xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / vhost / vhost.c
blob1b3e8d2d5c8b44442616c1ee6fa9f7bf455b456d
1 /* Copyright (C) 2009 Red Hat, Inc.
2 * Copyright (C) 2006 Rusty Russell IBM Corporation
4 * Author: Michael S. Tsirkin <mst@redhat.com>
6 * Inspiration, some code, and most witty comments come from
7 * Documentation/virtual/lguest/lguest.c, by Rusty Russell
9 * This work is licensed under the terms of the GNU GPL, version 2.
11 * Generic code for virtio server in host kernel.
14 #include <linux/eventfd.h>
15 #include <linux/vhost.h>
16 #include <linux/uio.h>
17 #include <linux/mm.h>
18 #include <linux/mmu_context.h>
19 #include <linux/miscdevice.h>
20 #include <linux/mutex.h>
21 #include <linux/poll.h>
22 #include <linux/file.h>
23 #include <linux/highmem.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 #include <linux/kthread.h>
27 #include <linux/cgroup.h>
28 #include <linux/module.h>
29 #include <linux/sort.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/signal.h>
32 #include <linux/interval_tree_generic.h>
34 #include "vhost.h"
36 static ushort max_mem_regions = 64;
37 module_param(max_mem_regions, ushort, 0444);
38 MODULE_PARM_DESC(max_mem_regions,
39 "Maximum number of memory regions in memory map. (default: 64)");
40 static int max_iotlb_entries = 2048;
41 module_param(max_iotlb_entries, int, 0444);
42 MODULE_PARM_DESC(max_iotlb_entries,
43 "Maximum number of iotlb entries. (default: 2048)");
45 enum {
46 VHOST_MEMORY_F_LOG = 0x1,
49 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num])
50 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num])
52 INTERVAL_TREE_DEFINE(struct vhost_umem_node,
53 rb, __u64, __subtree_last,
54 START, LAST, static inline, vhost_umem_interval_tree);
56 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY
57 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
59 vq->user_be = !virtio_legacy_is_little_endian();
62 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq)
64 vq->user_be = true;
67 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq)
69 vq->user_be = false;
72 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
74 struct vhost_vring_state s;
76 if (vq->private_data)
77 return -EBUSY;
79 if (copy_from_user(&s, argp, sizeof(s)))
80 return -EFAULT;
82 if (s.num != VHOST_VRING_LITTLE_ENDIAN &&
83 s.num != VHOST_VRING_BIG_ENDIAN)
84 return -EINVAL;
86 if (s.num == VHOST_VRING_BIG_ENDIAN)
87 vhost_enable_cross_endian_big(vq);
88 else
89 vhost_enable_cross_endian_little(vq);
91 return 0;
94 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
95 int __user *argp)
97 struct vhost_vring_state s = {
98 .index = idx,
99 .num = vq->user_be
102 if (copy_to_user(argp, &s, sizeof(s)))
103 return -EFAULT;
105 return 0;
108 static void vhost_init_is_le(struct vhost_virtqueue *vq)
110 /* Note for legacy virtio: user_be is initialized at reset time
111 * according to the host endianness. If userspace does not set an
112 * explicit endianness, the default behavior is native endian, as
113 * expected by legacy virtio.
115 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be;
117 #else
118 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
122 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
124 return -ENOIOCTLCMD;
127 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
128 int __user *argp)
130 return -ENOIOCTLCMD;
133 static void vhost_init_is_le(struct vhost_virtqueue *vq)
135 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1)
136 || virtio_legacy_is_little_endian();
138 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */
140 static void vhost_reset_is_le(struct vhost_virtqueue *vq)
142 vhost_init_is_le(vq);
145 struct vhost_flush_struct {
146 struct vhost_work work;
147 struct completion wait_event;
150 static void vhost_flush_work(struct vhost_work *work)
152 struct vhost_flush_struct *s;
154 s = container_of(work, struct vhost_flush_struct, work);
155 complete(&s->wait_event);
158 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh,
159 poll_table *pt)
161 struct vhost_poll *poll;
163 poll = container_of(pt, struct vhost_poll, table);
164 poll->wqh = wqh;
165 add_wait_queue(wqh, &poll->wait);
168 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync,
169 void *key)
171 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait);
173 if (!(key_to_poll(key) & poll->mask))
174 return 0;
176 vhost_poll_queue(poll);
177 return 0;
180 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn)
182 clear_bit(VHOST_WORK_QUEUED, &work->flags);
183 work->fn = fn;
185 EXPORT_SYMBOL_GPL(vhost_work_init);
187 /* Init poll structure */
188 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn,
189 __poll_t mask, struct vhost_dev *dev)
191 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup);
192 init_poll_funcptr(&poll->table, vhost_poll_func);
193 poll->mask = mask;
194 poll->dev = dev;
195 poll->wqh = NULL;
197 vhost_work_init(&poll->work, fn);
199 EXPORT_SYMBOL_GPL(vhost_poll_init);
201 /* Start polling a file. We add ourselves to file's wait queue. The caller must
202 * keep a reference to a file until after vhost_poll_stop is called. */
203 int vhost_poll_start(struct vhost_poll *poll, struct file *file)
205 __poll_t mask;
206 int ret = 0;
208 if (poll->wqh)
209 return 0;
211 mask = file->f_op->poll(file, &poll->table);
212 if (mask)
213 vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask));
214 if (mask & EPOLLERR) {
215 if (poll->wqh)
216 remove_wait_queue(poll->wqh, &poll->wait);
217 ret = -EINVAL;
220 return ret;
222 EXPORT_SYMBOL_GPL(vhost_poll_start);
224 /* Stop polling a file. After this function returns, it becomes safe to drop the
225 * file reference. You must also flush afterwards. */
226 void vhost_poll_stop(struct vhost_poll *poll)
228 if (poll->wqh) {
229 remove_wait_queue(poll->wqh, &poll->wait);
230 poll->wqh = NULL;
233 EXPORT_SYMBOL_GPL(vhost_poll_stop);
235 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work)
237 struct vhost_flush_struct flush;
239 if (dev->worker) {
240 init_completion(&flush.wait_event);
241 vhost_work_init(&flush.work, vhost_flush_work);
243 vhost_work_queue(dev, &flush.work);
244 wait_for_completion(&flush.wait_event);
247 EXPORT_SYMBOL_GPL(vhost_work_flush);
249 /* Flush any work that has been scheduled. When calling this, don't hold any
250 * locks that are also used by the callback. */
251 void vhost_poll_flush(struct vhost_poll *poll)
253 vhost_work_flush(poll->dev, &poll->work);
255 EXPORT_SYMBOL_GPL(vhost_poll_flush);
257 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work)
259 if (!dev->worker)
260 return;
262 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) {
263 /* We can only add the work to the list after we're
264 * sure it was not in the list.
265 * test_and_set_bit() implies a memory barrier.
