xtensa: support DMA buffers in high memory
[cris-mirror.git] / include / net / sock.h
blob169c92afcafa3d548f8238e91606b87c187559f4
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the AF_INET socket handler.
8 * Version: @(#)sock.h 1.0.4 05/13/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
40 #ifndef _SOCK_H
41 #define _SOCK_H
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 #include <linux/rbtree.h>
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
68 #include <linux/atomic.h>
69 #include <linux/refcount.h>
70 #include <net/dst.h>
71 #include <net/checksum.h>
72 #include <net/tcp_states.h>
73 #include <linux/net_tstamp.h>
74 #include <net/smc.h>
75 #include <net/l3mdev.h>
78 * This structure really needs to be cleaned up.
79 * Most of it is for TCP, and not used by any of
80 * the other protocols.
83 /* Define this to get the SOCK_DBG debugging facility. */
84 #define SOCK_DEBUGGING
85 #ifdef SOCK_DEBUGGING
86 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
87 printk(KERN_DEBUG msg); } while (0)
88 #else
89 /* Validate arguments and do nothing */
90 static inline __printf(2, 3)
91 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
94 #endif
96 /* This is the per-socket lock. The spinlock provides a synchronization
97 * between user contexts and software interrupt processing, whereas the
98 * mini-semaphore synchronizes multiple users amongst themselves.
100 typedef struct {
101 spinlock_t slock;
102 int owned;
103 wait_queue_head_t wq;
105 * We express the mutex-alike socket_lock semantics
106 * to the lock validator by explicitly managing
107 * the slock as a lock variant (in addition to
108 * the slock itself):
110 #ifdef CONFIG_DEBUG_LOCK_ALLOC
111 struct lockdep_map dep_map;
112 #endif
113 } socket_lock_t;
115 struct sock;
116 struct proto;
117 struct net;
119 typedef __u32 __bitwise __portpair;
120 typedef __u64 __bitwise __addrpair;
123 * struct sock_common - minimal network layer representation of sockets
124 * @skc_daddr: Foreign IPv4 addr
125 * @skc_rcv_saddr: Bound local IPv4 addr
126 * @skc_hash: hash value used with various protocol lookup tables
127 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
128 * @skc_dport: placeholder for inet_dport/tw_dport
129 * @skc_num: placeholder for inet_num/tw_num
130 * @skc_family: network address family
131 * @skc_state: Connection state
132 * @skc_reuse: %SO_REUSEADDR setting
133 * @skc_reuseport: %SO_REUSEPORT setting
134 * @skc_bound_dev_if: bound device index if != 0
135 * @skc_bind_node: bind hash linkage for various protocol lookup tables
136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137 * @skc_prot: protocol handlers inside a network family
138 * @skc_net: reference to the network namespace of this socket
139 * @skc_node: main hash linkage for various protocol lookup tables
140 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
141 * @skc_tx_queue_mapping: tx queue number for this connection
142 * @skc_flags: place holder for sk_flags
143 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
144 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
145 * @skc_incoming_cpu: record/match cpu processing incoming packets
146 * @skc_refcnt: reference count
148 * This is the minimal network layer representation of sockets, the header
149 * for struct sock and struct inet_timewait_sock.
151 struct sock_common {
152 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
153 * address on 64bit arches : cf INET_MATCH()
155 union {
156 __addrpair skc_addrpair;
157 struct {
158 __be32 skc_daddr;
159 __be32 skc_rcv_saddr;
162 union {
163 unsigned int skc_hash;
164 __u16 skc_u16hashes[2];
166 /* skc_dport && skc_num must be grouped as well */
167 union {
168 __portpair skc_portpair;
169 struct {
170 __be16 skc_dport;
171 __u16 skc_num;
175 unsigned short skc_family;
176 volatile unsigned char skc_state;
177 unsigned char skc_reuse:4;
178 unsigned char skc_reuseport:1;
179 unsigned char skc_ipv6only:1;
180 unsigned char skc_net_refcnt:1;
181 int skc_bound_dev_if;
182 union {
183 struct hlist_node skc_bind_node;
184 struct hlist_node skc_portaddr_node;
186 struct proto *skc_prot;
187 possible_net_t skc_net;
189 #if IS_ENABLED(CONFIG_IPV6)
190 struct in6_addr skc_v6_daddr;
191 struct in6_addr skc_v6_rcv_saddr;
192 #endif
194 atomic64_t skc_cookie;
196 /* following fields are padding to force
197 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
198 * assuming IPV6 is enabled. We use this padding differently
199 * for different kind of 'sockets'
201 union {
202 unsigned long skc_flags;
203 struct sock *skc_listener; /* request_sock */
204 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
207 * fields between dontcopy_begin/dontcopy_end
208 * are not copied in sock_copy()
210 /* private: */
211 int skc_dontcopy_begin[0];
212 /* public: */
213 union {
214 struct hlist_node skc_node;
215 struct hlist_nulls_node skc_nulls_node;
217 int skc_tx_queue_mapping;
218 union {
219 int skc_incoming_cpu;
220 u32 skc_rcv_wnd;
221 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
224 refcount_t skc_refcnt;
225 /* private: */
226 int skc_dontcopy_end[0];
227 union {
228 u32 skc_rxhash;
229 u32 skc_window_clamp;
230 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
232 /* public: */
236 * struct sock - network layer representation of sockets
237 * @__sk_common: shared layout with inet_timewait_sock
238 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
239 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
240 * @sk_lock: synchronizer
241 * @sk_kern_sock: True if sock is using kernel lock classes
242 * @sk_rcvbuf: size of receive buffer in bytes
243 * @sk_wq: sock wait queue and async head
244 * @sk_rx_dst: receive input route used by early demux
245 * @sk_dst_cache: destination cache
246 * @sk_dst_pending_confirm: need to confirm neighbour
247 * @sk_policy: flow policy
248 * @sk_receive_queue: incoming packets
249 * @sk_wmem_alloc: transmit queue bytes committed
250 * @sk_tsq_flags: TCP Small Queues flags
251 * @sk_write_queue: Packet sending queue
252 * @sk_omem_alloc: "o" is "option" or "other"
253 * @sk_wmem_queued: persistent queue size
254 * @sk_forward_alloc: space allocated forward
255 * @sk_napi_id: id of the last napi context to receive data for sk
256 * @sk_ll_usec: usecs to busypoll when there is no data
257 * @sk_allocation: allocation mode
258 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
259 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
260 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
261 * @sk_sndbuf: size of send buffer in bytes
262 * @__sk_flags_offset: empty field used to determine location of bitfield
263 * @sk_padding: unused element for alignment
264 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
265 * @sk_no_check_rx: allow zero checksum in RX packets
266 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
267 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
268 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
269 * @sk_gso_max_size: Maximum GSO segment size to build
270 * @sk_gso_max_segs: Maximum number of GSO segments
271 * @sk_pacing_shift: scaling factor for TCP Small Queues
272 * @sk_lingertime: %SO_LINGER l_linger setting
273 * @sk_backlog: always used with the per-socket spinlock held
274 * @sk_callback_lock: used with the callbacks in the end of this struct
275 * @sk_error_queue: rarely used
276 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
277 * IPV6_ADDRFORM for instance)
278 * @sk_err: last error
279 * @sk_err_soft: errors that don't cause failure but are the cause of a
