xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / ssb / driver_chipcommon_pmu.c
blobc5352ea4821ea0df593c7043ac911ee891f103b0
1 /*
2 * Sonics Silicon Backplane
3 * Broadcom ChipCommon Power Management Unit driver
5 * Copyright 2009, Michael Buesch <m@bues.ch>
6 * Copyright 2007, Broadcom Corporation
8 * Licensed under the GNU/GPL. See COPYING for details.
9 */
11 #include <linux/ssb/ssb.h>
12 #include <linux/ssb/ssb_regs.h>
13 #include <linux/ssb/ssb_driver_chipcommon.h>
14 #include <linux/delay.h>
15 #include <linux/export.h>
16 #ifdef CONFIG_BCM47XX
17 #include <linux/bcm47xx_nvram.h>
18 #endif
20 #include "ssb_private.h"
22 static u32 ssb_chipco_pll_read(struct ssb_chipcommon *cc, u32 offset)
24 chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
25 return chipco_read32(cc, SSB_CHIPCO_PLLCTL_DATA);
28 static void ssb_chipco_pll_write(struct ssb_chipcommon *cc,
29 u32 offset, u32 value)
31 chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
32 chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, value);
35 static void ssb_chipco_regctl_maskset(struct ssb_chipcommon *cc,
36 u32 offset, u32 mask, u32 set)
38 u32 value;
40 chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR);
41 chipco_write32(cc, SSB_CHIPCO_REGCTL_ADDR, offset);
42 chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR);
43 value = chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA);
44 value &= mask;
45 value |= set;
46 chipco_write32(cc, SSB_CHIPCO_REGCTL_DATA, value);
47 chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA);
50 struct pmu0_plltab_entry {
51 u16 freq; /* Crystal frequency in kHz.*/
52 u8 xf; /* Crystal frequency value for PMU control */
53 u8 wb_int;
54 u32 wb_frac;
57 static const struct pmu0_plltab_entry pmu0_plltab[] = {
58 { .freq = 12000, .xf = 1, .wb_int = 73, .wb_frac = 349525, },
59 { .freq = 13000, .xf = 2, .wb_int = 67, .wb_frac = 725937, },
60 { .freq = 14400, .xf = 3, .wb_int = 61, .wb_frac = 116508, },
61 { .freq = 15360, .xf = 4, .wb_int = 57, .wb_frac = 305834, },
62 { .freq = 16200, .xf = 5, .wb_int = 54, .wb_frac = 336579, },
63 { .freq = 16800, .xf = 6, .wb_int = 52, .wb_frac = 399457, },
64 { .freq = 19200, .xf = 7, .wb_int = 45, .wb_frac = 873813, },
65 { .freq = 19800, .xf = 8, .wb_int = 44, .wb_frac = 466033, },
66 { .freq = 20000, .xf = 9, .wb_int = 44, .wb_frac = 0, },
67 { .freq = 25000, .xf = 10, .wb_int = 70, .wb_frac = 419430, },
68 { .freq = 26000, .xf = 11, .wb_int = 67, .wb_frac = 725937, },
69 { .freq = 30000, .xf = 12, .wb_int = 58, .wb_frac = 699050, },
70 { .freq = 38400, .xf = 13, .wb_int = 45, .wb_frac = 873813, },
71 { .freq = 40000, .xf = 14, .wb_int = 45, .wb_frac = 0, },
73 #define SSB_PMU0_DEFAULT_XTALFREQ 20000
75 static const struct pmu0_plltab_entry * pmu0_plltab_find_entry(u32 crystalfreq)
77 const struct pmu0_plltab_entry *e;
78 unsigned int i;
80 for (i = 0; i < ARRAY_SIZE(pmu0_plltab); i++) {
81 e = &pmu0_plltab[i];
82 if (e->freq == crystalfreq)
83 return e;
86 return NULL;
89 /* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
90 static void ssb_pmu0_pllinit_r0(struct ssb_chipcommon *cc,
91 u32 crystalfreq)
93 struct ssb_bus *bus = cc->dev->bus;
94 const struct pmu0_plltab_entry *e = NULL;
95 u32 pmuctl, tmp, pllctl;
96 unsigned int i;
98 if (crystalfreq)
99 e = pmu0_plltab_find_entry(crystalfreq);
100 if (!e)
101 e = pmu0_plltab_find_entry(SSB_PMU0_DEFAULT_XTALFREQ);
102 BUG_ON(!e);
103 crystalfreq = e->freq;
104 cc->pmu.crystalfreq = e->freq;
