_ci(struct qman_portal *p, u8 avail)
2210 if (avail)
2211 qm_eqcr_cce_prefetch(&p->p);
2212 else
2213 qm_eqcr_cce_update(&p->p);
2216 int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd)
2218 struct qman_portal *p;
2219 struct qm_eqcr_entry *eq;
2220 unsigned long irqflags;
2221 u8 avail;
2223 p = get_affine_portal();
2224 local_irq_save(irqflags);
2226 if (p->use_eqcr_ci_stashing) {
2228 * The stashing case is easy, only update if we need to in
2229 * order to try and liberate ring entries.
2231 eq = qm_eqcr_start_stash(&p->p);
2232 } else {
2234 * The non-stashing case is harder, need to prefetch ahead of
2235 * time.
2237 avail = qm_eqcr_get_avail(&p->p);
2238 if (avail < 2)
2239 update_eqcr_ci(p, avail);
2240 eq = qm_eqcr_start_no_stash(&p->p);
2243 if (unlikely(!eq))
2244 goto out;
2246 qm_fqid_set(eq, fq->fqid);
2247 eq->tag = cpu_to_be32(fq_to_tag(fq));
2248 eq->fd = *fd;
2250 qm_eqcr_pvb_commit(&p->p, QM_EQCR_VERB_CMD_ENQUEUE);
2251 out:
2252 local_irq_restore(irqflags);
2253 put_affine_portal();
2254 return 0;
2256 EXPORT_SYMBOL(qman_enqueue);
2258 static int qm_modify_cgr(struct qman_cgr *cgr, u32 flags,
2259 struct qm_mcc_initcgr *opts)
2261 union qm_mc_command *mcc;
2262 union qm_mc_result *mcr;
2263 struct qman_portal *p = get_affine_portal();
2264 u8 verb = QM_MCC_VERB_MODIFYCGR;
2265 int ret = 0;
2267 mcc = qm_mc_start(&p->p);
2268 if (opts)
2269 mcc->initcgr = *opts;
2270 mcc->initcgr.cgid = cgr->cgrid;
2271 if (flags & QMAN_CGR_FLAG_USE_INIT)
2272 verb = QM_MCC_VERB_INITCGR;
2273 qm_mc_commit(&p->p, verb);
2274 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2275 ret = -ETIMEDOUT;
2276 goto out;
2279 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == verb);
2280 if (mcr->result != QM_MCR_RESULT_OK)
2281 ret = -EIO;
2283 out:
2284 put_affine_portal();
2285 return ret;
2288 #define PORTAL_IDX(n) (n->config->channel - QM_CHANNEL_SWPORTAL0)
2290 /* congestion state change notification target update control */
2291 static void qm_cgr_cscn_targ_set(struct __qm_mc_cgr *cgr, int pi, u32 val)
2293 if (qman_ip_rev >= QMAN_REV30)
2294 cgr->cscn_targ_upd_ctrl = cpu_to_be16(pi |
2295 QM_CGR_TARG_UDP_CTRL_WRITE_BIT);
2296 else
2297 cgr->cscn_targ = cpu_to_be32(val | QM_CGR_TARG_PORTAL(pi));
2300 static void qm_cgr_cscn_targ_clear(struct __qm_mc_cgr *cgr, int pi, u32 val)
2302 if (qman_ip_rev >= QMAN_REV30)
2303 cgr->cscn_targ_upd_ctrl = cpu_to_be16(pi);
2304 else
2305 cgr->cscn_targ = cpu_to_be32(val & ~QM_CGR_TARG_PORTAL(pi));
2308 static u8 qman_cgr_cpus[CGR_NUM];
2310 void qman_init_cgr_all(void)
2312 struct qman_cgr cgr;
2313 int err_cnt = 0;
2315 for (cgr.cgrid = 0; cgr.cgrid < CGR_NUM; cgr.cgrid++) {
2316 if (qm_modify_cgr(&cgr, QMAN_CGR_FLAG_USE_INIT, NULL))
2317 err_cnt++;
2320 if (err_cnt)
2321 pr_err("Warning: %d error%s while initialising CGR h/w\n",
2322 err_cnt, (err_cnt > 1) ? "s" : "");
2325 int qman_create_cgr(struct qman_cgr *cgr, u32 flags,
2326 struct qm_mcc_initcgr *opts)
2328 struct qm_mcr_querycgr cgr_state;
2329 int ret;
2330 struct qman_portal *p;
2333 * We have to check that the provided CGRID is within the limits of the
2334 * data-structures, for obvious reasons. However we'll let h/w take
2335 * care of determining whether it's within the limits of what exists on
2336 * the SoC.