280 * persistent failure not just 'timed out'
281 * @sk_drops: raw/udp drops counter
282 * @sk_ack_backlog: current listen backlog
283 * @sk_max_ack_backlog: listen backlog set in listen()
284 * @sk_uid: user id of owner
285 * @sk_priority: %SO_PRIORITY setting
286 * @sk_type: socket type (%SOCK_STREAM, etc)
287 * @sk_protocol: which protocol this socket belongs in this network family
288 * @sk_peer_pid: &struct pid for this socket's peer
289 * @sk_peer_cred: %SO_PEERCRED setting
290 * @sk_rcvlowat: %SO_RCVLOWAT setting
291 * @sk_rcvtimeo: %SO_RCVTIMEO setting
292 * @sk_sndtimeo: %SO_SNDTIMEO setting
293 * @sk_txhash: computed flow hash for use on transmit
294 * @sk_filter: socket filtering instructions
295 * @sk_timer: sock cleanup timer
296 * @sk_stamp: time stamp of last packet received
297 * @sk_tsflags: SO_TIMESTAMPING socket options
298 * @sk_tskey: counter to disambiguate concurrent tstamp requests
299 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
300 * @sk_socket: Identd and reporting IO signals
301 * @sk_user_data: RPC layer private data
302 * @sk_frag: cached page frag
303 * @sk_peek_off: current peek_offset value
304 * @sk_send_head: front of stuff to transmit
305 * @sk_security: used by security modules
306 * @sk_mark: generic packet mark
307 * @sk_cgrp_data: cgroup data for this cgroup
308 * @sk_memcg: this socket's memory cgroup association
309 * @sk_write_pending: a write to stream socket waits to start
310 * @sk_state_change: callback to indicate change in the state of the sock
311 * @sk_data_ready: callback to indicate there is data to be processed
312 * @sk_write_space: callback to indicate there is bf sending space available
313 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
314 * @sk_backlog_rcv: callback to process the backlog
315 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
316 * @sk_reuseport_cb: reuseport group container
317 * @sk_rcu: used during RCU grace period
319 struct sock {
321 * Now struct inet_timewait_sock also uses sock_common, so please just
322 * don't add nothing before this first member (__sk_common) --acme
324 struct sock_common __sk_common;
325 #define sk_node __sk_common.skc_node
326 #define sk_nulls_node __sk_common.skc_nulls_node
327 #define sk_refcnt __sk_common.skc_refcnt
328 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
330 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
331 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
332 #define sk_hash __sk_common.skc_hash
333 #define sk_portpair __sk_common.skc_portpair
334 #define sk_num __sk_common.skc_num
335 #define sk_dport __sk_common.skc_dport
336 #define sk_addrpair __sk_common.skc_addrpair
337 #define sk_daddr __sk_common.skc_daddr
338 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
339 #define sk_family __sk_common.skc_family
340 #define sk_state __sk_common.skc_state
341 #define sk_reuse __sk_common.skc_reuse
342 #define sk_reuseport __sk_common.skc_reuseport
343 #define sk_ipv6only __sk_common.skc_ipv6only
344 #define sk_net_refcnt __sk_common.skc_net_refcnt
345 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
346 #define sk_bind_node __sk_common.skc_bind_node
347 #define sk_prot __sk_common.skc_prot
348 #define sk_net __sk_common.skc_net
349 #define sk_v6_daddr __sk_common.skc_v6_daddr
350 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
351 #define sk_cookie __sk_common.skc_cookie
352 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
353 #define sk_flags __sk_common.skc_flags
354 #define sk_rxhash __sk_common.skc_rxhash
356 socket_lock_t sk_lock;
357 atomic_t sk_drops;
358 int sk_rcvlowat;
359 struct sk_buff_head sk_error_queue;
360 struct sk_buff_head sk_receive_queue;
362 * The backlog queue is special, it is always used with
363 * the per-socket spinlock held and requires low latency
364 * access. Therefore we special case it's implementation.
365 * Note : rmem_alloc is in this structure to fill a hole
366 * on 64bit arches, not because its logically part of
367 * backlog.
369 struct {
370 atomic_t rmem_alloc;
371 int len;
372 struct sk_buff *head;
373 struct sk_buff *tail;
374 } sk_backlog;
375 #define sk_rmem_alloc sk_backlog.rmem_alloc
377 int sk_forward_alloc;
378 #ifdef CONFIG_NET_RX_BUSY_POLL
379 unsigned int sk_ll_usec;
380 /* ===== mostly read cache line ===== */
381 unsigned int sk_napi_id;
382 #endif
383 int sk_rcvbuf;
385 struct sk_filter __rcu *sk_filter;
386 union {
387 struct socket_wq __rcu *sk_wq;
388 struct socket_wq *sk_wq_raw;
390 #ifdef CONFIG_XFRM
391 struct xfrm_policy __rcu *sk_policy[2];
392 #endif
393 struct dst_entry *sk_rx_dst;
394 struct dst_entry __rcu *sk_dst_cache;
395 atomic_t sk_omem_alloc;
396 int sk_sndbuf;
398 /* ===== cache line for TX ===== */
399 int sk_wmem_queued;
400 refcount_t sk_wmem_alloc;
401 unsigned long sk_tsq_flags;
402 union {
403 struct sk_buff *sk_send_head;
404 struct rb_root tcp_rtx_queue;
406 struct sk_buff_head sk_write_queue;
407 __s32 sk_peek_off;
408 int sk_write_pending;
409 __u32 sk_dst_pending_confirm;
410 u32 sk_pacing_status; /* see enum sk_pacing */
411 long sk_sndtimeo;
412 struct timer_list sk_timer;
413 __u32 sk_priority;
414 __u32 sk_mark;
415 u32 sk_pacing_rate; /* bytes per second */
416 u32 sk_max_pacing_rate;
417 struct page_frag sk_frag;
418 netdev_features_t sk_route_caps;
419 netdev_features_t sk_route_nocaps;
420 int sk_gso_type;
421 unsigned int sk_gso_max_size;
422 gfp_t sk_allocation;
423 __u32 sk_txhash;
426 * Because of non atomicity rules, all
427 * changes are protected by socket lock.
429 unsigned int __sk_flags_offset[0];
430 #ifdef __BIG_ENDIAN_BITFIELD
431 #define SK_FL_PROTO_SHIFT 16
432 #define SK_FL_PROTO_MASK 0x00ff0000
434 #define SK_FL_TYPE_SHIFT 0
435 #define SK_FL_TYPE_MASK 0x0000ffff
436 #else
437 #define SK_FL_PROTO_SHIFT 8
438 #define SK_FL_PROTO_MASK 0x0000ff00
440 #define SK_FL_TYPE_SHIFT 16
441 #define SK_FL_TYPE_MASK 0xffff0000
442 #endif
444 unsigned int sk_padding : 1,
445 sk_kern_sock : 1,
446 sk_no_check_tx : 1,
447 sk_no_check_rx : 1,
448 sk_userlocks : 4,
449 sk_protocol : 8,
450 sk_type : 16;
451 #define SK_PROTOCOL_MAX U8_MAX
452 u16 sk_gso_max_segs;
453 u8 sk_pacing_shift;
454 unsigned long sk_lingertime;
455 struct proto *sk_prot_creator;
456 rwlock_t sk_callback_lock;
457 int sk_err,
458 sk_err_soft;
459 u32 sk_ack_backlog;
460 u32 sk_max_ack_backlog;
461 kuid_t sk_uid;
462 struct pid *sk_peer_pid;
463 const struct cred *sk_peer_cred;
464 long sk_rcvtimeo;
465 ktime_t sk_stamp;
466 u16 sk_tsflags;
467 u8 sk_shutdown;
468 u32 sk_tskey;
469 atomic_t sk_zckey;
470 struct socket *sk_socket;
471 void *sk_user_data;
472 #ifdef CONFIG_SECURITY
473 void *sk_security;
474 #endif
475 struct sock_cgroup_data sk_cgrp_data;
476 struct mem_cgroup *sk_memcg;
477 void (*sk_state_change)(struct sock *sk);
478 void (*sk_data_ready)(struct sock *sk);
479 void (*sk_write_space)(struct sock *sk);
480 void (*sk_error_report)(struct sock *sk);
481 int (*sk_backlog_rcv)(struct sock *sk,
482 struct sk_buff *skb);
483 void (*sk_destruct)(struct sock *sk);
484 struct sock_reuseport __rcu *sk_reuseport_cb;
485 struct rcu_head sk_rcu;
488 enum sk_pacing {
489 SK_PACING_NONE = 0,
490 SK_PACING_NEEDED = 1,
491 SK_PACING_FQ = 2,
494 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
496 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
497 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
500 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
501 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
502 * on a socket means that the socket will reuse everybody else's port
503 * without looking at the other's sk_reuse value.
