xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / tee / optee / call.c
bloba5afbe6dee6862aa2104a56cbae6458c31e253b8
1 /*
2 * Copyright (c) 2015, Linaro Limited
4 * This software is licensed under the terms of the GNU General Public
5 * License version 2, as published by the Free Software Foundation, and
6 * may be copied, distributed, and modified under those terms.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
14 #include <linux/arm-smccc.h>
15 #include <linux/device.h>
16 #include <linux/err.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/slab.h>
20 #include <linux/tee_drv.h>
21 #include <linux/types.h>
22 #include <linux/uaccess.h>
23 #include "optee_private.h"
24 #include "optee_smc.h"
26 struct optee_call_waiter {
27 struct list_head list_node;
28 struct completion c;
31 static void optee_cq_wait_init(struct optee_call_queue *cq,
32 struct optee_call_waiter *w)
35 * We're preparing to make a call to secure world. In case we can't
36 * allocate a thread in secure world we'll end up waiting in
37 * optee_cq_wait_for_completion().
39 * Normally if there's no contention in secure world the call will
40 * complete and we can cleanup directly with optee_cq_wait_final().
42 mutex_lock(&cq->mutex);
45 * We add ourselves to the queue, but we don't wait. This
46 * guarantees that we don't lose a completion if secure world
47 * returns busy and another thread just exited and try to complete
48 * someone.
50 init_completion(&w->c);
51 list_add_tail(&w->list_node, &cq->waiters);
53 mutex_unlock(&cq->mutex);
56 static void optee_cq_wait_for_completion(struct optee_call_queue *cq,
57 struct optee_call_waiter *w)
59 wait_for_completion(&w->c);
61 mutex_lock(&cq->mutex);
63 /* Move to end of list to get out of the way for other waiters */
64 list_del(&w->list_node);
65 reinit_completion(&w->c);
66 list_add_tail(&w->list_node, &cq->waiters);
68 mutex_unlock(&cq->mutex);
71 static void optee_cq_complete_one(struct optee_call_queue *cq)
73 struct optee_call_waiter *w;
75 list_for_each_entry(w, &cq->waiters, list_node) {
76 if (!completion_done(&w->c)) {
77 complete(&w->c);
78 break;
83 static void optee_cq_wait_final(struct optee_call_queue *cq,
84 struct optee_call_waiter *w)
87 * We're done with the call to secure world. The thread in secure
88 * world that was used for this call is now available for some
89 * other task to use.
91 mutex_lock(&cq->mutex);
93 /* Get out of the list */
94 list_del(&w->list_node);
96 /* Wake up one eventual waiting task */
97 optee_cq_complete_one(cq);
100 * If we're completed we've got a completion from another task that
101 * was just done with its call to secure world. Since yet another
102 * thread now is available in secure world wake up another eventual
103 * waiting task.
105 if (completion_done(&w->c))
106 optee_cq_complete_one(cq);
108 mutex_unlock(&cq->mutex);
111 /* Requires the filpstate mutex to be held */
112 static struct optee_session *find_session(struct optee_context_data *ctxdata,
113 u32 session_id)
115 struct optee_session *sess;
117 list_for_each_entry(sess, &ctxdata->sess_list, list_node)
118 if (sess->session_id == session_id)
119 return sess;
121 return NULL;
125 * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world
126 * @ctx: calling context
127 * @parg: physical address of message to pass to secure world
129 * Does and SMC to OP-TEE in secure world and handles eventual resulting
130 * Remote Procedure Calls (RPC) from OP-TEE.
132 * Returns return code from secure world, 0 is OK
134 u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg)
136 struct optee *optee = tee_get_drvdata(ctx->teedev);
137 struct optee_call_waiter w;
138 struct optee_rpc_param param = { };
139 struct optee_call_ctx call_ctx = { };
140 u32 ret;
142 param.a0 = OPTEE_SMC_CALL_WITH_ARG;
143 reg_pair_from_64(&param.a1, &param.a2, parg);
144 /* Initialize waiter */
145 optee_cq_wait_init(&optee->call_queue, &w);
146 while (true) {
147 struct arm_smccc_res res;
149 optee->invoke_fn(param.a0, param.a1, param.a2, param.a3,
150 param.a4, param.a5, param.a6, param.a7,
151 &res);
153 if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
155 * Out of threads in secure world, wait for a thread
156 * become available.