2338 if (cgr->cgrid >= CGR_NUM)
2339 return -EINVAL;
2341 preempt_disable();
2342 p = get_affine_portal();
2343 qman_cgr_cpus[cgr->cgrid] = smp_processor_id();
2344 preempt_enable();
2346 cgr->chan = p->config->channel;
2347 spin_lock(&p->cgr_lock);
2349 if (opts) {
2350 struct qm_mcc_initcgr local_opts = *opts;
2352 ret = qman_query_cgr(cgr, &cgr_state);
2353 if (ret)
2354 goto out;
2356 qm_cgr_cscn_targ_set(&local_opts.cgr, PORTAL_IDX(p),
2357 be32_to_cpu(cgr_state.cgr.cscn_targ));
2358 local_opts.we_mask |= cpu_to_be16(QM_CGR_WE_CSCN_TARG);
2360 /* send init if flags indicate so */
2361 if (flags & QMAN_CGR_FLAG_USE_INIT)
2362 ret = qm_modify_cgr(cgr, QMAN_CGR_FLAG_USE_INIT,
2363 &local_opts);
2364 else
2365 ret = qm_modify_cgr(cgr, 0, &local_opts);
2366 if (ret)
2367 goto out;
2370 list_add(&cgr->node, &p->cgr_cbs);
2372 /* Determine if newly added object requires its callback to be called */
2373 ret = qman_query_cgr(cgr, &cgr_state);
2374 if (ret) {
2375 /* we can't go back, so proceed and return success */
2376 dev_err(p->config->dev, "CGR HW state partially modified\n");
2377 ret = 0;
2378 goto out;
2380 if (cgr->cb && cgr_state.cgr.cscn_en &&
2381 qman_cgrs_get(&p->cgrs[1], cgr->cgrid))
2382 cgr->cb(p, cgr, 1);
2383 out:
2384 spin_unlock(&p->cgr_lock);
2385 put_affine_portal();
2386 return ret;
2388 EXPORT_SYMBOL(qman_create_cgr);
2390 int qman_delete_cgr(struct qman_cgr *cgr)
2392 unsigned long irqflags;
2393 struct qm_mcr_querycgr cgr_state;
2394 struct qm_mcc_initcgr local_opts;
2395 int ret = 0;
2396 struct qman_cgr *i;
2397 struct qman_portal *p = get_affine_portal();
2399 if (cgr->chan != p->config->channel) {
2400 /* attempt to delete from other portal than creator */
2401 dev_err(p->config->dev, "CGR not owned by current portal");
2402 dev_dbg(p->config->dev, " create 0x%x, delete 0x%x\n",
2403 cgr->chan, p->config->channel);
2405 ret = -EINVAL;
2406 goto put_portal;
2408 memset(&local_opts, 0, sizeof(struct qm_mcc_initcgr));
2409 spin_lock_irqsave(&p->cgr_lock, irqflags);
2410 list_del(&cgr->node);
2412 * If there are no other CGR objects for this CGRID in the list,
2413 * update CSCN_TARG accordingly
2415 list_for_each_entry(i, &p->cgr_cbs, node)
2416 if (i->cgrid == cgr->cgrid && i->cb)
2417 goto release_lock;
2418 ret = qman_query_cgr(cgr, &cgr_state);
2419 if (ret) {
2420 /* add back to the list */
2421 list_add(&cgr->node, &p->cgr_cbs);
2422 goto release_lock;
2425 local_opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_TARG);
2426 qm_cgr_cscn_targ_clear(&local_opts.cgr, PORTAL_IDX(p),
2427 be32_to_cpu(cgr_state.cgr.cscn_targ));
2429 ret = qm_modify_cgr(cgr, 0, &local_opts);
2430 if (ret)
2431 /* add back to the list */
2432 list_add(&cgr->node, &p->cgr_cbs);
2433 release_lock:
2434 spin_unlock_irqrestore(&p->cgr_lock, irqflags);
2435 put_portal:
2436 put_affine_portal();
2437 return ret;
2439 EXPORT_SYMBOL(qman_delete_cgr);
2441 struct cgr_comp {
2442 struct qman_cgr *cgr;
2443 struct completion completion;
2446 static int qman_delete_cgr_thread(void *p)