506 #define SK_NO_REUSE 0
507 #define SK_CAN_REUSE 1
508 #define SK_FORCE_REUSE 2
510 int sk_set_peek_off(struct sock *sk, int val);
512 static inline int sk_peek_offset(struct sock *sk, int flags)
514 if (unlikely(flags & MSG_PEEK)) {
515 return READ_ONCE(sk->sk_peek_off);
518 return 0;
521 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
523 s32 off = READ_ONCE(sk->sk_peek_off);
525 if (unlikely(off >= 0)) {
526 off = max_t(s32, off - val, 0);
527 WRITE_ONCE(sk->sk_peek_off, off);
531 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
533 sk_peek_offset_bwd(sk, -val);
537 * Hashed lists helper routines
539 static inline struct sock *sk_entry(const struct hlist_node *node)
541 return hlist_entry(node, struct sock, sk_node);
544 static inline struct sock *__sk_head(const struct hlist_head *head)
546 return hlist_entry(head->first, struct sock, sk_node);
549 static inline struct sock *sk_head(const struct hlist_head *head)
551 return hlist_empty(head) ? NULL : __sk_head(head);
554 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
556 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
559 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
561 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
564 static inline struct sock *sk_next(const struct sock *sk)
566 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
569 static inline struct sock *sk_nulls_next(const struct sock *sk)
571 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
572 hlist_nulls_entry(sk->sk_nulls_node.next,
573 struct sock, sk_nulls_node) :
574 NULL;
577 static inline bool sk_unhashed(const struct sock *sk)
579 return hlist_unhashed(&sk->sk_node);
582 static inline bool sk_hashed(const struct sock *sk)
584 return !sk_unhashed(sk);
587 static inline void sk_node_init(struct hlist_node *node)
589 node->pprev = NULL;
592 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
594 node->pprev = NULL;
597 static inline void __sk_del_node(struct sock *sk)
599 __hlist_del(&sk->sk_node);
602 /* NB: equivalent to hlist_del_init_rcu */
603 static inline bool __sk_del_node_init(struct sock *sk)
605 if (sk_hashed(sk)) {
606 __sk_del_node(sk);
607 sk_node_init(&sk->sk_node);
608 return true;
610 return false;
613 /* Grab socket reference count. This operation is valid only
614 when sk is ALREADY grabbed f.e. it is found in hash table
615 or a list and the lookup is made under lock preventing hash table
616 modifications.
619 static __always_inline void sock_hold(struct sock *sk)
621 refcount_inc(&sk->sk_refcnt);
624 /* Ungrab socket in the context, which assumes that socket refcnt
625 cannot hit zero, f.e. it is true in context of any socketcall.
627 static __always_inline void __sock_put(struct sock *sk)
629 refcount_dec(&sk->sk_refcnt);
632 static inline bool sk_del_node_init(struct sock *sk)
634 bool rc = __sk_del_node_init(sk);
636 if (rc) {
637 /* paranoid for a while -acme */
638 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
639 __sock_put(sk);
641 return rc;
643 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
645 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
647 if (sk_hashed(sk)) {
648 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
649 return true;
651 return false;
654 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
656 bool rc = __sk_nulls_del_node_init_rcu(sk);
658 if (rc) {
659 /* paranoid for a while -acme */
660 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
661 __sock_put(sk);
663 return rc;
666 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
668 hlist_add_head(&sk->sk_node, list);
671 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
673 sock_hold(sk);
674 __sk_add_node(sk, list);
677 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
679 sock_hold(sk);
680 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
681 sk->sk_family == AF_INET6)
682 hlist_add_tail_rcu(&sk->sk_node, list);
683 else
684 hlist_add_head_rcu(&sk->sk_node, list);
687 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
689 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
692 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
694 sock_hold(sk);
695 __sk_nulls_add_node_rcu(sk, list);
698 static inline void __sk_del_bind_node(struct sock *sk)
700 __hlist_del(&sk->sk_bind_node);
703 static inline void sk_add_bind_node(struct sock *sk,
704 struct hlist_head *list)
706 hlist_add_head(&sk->sk_bind_node, list);
709 #define sk_for_each(__sk, list) \
710 hlist_for_each_entry(__sk, list, sk_node)
711 #define sk_for_each_rcu(__sk, list) \
712 hlist_for_each_entry_rcu(__sk, list, sk_node)
713 #define sk_nulls_for_each(__sk, node, list) \
714 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
715 #define sk_nulls_for_each_rcu(__sk, node, list) \
716 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
717 #define sk_for_each_from(__sk) \
718 hlist_for_each_entry_from(__sk, sk_node)
719 #define sk_nulls_for_each_from(__sk, node) \
720 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
721 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
722 #define sk_for_each_safe(__sk, tmp, list) \
723 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
724 #define sk_for_each_bound(__sk, list) \
725 hlist_for_each_entry(__sk, list, sk_bind_node)
728 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
729 * @tpos: the type * to use as a loop cursor.
730 * @pos: the &struct hlist_node to use as a loop cursor.
731 * @head: the head for your list.
732 * @offset: offset of hlist_node within the struct.
735 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
736 for (pos = rcu_dereference(hlist_first_rcu(head)); \
737 pos != NULL && \
738 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
739 pos = rcu_dereference(hlist_next_rcu(pos)))
741 static inline struct user_namespace *sk_user_ns(struct sock *sk)
743 /* Careful only use this in a context where these parameters
744 * can not change and must all be valid, such as recvmsg from
745 * userspace.
747 return sk->sk_socket->file->f_cred->user_ns;
750 /* Sock flags */
751 enum sock_flags {
752 SOCK_DEAD,
753 SOCK_DONE,
754 SOCK_URGINLINE,
755 SOCK_KEEPOPEN,
756 SOCK_LINGER,
757 SOCK_DESTROY,
758 SOCK_BROADCAST,
759 SOCK_TIMESTAMP,
760 SOCK_ZAPPED,
761 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
762 SOCK_DBG, /* %SO_DEBUG setting */
763 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
764 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
765 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
766 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
767 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
768 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
769 SOCK_FASYNC, /* fasync() active */
770 SOCK_RXQ_OVFL,
771 SOCK_ZEROCOPY, /* buffers from userspace */
772 SOCK_WIFI_STATUS, /* push wifi status to userspace */
773 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
774 * Will use last 4 bytes of packet sent from
775 * user-space instead.
777 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
778 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
779 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
782 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
784 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
786 nsk->sk_flags = osk->sk_flags;
789 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
791 __set_bit(flag, &sk->sk_flags);
794 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
796 __clear_bit(flag, &sk->sk_flags);
799 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
801 return test_bit(flag, &sk->sk_flags);
804 #ifdef CONFIG_NET
805 extern struct static_key memalloc_socks;
806 static inline int sk_memalloc_socks(void)
808 return static_key_false(&memalloc_socks);
810 #else
812 static inline int sk_memalloc_socks(void)
814 return 0;
817 #endif
819 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
821 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
824 static inline void sk_acceptq_removed(struct sock *sk)
826 sk->sk_ack_backlog--;
829 static inline void sk_acceptq_added(struct sock *sk)
831 sk->sk_ack_backlog++;
834 static inline bool sk_acceptq_is_full(const struct sock *sk)
836 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
840 * Compute minimal free write space needed to queue new packets.
