4 * Core kernel scheduler code and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <uapi/linux/sched/types.h>
11 #include <linux/sched/loadavg.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/wait_bit.h>
14 #include <linux/cpuset.h>
15 #include <linux/delayacct.h>
16 #include <linux/init_task.h>
17 #include <linux/context_tracking.h>
18 #include <linux/rcupdate_wait.h>
19 #include <linux/compat.h>
21 #include <linux/blkdev.h>
22 #include <linux/kprobes.h>
23 #include <linux/mmu_context.h>
24 #include <linux/module.h>
25 #include <linux/nmi.h>
26 #include <linux/prefetch.h>
27 #include <linux/profile.h>
28 #include <linux/security.h>
29 #include <linux/syscalls.h>
30 #include <linux/sched/isolation.h>
32 #include <asm/switch_to.h>
34 #ifdef CONFIG_PARAVIRT
35 #include <asm/paravirt.h>
39 #include "../workqueue_internal.h"
40 #include "../smpboot.h"
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/sched.h>
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
47 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
49 * Debugging: various feature bits
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
55 #define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug
unsigned int sysctl_sched_features
=
64 * Number of tasks to iterate in a single balance run.
65 * Limited because this is done with IRQs disabled.
67 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
70 * period over which we average the RT time consumption, measured
75 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
78 * period over which we measure -rt task CPU usage in us.
81 unsigned int sysctl_sched_rt_period
= 1000000;
83 __read_mostly
int scheduler_running
;
86 * part of the period that we allow rt tasks to run in us.
89 int sysctl_sched_rt_runtime
= 950000;
92 * __task_rq_lock - lock the rq @p resides on.
94 struct rq
*__task_rq_lock(struct task_struct
*p
, struct rq_flags
*rf
)
99 lockdep_assert_held(&p
->pi_lock
);
103 raw_spin_lock(&rq
->lock
);
104 if (likely(rq
== task_rq(p
) && !task_on_rq_migrating(p
))) {
108 raw_spin_unlock(&rq
->lock
);
110 while (unlikely(task_on_rq_migrating(p
)))
116 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
118 struct rq
*task_rq_lock(struct task_struct
*p
, struct rq_flags
*rf
)
119 __acquires(p
->pi_lock
)
125 raw_spin_lock_irqsave(&p
->pi_lock
, rf
->flags
);
127 raw_spin_lock(&rq
->lock
);
129 * move_queued_task() task_rq_lock()
132 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
133 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
134 * [S] ->cpu = new_cpu [L] task_rq()
138 * If we observe the old cpu in task_rq_lock, the acquire of
139 * the old rq->lock will fully serialize against the stores.
141 * If we observe the new CPU in task_rq_lock, the acquire will
142 * pair with the WMB to ensure we must then also see migrating.
144 if (likely(rq
== task_rq(p
) && !task_on_rq_migrating(p
))) {
148 raw_spin_unlock(&rq
->lock
);
149 raw_spin_unlock_irqrestore(&p
->pi_lock
, rf
->flags
);
151 while (unlikely(task_on_rq_migrating(p
)))
157 * RQ-clock updating methods:
160 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
163 * In theory, the compile should just see 0 here, and optimize out the call
164 * to sched_rt_avg_update. But I don't trust it...
166 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
167 s64 steal
= 0, irq_delta
= 0;
169 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
170 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
173 * Since irq_time is only updated on {soft,}irq_exit, we might run into
174 * this case when a previous update_rq_clock() happened inside a
177 * When this happens, we stop ->clock_task and only update the
178 * prev_irq_time stamp to account for the part that fit, so that a next
179 * update will consume the rest. This ensures ->clock_task is
182 * It does however cause some slight miss-attribution of {soft,}irq
183 * time, a more accurate solution would be to update the irq_time using
184 * the current rq->clock timestamp, except that would require using
187 if (irq_delta
> delta
)
190 rq
->prev_irq_time
+= irq_delta
;
193 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
194 if (static_key_false((¶virt_steal_rq_enabled
))) {
195 steal
= paravirt_steal_clock(cpu_of(rq
));
196 steal
-= rq
->prev_steal_time_rq
;
198 if (unlikely(steal
> delta
))
201 rq
->prev_steal_time_rq
+= steal
;
206 rq
->clock_task
+= delta
;
208 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
209 if ((irq_delta
+ steal
) && sched_feat(NONTASK_CAPACITY
))
210 sched_rt_avg_update(rq
, irq_delta
+ steal
);
214 void update_rq_clock(struct rq
*rq
)
218 lockdep_assert_held(&rq
->lock
);
220 if (rq
->clock_update_flags
& RQCF_ACT_SKIP
)
223 #ifdef CONFIG_SCHED_DEBUG
224 if (sched_feat(WARN_DOUBLE_CLOCK
))
225 SCHED_WARN_ON(rq
->clock_update_flags
& RQCF_UPDATED
);
226 rq
->clock_update_flags
|= RQCF_UPDATED
;
229 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
233 update_rq_clock_task(rq
, delta
);
237 #ifdef CONFIG_SCHED_HRTICK
239 * Use HR-timers to deliver accurate preemption points.