158 optee_cq_wait_for_completion(&optee->call_queue, &w);
159 } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
160 param.a0 = res.a0;
161 param.a1 = res.a1;
162 param.a2 = res.a2;
163 param.a3 = res.a3;
164 optee_handle_rpc(ctx, &param, &call_ctx);
165 } else {
166 ret = res.a0;
167 break;
171 optee_rpc_finalize_call(&call_ctx);
173 * We're done with our thread in secure world, if there's any
174 * thread waiters wake up one.
176 optee_cq_wait_final(&optee->call_queue, &w);
178 return ret;
181 static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params,
182 struct optee_msg_arg **msg_arg,
183 phys_addr_t *msg_parg)
185 int rc;
186 struct tee_shm *shm;
187 struct optee_msg_arg *ma;
189 shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params),
190 TEE_SHM_MAPPED);
191 if (IS_ERR(shm))
192 return shm;
194 ma = tee_shm_get_va(shm, 0);
195 if (IS_ERR(ma)) {
196 rc = PTR_ERR(ma);
197 goto out;
200 rc = tee_shm_get_pa(shm, 0, msg_parg);
201 if (rc)
202 goto out;
204 memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params));
205 ma->num_params = num_params;
206 *msg_arg = ma;
207 out:
208 if (rc) {
209 tee_shm_free(shm);
210 return ERR_PTR(rc);
213 return shm;
216 int optee_open_session(struct tee_context *ctx,
217 struct tee_ioctl_open_session_arg *arg,
218 struct tee_param *param)
220 struct optee_context_data *ctxdata = ctx->data;
221 int rc;
222 struct tee_shm *shm;
223 struct optee_msg_arg *msg_arg;
224 phys_addr_t msg_parg;
225 struct optee_session *sess = NULL;
227 /* +2 for the meta parameters added below */
228 shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg);
229 if (IS_ERR(shm))
230 return PTR_ERR(shm);
232 msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
233 msg_arg->cancel_id = arg->cancel_id;
236 * Initialize and add the meta parameters needed when opening a
237 * session.
239 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
240 OPTEE_MSG_ATTR_META;
241 msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
242 OPTEE_MSG_ATTR_META;
243 memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
244 memcpy(&msg_arg->params[1].u.value, arg->uuid, sizeof(arg->clnt_uuid));
245 msg_arg->params[1].u.value.c = arg->clnt_login;
247 rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param);
248 if (rc)
249 goto out;
251 sess = kzalloc(sizeof(*sess), GFP_KERNEL);
252 if (!sess) {
253 rc = -ENOMEM;
254 goto out;
257 if (optee_do_call_with_arg(ctx, msg_parg)) {
258 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
259 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
262 if (msg_arg->ret == TEEC_SUCCESS) {
263 /* A new session has been created, add it to the list. */
264 sess->session_id = msg_arg->session;
265 mutex_lock(&ctxdata->mutex);
266 list_add(&sess->list_node, &ctxdata->sess_list);
267 mutex_unlock(&ctxdata->mutex);
268 } else {
269 kfree(sess);
272 if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) {
273 arg->ret = TEEC_ERROR_COMMUNICATION;
274 arg->ret_origin = TEEC_ORIGIN_COMMS;
275 /* Close session again to avoid leakage */
276 optee_close_session(ctx, msg_arg->session);
277 } else {
278 arg->session = msg_arg->session;
279 arg->ret = msg_arg->ret;
280 arg->ret_origin = msg_arg->ret_origin;
282 out:
283 tee_shm_free(shm);
285 return rc;
288 int optee_close_session(struct tee_context *ctx, u32 session)
290 struct optee_context_data *ctxdata = ctx->data;
291 struct tee_shm *shm;
292 struct optee_msg_arg *msg_arg;
293 phys_addr_t msg_parg;
294 struct optee_session *sess;
296 /* Check that the session is valid and remove it from the list */
297 mutex_lock(&ctxdata->mutex);
298 sess = find_session(ctxdata, session);
299 if (sess)
300 list_del(&sess->list_node);
301 mutex_unlock(&ctxdata->mutex);
302 if (!sess)
303 return -EINVAL;
304 kfree(sess);
306 shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
307 if (IS_ERR(shm))
308 return PTR_ERR(shm);
310 msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
311 msg_arg->session = session;
312 optee_do_call_with_arg(ctx, msg_parg);
314 tee_shm_free(shm);
315 return 0;
318 int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
319 struct tee_param *param)
321 struct optee_context_data *ctxdata = ctx->data;
322 struct tee_shm *shm;
323 struct optee_msg_arg *msg_arg;
324 phys_addr_t msg_parg;
325 struct optee_session *sess;
326 int rc;
