xtensa: support DMA buffers in high memory
[cris-mirror.git] / include / asm-generic / tlb.h
blobfaddde44de8c902e6884e64eeb8b22bd0d11b75a
1 /* include/asm-generic/tlb.h
3 * Generic TLB shootdown code
5 * Copyright 2001 Red Hat, Inc.
6 * Based on code from mm/memory.c Copyright Linus Torvalds and others.
8 * Copyright 2011 Red Hat, Inc., Peter Zijlstra
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 #ifndef _ASM_GENERIC__TLB_H
16 #define _ASM_GENERIC__TLB_H
18 #include <linux/swap.h>
19 #include <asm/pgalloc.h>
20 #include <asm/tlbflush.h>
22 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
24 * Semi RCU freeing of the page directories.
26 * This is needed by some architectures to implement software pagetable walkers.
28 * gup_fast() and other software pagetable walkers do a lockless page-table
29 * walk and therefore needs some synchronization with the freeing of the page
30 * directories. The chosen means to accomplish that is by disabling IRQs over
31 * the walk.
33 * Architectures that use IPIs to flush TLBs will then automagically DTRT,
34 * since we unlink the page, flush TLBs, free the page. Since the disabling of
35 * IRQs delays the completion of the TLB flush we can never observe an already
36 * freed page.
38 * Architectures that do not have this (PPC) need to delay the freeing by some
39 * other means, this is that means.
41 * What we do is batch the freed directory pages (tables) and RCU free them.
42 * We use the sched RCU variant, as that guarantees that IRQ/preempt disabling
43 * holds off grace periods.
45 * However, in order to batch these pages we need to allocate storage, this
46 * allocation is deep inside the MM code and can thus easily fail on memory
47 * pressure. To guarantee progress we fall back to single table freeing, see
48 * the implementation of tlb_remove_table_one().
51 struct mmu_table_batch {
52 struct rcu_head rcu;
53 unsigned int nr;
54 void *tables[0];
57 #define MAX_TABLE_BATCH \
58 ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
60 extern void tlb_table_flush(struct mmu_gather *tlb);
61 extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
63 #endif
66 * If we can't allocate a page to make a big batch of page pointers
67 * to work on, then just handle a few from the on-stack structure.
69 #define MMU_GATHER_BUNDLE 8
71 struct mmu_gather_batch {
72 struct mmu_gather_batch *next;
73 unsigned int nr;
74 unsigned int max;
75 struct page *pages[0];
78 #define MAX_GATHER_BATCH \
79 ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
82 * Limit the maximum number of mmu_gather batches to reduce a risk of soft
83 * lockups for non-preemptible kernels on huge machines when a lot of memory
84 * is zapped during unmapping.
85 * 10K pages freed at once should be safe even without a preemption point.
87 #define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH)
89 /* struct mmu_gather is an opaque type used by the mm code for passing around
90 * any data needed by arch specific code for tlb_remove_page.
92 struct mmu_gather {
93 struct mm_struct *mm;
94 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
95 struct mmu_table_batch *batch;
96 #endif
97 unsigned long start;
98 unsigned long end;
99 /* we are in the middle of an operation to clear
100 * a full mm and can make some optimizations */
101 unsigned int fullmm : 1,
102 /* we have performed an operation which
103 * requires a complete flush of the tlb */
104 need_flush_all : 1;
106 struct mmu_gather_batch *active;
107 struct mmu_gather_batch local;
108 struct page *__pages[MMU_GATHER_BUNDLE];
109 unsigned int batch_count;
110 int page_size;
113 #define HAVE_GENERIC_MMU_GATHER
115 void arch_tlb_gather_mmu(struct mmu_gather *tlb,
116 struct mm_struct *mm, unsigned long start, unsigned long end);
117 void tlb_flush_mmu(struct mmu_gather *tlb);
118 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
119 unsigned long start, unsigned long end, bool force);
120 extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page,
121 int page_size);
123 static inline void __tlb_adjust_range(struct mmu_gather *tlb,
124 unsigned long address,
125 unsigned int range_size)
127 tlb->start = min(tlb->start, address);
128 tlb->end = max(tlb->end, address + range_size);
131 static inline void __tlb_reset_range(struct mmu_gather *tlb)
133 if (tlb->fullmm) {
134 tlb->start = tlb->end = ~0;
135 } else {
136 tlb->start = TASK_SIZE;
137 tlb->end = 0;
141 static inline void tlb_remove_page_size(struct mmu_gather *tlb,
142 struct page *page, int page_size)
144 if (__tlb_remove_page_size(tlb, page, page_size))
145 tlb_flush_mmu(tlb);
148 static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
150 return __tlb_remove_page_size(tlb, page, PAGE_SIZE);
153 /* tlb_remove_page
154 * Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
155 * required.