2448 struct cgr_comp *cgr_comp = (struct cgr_comp *)p;
2449 int ret;
2451 ret = qman_delete_cgr(cgr_comp->cgr);
2452 complete(&cgr_comp->completion);
2454 return ret;
2457 void qman_delete_cgr_safe(struct qman_cgr *cgr)
2459 struct task_struct *thread;
2460 struct cgr_comp cgr_comp;
2462 preempt_disable();
2463 if (qman_cgr_cpus[cgr->cgrid] != smp_processor_id()) {
2464 init_completion(&cgr_comp.completion);
2465 cgr_comp.cgr = cgr;
2466 thread = kthread_create(qman_delete_cgr_thread, &cgr_comp,
2467 "cgr_del");
2469 if (IS_ERR(thread))
2470 goto out;
2472 kthread_bind(thread, qman_cgr_cpus[cgr->cgrid]);
2473 wake_up_process(thread);
2474 wait_for_completion(&cgr_comp.completion);
2475 preempt_enable();
2476 return;
2478 out:
2479 qman_delete_cgr(cgr);
2480 preempt_enable();
2482 EXPORT_SYMBOL(qman_delete_cgr_safe);
2484 /* Cleanup FQs */
2486 static int _qm_mr_consume_and_match_verb(struct qm_portal *p, int v)
2488 const union qm_mr_entry *msg;
2489 int found = 0;
2491 qm_mr_pvb_update(p);
2492 msg = qm_mr_current(p);
2493 while (msg) {
2494 if ((msg->verb & QM_MR_VERB_TYPE_MASK) == v)
2495 found = 1;
2496 qm_mr_next(p);
2497 qm_mr_cci_consume_to_current(p);
2498 qm_mr_pvb_update(p);
2499 msg = qm_mr_current(p);
2501 return found;
2504 static int _qm_dqrr_consume_and_match(struct qm_portal *p, u32 fqid, int s,
2505 bool wait)
2507 const struct qm_dqrr_entry *dqrr;
2508 int found = 0;
2510 do {
2511 qm_dqrr_pvb_update(p);
2512 dqrr = qm_dqrr_current(p);
2513 if (!dqrr)
2514 cpu_relax();
2515 } while (wait && !dqrr);
2517 while (dqrr) {
2518 if (qm_fqid_get(dqrr) == fqid && (dqrr->stat & s))
2519 found = 1;
2520 qm_dqrr_cdc_consume_1ptr(p, dqrr, 0);
2521 qm_dqrr_pvb_update(p);
2522 qm_dqrr_next(p);
2523 dqrr = qm_dqrr_current(p);
2525 return found;
2528 #define qm_mr_drain(p, V) \
2529 _qm_mr_consume_and_match_verb(p, QM_MR_VERB_##V)
2531 #define qm_dqrr_drain(p, f, S) \
2532 _qm_dqrr_consume_and_match(p, f, QM_DQRR_STAT_##S, false)
2534 #define qm_dqrr_drain_wait(p, f, S) \
2535 _qm_dqrr_consume_and_match(p, f, QM_DQRR_STAT_##S, true)
2537 #define qm_dqrr_drain_nomatch(p) \
2538 _qm_dqrr_consume_and_match(p, 0, 0, false)
2540 static int qman_shutdown_fq(u32 fqid)
2542 struct qman_portal *p;
2543 struct device *dev;
2544 union qm_mc_command *mcc;
2545 union qm_mc_result *mcr;
2546 int orl_empty, drain = 0, ret = 0;
2547 u32 channel, wq, res;
2548 u8 state;
2550 p = get_affine_portal();
2551 dev = p->config->dev;
2552 /* Determine the state of the FQID */
2553 mcc = qm_mc_start(&p->p);
2554 qm_fqid_set(&mcc->fq, fqid);
2555 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP);
2556 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2557 dev_err(dev, "QUERYFQ_NP timeout\n");
2558 ret = -ETIMEDOUT;
2559 goto out;
2562 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ_NP);
2563 state = mcr->queryfq_np.state & QM_MCR_NP_STATE_MASK;
2564 if (state == QM_MCR_NP_STATE_OOS)
2565 goto out; /* Already OOS, no need to do anymore checks */
2567 /* Query which channel the FQ is using */