106 /* Check if the PLL already is programmed to this frequency. */
107 pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
108 if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
109 /* We're already there... */
110 return;
113 ssb_info("Programming PLL to %u.%03u MHz\n",
114 crystalfreq / 1000, crystalfreq % 1000);
116 /* First turn the PLL off. */
117 switch (bus->chip_id) {
118 case 0x4328:
119 chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
120 ~(1 << SSB_PMURES_4328_BB_PLL_PU));
121 chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
122 ~(1 << SSB_PMURES_4328_BB_PLL_PU));
123 break;
124 case 0x5354:
125 chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
126 ~(1 << SSB_PMURES_5354_BB_PLL_PU));
127 chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
128 ~(1 << SSB_PMURES_5354_BB_PLL_PU));
129 break;
130 default:
131 SSB_WARN_ON(1);
133 for (i = 1500; i; i--) {
134 tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
135 if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
136 break;
137 udelay(10);
139 tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
140 if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
141 ssb_emerg("Failed to turn the PLL off!\n");
143 /* Set PDIV in PLL control 0. */
144 pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL0);
145 if (crystalfreq >= SSB_PMU0_PLLCTL0_PDIV_FREQ)
146 pllctl |= SSB_PMU0_PLLCTL0_PDIV_MSK;
147 else
148 pllctl &= ~SSB_PMU0_PLLCTL0_PDIV_MSK;
149 ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL0, pllctl);
151 /* Set WILD in PLL control 1. */
152 pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL1);
153 pllctl &= ~SSB_PMU0_PLLCTL1_STOPMOD;
154 pllctl &= ~(SSB_PMU0_PLLCTL1_WILD_IMSK | SSB_PMU0_PLLCTL1_WILD_FMSK);
155 pllctl |= ((u32)e->wb_int << SSB_PMU0_PLLCTL1_WILD_IMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_IMSK;
156 pllctl |= ((u32)e->wb_frac << SSB_PMU0_PLLCTL1_WILD_FMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_FMSK;
157 if (e->wb_frac == 0)
158 pllctl |= SSB_PMU0_PLLCTL1_STOPMOD;
159 ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL1, pllctl);
161 /* Set WILD in PLL control 2. */
162 pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL2);
163 pllctl &= ~SSB_PMU0_PLLCTL2_WILD_IMSKHI;
164 pllctl |= (((u32)e->wb_int >> 4) << SSB_PMU0_PLLCTL2_WILD_IMSKHI_SHIFT) & SSB_PMU0_PLLCTL2_WILD_IMSKHI;
165 ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL2, pllctl);
167 /* Set the crystalfrequency and the divisor. */
168 pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
169 pmuctl &= ~SSB_CHIPCO_PMU_CTL_ILP_DIV;
170 pmuctl |= (((crystalfreq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
171 & SSB_CHIPCO_PMU_CTL_ILP_DIV;
172 pmuctl &= ~SSB_CHIPCO_PMU_CTL_XTALFREQ;
173 pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
174 chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
177 struct pmu1_plltab_entry {
178 u16 freq; /* Crystal frequency in kHz.*/
179 u8 xf; /* Crystal frequency value for PMU control */
180 u8 ndiv_int;
181 u32 ndiv_frac;
182 u8 p1div;
183 u8 p2div;
186 static const struct pmu1_plltab_entry pmu1_plltab[] = {
187 { .freq = 12000, .xf = 1, .p1div = 3, .p2div = 22, .ndiv_int = 0x9, .ndiv_frac = 0xFFFFEF, },
188 { .freq = 13000, .xf = 2, .p1div = 1, .p2div = 6, .ndiv_int = 0xb, .ndiv_frac = 0x483483, },
189 { .freq = 14400, .xf = 3, .p1div = 1, .p2div = 10, .ndiv_int = 0xa, .ndiv_frac = 0x1C71C7, },