242 static void hrtick_clear(struct rq
*rq
)
244 if (hrtimer_active(&rq
->hrtick_timer
))
245 hrtimer_cancel(&rq
->hrtick_timer
);
249 * High-resolution timer tick.
250 * Runs from hardirq context with interrupts disabled.
252 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
254 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
257 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
261 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
264 return HRTIMER_NORESTART
;
269 static void __hrtick_restart(struct rq
*rq
)
271 struct hrtimer
*timer
= &rq
->hrtick_timer
;
273 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_PINNED
);
277 * called from hardirq (IPI) context
279 static void __hrtick_start(void *arg
)
285 __hrtick_restart(rq
);
286 rq
->hrtick_csd_pending
= 0;
291 * Called to set the hrtick timer state.
293 * called with rq->lock held and irqs disabled
295 void hrtick_start(struct rq
*rq
, u64 delay
)
297 struct hrtimer
*timer
= &rq
->hrtick_timer
;
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
305 delta
= max_t(s64
, delay
, 10000LL);
306 time
= ktime_add_ns(timer
->base
->get_time(), delta
);
308 hrtimer_set_expires(timer
, time
);
310 if (rq
== this_rq()) {
311 __hrtick_restart(rq
);
312 } else if (!rq
->hrtick_csd_pending
) {
313 smp_call_function_single_async(cpu_of(rq
), &rq
->hrtick_csd
);
314 rq
->hrtick_csd_pending
= 1;
320 * Called to set the hrtick timer state.
322 * called with rq->lock held and irqs disabled
324 void hrtick_start(struct rq
*rq
, u64 delay
)
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
330 delay
= max_t(u64
, delay
, 10000LL);
331 hrtimer_start(&rq
->hrtick_timer
, ns_to_ktime(delay
),
332 HRTIMER_MODE_REL_PINNED
);
334 #endif /* CONFIG_SMP */
336 static void init_rq_hrtick(struct rq
*rq
)
339 rq
->hrtick_csd_pending
= 0;
341 rq
->hrtick_csd
.flags
= 0;
342 rq
->hrtick_csd
.func
= __hrtick_start
;
343 rq
->hrtick_csd
.info
= rq
;
346 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
347 rq
->hrtick_timer
.function
= hrtick
;
349 #else /* CONFIG_SCHED_HRTICK */
350 static inline void hrtick_clear(struct rq
*rq
)
354 static inline void init_rq_hrtick(struct rq
*rq
)
357 #endif /* CONFIG_SCHED_HRTICK */
360 * cmpxchg based fetch_or, macro so it works for different integer types
362 #define fetch_or(ptr, mask) \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
383 static bool set_nr_and_not_polling(struct task_struct
*p
)
385 struct thread_info
*ti
= task_thread_info(p
);
386 return !(fetch_or(&ti
->flags
, _TIF_NEED_RESCHED
) & _TIF_POLLING_NRFLAG
);
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
395 static bool set_nr_if_polling(struct task_struct
*p
)
397 struct thread_info
*ti
= task_thread_info(p
);
398 typeof(ti
->flags
) old
, val
= READ_ONCE(ti
->flags
);
401 if (!(val
& _TIF_POLLING_NRFLAG
))
403 if (val
& _TIF_NEED_RESCHED
)
405 old
= cmpxchg(&ti
->flags
, val
, val
| _TIF_NEED_RESCHED
);
414 static bool set_nr_and_not_polling(struct task_struct
*p
)
416 set_tsk_need_resched(p
);
421 static bool set_nr_if_polling(struct task_struct
*p
)
428 void wake_q_add(struct wake_q_head
*head
, struct task_struct
*task
)
430 struct wake_q_node
*node
= &task
->wake_q
;
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
437 * This cmpxchg() implies a full barrier, which pairs with the write
438 * barrier implied by the wakeup in wake_up_q().
440 if (cmpxchg(&node
->next
, NULL
, WAKE_Q_TAIL
))
443 get_task_struct(task
);
446 * The head is context local, there can be no concurrency.
449 head
->lastp
= &node
->next
;
452 void wake_up_q(struct wake_q_head
*head
)
454 struct wake_q_node
*node
= head
->first
;
456 while (node
!= WAKE_Q_TAIL
) {
457 struct task_struct
*task
;
459 task
= container_of(node
, struct task_struct
, wake_q
);
461 /* Task can safely be re-inserted now: */
463 task
->wake_q
.next
= NULL
;
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
469 wake_up_process(task
);
470 put_task_struct(task
);
475 * resched_curr - mark rq's current task 'to be rescheduled now'.