2568 mcc = qm_mc_start(&p->p);
2569 qm_fqid_set(&mcc->fq, fqid);
2570 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ);
2571 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2572 dev_err(dev, "QUERYFQ timeout\n");
2573 ret = -ETIMEDOUT;
2574 goto out;
2577 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ);
2578 /* Need to store these since the MCR gets reused */
2579 channel = qm_fqd_get_chan(&mcr->queryfq.fqd);
2580 wq = qm_fqd_get_wq(&mcr->queryfq.fqd);
2582 switch (state) {
2583 case QM_MCR_NP_STATE_TEN_SCHED:
2584 case QM_MCR_NP_STATE_TRU_SCHED:
2585 case QM_MCR_NP_STATE_ACTIVE:
2586 case QM_MCR_NP_STATE_PARKED:
2587 orl_empty = 0;
2588 mcc = qm_mc_start(&p->p);
2589 qm_fqid_set(&mcc->fq, fqid);
2590 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_RETIRE);
2591 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2592 dev_err(dev, "QUERYFQ_NP timeout\n");
2593 ret = -ETIMEDOUT;
2594 goto out;
2596 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) ==
2597 QM_MCR_VERB_ALTER_RETIRE);
2598 res = mcr->result; /* Make a copy as we reuse MCR below */
2600 if (res == QM_MCR_RESULT_PENDING) {
2602 * Need to wait for the FQRN in the message ring, which
2603 * will only occur once the FQ has been drained. In
2604 * order for the FQ to drain the portal needs to be set
2605 * to dequeue from the channel the FQ is scheduled on
2607 int found_fqrn = 0;
2608 u16 dequeue_wq = 0;
2610 /* Flag that we need to drain FQ */
2611 drain = 1;
2613 if (channel >= qm_channel_pool1 &&
2614 channel < qm_channel_pool1 + 15) {
2615 /* Pool channel, enable the bit in the portal */
2616 dequeue_wq = (channel -
2617 qm_channel_pool1 + 1)<<4 | wq;
2618 } else if (channel < qm_channel_pool1) {
2619 /* Dedicated channel */
2620 dequeue_wq = wq;
2621 } else {
2622 dev_err(dev, "Can't recover FQ 0x%x, ch: 0x%x",
2623 fqid, channel);
2624 ret = -EBUSY;
2625 goto out;
2627 /* Set the sdqcr to drain this channel */
2628 if (channel < qm_channel_pool1)
2629 qm_dqrr_sdqcr_set(&p->p,
2630 QM_SDQCR_TYPE_ACTIVE |
2631 QM_SDQCR_CHANNELS_DEDICATED);
2632 else
2633 qm_dqrr_sdqcr_set(&p->p,
2634 QM_SDQCR_TYPE_ACTIVE |
2635 QM_SDQCR_CHANNELS_POOL_CONV
2636 (channel));
2637 do {
2638 /* Keep draining DQRR while checking the MR*/
2639 qm_dqrr_drain_nomatch(&p->p);
2640 /* Process message ring too */
2641 found_fqrn = qm_mr_drain(&p->p, FQRN);
2642 cpu_relax();
2643 } while (!found_fqrn);
2646 if (res != QM_MCR_RESULT_OK &&
2647 res != QM_MCR_RESULT_PENDING) {
2648 dev_err(dev, "retire_fq failed: FQ 0x%x, res=0x%x\n",
2649 fqid, res);
2650 ret = -EIO;
2651 goto out;
2653 if (!(mcr->alterfq.fqs & QM_MCR_FQS_ORLPRESENT)) {
2655 * ORL had no entries, no need to wait until the
2656 * ERNs come in
2658 orl_empty = 1;
2661 * Retirement succeeded, check to see if FQ needs
2662 * to be drained
2664 if (drain || mcr->alterfq.fqs & QM_MCR_FQS_NOTEMPTY) {
2665 /* FQ is Not Empty, drain using volatile DQ commands */
2666 do {
2667 u32 vdqcr = fqid | QM_VDQCR_NUMFRAMES_SET(3);
2669 qm_dqrr_vdqcr_set(&p->p, vdqcr);