190 { .freq = 15360, .xf = 4, .p1div = 1, .p2div = 5, .ndiv_int = 0xb, .ndiv_frac = 0x755555, },
191 { .freq = 16200, .xf = 5, .p1div = 1, .p2div = 10, .ndiv_int = 0x5, .ndiv_frac = 0x6E9E06, },
192 { .freq = 16800, .xf = 6, .p1div = 1, .p2div = 10, .ndiv_int = 0x5, .ndiv_frac = 0x3CF3CF, },
193 { .freq = 19200, .xf = 7, .p1div = 1, .p2div = 9, .ndiv_int = 0x5, .ndiv_frac = 0x17B425, },
194 { .freq = 19800, .xf = 8, .p1div = 1, .p2div = 11, .ndiv_int = 0x4, .ndiv_frac = 0xA57EB, },
195 { .freq = 20000, .xf = 9, .p1div = 1, .p2div = 11, .ndiv_int = 0x4, .ndiv_frac = 0, },
196 { .freq = 24000, .xf = 10, .p1div = 3, .p2div = 11, .ndiv_int = 0xa, .ndiv_frac = 0, },
197 { .freq = 25000, .xf = 11, .p1div = 5, .p2div = 16, .ndiv_int = 0xb, .ndiv_frac = 0, },
198 { .freq = 26000, .xf = 12, .p1div = 1, .p2div = 2, .ndiv_int = 0x10, .ndiv_frac = 0xEC4EC4, },
199 { .freq = 30000, .xf = 13, .p1div = 3, .p2div = 8, .ndiv_int = 0xb, .ndiv_frac = 0, },
200 { .freq = 38400, .xf = 14, .p1div = 1, .p2div = 5, .ndiv_int = 0x4, .ndiv_frac = 0x955555, },
201 { .freq = 40000, .xf = 15, .p1div = 1, .p2div = 2, .ndiv_int = 0xb, .ndiv_frac = 0, },
204 #define SSB_PMU1_DEFAULT_XTALFREQ 15360
206 static const struct pmu1_plltab_entry * pmu1_plltab_find_entry(u32 crystalfreq)
208 const struct pmu1_plltab_entry *e;
209 unsigned int i;
211 for (i = 0; i < ARRAY_SIZE(pmu1_plltab); i++) {
212 e = &pmu1_plltab[i];
213 if (e->freq == crystalfreq)
214 return e;
217 return NULL;
220 /* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
221 static void ssb_pmu1_pllinit_r0(struct ssb_chipcommon *cc,
222 u32 crystalfreq)
224 struct ssb_bus *bus = cc->dev->bus;
225 const struct pmu1_plltab_entry *e = NULL;
226 u32 buffer_strength = 0;
227 u32 tmp, pllctl, pmuctl;
228 unsigned int i;
230 if (bus->chip_id == 0x4312) {
231 /* We do not touch the BCM4312 PLL and assume
232 * the default crystal settings work out-of-the-box. */
233 cc->pmu.crystalfreq = 20000;
234 return;
237 if (crystalfreq)
238 e = pmu1_plltab_find_entry(crystalfreq);
239 if (!e)
240 e = pmu1_plltab_find_entry(SSB_PMU1_DEFAULT_XTALFREQ);
241 BUG_ON(!e);
242 crystalfreq = e->freq;
243 cc->pmu.crystalfreq = e->freq;
245 /* Check if the PLL already is programmed to this frequency. */
246 pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
247 if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
248 /* We're already there... */
249 return;
252 ssb_info("Programming PLL to %u.%03u MHz\n",
253 crystalfreq / 1000, crystalfreq % 1000);
255 /* First turn the PLL off. */
256 switch (bus->chip_id) {
257 case 0x4325:
258 chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
259 ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
260 (1 << SSB_PMURES_4325_HT_AVAIL)));
261 chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
262 ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
263 (1 << SSB_PMURES_4325_HT_AVAIL)));
264 /* Adjust the BBPLL to 2 on all channels later. */
265 buffer_strength = 0x222222;
266 break;
267 default:
268 SSB_WARN_ON(1);
270 for (i = 1500; i; i--) {
271 tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
272 if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
273 break;
274 udelay(10);
276 tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
277 if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
278 ssb_emerg("Failed to turn the PLL off!\n");
280 /* Set p1div and p2div. */
281 pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL0);
282 pllctl &= ~(SSB_PMU1_PLLCTL0_P1DIV | SSB_PMU1_PLLCTL0_P2DIV);