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
481 void resched_curr(struct rq
*rq
)
483 struct task_struct
*curr
= rq
->curr
;
486 lockdep_assert_held(&rq
->lock
);
488 if (test_tsk_need_resched(curr
))
493 if (cpu
== smp_processor_id()) {
494 set_tsk_need_resched(curr
);
495 set_preempt_need_resched();
499 if (set_nr_and_not_polling(curr
))
500 smp_send_reschedule(cpu
);
502 trace_sched_wake_idle_without_ipi(cpu
);
505 void resched_cpu(int cpu
)
507 struct rq
*rq
= cpu_rq(cpu
);
510 raw_spin_lock_irqsave(&rq
->lock
, flags
);
511 if (cpu_online(cpu
) || cpu
== smp_processor_id())
513 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
517 #ifdef CONFIG_NO_HZ_COMMON
519 * In the semi idle case, use the nearest busy CPU for migrating timers
520 * from an idle CPU. This is good for power-savings.
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle CPU will add more delays to the timers than intended
524 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
526 int get_nohz_timer_target(void)
528 int i
, cpu
= smp_processor_id();
529 struct sched_domain
*sd
;
531 if (!idle_cpu(cpu
) && housekeeping_cpu(cpu
, HK_FLAG_TIMER
))
535 for_each_domain(cpu
, sd
) {
536 for_each_cpu(i
, sched_domain_span(sd
)) {
540 if (!idle_cpu(i
) && housekeeping_cpu(i
, HK_FLAG_TIMER
)) {
547 if (!housekeeping_cpu(cpu
, HK_FLAG_TIMER
))
548 cpu
= housekeeping_any_cpu(HK_FLAG_TIMER
);
555 * When add_timer_on() enqueues a timer into the timer wheel of an
556 * idle CPU then this timer might expire before the next timer event
557 * which is scheduled to wake up that CPU. In case of a completely
558 * idle system the next event might even be infinite time into the
559 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
560 * leaves the inner idle loop so the newly added timer is taken into
561 * account when the CPU goes back to idle and evaluates the timer
562 * wheel for the next timer event.
564 static void wake_up_idle_cpu(int cpu
)
566 struct rq
*rq
= cpu_rq(cpu
);
568 if (cpu
== smp_processor_id())
571 if (set_nr_and_not_polling(rq
->idle
))
572 smp_send_reschedule(cpu
);
574 trace_sched_wake_idle_without_ipi(cpu
);
577 static bool wake_up_full_nohz_cpu(int cpu
)
580 * We just need the target to call irq_exit() and re-evaluate
581 * the next tick. The nohz full kick at least implies that.
582 * If needed we can still optimize that later with an
585 if (cpu_is_offline(cpu
))
586 return true; /* Don't try to wake offline CPUs. */
587 if (tick_nohz_full_cpu(cpu
)) {
588 if (cpu
!= smp_processor_id() ||
589 tick_nohz_tick_stopped())
590 tick_nohz_full_kick_cpu(cpu
);
598 * Wake up the specified CPU. If the CPU is going offline, it is the
599 * caller's responsibility to deal with the lost wakeup, for example,
600 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
602 void wake_up_nohz_cpu(int cpu
)
604 if (!wake_up_full_nohz_cpu(cpu
))
605 wake_up_idle_cpu(cpu
);
608 static inline bool got_nohz_idle_kick(void)
610 int cpu
= smp_processor_id();
612 if (!test_bit(NOHZ_BALANCE_KICK
, nohz_flags(cpu
)))
615 if (idle_cpu(cpu
) && !need_resched())
619 * We can't run Idle Load Balance on this CPU for this time so we
620 * cancel it and clear NOHZ_BALANCE_KICK
622 clear_bit(NOHZ_BALANCE_KICK
, nohz_flags(cpu
));
626 #else /* CONFIG_NO_HZ_COMMON */
628 static inline bool got_nohz_idle_kick(void)
633 #endif /* CONFIG_NO_HZ_COMMON */
635 #ifdef CONFIG_NO_HZ_FULL
636 bool sched_can_stop_tick(struct rq
*rq
)
640 /* Deadline tasks, even if single, need the tick */
641 if (rq
->dl
.dl_nr_running
)
645 * If there are more than one RR tasks, we need the tick to effect the
646 * actual RR behaviour.
648 if (rq
->rt
.rr_nr_running
) {
649 if (rq
->rt
.rr_nr_running
== 1)
656 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
657 * forced preemption between FIFO tasks.
659 fifo_nr_running
= rq
->rt
.rt_nr_running
- rq
->rt
.rr_nr_running
;
664 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
665 * if there's more than one we need the tick for involuntary
668 if (rq
->nr_running
> 1)
673 #endif /* CONFIG_NO_HZ_FULL */
675 void sched_avg_update(struct rq
*rq
)
677 s64 period
= sched_avg_period();
679 while ((s64
)(rq_clock(rq
) - rq
->age_stamp
) > period
) {
681 * Inline assembly required to prevent the compiler
682 * optimising this loop into a divmod call.