842 static inline int sk_stream_min_wspace(const struct sock *sk)
844 return sk->sk_wmem_queued >> 1;
847 static inline int sk_stream_wspace(const struct sock *sk)
849 return sk->sk_sndbuf - sk->sk_wmem_queued;
852 void sk_stream_write_space(struct sock *sk);
854 /* OOB backlog add */
855 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
857 /* dont let skb dst not refcounted, we are going to leave rcu lock */
858 skb_dst_force(skb);
860 if (!sk->sk_backlog.tail)
861 sk->sk_backlog.head = skb;
862 else
863 sk->sk_backlog.tail->next = skb;
865 sk->sk_backlog.tail = skb;
866 skb->next = NULL;
870 * Take into account size of receive queue and backlog queue
871 * Do not take into account this skb truesize,
872 * to allow even a single big packet to come.
874 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
876 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
878 return qsize > limit;
881 /* The per-socket spinlock must be held here. */
882 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
883 unsigned int limit)
885 if (sk_rcvqueues_full(sk, limit))
886 return -ENOBUFS;
889 * If the skb was allocated from pfmemalloc reserves, only
890 * allow SOCK_MEMALLOC sockets to use it as this socket is
891 * helping free memory
893 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
894 return -ENOMEM;
896 __sk_add_backlog(sk, skb);
897 sk->sk_backlog.len += skb->truesize;
898 return 0;
901 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
903 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
905 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
906 return __sk_backlog_rcv(sk, skb);
908 return sk->sk_backlog_rcv(sk, skb);
911 static inline void sk_incoming_cpu_update(struct sock *sk)
913 int cpu = raw_smp_processor_id();
915 if (unlikely(sk->sk_incoming_cpu != cpu))
916 sk->sk_incoming_cpu = cpu;
919 static inline void sock_rps_record_flow_hash(__u32 hash)
921 #ifdef CONFIG_RPS
922 struct rps_sock_flow_table *sock_flow_table;
924 rcu_read_lock();
925 sock_flow_table = rcu_dereference(rps_sock_flow_table);
926 rps_record_sock_flow(sock_flow_table, hash);
927 rcu_read_unlock();
928 #endif
931 static inline void sock_rps_record_flow(const struct sock *sk)
933 #ifdef CONFIG_RPS
934 if (static_key_false(&rfs_needed)) {
935 /* Reading sk->sk_rxhash might incur an expensive cache line
936 * miss.
938 * TCP_ESTABLISHED does cover almost all states where RFS
939 * might be useful, and is cheaper [1] than testing :
940 * IPv4: inet_sk(sk)->inet_daddr
941 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
942 * OR an additional socket flag
943 * [1] : sk_state and sk_prot are in the same cache line.
945 if (sk->sk_state == TCP_ESTABLISHED)
946 sock_rps_record_flow_hash(sk->sk_rxhash);
948 #endif
951 static inline void sock_rps_save_rxhash(struct sock *sk,
952 const struct sk_buff *skb)
954 #ifdef CONFIG_RPS
955 if (unlikely(sk->sk_rxhash != skb->hash))
956 sk->sk_rxhash = skb->hash;
957 #endif
960 static inline void sock_rps_reset_rxhash(struct sock *sk)
962 #ifdef CONFIG_RPS
963 sk->sk_rxhash = 0;
964 #endif
967 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
968 ({ int __rc; \
969 release_sock(__sk); \
970 __rc = __condition; \
971 if (!__rc) { \
972 *(__timeo) = wait_woken(__wait, \
973 TASK_INTERRUPTIBLE, \
974 *(__timeo)); \
976 sched_annotate_sleep(); \
977 lock_sock(__sk); \
978 __rc = __condition; \
979 __rc; \
982 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
983 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
984 void sk_stream_wait_close(struct sock *sk, long timeo_p);
985 int sk_stream_error(struct sock *sk, int flags, int err);
986 void sk_stream_kill_queues(struct sock *sk);
987 void sk_set_memalloc(struct sock *sk);
988 void sk_clear_memalloc(struct sock *sk);
990 void __sk_flush_backlog(struct sock *sk);
992 static inline bool sk_flush_backlog(struct sock *sk)
994 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
995 __sk_flush_backlog(sk);
996 return true;
998 return false;
1001 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1003 struct request_sock_ops;
1004 struct timewait_sock_ops;
1005 struct inet_hashinfo;
1006 struct raw_hashinfo;
1007 struct smc_hashinfo;
1008 struct module;
1011 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1012 * un-modified. Special care is taken when initializing object to zero.
1014 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1016 if (offsetof(struct sock, sk_node.next) != 0)
1017 memset(sk, 0, offsetof(struct sock, sk_node.next));
1018 memset(&sk->sk_node.pprev, 0,
1019 size - offsetof(struct sock, sk_node.pprev));
1022 /* Networking protocol blocks we attach to sockets.
1023 * socket layer -> transport layer interface
1025 struct proto {
1026 void (*close)(struct sock *sk,
1027 long timeout);
1028 int (*connect)(struct sock *sk,
1029 struct sockaddr *uaddr,
1030 int addr_len);
1031 int (*disconnect)(struct sock *sk, int flags);
1033 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1034 bool kern);
1036 int (*ioctl)(struct sock *sk, int cmd,
1037 unsigned long arg);
1038 int (*init)(struct sock *sk);
1039 void (*destroy)(struct sock *sk);
1040 void (*shutdown)(struct sock *sk, int how);
1041 int (*setsockopt)(struct sock *sk, int level,
1042 int optname, char __user *optval,
1043 unsigned int optlen);
1044 int (*getsockopt)(struct sock *sk, int level,
1045 int optname, char __user *optval,
1046 int __user *option);
1047 void (*keepalive)(struct sock *sk, int valbool);
1048 #ifdef CONFIG_COMPAT
1049 int (*compat_setsockopt)(struct sock *sk,
1050 int level,
1051 int optname, char __user *optval,
1052 unsigned int optlen);
1053 int (*compat_getsockopt)(struct sock *sk,
1054 int level,
1055 int optname, char __user *optval,
1056 int __user *option);
1057 int (*compat_ioctl)(struct sock *sk,
1058 unsigned int cmd, unsigned long arg);
1059 #endif
1060 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1061 size_t len);
1062 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1063 size_t len, int noblock, int flags,
1064 int *addr_len);
1065 int (*sendpage)(struct sock *sk, struct page *page,
1066 int offset, size_t size, int flags);
1067 int (*bind)(struct sock *sk,
1068 struct sockaddr *uaddr, int addr_len);
1070 int (*backlog_rcv) (struct sock *sk,
1071 struct sk_buff *skb);
1073 void (*release_cb)(struct sock *sk);
1075 /* Keeping track of sk's, looking them up, and port selection methods. */
1076 int (*hash)(struct sock *sk);
1077 void (*unhash)(struct sock *sk);
1078 void (*rehash)(struct sock *sk);
1079 int (*get_port)(struct sock *sk, unsigned short snum);
1081 /* Keeping track of sockets in use */
1082 #ifdef CONFIG_PROC_FS
1083 unsigned int inuse_idx;
1084 #endif
1086 bool (*stream_memory_free)(const struct sock *sk);
1087 /* Memory pressure */
1088 void (*enter_memory_pressure)(struct sock *sk);
1089 void (*leave_memory_pressure)(struct sock *sk);
1090 atomic_long_t *memory_allocated; /* Current allocated memory. */
1091 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1093 * Pressure flag: try to collapse.
1094 * Technical note: it is used by multiple contexts non atomically.
1095 * All the __sk_mem_schedule() is of this nature: accounting
1096 * is strict, actions are advisory and have some latency.