267 llist_add(&work->node, &dev->work_list);
268 wake_up_process(dev->worker);
271 EXPORT_SYMBOL_GPL(vhost_work_queue);
273 /* A lockless hint for busy polling code to exit the loop */
274 bool vhost_has_work(struct vhost_dev *dev)
276 return !llist_empty(&dev->work_list);
278 EXPORT_SYMBOL_GPL(vhost_has_work);
280 void vhost_poll_queue(struct vhost_poll *poll)
282 vhost_work_queue(poll->dev, &poll->work);
284 EXPORT_SYMBOL_GPL(vhost_poll_queue);
286 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq)
288 int j;
290 for (j = 0; j < VHOST_NUM_ADDRS; j++)
291 vq->meta_iotlb[j] = NULL;
294 static void vhost_vq_meta_reset(struct vhost_dev *d)
296 int i;
298 for (i = 0; i < d->nvqs; ++i)
299 __vhost_vq_meta_reset(d->vqs[i]);
302 static void vhost_vq_reset(struct vhost_dev *dev,
303 struct vhost_virtqueue *vq)
305 vq->num = 1;
306 vq->desc = NULL;
307 vq->avail = NULL;
308 vq->used = NULL;
309 vq->last_avail_idx = 0;
310 vq->avail_idx = 0;
311 vq->last_used_idx = 0;
312 vq->signalled_used = 0;
313 vq->signalled_used_valid = false;
314 vq->used_flags = 0;
315 vq->log_used = false;
316 vq->log_addr = -1ull;
317 vq->private_data = NULL;
318 vq->acked_features = 0;
319 vq->log_base = NULL;
320 vq->error_ctx = NULL;
321 vq->kick = NULL;
322 vq->call_ctx = NULL;
323 vq->log_ctx = NULL;
324 vhost_reset_is_le(vq);
325 vhost_disable_cross_endian(vq);
326 vq->busyloop_timeout = 0;
327 vq->umem = NULL;
328 vq->iotlb = NULL;
329 __vhost_vq_meta_reset(vq);
332 static int vhost_worker(void *data)
334 struct vhost_dev *dev = data;
335 struct vhost_work *work, *work_next;
336 struct llist_node *node;
337 mm_segment_t oldfs = get_fs();
339 set_fs(USER_DS);
340 use_mm(dev->mm);
342 for (;;) {
343 /* mb paired w/ kthread_stop */
344 set_current_state(TASK_INTERRUPTIBLE);
346 if (kthread_should_stop()) {
347 __set_current_state(TASK_RUNNING);
348 break;
351 node = llist_del_all(&dev->work_list);
352 if (!node)
353 schedule();
355 node = llist_reverse_order(node);
356 /* make sure flag is seen after deletion */
357 smp_wmb();
358 llist_for_each_entry_safe(work, work_next, node, node) {
359 clear_bit(VHOST_WORK_QUEUED, &work->flags);
360 __set_current_state(TASK_RUNNING);
361 work->fn(work);
362 if (need_resched())
363 schedule();
366 unuse_mm(dev->mm);
367 set_fs(oldfs);
368 return 0;
371 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq)
373 kfree(vq->indirect);
374 vq->indirect = NULL;
375 kfree(vq->log);
376 vq->log = NULL;
377 kfree(vq->heads);
378 vq->heads = NULL;
381 /* Helper to allocate iovec buffers for all vqs. */
382 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev)
384 struct vhost_virtqueue *vq;
385 int i;
387 for (i = 0; i < dev->nvqs; ++i) {
388 vq = dev->vqs[i];
389 vq->indirect = kmalloc(sizeof *vq->indirect * UIO_MAXIOV,
390 GFP_KERNEL);
391 vq->log = kmalloc(sizeof *vq->log * UIO_MAXIOV, GFP_KERNEL);
392 vq->heads = kmalloc(sizeof *vq->heads * UIO_MAXIOV, GFP_KERNEL);
393 if (!vq->indirect || !vq->log || !vq->heads)
394 goto err_nomem;
396 return 0;
398 err_nomem:
399 for (; i >= 0; --i)
400 vhost_vq_free_iovecs(dev->vqs[i]);
401 return -ENOMEM;
404 static void vhost_dev_free_iovecs(struct vhost_dev *dev)
406 int i;
408 for (i = 0; i < dev->nvqs; ++i)
409 vhost_vq_free_iovecs(dev->vqs[i]);
412 void vhost_dev_init(struct vhost_dev *dev,
413 struct vhost_virtqueue **vqs, int nvqs)
415 struct vhost_virtqueue *vq;
416 int i;
418 dev->vqs = vqs;
419 dev->nvqs = nvqs;
420 mutex_init(&dev->mutex);
421 dev->log_ctx = NULL;
422 dev->umem = NULL;
423 dev->iotlb = NULL;
424 dev->mm = NULL;
425 dev->worker = NULL;
426 init_llist_head(&dev->work_list);
427 init_waitqueue_head(&dev->wait);
428 INIT_LIST_HEAD(&dev->read_list);
429 INIT_LIST_HEAD(&dev->pending_list);
430 spin_lock_init(&dev->iotlb_lock);
433 for (i = 0; i < dev->nvqs; ++i) {
434 vq = dev->vqs[i];
435 vq->log = NULL;
436 vq->indirect = NULL;
437 vq->heads = NULL;
438 vq->dev = dev;
439 mutex_init(&vq->mutex);
440 vhost_vq_reset(dev, vq);
441 if (vq->handle_kick)
442 vhost_poll_init(&vq->poll, vq->handle_kick,
443 EPOLLIN, dev);
446 EXPORT_SYMBOL_GPL(vhost_dev_init);
448 /* Caller should have device mutex */
449 long vhost_dev_check_owner(struct vhost_dev *dev)
451 /* Are you the owner? If not, I don't think you mean to do that */
452 return dev->mm == current->mm ? 0 : -EPERM;
454 EXPORT_SYMBOL_GPL(vhost_dev_check_owner);
456 struct vhost_attach_cgroups_struct {
457 struct vhost_work work;
458 struct task_struct *owner;
459 int ret;
462 static void vhost_attach_cgroups_work(struct vhost_work *work)
464 struct vhost_attach_cgroups_struct *s;
466 s = container_of(work, struct vhost_attach_cgroups_struct, work);
467 s->ret = cgroup_attach_task_all(s->owner, current);
470 static int vhost_attach_cgroups(struct vhost_dev *dev)
472 struct vhost_attach_cgroups_struct attach;
474 attach.owner = current;
475 vhost_work_init(&attach.work, vhost_attach_cgroups_work);
476 vhost_work_queue(dev, &attach.work);
477 vhost_work_flush(dev, &attach.work);
478 return attach.ret;
481 /* Caller should have device mutex */
482 bool vhost_dev_has_owner(struct vhost_dev *dev)
484 return dev->mm;
486 EXPORT_SYMBOL_GPL(vhost_dev_has_owner);
488 /* Caller should have device mutex */
489 long vhost_dev_set_owner(struct vhost_dev *dev)
491 struct task_struct *worker;
492 int err;
494 /* Is there an owner already? */
495 if (vhost_dev_has_owner(dev)) {
496 err = -EBUSY;
497 goto err_mm;
500 /* No owner, become one */
501 dev->mm = get_task_mm(current);
502 worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid);
503 if (IS_ERR(worker)) {
504 err = PTR_ERR(worker);
505 goto err_worker;
508 dev->worker = worker;
509 wake_up_process(worker); /* avoid contributing to loadavg */
511 err = vhost_attach_cgroups(dev);
512 if (err)
513 goto err_cgroup;
515 err = vhost_dev_alloc_iovecs(dev);
516 if (err)
517 goto err_cgroup;
519 return 0;
520 err_cgroup:
521 kthread_stop(worker);
522 dev->worker = NULL;
523 err_worker:
524 if (dev->mm)
525 mmput(dev->mm);
526 dev->mm = NULL;
527 err_mm:
528 return err;
530 EXPORT_SYMBOL_GPL(vhost_dev_set_owner);
532 struct vhost_umem *vhost_dev_reset_owner_prepare(void)
534 return kvzalloc(sizeof(struct vhost_umem), GFP_KERNEL);
536 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare);
538 /* Caller should have device mutex */
539 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem)
541 int i;
543 vhost_dev_cleanup(dev);
545 /* Restore memory to default empty mapping. */
546 INIT_LIST_HEAD(&umem->umem_list);
547 dev->umem = umem;
548 /* We don't need VQ locks below since vhost_dev_cleanup makes sure
549 * VQs aren't running.