328 /* Check that the session is valid */
329 mutex_lock(&ctxdata->mutex);
330 sess = find_session(ctxdata, arg->session);
331 mutex_unlock(&ctxdata->mutex);
332 if (!sess)
333 return -EINVAL;
335 shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg);
336 if (IS_ERR(shm))
337 return PTR_ERR(shm);
338 msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
339 msg_arg->func = arg->func;
340 msg_arg->session = arg->session;
341 msg_arg->cancel_id = arg->cancel_id;
343 rc = optee_to_msg_param(msg_arg->params, arg->num_params, param);
344 if (rc)
345 goto out;
347 if (optee_do_call_with_arg(ctx, msg_parg)) {
348 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
349 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
352 if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) {
353 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
354 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
357 arg->ret = msg_arg->ret;
358 arg->ret_origin = msg_arg->ret_origin;
359 out:
360 tee_shm_free(shm);
361 return rc;
364 int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
366 struct optee_context_data *ctxdata = ctx->data;
367 struct tee_shm *shm;
368 struct optee_msg_arg *msg_arg;
369 phys_addr_t msg_parg;
370 struct optee_session *sess;
372 /* Check that the session is valid */
373 mutex_lock(&ctxdata->mutex);
374 sess = find_session(ctxdata, session);
375 mutex_unlock(&ctxdata->mutex);
376 if (!sess)
377 return -EINVAL;
379 shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
380 if (IS_ERR(shm))
381 return PTR_ERR(shm);
383 msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
384 msg_arg->session = session;
385 msg_arg->cancel_id = cancel_id;
386 optee_do_call_with_arg(ctx, msg_parg);
388 tee_shm_free(shm);
389 return 0;
393 * optee_enable_shm_cache() - Enables caching of some shared memory allocation
394 * in OP-TEE
395 * @optee: main service struct
397 void optee_enable_shm_cache(struct optee *optee)
399 struct optee_call_waiter w;
401 /* We need to retry until secure world isn't busy. */
402 optee_cq_wait_init(&optee->call_queue, &w);
403 while (true) {
404 struct arm_smccc_res res;
406 optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
407 0, &res);
408 if (res.a0 == OPTEE_SMC_RETURN_OK)
409 break;
410 optee_cq_wait_for_completion(&optee->call_queue, &w);
412 optee_cq_wait_final(&optee->call_queue, &w);
416 * optee_disable_shm_cache() - Disables caching of some shared memory allocation
417 * in OP-TEE
418 * @optee: main service struct
420 void optee_disable_shm_cache(struct optee *optee)
422 struct optee_call_waiter w;
424 /* We need to retry until secure world isn't busy. */
425 optee_cq_wait_init(&optee->call_queue, &w);
426 while (true) {
427 union {
428 struct arm_smccc_res smccc;
429 struct optee_smc_disable_shm_cache_result result;
430 } res;
432 optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
433 0, &res.smccc);
434 if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
435 break; /* All shm's freed */
436 if (res.result.status == OPTEE_SMC_RETURN_OK) {
437 struct tee_shm *shm;
439 shm = reg_pair_to_ptr(res.result.shm_upper32,
440 res.result.shm_lower32);
441 tee_shm_free(shm);
442 } else {
443 optee_cq_wait_for_completion(&optee->call_queue, &w);
446 optee_cq_wait_final(&optee->call_queue, &w);
449 #define PAGELIST_ENTRIES_PER_PAGE \
450 ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
453 * optee_fill_pages_list() - write list of user pages to given shared
454 * buffer.
456 * @dst: page-aligned buffer where list of pages will be stored
457 * @pages: array of pages that represents shared buffer
458 * @num_pages: number of entries in @pages
459 * @page_offset: offset of user buffer from page start
461 * @dst should be big enough to hold list of user page addresses and
462 * links to the next pages of buffer
464 void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
465 size_t page_offset)
467 int n = 0;
468 phys_addr_t optee_page;
470 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
471 * for details.
473 struct {
474 u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
475 u64 next_page_data;
476 } *pages_data;
479 * Currently OP-TEE uses 4k page size and it does not looks
480 * like this will change in the future. On other hand, there are
481 * no know ARM architectures with page size < 4k.