157 static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
159 return tlb_remove_page_size(tlb, page, PAGE_SIZE);
162 #ifndef tlb_remove_check_page_size_change
163 #define tlb_remove_check_page_size_change tlb_remove_check_page_size_change
164 static inline void tlb_remove_check_page_size_change(struct mmu_gather *tlb,
165 unsigned int page_size)
168 * We don't care about page size change, just update
169 * mmu_gather page size here so that debug checks
170 * doesn't throw false warning.
172 #ifdef CONFIG_DEBUG_VM
173 tlb->page_size = page_size;
174 #endif
176 #endif
179 * In the case of tlb vma handling, we can optimise these away in the
180 * case where we're doing a full MM flush. When we're doing a munmap,
181 * the vmas are adjusted to only cover the region to be torn down.
183 #ifndef tlb_start_vma
184 #define tlb_start_vma(tlb, vma) do { } while (0)
185 #endif
187 #define __tlb_end_vma(tlb, vma) \
188 do { \
189 if (!tlb->fullmm && tlb->end) { \
190 tlb_flush(tlb); \
191 __tlb_reset_range(tlb); \
193 } while (0)
195 #ifndef tlb_end_vma
196 #define tlb_end_vma __tlb_end_vma
197 #endif
199 #ifndef __tlb_remove_tlb_entry
200 #define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0)
201 #endif
204 * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
206 * Record the fact that pte's were really unmapped by updating the range,
207 * so we can later optimise away the tlb invalidate. This helps when
208 * userspace is unmapping already-unmapped pages, which happens quite a lot.
210 #define tlb_remove_tlb_entry(tlb, ptep, address) \
211 do { \
212 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
213 __tlb_remove_tlb_entry(tlb, ptep, address); \
214 } while (0)
216 #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \
217 do { \
218 __tlb_adjust_range(tlb, address, huge_page_size(h)); \
219 __tlb_remove_tlb_entry(tlb, ptep, address); \
220 } while (0)
223 * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
224 * This is a nop so far, because only x86 needs it.
226 #ifndef __tlb_remove_pmd_tlb_entry
227 #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
228 #endif
230 #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \
231 do { \
232 __tlb_adjust_range(tlb, address, HPAGE_PMD_SIZE); \
233 __tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \
234 } while (0)
237 * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb
238 * invalidation. This is a nop so far, because only x86 needs it.
240 #ifndef __tlb_remove_pud_tlb_entry
241 #define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0)
242 #endif
244 #define tlb_remove_pud_tlb_entry(tlb, pudp, address) \
245 do { \
246 __tlb_adjust_range(tlb, address, HPAGE_PUD_SIZE); \
247 __tlb_remove_pud_tlb_entry(tlb, pudp, address); \
248 } while (0)
251 * For things like page tables caches (ie caching addresses "inside" the
252 * page tables, like x86 does), for legacy reasons, flushing an
253 * individual page had better flush the page table caches behind it. This
254 * is definitely how x86 works, for example. And if you have an
255 * architected non-legacy page table cache (which I'm not aware of
256 * anybody actually doing), you're going to have some architecturally
257 * explicit flushing for that, likely *separate* from a regular TLB entry
258 * flush, and thus you'd need more than just some range expansion..
260 * So if we ever find an architecture
261 * that would want something that odd, I think it is up to that
262 * architecture to do its own odd thing, not cause pain for others
263 * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com
265 * For now w.r.t page table cache, mark the range_size as PAGE_SIZE
268 #define pte_free_tlb(tlb, ptep, address) \
269 do { \
270 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
271 __pte_free_tlb(tlb, ptep, address); \
272 } while (0)
274 #define pmd_free_tlb(tlb, pmdp, address) \
275 do { \
276 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
277 __pmd_free_tlb(tlb, pmdp, address); \
278 } while (0)
280 #ifndef __ARCH_HAS_4LEVEL_HACK
281 #define pud_free_tlb(tlb, pudp, address) \
282 do { \
283 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
284 __pud_free_tlb(tlb, pudp, address); \
285 } while (0)
286 #endif
288 #ifndef __ARCH_HAS_5LEVEL_HACK
289 #define p4d_free_tlb(tlb, pudp, address) \
290 do { \
291 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
292 __p4d_free_tlb(tlb, pudp, address); \
293 } while (0)
294 #endif
296 #define tlb_migrate_finish(mm) do {} while (0)
298 #endif /* _ASM_GENERIC__TLB_H */