551 for (i = 0; i < dev->nvqs; ++i)
552 dev->vqs[i]->umem = umem;
554 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner);
556 void vhost_dev_stop(struct vhost_dev *dev)
558 int i;
560 for (i = 0; i < dev->nvqs; ++i) {
561 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) {
562 vhost_poll_stop(&dev->vqs[i]->poll);
563 vhost_poll_flush(&dev->vqs[i]->poll);
567 EXPORT_SYMBOL_GPL(vhost_dev_stop);
569 static void vhost_umem_free(struct vhost_umem *umem,
570 struct vhost_umem_node *node)
572 vhost_umem_interval_tree_remove(node, &umem->umem_tree);
573 list_del(&node->link);
574 kfree(node);
575 umem->numem--;
578 static void vhost_umem_clean(struct vhost_umem *umem)
580 struct vhost_umem_node *node, *tmp;
582 if (!umem)
583 return;
585 list_for_each_entry_safe(node, tmp, &umem->umem_list, link)
586 vhost_umem_free(umem, node);
588 kvfree(umem);
591 static void vhost_clear_msg(struct vhost_dev *dev)
593 struct vhost_msg_node *node, *n;
595 spin_lock(&dev->iotlb_lock);
597 list_for_each_entry_safe(node, n, &dev->read_list, node) {
598 list_del(&node->node);
599 kfree(node);
602 list_for_each_entry_safe(node, n, &dev->pending_list, node) {
603 list_del(&node->node);
604 kfree(node);
607 spin_unlock(&dev->iotlb_lock);
610 void vhost_dev_cleanup(struct vhost_dev *dev)
612 int i;
614 for (i = 0; i < dev->nvqs; ++i) {
615 if (dev->vqs[i]->error_ctx)
616 eventfd_ctx_put(dev->vqs[i]->error_ctx);
617 if (dev->vqs[i]->kick)
618 fput(dev->vqs[i]->kick);
619 if (dev->vqs[i]->call_ctx)
620 eventfd_ctx_put(dev->vqs[i]->call_ctx);
621 vhost_vq_reset(dev, dev->vqs[i]);
623 vhost_dev_free_iovecs(dev);
624 if (dev->log_ctx)
625 eventfd_ctx_put(dev->log_ctx);
626 dev->log_ctx = NULL;
627 /* No one will access memory at this point */
628 vhost_umem_clean(dev->umem);
629 dev->umem = NULL;
630 vhost_umem_clean(dev->iotlb);
631 dev->iotlb = NULL;
632 vhost_clear_msg(dev);
633 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
634 WARN_ON(!llist_empty(&dev->work_list));
635 if (dev->worker) {
636 kthread_stop(dev->worker);
637 dev->worker = NULL;
639 if (dev->mm)
640 mmput(dev->mm);
641 dev->mm = NULL;
643 EXPORT_SYMBOL_GPL(vhost_dev_cleanup);
645 static int log_access_ok(void __user *log_base, u64 addr, unsigned long sz)
647 u64 a = addr / VHOST_PAGE_SIZE / 8;
649 /* Make sure 64 bit math will not overflow. */
650 if (a > ULONG_MAX - (unsigned long)log_base ||
651 a + (unsigned long)log_base > ULONG_MAX)
652 return 0;
654 return access_ok(VERIFY_WRITE, log_base + a,
655 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8);
658 static bool vhost_overflow(u64 uaddr, u64 size)
660 /* Make sure 64 bit math will not overflow. */
661 return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size;
664 /* Caller should have vq mutex and device mutex. */
665 static int vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem,
666 int log_all)
668 struct vhost_umem_node *node;
670 if (!umem)
671 return 0;
673 list_for_each_entry(node, &umem->umem_list, link) {
674 unsigned long a = node->userspace_addr;
676 if (vhost_overflow(node->userspace_addr, node->size))
677 return 0;
680 if (!access_ok(VERIFY_WRITE, (void __user *)a,
681 node->size))
682 return 0;
683 else if (log_all && !log_access_ok(log_base,
684 node->start,
685 node->size))
686 return 0;
688 return 1;
691 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq,
692 u64 addr, unsigned int size,
693 int type)
695 const struct vhost_umem_node *node = vq->meta_iotlb[type];
697 if (!node)
698 return NULL;
700 return (void *)(uintptr_t)(node->userspace_addr + addr - node->start);
703 /* Can we switch to this memory table? */
704 /* Caller should have device mutex but not vq mutex */
705 static int memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem,
706 int log_all)
708 int i;
710 for (i = 0; i < d->nvqs; ++i) {
711 int ok;
712 bool log;
714 mutex_lock(&d->vqs[i]->mutex);
715 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL);
716 /* If ring is inactive, will check when it's enabled. */
717 if (d->vqs[i]->private_data)
718 ok = vq_memory_access_ok(d->vqs[i]->log_base,
719 umem, log);
720 else
721 ok = 1;
722 mutex_unlock(&d->vqs[i]->mutex);
723 if (!ok)
724 return 0;
726 return 1;
729 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
730 struct iovec iov[], int iov_size, int access);
732 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to,
733 const void *from, unsigned size)
735 int ret;
737 if (!vq->iotlb)
738 return __copy_to_user(to, from, size);
739 else {
740 /* This function should be called after iotlb
741 * prefetch, which means we're sure that all vq
742 * could be access through iotlb. So -EAGAIN should
743 * not happen in this case.
745 struct iov_iter t;
746 void __user *uaddr = vhost_vq_meta_fetch(vq,
747 (u64)(uintptr_t)to, size,
748 VHOST_ADDR_DESC);
750 if (uaddr)
751 return __copy_to_user(uaddr, from, size);
753 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov,
754 ARRAY_SIZE(vq->iotlb_iov),
755 VHOST_ACCESS_WO);
756 if (ret < 0)
757 goto out;
758 iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size);
759 ret = copy_to_iter(from, size, &t);
760 if (ret == size)
761 ret = 0;
763 out:
764 return ret;
767 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to,
768 void __user *from, unsigned size)
770 int ret;
772 if (!vq->iotlb)
773 return __copy_from_user(to, from, size);
774 else {
775 /* This function should be called after iotlb
776 * prefetch, which means we're sure that vq
777 * could be access through iotlb. So -EAGAIN should
778 * not happen in this case.
780 void __user *uaddr = vhost_vq_meta_fetch(vq,
781 (u64)(uintptr_t)from, size,
782 VHOST_ADDR_DESC);
783 struct iov_iter f;
785 if (uaddr)
786 return __copy_from_user(to, uaddr, size);
788 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov,
789 ARRAY_SIZE(vq->iotlb_iov),
790 VHOST_ACCESS_RO);
791 if (ret < 0) {
792 vq_err(vq, "IOTLB translation failure: uaddr "
793 "%p size 0x%llx\n", from,
794 (unsigned long long) size);
795 goto out;
797 iov_iter_init(&f, READ, vq->iotlb_iov, ret, size);
798 ret = copy_from_iter(to, size, &f);
799 if (ret == size)
800 ret = 0;
803 out:
804 return ret;
807 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq,
808 void __user *addr, unsigned int size,
809 int type)
811 int ret;
813 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov,
814 ARRAY_SIZE(vq->iotlb_iov),
815 VHOST_ACCESS_RO);
816 if (ret < 0) {
817 vq_err(vq, "IOTLB translation failure: uaddr "
818 "%p size 0x%llx\n", addr,
819 (unsigned long long) size);
820 return NULL;
823 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) {
824 vq_err(vq, "Non atomic userspace memory access: uaddr "
825 "%p size 0x%llx\n", addr,
826 (unsigned long long) size);
827 return NULL;
830 return vq->iotlb_iov[0].iov_base;
833 /* This function should be called after iotlb
834 * prefetch, which means we're sure that vq
835 * could be access through iotlb. So -EAGAIN should
836 * not happen in this case.
838 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq,
839 void *addr, unsigned int size,
840 int type)
842 void __user *uaddr = vhost_vq_meta_fetch(vq,
843 (u64)(uintptr_t)addr, size, type);
844 if (uaddr)
845 return uaddr;
847 return __vhost_get_user_slow(vq, addr, size, type);
850 #define vhost_put_user(vq, x, ptr) \
851 ({ \
852 int ret = -EFAULT; \
853 if (!vq->iotlb) { \
854 ret = __put_user(x, ptr); \
855 } else { \
856 __typeof__(ptr) to = \
857 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \
858 sizeof(*ptr), VHOST_ADDR_USED); \
859 if (to != NULL) \
860 ret = __put_user(x, to); \
861 else \
862 ret = -EFAULT; \
864 ret; \
867 #define vhost_get_user(vq, x, ptr, type) \
868 ({ \
869 int ret; \
870 if (!vq->iotlb) { \
871 ret = __get_user(x, ptr); \
872 } else { \
873 __typeof__(ptr) from = \
874 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \
875 sizeof(*ptr), \
876 type); \
877 if (from != NULL) \
878 ret = __get_user(x, from); \
879 else \
880 ret = -EFAULT; \
882 ret; \
885 #define vhost_get_avail(vq, x, ptr) \
886 vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL)
888 #define vhost_get_used(vq, x, ptr) \
889 vhost_get_user(vq, x, ptr, VHOST_ADDR_USED)
891 static void vhost_dev_lock_vqs(struct vhost_dev *d)
893 int i = 0;
894 for (i = 0; i < d->nvqs; ++i)
895 mutex_lock_nested(&d->vqs[i]->mutex, i);
898 static void vhost_dev_unlock_vqs(struct vhost_dev *d)
900 int i = 0;