1098 unsigned long *memory_pressure;
1099 long *sysctl_mem;
1101 int *sysctl_wmem;
1102 int *sysctl_rmem;
1103 u32 sysctl_wmem_offset;
1104 u32 sysctl_rmem_offset;
1106 int max_header;
1107 bool no_autobind;
1109 struct kmem_cache *slab;
1110 unsigned int obj_size;
1111 slab_flags_t slab_flags;
1112 size_t useroffset; /* Usercopy region offset */
1113 size_t usersize; /* Usercopy region size */
1115 struct percpu_counter *orphan_count;
1117 struct request_sock_ops *rsk_prot;
1118 struct timewait_sock_ops *twsk_prot;
1120 union {
1121 struct inet_hashinfo *hashinfo;
1122 struct udp_table *udp_table;
1123 struct raw_hashinfo *raw_hash;
1124 struct smc_hashinfo *smc_hash;
1125 } h;
1127 struct module *owner;
1129 char name[32];
1131 struct list_head node;
1132 #ifdef SOCK_REFCNT_DEBUG
1133 atomic_t socks;
1134 #endif
1135 int (*diag_destroy)(struct sock *sk, int err);
1136 } __randomize_layout;
1138 int proto_register(struct proto *prot, int alloc_slab);
1139 void proto_unregister(struct proto *prot);
1141 #ifdef SOCK_REFCNT_DEBUG
1142 static inline void sk_refcnt_debug_inc(struct sock *sk)
1144 atomic_inc(&sk->sk_prot->socks);
1147 static inline void sk_refcnt_debug_dec(struct sock *sk)
1149 atomic_dec(&sk->sk_prot->socks);
1150 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1151 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1154 static inline void sk_refcnt_debug_release(const struct sock *sk)
1156 if (refcount_read(&sk->sk_refcnt) != 1)
1157 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1158 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1160 #else /* SOCK_REFCNT_DEBUG */
1161 #define sk_refcnt_debug_inc(sk) do { } while (0)
1162 #define sk_refcnt_debug_dec(sk) do { } while (0)
1163 #define sk_refcnt_debug_release(sk) do { } while (0)
1164 #endif /* SOCK_REFCNT_DEBUG */
1166 static inline bool sk_stream_memory_free(const struct sock *sk)
1168 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1169 return false;
1171 return sk->sk_prot->stream_memory_free ?
1172 sk->sk_prot->stream_memory_free(sk) : true;
1175 static inline bool sk_stream_is_writeable(const struct sock *sk)
1177 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1178 sk_stream_memory_free(sk);
1181 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1182 struct cgroup *ancestor)
1184 #ifdef CONFIG_SOCK_CGROUP_DATA
1185 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1186 ancestor);
1187 #else
1188 return -ENOTSUPP;
1189 #endif
1192 static inline bool sk_has_memory_pressure(const struct sock *sk)
1194 return sk->sk_prot->memory_pressure != NULL;
1197 static inline bool sk_under_memory_pressure(const struct sock *sk)
1199 if (!sk->sk_prot->memory_pressure)
1200 return false;
1202 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1203 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1204 return true;
1206 return !!*sk->sk_prot->memory_pressure;
1209 static inline long
1210 sk_memory_allocated(const struct sock *sk)
1212 return atomic_long_read(sk->sk_prot->memory_allocated);
1215 static inline long
1216 sk_memory_allocated_add(struct sock *sk, int amt)
1218 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1221 static inline void
1222 sk_memory_allocated_sub(struct sock *sk, int amt)
1224 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1227 static inline void sk_sockets_allocated_dec(struct sock *sk)
1229 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1232 static inline void sk_sockets_allocated_inc(struct sock *sk)
1234 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1237 static inline int
1238 sk_sockets_allocated_read_positive(struct sock *sk)
1240 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1243 static inline int
1244 proto_sockets_allocated_sum_positive(struct proto *prot)
1246 return percpu_counter_sum_positive(prot->sockets_allocated);
1249 static inline long
1250 proto_memory_allocated(struct proto *prot)
1252 return atomic_long_read(prot->memory_allocated);
1255 static inline bool
1256 proto_memory_pressure(struct proto *prot)
1258 if (!prot->memory_pressure)
1259 return false;
1260 return !!*prot->memory_pressure;
1264 #ifdef CONFIG_PROC_FS
1265 /* Called with local bh disabled */
1266 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1267 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1268 int sock_inuse_get(struct net *net);
1269 #else
1270 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1271 int inc)
1274 #endif
1277 /* With per-bucket locks this operation is not-atomic, so that
1278 * this version is not worse.
1280 static inline int __sk_prot_rehash(struct sock *sk)
1282 sk->sk_prot->unhash(sk);
1283 return sk->sk_prot->hash(sk);
1286 /* About 10 seconds */
1287 #define SOCK_DESTROY_TIME (10*HZ)
1289 /* Sockets 0-1023 can't be bound to unless you are superuser */
1290 #define PROT_SOCK 1024
1292 #define SHUTDOWN_MASK 3
1293 #define RCV_SHUTDOWN 1
1294 #define SEND_SHUTDOWN 2
1296 #define SOCK_SNDBUF_LOCK 1
1297 #define SOCK_RCVBUF_LOCK 2
1298 #define SOCK_BINDADDR_LOCK 4
1299 #define SOCK_BINDPORT_LOCK 8
1301 struct socket_alloc {
1302 struct socket socket;
1303 struct inode vfs_inode;
1306 static inline struct socket *SOCKET_I(struct inode *inode)
1308 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1311 static inline struct inode *SOCK_INODE(struct socket *socket)
1313 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1317 * Functions for memory accounting
1319 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1320 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1321 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1322 void __sk_mem_reclaim(struct sock *sk, int amount);
1324 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1325 * do not necessarily have 16x time more memory than 4KB ones.
1327 #define SK_MEM_QUANTUM 4096
1328 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1329 #define SK_MEM_SEND 0
1330 #define SK_MEM_RECV 1
1332 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1333 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1335 long val = sk->sk_prot->sysctl_mem[index];
1337 #if PAGE_SIZE > SK_MEM_QUANTUM
1338 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1339 #elif PAGE_SIZE < SK_MEM_QUANTUM
1340 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1341 #endif
1342 return val;
1345 static inline int sk_mem_pages(int amt)
1347 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1350 static inline bool sk_has_account(struct sock *sk)
1352 /* return true if protocol supports memory accounting */
1353 return !!sk->sk_prot->memory_allocated;
1356 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1358 if (!sk_has_account(sk))
1359 return true;
1360 return size <= sk->sk_forward_alloc ||
1361 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1364 static inline bool
1365 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1367 if (!sk_has_account(sk))
1368 return true;
1369 return size<= sk->sk_forward_alloc ||
1370 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1371 skb_pfmemalloc(skb);
1374 static inline void sk_mem_reclaim(struct sock *sk)
1376 if (!sk_has_account(sk))
1377 return;
1378 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1379 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1382 static inline void sk_mem_reclaim_partial(struct sock *sk)
1384 if (!sk_has_account(sk))
1385 return;
1386 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1387 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1390 static inline void sk_mem_charge(struct sock *sk, int size)
1392 if (!sk_has_account(sk))
1393 return;
1394 sk->sk_forward_alloc -= size;
1397 static inline void sk_mem_uncharge(struct sock *sk, int size)
1399 if (!sk_has_account(sk))
1400 return;
1401 sk->sk_forward_alloc += size;
1403 /* Avoid a possible overflow.
1404 * TCP send queues can make this happen, if sk_mem_reclaim()
1405 * is not called and more than 2 GBytes are released at once.
1407 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1408 * no need to hold that much forward allocation anyway.
1410 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1411 __sk_mem_reclaim(sk, 1 << 20);
1414 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1416 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1417 sk->sk_wmem_queued -= skb->truesize;
1418 sk_mem_uncharge(sk, skb->truesize);
1419 __kfree_skb(skb);
1422 static inline void sock_release_ownership(struct sock *sk)
1424 if (sk->sk_lock.owned) {
1425 sk->sk_lock.owned = 0;
1427 /* The sk_lock has mutex_unlock() semantics: */
1428 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1433 * Macro so as to not evaluate some arguments when
1434 * lockdep is not enabled.
1436 * Mark both the sk_lock and the sk_lock.slock as a
1437 * per-address-family lock class.