683 * See __iter_div_u64_rem() for another example of this.
685 asm("" : "+rm" (rq
->age_stamp
));
686 rq
->age_stamp
+= period
;
691 #endif /* CONFIG_SMP */
693 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
694 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
696 * Iterate task_group tree rooted at *from, calling @down when first entering a
697 * node and @up when leaving it for the final time.
699 * Caller must hold rcu_lock or sufficient equivalent.
701 int walk_tg_tree_from(struct task_group
*from
,
702 tg_visitor down
, tg_visitor up
, void *data
)
704 struct task_group
*parent
, *child
;
710 ret
= (*down
)(parent
, data
);
713 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
720 ret
= (*up
)(parent
, data
);
721 if (ret
|| parent
== from
)
725 parent
= parent
->parent
;
732 int tg_nop(struct task_group
*tg
, void *data
)
738 static void set_load_weight(struct task_struct
*p
, bool update_load
)
740 int prio
= p
->static_prio
- MAX_RT_PRIO
;
741 struct load_weight
*load
= &p
->se
.load
;
744 * SCHED_IDLE tasks get minimal weight:
746 if (idle_policy(p
->policy
)) {
747 load
->weight
= scale_load(WEIGHT_IDLEPRIO
);
748 load
->inv_weight
= WMULT_IDLEPRIO
;
753 * SCHED_OTHER tasks have to update their load when changing their
756 if (update_load
&& p
->sched_class
== &fair_sched_class
) {
757 reweight_task(p
, prio
);
759 load
->weight
= scale_load(sched_prio_to_weight
[prio
]);
760 load
->inv_weight
= sched_prio_to_wmult
[prio
];
764 static inline void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
766 if (!(flags
& ENQUEUE_NOCLOCK
))
769 if (!(flags
& ENQUEUE_RESTORE
))
770 sched_info_queued(rq
, p
);
772 p
->sched_class
->enqueue_task(rq
, p
, flags
);
775 static inline void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
777 if (!(flags
& DEQUEUE_NOCLOCK
))
780 if (!(flags
& DEQUEUE_SAVE
))
781 sched_info_dequeued(rq
, p
);
783 p
->sched_class
->dequeue_task(rq
, p
, flags
);
786 void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
788 if (task_contributes_to_load(p
))
789 rq
->nr_uninterruptible
--;
791 enqueue_task(rq
, p
, flags
);
794 void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
796 if (task_contributes_to_load(p
))
797 rq
->nr_uninterruptible
++;
799 dequeue_task(rq
, p
, flags
);
803 * __normal_prio - return the priority that is based on the static prio
805 static inline int __normal_prio(struct task_struct
*p
)
807 return p
->static_prio
;
811 * Calculate the expected normal priority: i.e. priority
812 * without taking RT-inheritance into account. Might be
813 * boosted by interactivity modifiers. Changes upon fork,
814 * setprio syscalls, and whenever the interactivity
815 * estimator recalculates.
817 static inline int normal_prio(struct task_struct
*p
)
821 if (task_has_dl_policy(p
))
822 prio
= MAX_DL_PRIO
-1;
823 else if (task_has_rt_policy(p
))
824 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
826 prio
= __normal_prio(p
);
831 * Calculate the current priority, i.e. the priority
832 * taken into account by the scheduler. This value might
833 * be boosted by RT tasks, or might be boosted by
834 * interactivity modifiers. Will be RT if the task got
835 * RT-boosted. If not then it returns p->normal_prio.
837 static int effective_prio(struct task_struct
*p
)
839 p
->normal_prio
= normal_prio(p
);
841 * If we are RT tasks or we were boosted to RT priority,
842 * keep the priority unchanged. Otherwise, update priority
843 * to the normal priority:
845 if (!rt_prio(p
->prio
))
846 return p
->normal_prio
;
851 * task_curr - is this task currently executing on a CPU?
852 * @p: the task in question.
854 * Return: 1 if the task is currently executing. 0 otherwise.
856 inline int task_curr(const struct task_struct
*p
)
858 return cpu_curr(task_cpu(p
)) == p
;
862 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
863 * use the balance_callback list if you want balancing.
865 * this means any call to check_class_changed() must be followed by a call to
866 * balance_callback().
868 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
869 const struct sched_class
*prev_class
,
872 if (prev_class
!= p
->sched_class
) {
873 if (prev_class
->switched_from
)
874 prev_class
->switched_from(rq
, p
);
876 p
->sched_class
->switched_to(rq
, p
);
877 } else if (oldprio
!= p
->prio
|| dl_task(p
))
878 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
881 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
883 const struct sched_class
*class;
885 if (p
->sched_class
== rq
->curr
->sched_class
) {
886 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
888 for_each_class(class) {
889 if (class == rq
->curr
->sched_class
)
891 if (class == p
->sched_class
) {
899 * A queue event has occurred, and we're going to schedule. In
900 * this case, we can save a useless back to back clock update.