901 for (i = 0; i < d->nvqs; ++i)
902 mutex_unlock(&d->vqs[i]->mutex);
905 static int vhost_new_umem_range(struct vhost_umem *umem,
906 u64 start, u64 size, u64 end,
907 u64 userspace_addr, int perm)
909 struct vhost_umem_node *tmp, *node = kmalloc(sizeof(*node), GFP_ATOMIC);
911 if (!node)
912 return -ENOMEM;
914 if (umem->numem == max_iotlb_entries) {
915 tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link);
916 vhost_umem_free(umem, tmp);
919 node->start = start;
920 node->size = size;
921 node->last = end;
922 node->userspace_addr = userspace_addr;
923 node->perm = perm;
924 INIT_LIST_HEAD(&node->link);
925 list_add_tail(&node->link, &umem->umem_list);
926 vhost_umem_interval_tree_insert(node, &umem->umem_tree);
927 umem->numem++;
929 return 0;
932 static void vhost_del_umem_range(struct vhost_umem *umem,
933 u64 start, u64 end)
935 struct vhost_umem_node *node;
937 while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
938 start, end)))
939 vhost_umem_free(umem, node);
942 static void vhost_iotlb_notify_vq(struct vhost_dev *d,
943 struct vhost_iotlb_msg *msg)
945 struct vhost_msg_node *node, *n;
947 spin_lock(&d->iotlb_lock);
949 list_for_each_entry_safe(node, n, &d->pending_list, node) {
950 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb;
951 if (msg->iova <= vq_msg->iova &&
952 msg->iova + msg->size - 1 > vq_msg->iova &&
953 vq_msg->type == VHOST_IOTLB_MISS) {
954 vhost_poll_queue(&node->vq->poll);
955 list_del(&node->node);
956 kfree(node);
960 spin_unlock(&d->iotlb_lock);
963 static int umem_access_ok(u64 uaddr, u64 size, int access)
965 unsigned long a = uaddr;
967 /* Make sure 64 bit math will not overflow. */
968 if (vhost_overflow(uaddr, size))
969 return -EFAULT;
971 if ((access & VHOST_ACCESS_RO) &&
972 !access_ok(VERIFY_READ, (void __user *)a, size))
973 return -EFAULT;
974 if ((access & VHOST_ACCESS_WO) &&
975 !access_ok(VERIFY_WRITE, (void __user *)a, size))
976 return -EFAULT;
977 return 0;
980 static int vhost_process_iotlb_msg(struct vhost_dev *dev,
981 struct vhost_iotlb_msg *msg)
983 int ret = 0;
985 vhost_dev_lock_vqs(dev);
986 switch (msg->type) {
987 case VHOST_IOTLB_UPDATE:
988 if (!dev->iotlb) {
989 ret = -EFAULT;
990 break;
992 if (umem_access_ok(msg->uaddr, msg->size, msg->perm)) {
993 ret = -EFAULT;
994 break;
996 vhost_vq_meta_reset(dev);
997 if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size,
998 msg->iova + msg->size - 1,
999 msg->uaddr, msg->perm)) {
1000 ret = -ENOMEM;
1001 break;
1003 vhost_iotlb_notify_vq(dev, msg);
1004 break;
1005 case VHOST_IOTLB_INVALIDATE:
1006 if (!dev->iotlb) {
1007 ret = -EFAULT;
1008 break;
1010 vhost_vq_meta_reset(dev);
1011 vhost_del_umem_range(dev->iotlb, msg->iova,
1012 msg->iova + msg->size - 1);
1013 break;
1014 default:
1015 ret = -EINVAL;
1016 break;
1019 vhost_dev_unlock_vqs(dev);
1020 return ret;
1022 ssize_t vhost_chr_write_iter(struct vhost_dev *dev,
1023 struct iov_iter *from)
1025 struct vhost_msg_node node;
1026 unsigned size = sizeof(struct vhost_msg);
1027 size_t ret;
1028 int err;
1030 if (iov_iter_count(from) < size)
1031 return 0;
1032 ret = copy_from_iter(&node.msg, size, from);
1033 if (ret != size)
1034 goto done;
1036 switch (node.msg.type) {
1037 case VHOST_IOTLB_MSG:
1038 err = vhost_process_iotlb_msg(dev, &node.msg.iotlb);
1039 if (err)
1040 ret = err;
1041 break;
1042 default:
1043 ret = -EINVAL;
1044 break;
1047 done:
1048 return ret;
1050 EXPORT_SYMBOL(vhost_chr_write_iter);
1052 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev,
1053 poll_table *wait)
1055 __poll_t mask = 0;
1057 poll_wait(file, &dev->wait, wait);
1059 if (!list_empty(&dev->read_list))
1060 mask |= EPOLLIN | EPOLLRDNORM;
1062 return mask;
1064 EXPORT_SYMBOL(vhost_chr_poll);
1066 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to,
1067 int noblock)
1069 DEFINE_WAIT(wait);
1070 struct vhost_msg_node *node;
1071 ssize_t ret = 0;
1072 unsigned size = sizeof(struct vhost_msg);
1074 if (iov_iter_count(to) < size)
1075 return 0;
1077 while (1) {
1078 if (!noblock)
1079 prepare_to_wait(&dev->wait, &wait,
1080 TASK_INTERRUPTIBLE);
1082 node = vhost_dequeue_msg(dev, &dev->read_list);
1083 if (node)
1084 break;
1085 if (noblock) {
1086 ret = -EAGAIN;
1087 break;
1089 if (signal_pending(current)) {
1090 ret = -ERESTARTSYS;
1091 break;
1093 if (!dev->iotlb) {
1094 ret = -EBADFD;
1095 break;
1098 schedule();
1101 if (!noblock)
1102 finish_wait(&dev->wait, &wait);
1104 if (node) {
1105 ret = copy_to_iter(&node->msg, size, to);
1107 if (ret != size || node->msg.type != VHOST_IOTLB_MISS) {
1108 kfree(node);
1109 return ret;
1112 vhost_enqueue_msg(dev, &dev->pending_list, node);
1115 return ret;
1117 EXPORT_SYMBOL_GPL(vhost_chr_read_iter);
1119 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access)
1121 struct vhost_dev *dev = vq->dev;
1122 struct vhost_msg_node *node;
1123 struct vhost_iotlb_msg *msg;
1125 node = vhost_new_msg(vq, VHOST_IOTLB_MISS);
1126 if (!node)
1127 return -ENOMEM;
1129 msg = &node->msg.iotlb;
1130 msg->type = VHOST_IOTLB_MISS;
1131 msg->iova = iova;
1132 msg->perm = access;
1134 vhost_enqueue_msg(dev, &dev->read_list, node);
1136 return 0;
1139 static int vq_access_ok(struct vhost_virtqueue *vq, unsigned int num,
1140 struct vring_desc __user *desc,
1141 struct vring_avail __user *avail,
1142 struct vring_used __user *used)
1145 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1147 return access_ok(VERIFY_READ, desc, num * sizeof *desc) &&
1148 access_ok(VERIFY_READ, avail,
1149 sizeof *avail + num * sizeof *avail->ring + s) &&
1150 access_ok(VERIFY_WRITE, used,
1151 sizeof *used + num * sizeof *used->ring + s);
1154 static void vhost_vq_meta_update(struct vhost_virtqueue *vq,
1155 const struct vhost_umem_node *node,
1156 int type)
1158 int access = (type == VHOST_ADDR_USED) ?
1159 VHOST_ACCESS_WO : VHOST_ACCESS_RO;
1161 if (likely(node->perm & access))
1162 vq->meta_iotlb[type] = node;
1165 static int iotlb_access_ok(struct vhost_virtqueue *vq,
1166 int access, u64 addr, u64 len, int type)
1168 const struct vhost_umem_node *node;
1169 struct vhost_umem *umem = vq->iotlb;
1170 u64 s = 0, size, orig_addr = addr, last = addr + len - 1;
1172 if (vhost_vq_meta_fetch(vq, addr, len, type))
1173 return true;
1175 while (len > s) {
1176 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
1177 addr,
1178 last);
1179 if (node == NULL || node->start > addr) {
1180 vhost_iotlb_miss(vq, addr, access);
1181 return false;
1182 } else if (!(node->perm & access)) {
1183 /* Report the possible access violation by
1184 * request another translation from userspace.
1186 return false;
1189 size = node->size - addr + node->start;
1191 if (orig_addr == addr && size >= len)
1192 vhost_vq_meta_update(vq, node, type);
1194 s += size;
1195 addr += size;
1198 return true;
1201 int vq_iotlb_prefetch(struct vhost_virtqueue *vq)
1203 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1204 unsigned int num = vq->num;
1206 if (!vq->iotlb)
1207 return 1;
1209 return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc,
1210 num * sizeof(*vq->desc), VHOST_ADDR_DESC) &&
1211 iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail,
1212 sizeof *vq->avail +
1213 num * sizeof(*vq->avail->ring) + s,
1214 VHOST_ADDR_AVAIL) &&
1215 iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used,
1216 sizeof *vq->used +
1217 num * sizeof(*vq->used->ring) + s,
1218 VHOST_ADDR_USED);
1220 EXPORT_SYMBOL_GPL(vq_iotlb_prefetch);
1222 /* Can we log writes? */
1223 /* Caller should have device mutex but not vq mutex */
1224 int vhost_log_access_ok(struct vhost_dev *dev)
1226 return memory_access_ok(dev, dev->umem, 1);
1228 EXPORT_SYMBOL_GPL(vhost_log_access_ok);
1230 /* Verify access for write logging. */
1231 /* Caller should have vq mutex and device mutex */
1232 static int vq_log_access_ok(struct vhost_virtqueue *vq,
1233 void __user *log_base)
1235 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1237 return vq_memory_access_ok(log_base, vq->umem,
1238 vhost_has_feature(vq, VHOST_F_LOG_ALL)) &&
1239 (!vq->log_used || log_access_ok(log_base, vq->log_addr,
1240 sizeof *vq->used +
1241 vq->num * sizeof *vq->used->ring + s));
1244 /* Can we start vq? */
1245 /* Caller should have vq mutex and device mutex */
1246 int vhost_vq_access_ok(struct vhost_virtqueue *vq)
1248 if (vq->iotlb) {
1249 /* When device IOTLB was used, the access validation
1250 * will be validated during prefetching.