1439 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1440 do { \
1441 sk->sk_lock.owned = 0; \
1442 init_waitqueue_head(&sk->sk_lock.wq); \
1443 spin_lock_init(&(sk)->sk_lock.slock); \
1444 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1445 sizeof((sk)->sk_lock)); \
1446 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1447 (skey), (sname)); \
1448 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1449 } while (0)
1451 #ifdef CONFIG_LOCKDEP
1452 static inline bool lockdep_sock_is_held(const struct sock *sk)
1454 return lockdep_is_held(&sk->sk_lock) ||
1455 lockdep_is_held(&sk->sk_lock.slock);
1457 #endif
1459 void lock_sock_nested(struct sock *sk, int subclass);
1461 static inline void lock_sock(struct sock *sk)
1463 lock_sock_nested(sk, 0);
1466 void release_sock(struct sock *sk);
1468 /* BH context may only use the following locking interface. */
1469 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1470 #define bh_lock_sock_nested(__sk) \
1471 spin_lock_nested(&((__sk)->sk_lock.slock), \
1472 SINGLE_DEPTH_NESTING)
1473 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1475 bool lock_sock_fast(struct sock *sk);
1477 * unlock_sock_fast - complement of lock_sock_fast
1478 * @sk: socket
1479 * @slow: slow mode
1481 * fast unlock socket for user context.
1482 * If slow mode is on, we call regular release_sock()
1484 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1486 if (slow)
1487 release_sock(sk);
1488 else
1489 spin_unlock_bh(&sk->sk_lock.slock);
1492 /* Used by processes to "lock" a socket state, so that
1493 * interrupts and bottom half handlers won't change it
1494 * from under us. It essentially blocks any incoming
1495 * packets, so that we won't get any new data or any
1496 * packets that change the state of the socket.
1498 * While locked, BH processing will add new packets to
1499 * the backlog queue. This queue is processed by the
1500 * owner of the socket lock right before it is released.
1502 * Since ~2.3.5 it is also exclusive sleep lock serializing
1503 * accesses from user process context.
1506 static inline void sock_owned_by_me(const struct sock *sk)
1508 #ifdef CONFIG_LOCKDEP
1509 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1510 #endif
1513 static inline bool sock_owned_by_user(const struct sock *sk)
1515 sock_owned_by_me(sk);
1516 return sk->sk_lock.owned;
1519 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1521 return sk->sk_lock.owned;
1524 /* no reclassification while locks are held */
1525 static inline bool sock_allow_reclassification(const struct sock *csk)
1527 struct sock *sk = (struct sock *)csk;
1529 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1532 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1533 struct proto *prot, int kern);
1534 void sk_free(struct sock *sk);
1535 void sk_destruct(struct sock *sk);
1536 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1537 void sk_free_unlock_clone(struct sock *sk);
1539 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1540 gfp_t priority);
1541 void __sock_wfree(struct sk_buff *skb);
1542 void sock_wfree(struct sk_buff *skb);
1543 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1544 gfp_t priority);
1545 void skb_orphan_partial(struct sk_buff *skb);
1546 void sock_rfree(struct sk_buff *skb);
1547 void sock_efree(struct sk_buff *skb);
1548 #ifdef CONFIG_INET
1549 void sock_edemux(struct sk_buff *skb);
1550 #else
1551 #define sock_edemux sock_efree
1552 #endif
1554 int sock_setsockopt(struct socket *sock, int level, int op,
1555 char __user *optval, unsigned int optlen);
1557 int sock_getsockopt(struct socket *sock, int level, int op,
1558 char __user *optval, int __user *optlen);
1559 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1560 int noblock, int *errcode);
1561 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1562 unsigned long data_len, int noblock,
1563 int *errcode, int max_page_order);
1564 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1565 void sock_kfree_s(struct sock *sk, void *mem, int size);
1566 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1567 void sk_send_sigurg(struct sock *sk);
1569 struct sockcm_cookie {
1570 u32 mark;
1571 u16 tsflags;
1574 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1575 struct sockcm_cookie *sockc);
1576 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1577 struct sockcm_cookie *sockc);
1580 * Functions to fill in entries in struct proto_ops when a protocol
1581 * does not implement a particular function.
1583 int sock_no_bind(struct socket *, struct sockaddr *, int);
1584 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1585 int sock_no_socketpair(struct socket *, struct socket *);
1586 int sock_no_accept(struct socket *, struct socket *, int, bool);
1587 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1588 __poll_t sock_no_poll(struct file *, struct socket *,
1589 struct poll_table_struct *);
1590 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1591 int sock_no_listen(struct socket *, int);
1592 int sock_no_shutdown(struct socket *, int);
1593 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1594 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1595 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1596 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1597 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1598 int sock_no_mmap(struct file *file, struct socket *sock,
1599 struct vm_area_struct *vma);
1600 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1601 size_t size, int flags);
1602 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1603 int offset, size_t size, int flags);
1606 * Functions to fill in entries in struct proto_ops when a protocol
1607 * uses the inet style.
1609 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1610 char __user *optval, int __user *optlen);
1611 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1612 int flags);
1613 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1614 char __user *optval, unsigned int optlen);
1615 int compat_sock_common_getsockopt(struct socket *sock, int level,
1616 int optname, char __user *optval, int __user *optlen);
1617 int compat_sock_common_setsockopt(struct socket *sock, int level,
1618 int optname, char __user *optval, unsigned int optlen);
1620 void sk_common_release(struct sock *sk);
1623 * Default socket callbacks and setup code
1626 /* Initialise core socket variables */
1627 void sock_init_data(struct socket *sock, struct sock *sk);
1630 * Socket reference counting postulates.
1632 * * Each user of socket SHOULD hold a reference count.
1633 * * Each access point to socket (an hash table bucket, reference from a list,
1634 * running timer, skb in flight MUST hold a reference count.
1635 * * When reference count hits 0, it means it will never increase back.
1636 * * When reference count hits 0, it means that no references from
1637 * outside exist to this socket and current process on current CPU
1638 * is last user and may/should destroy this socket.
1639 * * sk_free is called from any context: process, BH, IRQ. When
1640 * it is called, socket has no references from outside -> sk_free
1641 * may release descendant resources allocated by the socket, but
1642 * to the time when it is called, socket is NOT referenced by any
1643 * hash tables, lists etc.
1644 * * Packets, delivered from outside (from network or from another process)
1645 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1646 * when they sit in queue. Otherwise, packets will leak to hole, when
1647 * socket is looked up by one cpu and unhasing is made by another CPU.
1648 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1649 * (leak to backlog). Packet socket does all the processing inside
1650 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1651 * use separate SMP lock, so that they are prone too.
1654 /* Ungrab socket and destroy it, if it was the last reference. */
1655 static inline void sock_put(struct sock *sk)
1657 if (refcount_dec_and_test(&sk->sk_refcnt))
1658 sk_free(sk);
1660 /* Generic version of sock_put(), dealing with all sockets
1661 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1663 void sock_gen_put(struct sock *sk);
1665 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1666 unsigned int trim_cap, bool refcounted);
1667 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1668 const int nested)
1670 return __sk_receive_skb(sk, skb, nested, 1, true);
1673 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1675 sk->sk_tx_queue_mapping = tx_queue;
1678 static inline void sk_tx_queue_clear(struct sock *sk)
1680 sk->sk_tx_queue_mapping = -1;
1683 static inline int sk_tx_queue_get(const struct sock *sk)
1685 return sk ? sk->sk_tx_queue_mapping : -1;
1688 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1690 sk_tx_queue_clear(sk);
1691 sk->sk_socket = sock;
1694 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1696 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1697 return &rcu_dereference_raw(sk->sk_wq)->wait;
1699 /* Detach socket from process context.
1700 * Announce socket dead, detach it from wait queue and inode.
1701 * Note that parent inode held reference count on this struct sock,
1702 * we do not release it in this function, because protocol
1703 * probably wants some additional cleanups or even continuing
1704 * to work with this socket (TCP).