902 if (task_on_rq_queued(rq
->curr
) && test_tsk_need_resched(rq
->curr
))
903 rq_clock_skip_update(rq
, true);
908 * This is how migration works:
910 * 1) we invoke migration_cpu_stop() on the target CPU using
912 * 2) stopper starts to run (implicitly forcing the migrated thread
914 * 3) it checks whether the migrated task is still in the wrong runqueue.
915 * 4) if it's in the wrong runqueue then the migration thread removes
916 * it and puts it into the right queue.
917 * 5) stopper completes and stop_one_cpu() returns and the migration
922 * move_queued_task - move a queued task to new rq.
924 * Returns (locked) new rq. Old rq's lock is released.
926 static struct rq
*move_queued_task(struct rq
*rq
, struct rq_flags
*rf
,
927 struct task_struct
*p
, int new_cpu
)
929 lockdep_assert_held(&rq
->lock
);
931 p
->on_rq
= TASK_ON_RQ_MIGRATING
;
932 dequeue_task(rq
, p
, DEQUEUE_NOCLOCK
);
933 set_task_cpu(p
, new_cpu
);
936 rq
= cpu_rq(new_cpu
);
939 BUG_ON(task_cpu(p
) != new_cpu
);
940 enqueue_task(rq
, p
, 0);
941 p
->on_rq
= TASK_ON_RQ_QUEUED
;
942 check_preempt_curr(rq
, p
, 0);
947 struct migration_arg
{
948 struct task_struct
*task
;
953 * Move (not current) task off this CPU, onto the destination CPU. We're doing
954 * this because either it can't run here any more (set_cpus_allowed()
955 * away from this CPU, or CPU going down), or because we're
956 * attempting to rebalance this task on exec (sched_exec).
958 * So we race with normal scheduler movements, but that's OK, as long
959 * as the task is no longer on this CPU.
961 static struct rq
*__migrate_task(struct rq
*rq
, struct rq_flags
*rf
,
962 struct task_struct
*p
, int dest_cpu
)
964 if (p
->flags
& PF_KTHREAD
) {
965 if (unlikely(!cpu_online(dest_cpu
)))
968 if (unlikely(!cpu_active(dest_cpu
)))
972 /* Affinity changed (again). */
973 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
977 rq
= move_queued_task(rq
, rf
, p
, dest_cpu
);
983 * migration_cpu_stop - this will be executed by a highprio stopper thread
984 * and performs thread migration by bumping thread off CPU then
985 * 'pushing' onto another runqueue.
987 static int migration_cpu_stop(void *data
)
989 struct migration_arg
*arg
= data
;
990 struct task_struct
*p
= arg
->task
;
991 struct rq
*rq
= this_rq();
995 * The original target CPU might have gone down and we might
996 * be on another CPU but it doesn't matter.
1000 * We need to explicitly wake pending tasks before running
1001 * __migrate_task() such that we will not miss enforcing cpus_allowed
1002 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1004 sched_ttwu_pending();
1006 raw_spin_lock(&p
->pi_lock
);
1009 * If task_rq(p) != rq, it cannot be migrated here, because we're
1010 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1011 * we're holding p->pi_lock.
1013 if (task_rq(p
) == rq
) {
1014 if (task_on_rq_queued(p
))
1015 rq
= __migrate_task(rq
, &rf
, p
, arg
->dest_cpu
);
1017 p
->wake_cpu
= arg
->dest_cpu
;
1020 raw_spin_unlock(&p
->pi_lock
);
1027 * sched_class::set_cpus_allowed must do the below, but is not required to
1028 * actually call this function.
1030 void set_cpus_allowed_common(struct task_struct
*p
, const struct cpumask
*new_mask
)
1032 cpumask_copy(&p
->cpus_allowed
, new_mask
);
1033 p
->nr_cpus_allowed
= cpumask_weight(new_mask
);
1036 void do_set_cpus_allowed(struct task_struct
*p
, const struct cpumask
*new_mask
)
1038 struct rq
*rq
= task_rq(p
);
1039 bool queued
, running
;
1041 lockdep_assert_held(&p
->pi_lock
);
1043 queued
= task_on_rq_queued(p
);
1044 running
= task_current(rq
, p
);
1048 * Because __kthread_bind() calls this on blocked tasks without
1051 lockdep_assert_held(&rq
->lock
);
1052 dequeue_task(rq
, p
, DEQUEUE_SAVE
| DEQUEUE_NOCLOCK
);
1055 put_prev_task(rq
, p
);
1057 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
1060 enqueue_task(rq
, p
, ENQUEUE_RESTORE
| ENQUEUE_NOCLOCK
);
1062 set_curr_task(rq
, p
);
1066 * Change a given task's CPU affinity. Migrate the thread to a
1067 * proper CPU and schedule it away if the CPU it's executing on
1068 * is removed from the allowed bitmask.