283 pllctl |= ((u32)e->p1div << SSB_PMU1_PLLCTL0_P1DIV_SHIFT) & SSB_PMU1_PLLCTL0_P1DIV;
284 pllctl |= ((u32)e->p2div << SSB_PMU1_PLLCTL0_P2DIV_SHIFT) & SSB_PMU1_PLLCTL0_P2DIV;
285 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, pllctl);
287 /* Set ndiv int and ndiv mode */
288 pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL2);
289 pllctl &= ~(SSB_PMU1_PLLCTL2_NDIVINT | SSB_PMU1_PLLCTL2_NDIVMODE);
290 pllctl |= ((u32)e->ndiv_int << SSB_PMU1_PLLCTL2_NDIVINT_SHIFT) & SSB_PMU1_PLLCTL2_NDIVINT;
291 pllctl |= (1 << SSB_PMU1_PLLCTL2_NDIVMODE_SHIFT) & SSB_PMU1_PLLCTL2_NDIVMODE;
292 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, pllctl);
294 /* Set ndiv frac */
295 pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL3);
296 pllctl &= ~SSB_PMU1_PLLCTL3_NDIVFRAC;
297 pllctl |= ((u32)e->ndiv_frac << SSB_PMU1_PLLCTL3_NDIVFRAC_SHIFT) & SSB_PMU1_PLLCTL3_NDIVFRAC;
298 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, pllctl);
300 /* Change the drive strength, if required. */
301 if (buffer_strength) {
302 pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL5);
303 pllctl &= ~SSB_PMU1_PLLCTL5_CLKDRV;
304 pllctl |= (buffer_strength << SSB_PMU1_PLLCTL5_CLKDRV_SHIFT) & SSB_PMU1_PLLCTL5_CLKDRV;
305 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, pllctl);
308 /* Tune the crystalfreq and the divisor. */
309 pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
310 pmuctl &= ~(SSB_CHIPCO_PMU_CTL_ILP_DIV | SSB_CHIPCO_PMU_CTL_XTALFREQ);
311 pmuctl |= ((((u32)e->freq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
312 & SSB_CHIPCO_PMU_CTL_ILP_DIV;
313 pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
314 chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
317 static void ssb_pmu_pll_init(struct ssb_chipcommon *cc)
319 struct ssb_bus *bus = cc->dev->bus;
320 u32 crystalfreq = 0; /* in kHz. 0 = keep default freq. */
322 if (bus->bustype == SSB_BUSTYPE_SSB) {
323 #ifdef CONFIG_BCM47XX
324 char buf[20];
325 if (bcm47xx_nvram_getenv("xtalfreq", buf, sizeof(buf)) >= 0)
326 crystalfreq = simple_strtoul(buf, NULL, 0);
327 #endif
330 switch (bus->chip_id) {
331 case 0x4312:
332 case 0x4325:
333 ssb_pmu1_pllinit_r0(cc, crystalfreq);
334 break;
335 case 0x4328:
336 ssb_pmu0_pllinit_r0(cc, crystalfreq);
337 break;
338 case 0x5354:
339 if (crystalfreq == 0)
340 crystalfreq = 25000;
341 ssb_pmu0_pllinit_r0(cc, crystalfreq);
342 break;
343 case 0x4322:
344 if (cc->pmu.rev == 2) {
345 chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, 0x0000000A);
346 chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, 0x380005C0);
348 break;
349 case 43222:
350 break;
351 default:
352 ssb_err("ERROR: PLL init unknown for device %04X\n",
353 bus->chip_id);
357 struct pmu_res_updown_tab_entry {
358 u8 resource; /* The resource number */
359 u16 updown; /* The updown value */
362 enum pmu_res_depend_tab_task {
363 PMU_RES_DEP_SET = 1,
364 PMU_RES_DEP_ADD,
365 PMU_RES_DEP_REMOVE,
368 struct pmu_res_depend_tab_entry {
369 u8 resource; /* The resource number */
370 u8 task; /* SET | ADD | REMOVE */
371 u32 depend; /* The depend mask */
374 static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4328a0[] = {
375 { .resource = SSB_PMURES_4328_EXT_SWITCHER_PWM, .updown = 0x0101, },
376 { .resource = SSB_PMURES_4328_BB_SWITCHER_PWM, .updown = 0x1F01, },
377 { .resource = SSB_PMURES_4328_BB_SWITCHER_BURST, .updown = 0x010F, },
378 { .resource = SSB_PMURES_4328_BB_EXT_SWITCHER_BURST, .updown = 0x0101, },