1706 static inline void sock_orphan(struct sock *sk)
1708 write_lock_bh(&sk->sk_callback_lock);
1709 sock_set_flag(sk, SOCK_DEAD);
1710 sk_set_socket(sk, NULL);
1711 sk->sk_wq = NULL;
1712 write_unlock_bh(&sk->sk_callback_lock);
1715 static inline void sock_graft(struct sock *sk, struct socket *parent)
1717 WARN_ON(parent->sk);
1718 write_lock_bh(&sk->sk_callback_lock);
1719 sk->sk_wq = parent->wq;
1720 parent->sk = sk;
1721 sk_set_socket(sk, parent);
1722 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1723 security_sock_graft(sk, parent);
1724 write_unlock_bh(&sk->sk_callback_lock);
1727 kuid_t sock_i_uid(struct sock *sk);
1728 unsigned long sock_i_ino(struct sock *sk);
1730 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1732 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1735 static inline u32 net_tx_rndhash(void)
1737 u32 v = prandom_u32();
1739 return v ?: 1;
1742 static inline void sk_set_txhash(struct sock *sk)
1744 sk->sk_txhash = net_tx_rndhash();
1747 static inline void sk_rethink_txhash(struct sock *sk)
1749 if (sk->sk_txhash)
1750 sk_set_txhash(sk);
1753 static inline struct dst_entry *
1754 __sk_dst_get(struct sock *sk)
1756 return rcu_dereference_check(sk->sk_dst_cache,
1757 lockdep_sock_is_held(sk));
1760 static inline struct dst_entry *
1761 sk_dst_get(struct sock *sk)
1763 struct dst_entry *dst;
1765 rcu_read_lock();
1766 dst = rcu_dereference(sk->sk_dst_cache);
1767 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1768 dst = NULL;
1769 rcu_read_unlock();
1770 return dst;
1773 static inline void dst_negative_advice(struct sock *sk)
1775 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1777 sk_rethink_txhash(sk);
1779 if (dst && dst->ops->negative_advice) {
1780 ndst = dst->ops->negative_advice(dst);
1782 if (ndst != dst) {
1783 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1784 sk_tx_queue_clear(sk);
1785 sk->sk_dst_pending_confirm = 0;
1790 static inline void
1791 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1793 struct dst_entry *old_dst;
1795 sk_tx_queue_clear(sk);
1796 sk->sk_dst_pending_confirm = 0;
1797 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1798 lockdep_sock_is_held(sk));
1799 rcu_assign_pointer(sk->sk_dst_cache, dst);
1800 dst_release(old_dst);
1803 static inline void
1804 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1806 struct dst_entry *old_dst;
1808 sk_tx_queue_clear(sk);
1809 sk->sk_dst_pending_confirm = 0;
1810 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1811 dst_release(old_dst);
1814 static inline void
1815 __sk_dst_reset(struct sock *sk)
1817 __sk_dst_set(sk, NULL);
1820 static inline void
1821 sk_dst_reset(struct sock *sk)
1823 sk_dst_set(sk, NULL);
1826 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1828 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1830 static inline void sk_dst_confirm(struct sock *sk)
1832 if (!sk->sk_dst_pending_confirm)
1833 sk->sk_dst_pending_confirm = 1;
1836 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1838 if (skb_get_dst_pending_confirm(skb)) {
1839 struct sock *sk = skb->sk;
1840 unsigned long now = jiffies;
1842 /* avoid dirtying neighbour */
1843 if (n->confirmed != now)
1844 n->confirmed = now;
1845 if (sk && sk->sk_dst_pending_confirm)
1846 sk->sk_dst_pending_confirm = 0;
1850 bool sk_mc_loop(struct sock *sk);
1852 static inline bool sk_can_gso(const struct sock *sk)
1854 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1857 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1859 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1861 sk->sk_route_nocaps |= flags;
1862 sk->sk_route_caps &= ~flags;
1865 static inline bool sk_check_csum_caps(struct sock *sk)
1867 return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1868 (sk->sk_family == PF_INET &&
1869 (sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1870 (sk->sk_family == PF_INET6 &&
1871 (sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1874 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1875 struct iov_iter *from, char *to,
1876 int copy, int offset)
1878 if (skb->ip_summed == CHECKSUM_NONE) {
1879 __wsum csum = 0;
1880 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1881 return -EFAULT;
1882 skb->csum = csum_block_add(skb->csum, csum, offset);
1883 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1884 if (!copy_from_iter_full_nocache(to, copy, from))
1885 return -EFAULT;
1886 } else if (!copy_from_iter_full(to, copy, from))
1887 return -EFAULT;
1889 return 0;
1892 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1893 struct iov_iter *from, int copy)
1895 int err, offset = skb->len;
1897 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1898 copy, offset);
1899 if (err)
1900 __skb_trim(skb, offset);
1902 return err;
1905 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1906 struct sk_buff *skb,
1907 struct page *page,
1908 int off, int copy)
1910 int err;
1912 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1913 copy, skb->len);
1914 if (err)
1915 return err;
1917 skb->len += copy;
1918 skb->data_len += copy;
1919 skb->truesize += copy;
1920 sk->sk_wmem_queued += copy;
1921 sk_mem_charge(sk, copy);
1922 return 0;
1926 * sk_wmem_alloc_get - returns write allocations
1927 * @sk: socket
1929 * Returns sk_wmem_alloc minus initial offset of one
1931 static inline int sk_wmem_alloc_get(const struct sock *sk)
1933 return refcount_read(&sk->sk_wmem_alloc) - 1;
1937 * sk_rmem_alloc_get - returns read allocations
1938 * @sk: socket
1940 * Returns sk_rmem_alloc
1942 static inline int sk_rmem_alloc_get(const struct sock *sk)
1944 return atomic_read(&sk->sk_rmem_alloc);
1948 * sk_has_allocations - check if allocations are outstanding
1949 * @sk: socket
1951 * Returns true if socket has write or read allocations
1953 static inline bool sk_has_allocations(const struct sock *sk)
1955 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1959 * skwq_has_sleeper - check if there are any waiting processes
1960 * @wq: struct socket_wq
1962 * Returns true if socket_wq has waiting processes
1964 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1965 * barrier call. They were added due to the race found within the tcp code.
1967 * Consider following tcp code paths::
1969 * CPU1 CPU2
1970 * sys_select receive packet
1971 * ... ...
1972 * __add_wait_queue update tp->rcv_nxt
1973 * ... ...
1974 * tp->rcv_nxt check sock_def_readable
1975 * ... {
1976 * schedule rcu_read_lock();
1977 * wq = rcu_dereference(sk->sk_wq);
1978 * if (wq && waitqueue_active(&wq->wait))
1979 * wake_up_interruptible(&wq->wait)
1980 * ...
1983 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1984 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1985 * could then endup calling schedule and sleep forever if there are no more
1986 * data on the socket.
1989 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1991 return wq && wq_has_sleeper(&wq->wait);
1995 * sock_poll_wait - place memory barrier behind the poll_wait call.
1996 * @filp: file
1997 * @wait_address: socket wait queue
1998 * @p: poll_table
2000 * See the comments in the wq_has_sleeper function.
2002 static inline void sock_poll_wait(struct file *filp,
2003 wait_queue_head_t *wait_address, poll_table *p)
2005 if (!poll_does_not_wait(p) && wait_address) {
2006 poll_wait(filp, wait_address, p);
2007 /* We need to be sure we are in sync with the
2008 * socket flags modification.
2010 * This memory barrier is paired in the wq_has_sleeper.
2012 smp_mb();
2016 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2018 if (sk->sk_txhash) {
2019 skb->l4_hash = 1;
2020 skb->hash = sk->sk_txhash;
2024 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2027 * Queue a received datagram if it will fit. Stream and sequenced
2028 * protocols can't normally use this as they need to fit buffers in
2029 * and play with them.
2031 * Inlined as it's very short and called for pretty much every
2032 * packet ever received.