1070 * NOTE: the caller must have a valid reference to the task, the
1071 * task must not exit() & deallocate itself prematurely. The
1072 * call is not atomic; no spinlocks may be held.
1074 static int __set_cpus_allowed_ptr(struct task_struct
*p
,
1075 const struct cpumask
*new_mask
, bool check
)
1077 const struct cpumask
*cpu_valid_mask
= cpu_active_mask
;
1078 unsigned int dest_cpu
;
1083 rq
= task_rq_lock(p
, &rf
);
1084 update_rq_clock(rq
);
1086 if (p
->flags
& PF_KTHREAD
) {
1088 * Kernel threads are allowed on online && !active CPUs
1090 cpu_valid_mask
= cpu_online_mask
;
1094 * Must re-check here, to close a race against __kthread_bind(),
1095 * sched_setaffinity() is not guaranteed to observe the flag.
1097 if (check
&& (p
->flags
& PF_NO_SETAFFINITY
)) {
1102 if (cpumask_equal(&p
->cpus_allowed
, new_mask
))
1105 if (!cpumask_intersects(new_mask
, cpu_valid_mask
)) {
1110 do_set_cpus_allowed(p
, new_mask
);
1112 if (p
->flags
& PF_KTHREAD
) {
1114 * For kernel threads that do indeed end up on online &&
1115 * !active we want to ensure they are strict per-CPU threads.
1117 WARN_ON(cpumask_intersects(new_mask
, cpu_online_mask
) &&
1118 !cpumask_intersects(new_mask
, cpu_active_mask
) &&
1119 p
->nr_cpus_allowed
!= 1);
1122 /* Can the task run on the task's current CPU? If so, we're done */
1123 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
1126 dest_cpu
= cpumask_any_and(cpu_valid_mask
, new_mask
);
1127 if (task_running(rq
, p
) || p
->state
== TASK_WAKING
) {
1128 struct migration_arg arg
= { p
, dest_cpu
};
1129 /* Need help from migration thread: drop lock and wait. */
1130 task_rq_unlock(rq
, p
, &rf
);
1131 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
1132 tlb_migrate_finish(p
->mm
);
1134 } else if (task_on_rq_queued(p
)) {
1136 * OK, since we're going to drop the lock immediately
1137 * afterwards anyway.
1139 rq
= move_queued_task(rq
, &rf
, p
, dest_cpu
);
1142 task_rq_unlock(rq
, p
, &rf
);
1147 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
1149 return __set_cpus_allowed_ptr(p
, new_mask
, false);
1151 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
1153 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1155 #ifdef CONFIG_SCHED_DEBUG
1157 * We should never call set_task_cpu() on a blocked task,
1158 * ttwu() will sort out the placement.
1160 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
1164 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1165 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1166 * time relying on p->on_rq.
1168 WARN_ON_ONCE(p
->state
== TASK_RUNNING
&&
1169 p
->sched_class
== &fair_sched_class
&&
1170 (p
->on_rq
&& !task_on_rq_migrating(p
)));
1172 #ifdef CONFIG_LOCKDEP
1174 * The caller should hold either p->pi_lock or rq->lock, when changing
1175 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1177 * sched_move_task() holds both and thus holding either pins the cgroup,
1180 * Furthermore, all task_rq users should acquire both locks, see
1183 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
1184 lockdep_is_held(&task_rq(p
)->lock
)));
1187 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1189 WARN_ON_ONCE(!cpu_online(new_cpu
));
1192 trace_sched_migrate_task(p
, new_cpu
);
1194 if (task_cpu(p
) != new_cpu
) {
1195 if (p
->sched_class
->migrate_task_rq
)
1196 p
->sched_class
->migrate_task_rq(p
);
1197 p
->se
.nr_migrations
++;
1198 perf_event_task_migrate(p
);
1201 __set_task_cpu(p
, new_cpu
);
1204 static void __migrate_swap_task(struct task_struct
*p
, int cpu
)
1206 if (task_on_rq_queued(p
)) {
1207 struct rq
*src_rq
, *dst_rq
;
1208 struct rq_flags srf
, drf
;
1210 src_rq
= task_rq(p
);
1211 dst_rq
= cpu_rq(cpu
);
1213 rq_pin_lock(src_rq
, &srf
);
1214 rq_pin_lock(dst_rq
, &drf
);
1216 p
->on_rq
= TASK_ON_RQ_MIGRATING
;
1217 deactivate_task(src_rq
, p
, 0);
1218 set_task_cpu(p
, cpu
);
1219 activate_task(dst_rq
, p
, 0);
1220 p
->on_rq
= TASK_ON_RQ_QUEUED
;
1221 check_preempt_curr(dst_rq
, p
, 0);
1223 rq_unpin_lock(dst_rq
, &drf
);
1224 rq_unpin_lock(src_rq
, &srf
);
1228 * Task isn't running anymore; make it appear like we migrated
1229 * it before it went to sleep. This means on wakeup we make the
1230 * previous CPU our target instead of where it really is.