2671 * Wait for a dequeue and process the dequeues,
2672 * making sure to empty the ring completely
2674 } while (qm_dqrr_drain_wait(&p->p, fqid, FQ_EMPTY));
2676 qm_dqrr_sdqcr_set(&p->p, 0);
2678 while (!orl_empty) {
2679 /* Wait for the ORL to have been completely drained */
2680 orl_empty = qm_mr_drain(&p->p, FQRL);
2681 cpu_relax();
2683 mcc = qm_mc_start(&p->p);
2684 qm_fqid_set(&mcc->fq, fqid);
2685 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS);
2686 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2687 ret = -ETIMEDOUT;
2688 goto out;
2691 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) ==
2692 QM_MCR_VERB_ALTER_OOS);
2693 if (mcr->result != QM_MCR_RESULT_OK) {
2694 dev_err(dev, "OOS after drain fail: FQ 0x%x (0x%x)\n",
2695 fqid, mcr->result);
2696 ret = -EIO;
2697 goto out;
2699 break;
2701 case QM_MCR_NP_STATE_RETIRED:
2702 /* Send OOS Command */
2703 mcc = qm_mc_start(&p->p);
2704 qm_fqid_set(&mcc->fq, fqid);
2705 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS);
2706 if (!qm_mc_result_timeout(&p->p, &mcr)) {
2707 ret = -ETIMEDOUT;
2708 goto out;
2711 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) ==
2712 QM_MCR_VERB_ALTER_OOS);
2713 if (mcr->result) {
2714 dev_err(dev, "OOS fail: FQ 0x%x (0x%x)\n",
2715 fqid, mcr->result);
2716 ret = -EIO;
2717 goto out;
2719 break;
2721 case QM_MCR_NP_STATE_OOS:
2722 /* Done */
2723 break;
2725 default:
2726 ret = -EIO;
2729 out:
2730 put_affine_portal();
2731 return ret;
2734 const struct qm_portal_config *qman_get_qm_portal_config(
2735 struct qman_portal *portal)
2737 return portal->config;
2739 EXPORT_SYMBOL(qman_get_qm_portal_config);
2741 struct gen_pool *qm_fqalloc; /* FQID allocator */
2742 struct gen_pool *qm_qpalloc; /* pool-channel allocator */
2743 struct gen_pool *qm_cgralloc; /* CGR ID allocator */
2745 static int qman_alloc_range(struct gen_pool *p, u32 *result, u32 cnt)
2747 unsigned long addr;
2749 addr = gen_pool_alloc(p, cnt);
2750 if (!addr)
2751 return -ENOMEM;
2753 *result = addr & ~DPAA_GENALLOC_OFF;
2755 return 0;
2758 int qman_alloc_fqid_range(u32 *result, u32 count)
2760 return qman_alloc_range(qm_fqalloc, result, count);
2762 EXPORT_SYMBOL(qman_alloc_fqid_range);
2764 int qman_alloc_pool_range(u32 *result, u32 count)
2766 return qman_alloc_range(qm_qpalloc, result, count);
2768 EXPORT_SYMBOL(qman_alloc_pool_range);
2770 int qman_alloc_cgrid_range(u32 *result, u32 count)
2772 return qman_alloc_range(qm_cgralloc, result, count);
2774 EXPORT_SYMBOL(qman_alloc_cgrid_range);
2776 int qman_release_fqid(u32 fqid)
2778 int ret = qman_shutdown_fq(fqid);
2780 if (ret) {
2781 pr_debug("FQID %d leaked\n", fqid);
2782 return ret;
2785 gen_pool_free(qm_fqalloc, fqid | DPAA_GENALLOC_OFF, 1);
2786 return 0;
2788 EXPORT_SYMBOL(qman_release_fqid);
2790 static int qpool_cleanup(u32 qp)
2793 * We query all FQDs starting from
2794 * FQID 1 until we get an "invalid FQID" error, looking for non-OOS FQDs
2795 * whose destination channel is the pool-channel being released.