379 { .resource = SSB_PMURES_4328_ILP_REQUEST, .updown = 0x0202, },
380 { .resource = SSB_PMURES_4328_RADIO_SWITCHER_PWM, .updown = 0x0F01, },
381 { .resource = SSB_PMURES_4328_RADIO_SWITCHER_BURST, .updown = 0x0F01, },
382 { .resource = SSB_PMURES_4328_ROM_SWITCH, .updown = 0x0101, },
383 { .resource = SSB_PMURES_4328_PA_REF_LDO, .updown = 0x0F01, },
384 { .resource = SSB_PMURES_4328_RADIO_LDO, .updown = 0x0F01, },
385 { .resource = SSB_PMURES_4328_AFE_LDO, .updown = 0x0F01, },
386 { .resource = SSB_PMURES_4328_PLL_LDO, .updown = 0x0F01, },
387 { .resource = SSB_PMURES_4328_BG_FILTBYP, .updown = 0x0101, },
388 { .resource = SSB_PMURES_4328_TX_FILTBYP, .updown = 0x0101, },
389 { .resource = SSB_PMURES_4328_RX_FILTBYP, .updown = 0x0101, },
390 { .resource = SSB_PMURES_4328_XTAL_PU, .updown = 0x0101, },
391 { .resource = SSB_PMURES_4328_XTAL_EN, .updown = 0xA001, },
392 { .resource = SSB_PMURES_4328_BB_PLL_FILTBYP, .updown = 0x0101, },
393 { .resource = SSB_PMURES_4328_RF_PLL_FILTBYP, .updown = 0x0101, },
394 { .resource = SSB_PMURES_4328_BB_PLL_PU, .updown = 0x0701, },
397 static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4328a0[] = {
399 /* Adjust ILP Request to avoid forcing EXT/BB into burst mode. */
400 .resource = SSB_PMURES_4328_ILP_REQUEST,
401 .task = PMU_RES_DEP_SET,
402 .depend = ((1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
403 (1 << SSB_PMURES_4328_BB_SWITCHER_PWM)),
407 static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4325a0[] = {
408 { .resource = SSB_PMURES_4325_XTAL_PU, .updown = 0x1501, },
411 static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4325a0[] = {
413 /* Adjust HT-Available dependencies. */
414 .resource = SSB_PMURES_4325_HT_AVAIL,
415 .task = PMU_RES_DEP_ADD,
416 .depend = ((1 << SSB_PMURES_4325_RX_PWRSW_PU) |
417 (1 << SSB_PMURES_4325_TX_PWRSW_PU) |
418 (1 << SSB_PMURES_4325_LOGEN_PWRSW_PU) |
419 (1 << SSB_PMURES_4325_AFE_PWRSW_PU)),
423 static void ssb_pmu_resources_init(struct ssb_chipcommon *cc)
425 struct ssb_bus *bus = cc->dev->bus;
426 u32 min_msk = 0, max_msk = 0;
427 unsigned int i;
428 const struct pmu_res_updown_tab_entry *updown_tab = NULL;
429 unsigned int updown_tab_size = 0;
430 const struct pmu_res_depend_tab_entry *depend_tab = NULL;
431 unsigned int depend_tab_size = 0;
433 switch (bus->chip_id) {
434 case 0x4312:
435 min_msk = 0xCBB;
436 break;
437 case 0x4322:
438 case 43222:
439 /* We keep the default settings:
440 * min_msk = 0xCBB
441 * max_msk = 0x7FFFF
443 break;
444 case 0x4325:
445 /* Power OTP down later. */
446 min_msk = (1 << SSB_PMURES_4325_CBUCK_BURST) |
447 (1 << SSB_PMURES_4325_LNLDO2_PU);
448 if (chipco_read32(cc, SSB_CHIPCO_CHIPSTAT) &
449 SSB_CHIPCO_CHST_4325_PMUTOP_2B)
450 min_msk |= (1 << SSB_PMURES_4325_CLDO_CBUCK_BURST);
451 /* The PLL may turn on, if it decides so. */
452 max_msk = 0xFFFFF;
453 updown_tab = pmu_res_updown_tab_4325a0;
454 updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4325a0);
455 depend_tab = pmu_res_depend_tab_4325a0;
456 depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4325a0);
457 break;
458 case 0x4328:
459 min_msk = (1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
460 (1 << SSB_PMURES_4328_BB_SWITCHER_PWM) |
461 (1 << SSB_PMURES_4328_XTAL_EN);
462 /* The PLL may turn on, if it decides so. */
463 max_msk = 0xFFFFF;
464 updown_tab = pmu_res_updown_tab_4328a0;
465 updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4328a0);