1236 struct migration_swap_arg
{
1237 struct task_struct
*src_task
, *dst_task
;
1238 int src_cpu
, dst_cpu
;
1241 static int migrate_swap_stop(void *data
)
1243 struct migration_swap_arg
*arg
= data
;
1244 struct rq
*src_rq
, *dst_rq
;
1247 if (!cpu_active(arg
->src_cpu
) || !cpu_active(arg
->dst_cpu
))
1250 src_rq
= cpu_rq(arg
->src_cpu
);
1251 dst_rq
= cpu_rq(arg
->dst_cpu
);
1253 double_raw_lock(&arg
->src_task
->pi_lock
,
1254 &arg
->dst_task
->pi_lock
);
1255 double_rq_lock(src_rq
, dst_rq
);
1257 if (task_cpu(arg
->dst_task
) != arg
->dst_cpu
)
1260 if (task_cpu(arg
->src_task
) != arg
->src_cpu
)
1263 if (!cpumask_test_cpu(arg
->dst_cpu
, &arg
->src_task
->cpus_allowed
))
1266 if (!cpumask_test_cpu(arg
->src_cpu
, &arg
->dst_task
->cpus_allowed
))
1269 __migrate_swap_task(arg
->src_task
, arg
->dst_cpu
);
1270 __migrate_swap_task(arg
->dst_task
, arg
->src_cpu
);
1275 double_rq_unlock(src_rq
, dst_rq
);
1276 raw_spin_unlock(&arg
->dst_task
->pi_lock
);
1277 raw_spin_unlock(&arg
->src_task
->pi_lock
);
1283 * Cross migrate two tasks
1285 int migrate_swap(struct task_struct
*cur
, struct task_struct
*p
)
1287 struct migration_swap_arg arg
;
1290 arg
= (struct migration_swap_arg
){
1292 .src_cpu
= task_cpu(cur
),
1294 .dst_cpu
= task_cpu(p
),
1297 if (arg
.src_cpu
== arg
.dst_cpu
)
1301 * These three tests are all lockless; this is OK since all of them
1302 * will be re-checked with proper locks held further down the line.
1304 if (!cpu_active(arg
.src_cpu
) || !cpu_active(arg
.dst_cpu
))
1307 if (!cpumask_test_cpu(arg
.dst_cpu
, &arg
.src_task
->cpus_allowed
))
1310 if (!cpumask_test_cpu(arg
.src_cpu
, &arg
.dst_task
->cpus_allowed
))
1313 trace_sched_swap_numa(cur
, arg
.src_cpu
, p
, arg
.dst_cpu
);
1314 ret
= stop_two_cpus(arg
.dst_cpu
, arg
.src_cpu
, migrate_swap_stop
, &arg
);
1321 * wait_task_inactive - wait for a thread to unschedule.
1323 * If @match_state is nonzero, it's the @p->state value just checked and
1324 * not expected to change. If it changes, i.e. @p might have woken up,
1325 * then return zero. When we succeed in waiting for @p to be off its CPU,
1326 * we return a positive number (its total switch count). If a second call
1327 * a short while later returns the same number, the caller can be sure that
1328 * @p has remained unscheduled the whole time.
1330 * The caller must ensure that the task *will* unschedule sometime soon,
1331 * else this function might spin for a *long* time. This function can't
1332 * be called with interrupts off, or it may introduce deadlock with
1333 * smp_call_function() if an IPI is sent by the same process we are
1334 * waiting to become inactive.
1336 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
1338 int running
, queued
;
1345 * We do the initial early heuristics without holding
1346 * any task-queue locks at all. We'll only try to get
1347 * the runqueue lock when things look like they will
1353 * If the task is actively running on another CPU
1354 * still, just relax and busy-wait without holding
1357 * NOTE! Since we don't hold any locks, it's not
1358 * even sure that "rq" stays as the right runqueue!
1359 * But we don't care, since "task_running()" will
1360 * return false if the runqueue has changed and p
1361 * is actually now running somewhere else!
1363 while (task_running(rq
, p
)) {
1364 if (match_state
&& unlikely(p
->state
!= match_state
))
1370 * Ok, time to look more closely! We need the rq
1371 * lock now, to be *sure*. If we're wrong, we'll
1372 * just go back and repeat.