1252 return 1;
1254 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used) &&
1255 vq_log_access_ok(vq, vq->log_base);
1257 EXPORT_SYMBOL_GPL(vhost_vq_access_ok);
1259 static struct vhost_umem *vhost_umem_alloc(void)
1261 struct vhost_umem *umem = kvzalloc(sizeof(*umem), GFP_KERNEL);
1263 if (!umem)
1264 return NULL;
1266 umem->umem_tree = RB_ROOT_CACHED;
1267 umem->numem = 0;
1268 INIT_LIST_HEAD(&umem->umem_list);
1270 return umem;
1273 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m)
1275 struct vhost_memory mem, *newmem;
1276 struct vhost_memory_region *region;
1277 struct vhost_umem *newumem, *oldumem;
1278 unsigned long size = offsetof(struct vhost_memory, regions);
1279 int i;
1281 if (copy_from_user(&mem, m, size))
1282 return -EFAULT;
1283 if (mem.padding)
1284 return -EOPNOTSUPP;
1285 if (mem.nregions > max_mem_regions)
1286 return -E2BIG;
1287 newmem = kvzalloc(size + mem.nregions * sizeof(*m->regions), GFP_KERNEL);
1288 if (!newmem)
1289 return -ENOMEM;
1291 memcpy(newmem, &mem, size);
1292 if (copy_from_user(newmem->regions, m->regions,
1293 mem.nregions * sizeof *m->regions)) {
1294 kvfree(newmem);
1295 return -EFAULT;
1298 newumem = vhost_umem_alloc();
1299 if (!newumem) {
1300 kvfree(newmem);
1301 return -ENOMEM;
1304 for (region = newmem->regions;
1305 region < newmem->regions + mem.nregions;
1306 region++) {
1307 if (vhost_new_umem_range(newumem,
1308 region->guest_phys_addr,
1309 region->memory_size,
1310 region->guest_phys_addr +
1311 region->memory_size - 1,
1312 region->userspace_addr,
1313 VHOST_ACCESS_RW))
1314 goto err;
1317 if (!memory_access_ok(d, newumem, 0))
1318 goto err;
1320 oldumem = d->umem;
1321 d->umem = newumem;
1323 /* All memory accesses are done under some VQ mutex. */
1324 for (i = 0; i < d->nvqs; ++i) {
1325 mutex_lock(&d->vqs[i]->mutex);
1326 d->vqs[i]->umem = newumem;
1327 mutex_unlock(&d->vqs[i]->mutex);
1330 kvfree(newmem);
1331 vhost_umem_clean(oldumem);
1332 return 0;
1334 err:
1335 vhost_umem_clean(newumem);
1336 kvfree(newmem);
1337 return -EFAULT;
1340 long vhost_vring_ioctl(struct vhost_dev *d, int ioctl, void __user *argp)
1342 struct file *eventfp, *filep = NULL;
1343 bool pollstart = false, pollstop = false;
1344 struct eventfd_ctx *ctx = NULL;
1345 u32 __user *idxp = argp;
1346 struct vhost_virtqueue *vq;
1347 struct vhost_vring_state s;
1348 struct vhost_vring_file f;
1349 struct vhost_vring_addr a;
1350 u32 idx;
1351 long r;
1353 r = get_user(idx, idxp);
1354 if (r < 0)
1355 return r;
1356 if (idx >= d->nvqs)
1357 return -ENOBUFS;
1359 vq = d->vqs[idx];
1361 mutex_lock(&vq->mutex);
1363 switch (ioctl) {
1364 case VHOST_SET_VRING_NUM:
1365 /* Resizing ring with an active backend?
1366 * You don't want to do that. */
1367 if (vq->private_data) {
1368 r = -EBUSY;
1369 break;
1371 if (copy_from_user(&s, argp, sizeof s)) {
1372 r = -EFAULT;
1373 break;
1375 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) {
1376 r = -EINVAL;
1377 break;
1379 vq->num = s.num;
1380 break;
1381 case VHOST_SET_VRING_BASE:
1382 /* Moving base with an active backend?
1383 * You don't want to do that. */
1384 if (vq->private_data) {
1385 r = -EBUSY;
1386 break;
1388 if (copy_from_user(&s, argp, sizeof s)) {
1389 r = -EFAULT;
1390 break;
1392 if (s.num > 0xffff) {
1393 r = -EINVAL;
1394 break;
1396 vq->last_avail_idx = s.num;
1397 /* Forget the cached index value. */
1398 vq->avail_idx = vq->last_avail_idx;
1399 break;
1400 case VHOST_GET_VRING_BASE:
1401 s.index = idx;
1402 s.num = vq->last_avail_idx;
1403 if (copy_to_user(argp, &s, sizeof s))
1404 r = -EFAULT;
1405 break;
1406 case VHOST_SET_VRING_ADDR:
1407 if (copy_from_user(&a, argp, sizeof a)) {
1408 r = -EFAULT;
1409 break;
1411 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) {
1412 r = -EOPNOTSUPP;
1413 break;
1415 /* For 32bit, verify that the top 32bits of the user
1416 data are set to zero. */
1417 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr ||
1418 (u64)(unsigned long)a.used_user_addr != a.used_user_addr ||
1419 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) {
1420 r = -EFAULT;
1421 break;
1424 /* Make sure it's safe to cast pointers to vring types. */
1425 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE);
1426 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE);
1427 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) ||
1428 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) ||
1429 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) {
1430 r = -EINVAL;
1431 break;
1434 /* We only verify access here if backend is configured.
1435 * If it is not, we don't as size might not have been setup.
1436 * We will verify when backend is configured. */
1437 if (vq->private_data) {
1438 if (!vq_access_ok(vq, vq->num,
1439 (void __user *)(unsigned long)a.desc_user_addr,
1440 (void __user *)(unsigned long)a.avail_user_addr,
1441 (void __user *)(unsigned long)a.used_user_addr)) {
1442 r = -EINVAL;
1443 break;
1446 /* Also validate log access for used ring if enabled. */
1447 if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) &&
1448 !log_access_ok(vq->log_base, a.log_guest_addr,
1449 sizeof *vq->used +
1450 vq->num * sizeof *vq->used->ring)) {
1451 r = -EINVAL;
1452 break;
1456 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG));
1457 vq->desc = (void __user *)(unsigned long)a.desc_user_addr;
1458 vq->avail = (void __user *)(unsigned long)a.avail_user_addr;
1459 vq->log_addr = a.log_guest_addr;
1460 vq->used = (void __user *)(unsigned long)a.used_user_addr;
1461 break;
1462 case VHOST_SET_VRING_KICK:
1463 if (copy_from_user(&f, argp, sizeof f)) {
1464 r = -EFAULT;
1465 break;
1467 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd);
1468 if (IS_ERR(eventfp)) {
1469 r = PTR_ERR(eventfp);
1470 break;
1472 if (eventfp != vq->kick) {
1473 pollstop = (filep = vq->kick) != NULL;
1474 pollstart = (vq->kick = eventfp) != NULL;
1475 } else
1476 filep = eventfp;
1477 break;
1478 case VHOST_SET_VRING_CALL:
1479 if (copy_from_user(&f, argp, sizeof f)) {
1480 r = -EFAULT;
1481 break;
1483 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd);
1484 if (IS_ERR(ctx)) {
1485 r = PTR_ERR(ctx);
1486 break;
1488 swap(ctx, vq->call_ctx);
1489 break;
1490 case VHOST_SET_VRING_ERR:
1491 if (copy_from_user(&f, argp, sizeof f)) {
1492 r = -EFAULT;
1493 break;
1495 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd);
1496 if (IS_ERR(ctx)) {
1497 r = PTR_ERR(ctx);
1498 break;
1500 swap(ctx, vq->error_ctx);
1501 break;
1502 case VHOST_SET_VRING_ENDIAN:
1503 r = vhost_set_vring_endian(vq, argp);
1504 break;
1505 case VHOST_GET_VRING_ENDIAN:
1506 r = vhost_get_vring_endian(vq, idx, argp);
1507 break;
1508 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT:
1509 if (copy_from_user(&s, argp, sizeof(s))) {
1510 r = -EFAULT;
1511 break;
1513 vq->busyloop_timeout = s.num;
1514 break;
1515 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT:
1516 s.index = idx;
1517 s.num = vq->busyloop_timeout;
1518 if (copy_to_user(argp, &s, sizeof(s)))
1519 r = -EFAULT;
1520 break;
1521 default:
1522 r = -ENOIOCTLCMD;
1525 if (pollstop && vq->handle_kick)
1526 vhost_poll_stop(&vq->poll);
1528 if (!IS_ERR_OR_NULL(ctx))
1529 eventfd_ctx_put(ctx);
1530 if (filep)
1531 fput(filep);
1533 if (pollstart && vq->handle_kick)
1534 r = vhost_poll_start(&vq->poll, vq->kick);
1536 mutex_unlock(&vq->mutex);
1538 if (pollstop && vq->handle_kick)
1539 vhost_poll_flush(&vq->poll);
1540 return r;
1542 EXPORT_SYMBOL_GPL(vhost_vring_ioctl);
1544 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled)
1546 struct vhost_umem *niotlb, *oiotlb;
1547 int i;
1549 niotlb = vhost_umem_alloc();
1550 if (!niotlb)
1551 return -ENOMEM;
1553 oiotlb = d->iotlb;
1554 d->iotlb = niotlb;
1556 for (i = 0; i < d->nvqs; ++i) {
1557 mutex_lock(&d->vqs[i]->mutex);