466 depend_tab = pmu_res_depend_tab_4328a0;
467 depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4328a0);
468 break;
469 case 0x5354:
470 /* The PLL may turn on, if it decides so. */
471 max_msk = 0xFFFFF;
472 break;
473 default:
474 ssb_err("ERROR: PMU resource config unknown for device %04X\n",
475 bus->chip_id);
478 if (updown_tab) {
479 for (i = 0; i < updown_tab_size; i++) {
480 chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
481 updown_tab[i].resource);
482 chipco_write32(cc, SSB_CHIPCO_PMU_RES_UPDNTM,
483 updown_tab[i].updown);
486 if (depend_tab) {
487 for (i = 0; i < depend_tab_size; i++) {
488 chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
489 depend_tab[i].resource);
490 switch (depend_tab[i].task) {
491 case PMU_RES_DEP_SET:
492 chipco_write32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
493 depend_tab[i].depend);
494 break;
495 case PMU_RES_DEP_ADD:
496 chipco_set32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
497 depend_tab[i].depend);
498 break;
499 case PMU_RES_DEP_REMOVE:
500 chipco_mask32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
501 ~(depend_tab[i].depend));
502 break;
503 default:
504 SSB_WARN_ON(1);
509 /* Set the resource masks. */
510 if (min_msk)
511 chipco_write32(cc, SSB_CHIPCO_PMU_MINRES_MSK, min_msk);
512 if (max_msk)
513 chipco_write32(cc, SSB_CHIPCO_PMU_MAXRES_MSK, max_msk);
516 /* http://bcm-v4.sipsolutions.net/802.11/SSB/PmuInit */
517 void ssb_pmu_init(struct ssb_chipcommon *cc)
519 u32 pmucap;
521 if (!(cc->capabilities & SSB_CHIPCO_CAP_PMU))
522 return;
524 pmucap = chipco_read32(cc, SSB_CHIPCO_PMU_CAP);
525 cc->pmu.rev = (pmucap & SSB_CHIPCO_PMU_CAP_REVISION);
527 ssb_dbg("Found rev %u PMU (capabilities 0x%08X)\n",
528 cc->pmu.rev, pmucap);
530 if (cc->pmu.rev == 1)
531 chipco_mask32(cc, SSB_CHIPCO_PMU_CTL,
532 ~SSB_CHIPCO_PMU_CTL_NOILPONW);
533 else
534 chipco_set32(cc, SSB_CHIPCO_PMU_CTL,
535 SSB_CHIPCO_PMU_CTL_NOILPONW);
536 ssb_pmu_pll_init(cc);
537 ssb_pmu_resources_init(cc);
540 void ssb_pmu_set_ldo_voltage(struct ssb_chipcommon *cc,
541 enum ssb_pmu_ldo_volt_id id, u32 voltage)
543 struct ssb_bus *bus = cc->dev->bus;
544 u32 addr, shift, mask;
546 switch (bus->chip_id) {
547 case 0x4328:
548 case 0x5354:
549 switch (id) {
550 case LDO_VOLT1:
551 addr = 2;
552 shift = 25;
553 mask = 0xF;
554 break;
555 case LDO_VOLT2:
556 addr = 3;
557 shift = 1;
558 mask = 0xF;
559 break;
560 case LDO_VOLT3:
561 addr = 3;
562 shift = 9;
563 mask = 0xF;
564 break;
565 case LDO_PAREF:
566 addr = 3;
567 shift = 17;
568 mask = 0x3F;
569 break;
570 default:
571 SSB_WARN_ON(1);
572 return;
574 break;
575 case 0x4312:
576 if (SSB_WARN_ON(id != LDO_PAREF))
577 return;
578 addr = 0;
579 shift = 21;
580 mask = 0x3F;
581 break;
582 default:
583 return;
586 ssb_chipco_regctl_maskset(cc, addr, ~(mask << shift),
587 (voltage & mask) << shift);
590 void ssb_pmu_set_ldo_paref(struct ssb_chipcommon *cc, bool on)
592 struct ssb_bus *bus = cc->dev->bus;
593 int ldo;
595 switch (bus->chip_id) {
596 case 0x4312:
597 ldo = SSB_PMURES_4312_PA_REF_LDO;
598 break;
599 case 0x4328:
600 ldo = SSB_PMURES_4328_PA_REF_LDO;
601 break;
602 case 0x5354:
603 ldo = SSB_PMURES_5354_PA_REF_LDO;
604 break;
605 default:
606 return;
609 if (on)
610 chipco_set32(cc, SSB_CHIPCO_PMU_MINRES_MSK, 1 << ldo);
611 else
612 chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK, ~(1 << ldo));
613 chipco_read32(cc, SSB_CHIPCO_PMU_MINRES_MSK); //SPEC FIXME found via mmiotrace - dummy read?