2796 * When a non-OOS FQD is found we attempt to clean it up
2798 struct qman_fq fq = {
2799 .fqid = QM_FQID_RANGE_START
2801 int err;
2803 do {
2804 struct qm_mcr_queryfq_np np;
2806 err = qman_query_fq_np(&fq, &np);
2807 if (err == -ERANGE)
2808 /* FQID range exceeded, found no problems */
2809 return 0;
2810 else if (WARN_ON(err))
2811 return err;
2813 if ((np.state & QM_MCR_NP_STATE_MASK) != QM_MCR_NP_STATE_OOS) {
2814 struct qm_fqd fqd;
2816 err = qman_query_fq(&fq, &fqd);
2817 if (WARN_ON(err))
2818 return err;
2819 if (qm_fqd_get_chan(&fqd) == qp) {
2820 /* The channel is the FQ's target, clean it */
2821 err = qman_shutdown_fq(fq.fqid);
2822 if (err)
2824 * Couldn't shut down the FQ
2825 * so the pool must be leaked
2827 return err;
2830 /* Move to the next FQID */
2831 fq.fqid++;
2832 } while (1);
2835 int qman_release_pool(u32 qp)
2837 int ret;
2839 ret = qpool_cleanup(qp);
2840 if (ret) {
2841 pr_debug("CHID %d leaked\n", qp);
2842 return ret;
2845 gen_pool_free(qm_qpalloc, qp | DPAA_GENALLOC_OFF, 1);
2846 return 0;
2848 EXPORT_SYMBOL(qman_release_pool);
2850 static int cgr_cleanup(u32 cgrid)
2853 * query all FQDs starting from FQID 1 until we get an "invalid FQID"
2854 * error, looking for non-OOS FQDs whose CGR is the CGR being released
2856 struct qman_fq fq = {
2857 .fqid = QM_FQID_RANGE_START
2859 int err;
2861 do {
2862 struct qm_mcr_queryfq_np np;
2864 err = qman_query_fq_np(&fq, &np);
2865 if (err == -ERANGE)
2866 /* FQID range exceeded, found no problems */
2867 return 0;
2868 else if (WARN_ON(err))
2869 return err;
2871 if ((np.state & QM_MCR_NP_STATE_MASK) != QM_MCR_NP_STATE_OOS) {
2872 struct qm_fqd fqd;
2874 err = qman_query_fq(&fq, &fqd);
2875 if (WARN_ON(err))
2876 return err;
2877 if (be16_to_cpu(fqd.fq_ctrl) & QM_FQCTRL_CGE &&
2878 fqd.cgid == cgrid) {
2879 pr_err("CRGID 0x%x is being used by FQID 0x%x, CGR will be leaked\n",
2880 cgrid, fq.fqid);
2881 return -EIO;
2884 /* Move to the next FQID */
2885 fq.fqid++;
2886 } while (1);
2889 int qman_release_cgrid(u32 cgrid)
2891 int ret;
2893 ret = cgr_cleanup(cgrid);
2894 if (ret) {
2895 pr_debug("CGRID %d leaked\n", cgrid);
2896 return ret;
2899 gen_pool_free(qm_cgralloc, cgrid | DPAA_GENALLOC_OFF, 1);
2900 return 0;
2902 EXPORT_SYMBOL(qman_release_cgrid);