1558 d->vqs[i]->iotlb = niotlb;
1559 mutex_unlock(&d->vqs[i]->mutex);
1562 vhost_umem_clean(oiotlb);
1564 return 0;
1566 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb);
1568 /* Caller must have device mutex */
1569 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
1571 struct eventfd_ctx *ctx;
1572 u64 p;
1573 long r;
1574 int i, fd;
1576 /* If you are not the owner, you can become one */
1577 if (ioctl == VHOST_SET_OWNER) {
1578 r = vhost_dev_set_owner(d);
1579 goto done;
1582 /* You must be the owner to do anything else */
1583 r = vhost_dev_check_owner(d);
1584 if (r)
1585 goto done;
1587 switch (ioctl) {
1588 case VHOST_SET_MEM_TABLE:
1589 r = vhost_set_memory(d, argp);
1590 break;
1591 case VHOST_SET_LOG_BASE:
1592 if (copy_from_user(&p, argp, sizeof p)) {
1593 r = -EFAULT;
1594 break;
1596 if ((u64)(unsigned long)p != p) {
1597 r = -EFAULT;
1598 break;
1600 for (i = 0; i < d->nvqs; ++i) {
1601 struct vhost_virtqueue *vq;
1602 void __user *base = (void __user *)(unsigned long)p;
1603 vq = d->vqs[i];
1604 mutex_lock(&vq->mutex);
1605 /* If ring is inactive, will check when it's enabled. */
1606 if (vq->private_data && !vq_log_access_ok(vq, base))
1607 r = -EFAULT;
1608 else
1609 vq->log_base = base;
1610 mutex_unlock(&vq->mutex);
1612 break;
1613 case VHOST_SET_LOG_FD:
1614 r = get_user(fd, (int __user *)argp);
1615 if (r < 0)
1616 break;
1617 ctx = fd == -1 ? NULL : eventfd_ctx_fdget(fd);
1618 if (IS_ERR(ctx)) {
1619 r = PTR_ERR(ctx);
1620 break;
1622 swap(ctx, d->log_ctx);
1623 for (i = 0; i < d->nvqs; ++i) {
1624 mutex_lock(&d->vqs[i]->mutex);
1625 d->vqs[i]->log_ctx = d->log_ctx;
1626 mutex_unlock(&d->vqs[i]->mutex);
1628 if (ctx)
1629 eventfd_ctx_put(ctx);
1630 break;
1631 default:
1632 r = -ENOIOCTLCMD;
1633 break;
1635 done:
1636 return r;
1638 EXPORT_SYMBOL_GPL(vhost_dev_ioctl);
1640 /* TODO: This is really inefficient. We need something like get_user()
1641 * (instruction directly accesses the data, with an exception table entry
1642 * returning -EFAULT). See Documentation/x86/exception-tables.txt.
1644 static int set_bit_to_user(int nr, void __user *addr)
1646 unsigned long log = (unsigned long)addr;
1647 struct page *page;
1648 void *base;
1649 int bit = nr + (log % PAGE_SIZE) * 8;
1650 int r;
1652 r = get_user_pages_fast(log, 1, 1, &page);
1653 if (r < 0)
1654 return r;
1655 BUG_ON(r != 1);
1656 base = kmap_atomic(page);
1657 set_bit(bit, base);
1658 kunmap_atomic(base);
1659 set_page_dirty_lock(page);
1660 put_page(page);
1661 return 0;
1664 static int log_write(void __user *log_base,
1665 u64 write_address, u64 write_length)
1667 u64 write_page = write_address / VHOST_PAGE_SIZE;
1668 int r;
1670 if (!write_length)
1671 return 0;
1672 write_length += write_address % VHOST_PAGE_SIZE;
1673 for (;;) {
1674 u64 base = (u64)(unsigned long)log_base;
1675 u64 log = base + write_page / 8;
1676 int bit = write_page % 8;
1677 if ((u64)(unsigned long)log != log)
1678 return -EFAULT;
1679 r = set_bit_to_user(bit, (void __user *)(unsigned long)log);
1680 if (r < 0)
1681 return r;
1682 if (write_length <= VHOST_PAGE_SIZE)
1683 break;
1684 write_length -= VHOST_PAGE_SIZE;
1685 write_page += 1;
1687 return r;
1690 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log,
1691 unsigned int log_num, u64 len)
1693 int i, r;
1695 /* Make sure data written is seen before log. */
1696 smp_wmb();
1697 for (i = 0; i < log_num; ++i) {
1698 u64 l = min(log[i].len, len);
1699 r = log_write(vq->log_base, log[i].addr, l);
1700 if (r < 0)
1701 return r;
1702 len -= l;
1703 if (!len) {
1704 if (vq->log_ctx)
1705 eventfd_signal(vq->log_ctx, 1);
1706 return 0;
1709 /* Length written exceeds what we have stored. This is a bug. */
1710 BUG();
1711 return 0;
1713 EXPORT_SYMBOL_GPL(vhost_log_write);
1715 static int vhost_update_used_flags(struct vhost_virtqueue *vq)
1717 void __user *used;
1718 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags),
1719 &vq->used->flags) < 0)
1720 return -EFAULT;
1721 if (unlikely(vq->log_used)) {
1722 /* Make sure the flag is seen before log. */
1723 smp_wmb();
1724 /* Log used flag write. */
1725 used = &vq->used->flags;
1726 log_write(vq->log_base, vq->log_addr +
1727 (used - (void __user *)vq->used),
1728 sizeof vq->used->flags);
1729 if (vq->log_ctx)
1730 eventfd_signal(vq->log_ctx, 1);
1732 return 0;
1735 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event)
1737 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx),
1738 vhost_avail_event(vq)))
1739 return -EFAULT;
1740 if (unlikely(vq->log_used)) {
1741 void __user *used;
1742 /* Make sure the event is seen before log. */
1743 smp_wmb();
1744 /* Log avail event write */
1745 used = vhost_avail_event(vq);
1746 log_write(vq->log_base, vq->log_addr +
1747 (used - (void __user *)vq->used),
1748 sizeof *vhost_avail_event(vq));
1749 if (vq->log_ctx)
1750 eventfd_signal(vq->log_ctx, 1);
1752 return 0;
1755 int vhost_vq_init_access(struct vhost_virtqueue *vq)
1757 __virtio16 last_used_idx;
1758 int r;
1759 bool is_le = vq->is_le;
1761 if (!vq->private_data)
1762 return 0;
1764 vhost_init_is_le(vq);
1766 r = vhost_update_used_flags(vq);
1767 if (r)
1768 goto err;
1769 vq->signalled_used_valid = false;
1770 if (!vq->iotlb &&
1771 !access_ok(VERIFY_READ, &vq->used->idx, sizeof vq->used->idx)) {
1772 r = -EFAULT;
1773 goto err;
1775 r = vhost_get_used(vq, last_used_idx, &vq->used->idx);
1776 if (r) {
1777 vq_err(vq, "Can't access used idx at %p\n",
1778 &vq->used->idx);
1779 goto err;
1781 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx);
1782 return 0;
1784 err:
1785 vq->is_le = is_le;
1786 return r;
1788 EXPORT_SYMBOL_GPL(vhost_vq_init_access);
1790 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
1791 struct iovec iov[], int iov_size, int access)
1793 const struct vhost_umem_node *node;
1794 struct vhost_dev *dev = vq->dev;
1795 struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem;
1796 struct iovec *_iov;
1797 u64 s = 0;
1798 int ret = 0;
1800 while ((u64)len > s) {
1801 u64 size;
1802 if (unlikely(ret >= iov_size)) {
1803 ret = -ENOBUFS;
1804 break;
1807 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
1808 addr, addr + len - 1);
1809 if (node == NULL || node->start > addr) {
1810 if (umem != dev->iotlb) {
1811 ret = -EFAULT;
1812 break;
1814 ret = -EAGAIN;
1815 break;
1816 } else if (!(node->perm & access)) {
1817 ret = -EPERM;
1818 break;
1821 _iov = iov + ret;
1822 size = node->size - addr + node->start;
1823 _iov->iov_len = min((u64)len - s, size);
1824 _iov->iov_base = (void __user *)(unsigned long)
1825 (node->userspace_addr + addr - node->start);
1826 s += size;
1827 addr += size;
1828 ++ret;
1831 if (ret == -EAGAIN)
1832 vhost_iotlb_miss(vq, addr, access);
1833 return ret;
1836 /* Each buffer in the virtqueues is actually a chain of descriptors. This
1837 * function returns the next descriptor in the chain,
1838 * or -1U if we're at the end. */
1839 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc)
1841 unsigned int next;
1843 /* If this descriptor says it doesn't chain, we're done. */
1844 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT)))
1845 return -1U;
1847 /* Check they're not leading us off end of descriptors. */
1848 next = vhost16_to_cpu(vq, READ_ONCE(desc->next));
1849 return next;
1852 static int get_indirect(struct vhost_virtqueue *vq,
1853 struct iovec iov[], unsigned int iov_size,
1854 unsigned int *out_num, unsigned int *in_num,
1855 struct vhost_log *log, unsigned int *log_num,
1856 struct vring_desc *indirect)
1858 struct vring_desc desc;
1859 unsigned int i = 0, count, found = 0;
1860 u32 len = vhost32_to_cpu(vq, indirect->len);
1861 struct iov_iter from;
1862 int ret, access;
1864 /* Sanity check */
1865 if (unlikely(len % sizeof desc)) {
1866 vq_err(vq, "Invalid length in indirect descriptor: "