616 EXPORT_SYMBOL(ssb_pmu_set_ldo_voltage);
617 EXPORT_SYMBOL(ssb_pmu_set_ldo_paref);
619 static u32 ssb_pmu_get_alp_clock_clk0(struct ssb_chipcommon *cc)
621 u32 crystalfreq;
622 const struct pmu0_plltab_entry *e = NULL;
624 crystalfreq = (chipco_read32(cc, SSB_CHIPCO_PMU_CTL) &
625 SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT;
626 e = pmu0_plltab_find_entry(crystalfreq);
627 BUG_ON(!e);
628 return e->freq * 1000;
631 u32 ssb_pmu_get_alp_clock(struct ssb_chipcommon *cc)
633 struct ssb_bus *bus = cc->dev->bus;
635 switch (bus->chip_id) {
636 case 0x5354:
637 return ssb_pmu_get_alp_clock_clk0(cc);
638 default:
639 ssb_err("ERROR: PMU alp clock unknown for device %04X\n",
640 bus->chip_id);
641 return 0;
645 u32 ssb_pmu_get_cpu_clock(struct ssb_chipcommon *cc)
647 struct ssb_bus *bus = cc->dev->bus;
649 switch (bus->chip_id) {
650 case 0x5354:
651 /* 5354 chip uses a non programmable PLL of frequency 240MHz */
652 return 240000000;
653 default:
654 ssb_err("ERROR: PMU cpu clock unknown for device %04X\n",
655 bus->chip_id);
656 return 0;
660 u32 ssb_pmu_get_controlclock(struct ssb_chipcommon *cc)
662 struct ssb_bus *bus = cc->dev->bus;
664 switch (bus->chip_id) {
665 case 0x5354:
666 return 120000000;
667 default:
668 ssb_err("ERROR: PMU controlclock unknown for device %04X\n",
669 bus->chip_id);
670 return 0;
674 void ssb_pmu_spuravoid_pllupdate(struct ssb_chipcommon *cc, int spuravoid)
676 u32 pmu_ctl = 0;
678 switch (cc->dev->bus->chip_id) {
679 case 0x4322:
680 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, 0x11100070);
681 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL1, 0x1014140a);
682 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, 0x88888854);
683 if (spuravoid == 1)
684 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, 0x05201828);
685 else
686 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, 0x05001828);
687 pmu_ctl = SSB_CHIPCO_PMU_CTL_PLL_UPD;
688 break;
689 case 43222:
690 if (spuravoid == 1) {
691 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, 0x11500008);
692 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL1, 0x0C000C06);
693 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, 0x0F600a08);
694 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, 0x00000000);
695 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL4, 0x2001E920);
696 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, 0x88888815);
697 } else {
698 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, 0x11100008);
699 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL1, 0x0c000c06);
700 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, 0x03000a08);
701 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, 0x00000000);
702 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL4, 0x200005c0);
703 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, 0x88888855);
705 pmu_ctl = SSB_CHIPCO_PMU_CTL_PLL_UPD;
706 break;
707 default:
708 ssb_printk(KERN_ERR PFX
709 "Unknown spuravoidance settings for chip 0x%04X, not changing PLL\n",
710 cc->dev->bus->chip_id);
711 return;
714 chipco_set32(cc, SSB_CHIPCO_PMU_CTL, pmu_ctl);
716 EXPORT_SYMBOL_GPL(ssb_pmu_spuravoid_pllupdate);