482 * Thus the next built assert looks redundant. But the following
483 * code heavily relies on this assumption, so it is better be
484 * safe than sorry.
486 BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
488 pages_data = (void *)dst;
490 * If linux page is bigger than 4k, and user buffer offset is
491 * larger than 4k/8k/12k/etc this will skip first 4k pages,
492 * because they bear no value data for OP-TEE.
494 optee_page = page_to_phys(*pages) +
495 round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
497 while (true) {
498 pages_data->pages_list[n++] = optee_page;
500 if (n == PAGELIST_ENTRIES_PER_PAGE) {
501 pages_data->next_page_data =
502 virt_to_phys(pages_data + 1);
503 pages_data++;
504 n = 0;
507 optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
508 if (!(optee_page & ~PAGE_MASK)) {
509 if (!--num_pages)
510 break;
511 pages++;
512 optee_page = page_to_phys(*pages);
518 * The final entry in each pagelist page is a pointer to the next
519 * pagelist page.
521 static size_t get_pages_list_size(size_t num_entries)
523 int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
525 return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
528 u64 *optee_allocate_pages_list(size_t num_entries)
530 return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
533 void optee_free_pages_list(void *list, size_t num_entries)
535 free_pages_exact(list, get_pages_list_size(num_entries));
538 static bool is_normal_memory(pgprot_t p)
540 #if defined(CONFIG_ARM)
541 return (pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC;
542 #elif defined(CONFIG_ARM64)
543 return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
544 #else
545 #error "Unuspported architecture"
546 #endif
549 static int __check_mem_type(struct vm_area_struct *vma, unsigned long end)
551 while (vma && is_normal_memory(vma->vm_page_prot)) {
552 if (vma->vm_end >= end)
553 return 0;
554 vma = vma->vm_next;
557 return -EINVAL;
560 static int check_mem_type(unsigned long start, size_t num_pages)
562 struct mm_struct *mm = current->mm;
563 int rc;
565 down_read(&mm->mmap_sem);
566 rc = __check_mem_type(find_vma(mm, start),
567 start + num_pages * PAGE_SIZE);
568 up_read(&mm->mmap_sem);
570 return rc;
573 int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
574 struct page **pages, size_t num_pages,
575 unsigned long start)
577 struct tee_shm *shm_arg = NULL;
578 struct optee_msg_arg *msg_arg;
579 u64 *pages_list;
580 phys_addr_t msg_parg;
581 int rc;
583 if (!num_pages)
584 return -EINVAL;
586 rc = check_mem_type(start, num_pages);
587 if (rc)
588 return rc;
590 pages_list = optee_allocate_pages_list(num_pages);
591 if (!pages_list)
592 return -ENOMEM;
594 shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
595 if (IS_ERR(shm_arg)) {
596 rc = PTR_ERR(shm_arg);
597 goto out;
600 optee_fill_pages_list(pages_list, pages, num_pages,
601 tee_shm_get_page_offset(shm));
603 msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
604 msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
605 OPTEE_MSG_ATTR_NONCONTIG;
606 msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
607 msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
609 * In the least bits of msg_arg->params->u.tmem.buf_ptr we
610 * store buffer offset from 4k page, as described in OP-TEE ABI.
612 msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
613 (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
615 if (optee_do_call_with_arg(ctx, msg_parg) ||
616 msg_arg->ret != TEEC_SUCCESS)
617 rc = -EINVAL;
619 tee_shm_free(shm_arg);
620 out:
621 optee_free_pages_list(pages_list, num_pages);
622 return rc;
625 int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
627 struct tee_shm *shm_arg;
628 struct optee_msg_arg *msg_arg;
629 phys_addr_t msg_parg;
630 int rc = 0;
632 shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
633 if (IS_ERR(shm_arg))
634 return PTR_ERR(shm_arg);
636 msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
638 msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
639 msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
641 if (optee_do_call_with_arg(ctx, msg_parg) ||
642 msg_arg->ret != TEEC_SUCCESS)
643 rc = -EINVAL;
644 tee_shm_free(shm_arg);
645 return rc;
648 int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
649 struct page **pages, size_t num_pages,
650 unsigned long start)
653 * We don't want to register supplicant memory in OP-TEE.
654 * Instead information about it will be passed in RPC code.
656 return check_mem_type(start, num_pages);
659 int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm)
661 return 0;