1867 "len 0x%llx not multiple of 0x%zx\n",
1868 (unsigned long long)len,
1869 sizeof desc);
1870 return -EINVAL;
1873 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect,
1874 UIO_MAXIOV, VHOST_ACCESS_RO);
1875 if (unlikely(ret < 0)) {
1876 if (ret != -EAGAIN)
1877 vq_err(vq, "Translation failure %d in indirect.\n", ret);
1878 return ret;
1880 iov_iter_init(&from, READ, vq->indirect, ret, len);
1882 /* We will use the result as an address to read from, so most
1883 * architectures only need a compiler barrier here. */
1884 read_barrier_depends();
1886 count = len / sizeof desc;
1887 /* Buffers are chained via a 16 bit next field, so
1888 * we can have at most 2^16 of these. */
1889 if (unlikely(count > USHRT_MAX + 1)) {
1890 vq_err(vq, "Indirect buffer length too big: %d\n",
1891 indirect->len);
1892 return -E2BIG;
1895 do {
1896 unsigned iov_count = *in_num + *out_num;
1897 if (unlikely(++found > count)) {
1898 vq_err(vq, "Loop detected: last one at %u "
1899 "indirect size %u\n",
1900 i, count);
1901 return -EINVAL;
1903 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) {
1904 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n",
1905 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
1906 return -EINVAL;
1908 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) {
1909 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n",
1910 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
1911 return -EINVAL;
1914 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
1915 access = VHOST_ACCESS_WO;
1916 else
1917 access = VHOST_ACCESS_RO;
1919 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
1920 vhost32_to_cpu(vq, desc.len), iov + iov_count,
1921 iov_size - iov_count, access);
1922 if (unlikely(ret < 0)) {
1923 if (ret != -EAGAIN)
1924 vq_err(vq, "Translation failure %d indirect idx %d\n",
1925 ret, i);
1926 return ret;
1928 /* If this is an input descriptor, increment that count. */
1929 if (access == VHOST_ACCESS_WO) {
1930 *in_num += ret;
1931 if (unlikely(log)) {
1932 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
1933 log[*log_num].len = vhost32_to_cpu(vq, desc.len);
1934 ++*log_num;
1936 } else {
1937 /* If it's an output descriptor, they're all supposed
1938 * to come before any input descriptors. */
1939 if (unlikely(*in_num)) {
1940 vq_err(vq, "Indirect descriptor "
1941 "has out after in: idx %d\n", i);
1942 return -EINVAL;
1944 *out_num += ret;
1946 } while ((i = next_desc(vq, &desc)) != -1);
1947 return 0;
1950 /* This looks in the virtqueue and for the first available buffer, and converts
1951 * it to an iovec for convenient access. Since descriptors consist of some
1952 * number of output then some number of input descriptors, it's actually two
1953 * iovecs, but we pack them into one and note how many of each there were.
1955 * This function returns the descriptor number found, or vq->num (which is
1956 * never a valid descriptor number) if none was found. A negative code is
1957 * returned on error. */
1958 int vhost_get_vq_desc(struct vhost_virtqueue *vq,
1959 struct iovec iov[], unsigned int iov_size,
1960 unsigned int *out_num, unsigned int *in_num,
1961 struct vhost_log *log, unsigned int *log_num)
1963 struct vring_desc desc;
1964 unsigned int i, head, found = 0;
1965 u16 last_avail_idx;
1966 __virtio16 avail_idx;
1967 __virtio16 ring_head;
1968 int ret, access;
1970 /* Check it isn't doing very strange things with descriptor numbers. */
1971 last_avail_idx = vq->last_avail_idx;
1973 if (vq->avail_idx == vq->last_avail_idx) {
1974 if (unlikely(vhost_get_avail(vq, avail_idx, &vq->avail->idx))) {
1975 vq_err(vq, "Failed to access avail idx at %p\n",
1976 &vq->avail->idx);
1977 return -EFAULT;
1979 vq->avail_idx = vhost16_to_cpu(vq, avail_idx);
1981 if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) {
1982 vq_err(vq, "Guest moved used index from %u to %u",
1983 last_avail_idx, vq->avail_idx);
1984 return -EFAULT;
1987 /* If there's nothing new since last we looked, return
1988 * invalid.
1990 if (vq->avail_idx == last_avail_idx)
1991 return vq->num;
1993 /* Only get avail ring entries after they have been
1994 * exposed by guest.
1996 smp_rmb();
1999 /* Grab the next descriptor number they're advertising, and increment
2000 * the index we've seen. */
2001 if (unlikely(vhost_get_avail(vq, ring_head,
2002 &vq->avail->ring[last_avail_idx & (vq->num - 1)]))) {
2003 vq_err(vq, "Failed to read head: idx %d address %p\n",
2004 last_avail_idx,
2005 &vq->avail->ring[last_avail_idx % vq->num]);
2006 return -EFAULT;
2009 head = vhost16_to_cpu(vq, ring_head);
2011 /* If their number is silly, that's an error. */
2012 if (unlikely(head >= vq->num)) {
2013 vq_err(vq, "Guest says index %u > %u is available",
2014 head, vq->num);
2015 return -EINVAL;
2018 /* When we start there are none of either input nor output. */
2019 *out_num = *in_num = 0;
2020 if (unlikely(log))
2021 *log_num = 0;
2023 i = head;
2024 do {
2025 unsigned iov_count = *in_num + *out_num;
2026 if (unlikely(i >= vq->num)) {
2027 vq_err(vq, "Desc index is %u > %u, head = %u",
2028 i, vq->num, head);
2029 return -EINVAL;
2031 if (unlikely(++found > vq->num)) {
2032 vq_err(vq, "Loop detected: last one at %u "
2033 "vq size %u head %u\n",
2034 i, vq->num, head);
2035 return -EINVAL;
2037 ret = vhost_copy_from_user(vq, &desc, vq->desc + i,
2038 sizeof desc);
2039 if (unlikely(ret)) {
2040 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n",
2041 i, vq->desc + i);
2042 return -EFAULT;
2044 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) {
2045 ret = get_indirect(vq, iov, iov_size,
2046 out_num, in_num,
2047 log, log_num, &desc);
2048 if (unlikely(ret < 0)) {
2049 if (ret != -EAGAIN)
2050 vq_err(vq, "Failure detected "
2051 "in indirect descriptor at idx %d\n", i);
2052 return ret;
2054 continue;
2057 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
2058 access = VHOST_ACCESS_WO;
2059 else
2060 access = VHOST_ACCESS_RO;
2061 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
2062 vhost32_to_cpu(vq, desc.len), iov + iov_count,
2063 iov_size - iov_count, access);
2064 if (unlikely(ret < 0)) {
2065 if (ret != -EAGAIN)
2066 vq_err(vq, "Translation failure %d descriptor idx %d\n",
2067 ret, i);
2068 return ret;
2070 if (access == VHOST_ACCESS_WO) {
2071 /* If this is an input descriptor,
2072 * increment that count. */
2073 *in_num += ret;
2074 if (unlikely(log)) {
2075 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
2076 log[*log_num].len = vhost32_to_cpu(vq, desc.len);
2077 ++*log_num;
2079 } else {
2080 /* If it's an output descriptor, they're all supposed
2081 * to come before any input descriptors. */
2082 if (unlikely(*in_num)) {
2083 vq_err(vq, "Descriptor has out after in: "
2084 "idx %d\n", i);
2085 return -EINVAL;
2087 *out_num += ret;
2089 } while ((i = next_desc(vq, &desc)) != -1);
2091 /* On success, increment avail index. */
2092 vq->last_avail_idx++;
2094 /* Assume notifications from guest are disabled at this point,
2095 * if they aren't we would need to update avail_event index. */
2096 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY));
2097 return head;
2099 EXPORT_SYMBOL_GPL(vhost_get_vq_desc);
2101 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */
2102 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n)
2104 vq->last_avail_idx -= n;
2106 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc);
2108 /* After we've used one of their buffers, we tell them about it. We'll then
2109 * want to notify the guest, using eventfd. */
2110 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len)
2112 struct vring_used_elem heads = {
2113 cpu_to_vhost32(vq, head),
2114 cpu_to_vhost32(vq, len)
2117 return vhost_add_used_n(vq, &heads, 1);
2119 EXPORT_SYMBOL_GPL(vhost_add_used);
2121 static int __vhost_add_used_n(struct vhost_virtqueue *vq,