2034 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2036 skb_orphan(skb);
2037 skb->sk = sk;
2038 skb->destructor = sock_rfree;
2039 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2040 sk_mem_charge(sk, skb->truesize);
2043 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2044 unsigned long expires);
2046 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2048 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2049 struct sk_buff *skb, unsigned int flags,
2050 void (*destructor)(struct sock *sk,
2051 struct sk_buff *skb));
2052 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2053 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2055 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2056 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2059 * Recover an error report and clear atomically
2062 static inline int sock_error(struct sock *sk)
2064 int err;
2065 if (likely(!sk->sk_err))
2066 return 0;
2067 err = xchg(&sk->sk_err, 0);
2068 return -err;
2071 static inline unsigned long sock_wspace(struct sock *sk)
2073 int amt = 0;
2075 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2076 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2077 if (amt < 0)
2078 amt = 0;
2080 return amt;
2083 /* Note:
2084 * We use sk->sk_wq_raw, from contexts knowing this
2085 * pointer is not NULL and cannot disappear/change.
2087 static inline void sk_set_bit(int nr, struct sock *sk)
2089 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2090 !sock_flag(sk, SOCK_FASYNC))
2091 return;
2093 set_bit(nr, &sk->sk_wq_raw->flags);
2096 static inline void sk_clear_bit(int nr, struct sock *sk)
2098 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2099 !sock_flag(sk, SOCK_FASYNC))
2100 return;
2102 clear_bit(nr, &sk->sk_wq_raw->flags);
2105 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2107 if (sock_flag(sk, SOCK_FASYNC)) {
2108 rcu_read_lock();
2109 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2110 rcu_read_unlock();
2114 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2115 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2116 * Note: for send buffers, TCP works better if we can build two skbs at
2117 * minimum.
2119 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2121 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2122 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2124 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2126 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2127 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2128 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2132 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2133 bool force_schedule);
2136 * sk_page_frag - return an appropriate page_frag
2137 * @sk: socket
2139 * If socket allocation mode allows current thread to sleep, it means its
2140 * safe to use the per task page_frag instead of the per socket one.
2142 static inline struct page_frag *sk_page_frag(struct sock *sk)
2144 if (gfpflags_allow_blocking(sk->sk_allocation))
2145 return &current->task_frag;
2147 return &sk->sk_frag;
2150 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2153 * Default write policy as shown to user space via poll/select/SIGIO
2155 static inline bool sock_writeable(const struct sock *sk)
2157 return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2160 static inline gfp_t gfp_any(void)
2162 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2165 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2167 return noblock ? 0 : sk->sk_rcvtimeo;
2170 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2172 return noblock ? 0 : sk->sk_sndtimeo;
2175 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2177 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2180 /* Alas, with timeout socket operations are not restartable.
2181 * Compare this to poll().
2183 static inline int sock_intr_errno(long timeo)
2185 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2188 struct sock_skb_cb {
2189 u32 dropcount;
2192 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2193 * using skb->cb[] would keep using it directly and utilize its
2194 * alignement guarantee.
2196 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2197 sizeof(struct sock_skb_cb)))
2199 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2200 SOCK_SKB_CB_OFFSET))
2202 #define sock_skb_cb_check_size(size) \
2203 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2205 static inline void
2206 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2208 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2209 atomic_read(&sk->sk_drops) : 0;
2212 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2214 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2216 atomic_add(segs, &sk->sk_drops);
2219 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2220 struct sk_buff *skb);
2221 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2222 struct sk_buff *skb);
2224 static inline void
2225 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2227 ktime_t kt = skb->tstamp;
2228 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2231 * generate control messages if
2232 * - receive time stamping in software requested
2233 * - software time stamp available and wanted
2234 * - hardware time stamps available and wanted
2236 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2237 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2238 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2239 (hwtstamps->hwtstamp &&
2240 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2241 __sock_recv_timestamp(msg, sk, skb);
2242 else
2243 sk->sk_stamp = kt;
2245 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2246 __sock_recv_wifi_status(msg, sk, skb);
2249 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2250 struct sk_buff *skb);
2252 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2253 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2254 struct sk_buff *skb)
2256 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2257 (1UL << SOCK_RCVTSTAMP))
2258 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2259 SOF_TIMESTAMPING_RAW_HARDWARE)
2261 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2262 __sock_recv_ts_and_drops(msg, sk, skb);
2263 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2264 sk->sk_stamp = skb->tstamp;
2265 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2266 sk->sk_stamp = 0;
2269 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2272 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2273 * @sk: socket sending this packet
2274 * @tsflags: timestamping flags to use
2275 * @tx_flags: completed with instructions for time stamping
2277 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2279 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2280 __u8 *tx_flags)
2282 if (unlikely(tsflags))
2283 __sock_tx_timestamp(tsflags, tx_flags);
2284 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2285 *tx_flags |= SKBTX_WIFI_STATUS;
2289 * sk_eat_skb - Release a skb if it is no longer needed
2290 * @sk: socket to eat this skb from
2291 * @skb: socket buffer to eat
2293 * This routine must be called with interrupts disabled or with the socket
2294 * locked so that the sk_buff queue operation is ok.
2296 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2298 __skb_unlink(skb, &sk->sk_receive_queue);
2299 __kfree_skb(skb);
2302 static inline
2303 struct net *sock_net(const struct sock *sk)
2305 return read_pnet(&sk->sk_net);
2308 static inline
2309 void sock_net_set(struct sock *sk, struct net *net)
2311 write_pnet(&sk->sk_net, net);
2314 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2316 if (skb->sk) {
2317 struct sock *sk = skb->sk;
2319 skb->destructor = NULL;
2320 skb->sk = NULL;
2321 return sk;
2323 return NULL;
2326 /* This helper checks if a socket is a full socket,
2327 * ie _not_ a timewait or request socket.
2329 static inline bool sk_fullsock(const struct sock *sk)
2331 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2334 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2335 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2337 static inline bool sk_listener(const struct sock *sk)
2339 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2342 void sock_enable_timestamp(struct sock *sk, int flag);
2343 int sock_get_timestamp(struct sock *, struct timeval __user *);
2344 int sock_get_timestampns(struct sock *, struct timespec __user *);
2345 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2346 int type);
2348 bool sk_ns_capable(const struct sock *sk,
2349 struct user_namespace *user_ns, int cap);
2350 bool sk_capable(const struct sock *sk, int cap);
2351 bool sk_net_capable(const struct sock *sk, int cap);
2353 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2355 /* Take into consideration the size of the struct sk_buff overhead in the
2356 * determination of these values, since that is non-constant across
2357 * platforms. This makes socket queueing behavior and performance
2358 * not depend upon such differences.
2360 #define _SK_MEM_PACKETS 256
2361 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2362 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2363 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2365 extern __u32 sysctl_wmem_max;
2366 extern __u32 sysctl_rmem_max;
2368 extern int sysctl_tstamp_allow_data;
2369 extern int sysctl_optmem_max;
2371 extern __u32 sysctl_wmem_default;
2372 extern __u32 sysctl_rmem_default;
2374 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2376 /* Does this proto have per netns sysctl_wmem ? */
2377 if (proto->sysctl_wmem_offset)
2378 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2380 return *proto->sysctl_wmem;
2383 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2385 /* Does this proto have per netns sysctl_rmem ? */
2386 if (proto->sysctl_rmem_offset)
2387 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2389 return *proto->sysctl_rmem;
2392 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2393 * Some wifi drivers need to tweak it to get more chunks.
2394 * They can use this helper from their ndo_start_xmit()
2396 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2398 if (!sk || !sk_fullsock(sk) || sk->sk_pacing_shift == val)
2399 return;
2400 sk->sk_pacing_shift = val;
2403 /* if a socket is bound to a device, check that the given device
2404 * index is either the same or that the socket is bound to an L3
2405 * master device and the given device index is also enslaved to
2406 * that L3 master
2408 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2410 int mdif;
2412 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2413 return true;
2415 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2416 if (mdif && mdif == sk->sk_bound_dev_if)
2417 return true;
2419 return false;
2422 #endif /* _SOCK_H */