2122 struct vring_used_elem *heads,
2123 unsigned count)
2125 struct vring_used_elem __user *used;
2126 u16 old, new;
2127 int start;
2129 start = vq->last_used_idx & (vq->num - 1);
2130 used = vq->used->ring + start;
2131 if (count == 1) {
2132 if (vhost_put_user(vq, heads[0].id, &used->id)) {
2133 vq_err(vq, "Failed to write used id");
2134 return -EFAULT;
2136 if (vhost_put_user(vq, heads[0].len, &used->len)) {
2137 vq_err(vq, "Failed to write used len");
2138 return -EFAULT;
2140 } else if (vhost_copy_to_user(vq, used, heads, count * sizeof *used)) {
2141 vq_err(vq, "Failed to write used");
2142 return -EFAULT;
2144 if (unlikely(vq->log_used)) {
2145 /* Make sure data is seen before log. */
2146 smp_wmb();
2147 /* Log used ring entry write. */
2148 log_write(vq->log_base,
2149 vq->log_addr +
2150 ((void __user *)used - (void __user *)vq->used),
2151 count * sizeof *used);
2153 old = vq->last_used_idx;
2154 new = (vq->last_used_idx += count);
2155 /* If the driver never bothers to signal in a very long while,
2156 * used index might wrap around. If that happens, invalidate
2157 * signalled_used index we stored. TODO: make sure driver
2158 * signals at least once in 2^16 and remove this. */
2159 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old)))
2160 vq->signalled_used_valid = false;
2161 return 0;
2164 /* After we've used one of their buffers, we tell them about it. We'll then
2165 * want to notify the guest, using eventfd. */
2166 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads,
2167 unsigned count)
2169 int start, n, r;
2171 start = vq->last_used_idx & (vq->num - 1);
2172 n = vq->num - start;
2173 if (n < count) {
2174 r = __vhost_add_used_n(vq, heads, n);
2175 if (r < 0)
2176 return r;
2177 heads += n;
2178 count -= n;
2180 r = __vhost_add_used_n(vq, heads, count);
2182 /* Make sure buffer is written before we update index. */
2183 smp_wmb();
2184 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx),
2185 &vq->used->idx)) {
2186 vq_err(vq, "Failed to increment used idx");
2187 return -EFAULT;
2189 if (unlikely(vq->log_used)) {
2190 /* Log used index update. */
2191 log_write(vq->log_base,
2192 vq->log_addr + offsetof(struct vring_used, idx),
2193 sizeof vq->used->idx);
2194 if (vq->log_ctx)
2195 eventfd_signal(vq->log_ctx, 1);
2197 return r;
2199 EXPORT_SYMBOL_GPL(vhost_add_used_n);
2201 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2203 __u16 old, new;
2204 __virtio16 event;
2205 bool v;
2206 /* Flush out used index updates. This is paired
2207 * with the barrier that the Guest executes when enabling
2208 * interrupts. */
2209 smp_mb();
2211 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) &&
2212 unlikely(vq->avail_idx == vq->last_avail_idx))
2213 return true;
2215 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2216 __virtio16 flags;
2217 if (vhost_get_avail(vq, flags, &vq->avail->flags)) {
2218 vq_err(vq, "Failed to get flags");
2219 return true;
2221 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT));
2223 old = vq->signalled_used;
2224 v = vq->signalled_used_valid;
2225 new = vq->signalled_used = vq->last_used_idx;
2226 vq->signalled_used_valid = true;
2228 if (unlikely(!v))
2229 return true;
2231 if (vhost_get_avail(vq, event, vhost_used_event(vq))) {
2232 vq_err(vq, "Failed to get used event idx");
2233 return true;
2235 return vring_need_event(vhost16_to_cpu(vq, event), new, old);
2238 /* This actually signals the guest, using eventfd. */
2239 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2241 /* Signal the Guest tell them we used something up. */
2242 if (vq->call_ctx && vhost_notify(dev, vq))
2243 eventfd_signal(vq->call_ctx, 1);
2245 EXPORT_SYMBOL_GPL(vhost_signal);
2247 /* And here's the combo meal deal. Supersize me! */
2248 void vhost_add_used_and_signal(struct vhost_dev *dev,
2249 struct vhost_virtqueue *vq,
2250 unsigned int head, int len)
2252 vhost_add_used(vq, head, len);
2253 vhost_signal(dev, vq);
2255 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal);
2257 /* multi-buffer version of vhost_add_used_and_signal */
2258 void vhost_add_used_and_signal_n(struct vhost_dev *dev,
2259 struct vhost_virtqueue *vq,
2260 struct vring_used_elem *heads, unsigned count)
2262 vhost_add_used_n(vq, heads, count);
2263 vhost_signal(dev, vq);
2265 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n);
2267 /* return true if we're sure that avaiable ring is empty */
2268 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2270 __virtio16 avail_idx;
2271 int r;
2273 if (vq->avail_idx != vq->last_avail_idx)
2274 return false;
2276 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx);
2277 if (unlikely(r))
2278 return false;
2279 vq->avail_idx = vhost16_to_cpu(vq, avail_idx);
2281 return vq->avail_idx == vq->last_avail_idx;
2283 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty);
2285 /* OK, now we need to know about added descriptors. */
2286 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2288 __virtio16 avail_idx;
2289 int r;
2291 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY))
2292 return false;
2293 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY;
2294 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2295 r = vhost_update_used_flags(vq);
2296 if (r) {
2297 vq_err(vq, "Failed to enable notification at %p: %d\n",
2298 &vq->used->flags, r);
2299 return false;
2301 } else {
2302 r = vhost_update_avail_event(vq, vq->avail_idx);
2303 if (r) {
2304 vq_err(vq, "Failed to update avail event index at %p: %d\n",
2305 vhost_avail_event(vq), r);
2306 return false;
2309 /* They could have slipped one in as we were doing that: make
2310 * sure it's written, then check again. */
2311 smp_mb();
2312 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx);
2313 if (r) {
2314 vq_err(vq, "Failed to check avail idx at %p: %d\n",
2315 &vq->avail->idx, r);
2316 return false;
2319 return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx;
2321 EXPORT_SYMBOL_GPL(vhost_enable_notify);
2323 /* We don't need to be notified again. */
2324 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2326 int r;
2328 if (vq->used_flags & VRING_USED_F_NO_NOTIFY)
2329 return;
2330 vq->used_flags |= VRING_USED_F_NO_NOTIFY;
2331 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2332 r = vhost_update_used_flags(vq);
2333 if (r)
2334 vq_err(vq, "Failed to enable notification at %p: %d\n",
2335 &vq->used->flags, r);
2338 EXPORT_SYMBOL_GPL(vhost_disable_notify);
2340 /* Create a new message. */
2341 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type)
2343 struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL);
2344 if (!node)
2345 return NULL;
2346 node->vq = vq;
2347 node->msg.type = type;
2348 return node;
2350 EXPORT_SYMBOL_GPL(vhost_new_msg);
2352 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head,
2353 struct vhost_msg_node *node)
2355 spin_lock(&dev->iotlb_lock);
2356 list_add_tail(&node->node, head);
2357 spin_unlock(&dev->iotlb_lock);
2359 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
2361 EXPORT_SYMBOL_GPL(vhost_enqueue_msg);
2363 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev,
2364 struct list_head *head)
2366 struct vhost_msg_node *node = NULL;
2368 spin_lock(&dev->iotlb_lock);
2369 if (!list_empty(head)) {
2370 node = list_first_entry(head, struct vhost_msg_node,
2371 node);
2372 list_del(&node->node);
2374 spin_unlock(&dev->iotlb_lock);
2376 return node;
2378 EXPORT_SYMBOL_GPL(vhost_dequeue_msg);
2381 static int __init vhost_init(void)
2383 return 0;
2386 static void __exit vhost_exit(void)
2390 module_init(vhost_init);
2391 module_exit(vhost_exit);
2393 MODULE_VERSION("0.0.1");
2394 MODULE_LICENSE("GPL v2");
2395 MODULE_AUTHOR("Michael S. Tsirkin");
2396 MODULE_DESCRIPTION("Host kernel accelerator for virtio");