1374 rq
= task_rq_lock(p
, &rf
);
1375 trace_sched_wait_task(p
);
1376 running
= task_running(rq
, p
);
1377 queued
= task_on_rq_queued(p
);
1379 if (!match_state
|| p
->state
== match_state
)
1380 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
1381 task_rq_unlock(rq
, p
, &rf
);
1384 * If it changed from the expected state, bail out now.
1386 if (unlikely(!ncsw
))
1390 * Was it really running after all now that we
1391 * checked with the proper locks actually held?
1393 * Oops. Go back and try again..
1395 if (unlikely(running
)) {
1401 * It's not enough that it's not actively running,
1402 * it must be off the runqueue _entirely_, and not
1405 * So if it was still runnable (but just not actively
1406 * running right now), it's preempted, and we should
1407 * yield - it could be a while.
1409 if (unlikely(queued
)) {
1410 ktime_t to
= NSEC_PER_SEC
/ HZ
;
1412 set_current_state(TASK_UNINTERRUPTIBLE
);
1413 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
1418 * Ahh, all good. It wasn't running, and it wasn't
1419 * runnable, which means that it will never become
1420 * running in the future either. We're all done!
1429 * kick_process - kick a running thread to enter/exit the kernel
1430 * @p: the to-be-kicked thread
1432 * Cause a process which is running on another CPU to enter
1433 * kernel-mode, without any delay. (to get signals handled.)
1435 * NOTE: this function doesn't have to take the runqueue lock,
1436 * because all it wants to ensure is that the remote task enters
1437 * the kernel. If the IPI races and the task has been migrated
1438 * to another CPU then no harm is done and the purpose has been
1441 void kick_process(struct task_struct
*p
)
1447 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1448 smp_send_reschedule(cpu
);
1451 EXPORT_SYMBOL_GPL(kick_process
);
1454 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1456 * A few notes on cpu_active vs cpu_online:
1458 * - cpu_active must be a subset of cpu_online
1460 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1461 * see __set_cpus_allowed_ptr(). At this point the newly online
1462 * CPU isn't yet part of the sched domains, and balancing will not
1465 * - on CPU-down we clear cpu_active() to mask the sched domains and
1466 * avoid the load balancer to place new tasks on the to be removed
1467 * CPU. Existing tasks will remain running there and will be taken
1470 * This means that fallback selection must not select !active CPUs.
1471 * And can assume that any active CPU must be online. Conversely
1472 * select_task_rq() below may allow selection of !active CPUs in order
1473 * to satisfy the above rules.
1475 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
1477 int nid
= cpu_to_node(cpu
);
1478 const struct cpumask
*nodemask
= NULL
;
1479 enum { cpuset
, possible
, fail
} state
= cpuset
;
1483 * If the node that the CPU is on has been offlined, cpu_to_node()
1484 * will return -1. There is no CPU on the node, and we should
1485 * select the CPU on the other node.
1488 nodemask
= cpumask_of_node(nid
);
1490 /* Look for allowed, online CPU in same node. */
1491 for_each_cpu(dest_cpu
, nodemask
) {
1492 if (!cpu_active(dest_cpu
))
1494 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
1500 /* Any allowed, online CPU? */
1501 for_each_cpu(dest_cpu
, &p
->cpus_allowed
) {
1502 if (!(p
->flags
& PF_KTHREAD
) && !cpu_active(dest_cpu
))
1504 if (!cpu_online(dest_cpu
))
1509 /* No more Mr. Nice Guy. */
1512 if (IS_ENABLED(CONFIG_CPUSETS
)) {
1513 cpuset_cpus_allowed_fallback(p
);
1519 do_set_cpus_allowed(p
, cpu_possible_mask
);
1530 if (state
!= cpuset
) {
1532 * Don't tell them about moving exiting tasks or
1533 * kernel threads (both mm NULL), since they never
1536 if (p
->mm
&& printk_ratelimit()) {
1537 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1538 task_pid_nr(p
), p
->comm
, cpu
);
1546 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1549 int select_task_rq(struct task_struct
*p
, int cpu
, int sd_flags
, int wake_flags
)
1551 lockdep_assert_held(&p
->pi_lock
);
1553 if (p
->nr_cpus_allowed
> 1)
1554 cpu
= p
->sched_class
->select_task_rq(p
, cpu
, sd_flags
, wake_flags
);
1556 cpu
= cpumask_any(&p
->cpus_allowed
);
1559 * In order not to call set_task_cpu() on a blocking task we need
1560 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1563 * Since this is common to all placement strategies, this lives here.
1565 * [ this allows ->select_task() to simply return task_cpu(p) and
1566 * not worry about this generic constraint ]
1568 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
1570 cpu
= select_fallback_rq(task_cpu(p
), p
);
1575 static void update_avg(u64
*avg
, u64 sample
)
1577 s64 diff
= sample
- *avg
;
1581 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
1583 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
1584 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
1588 * Make it appear like a SCHED_FIFO task, its something
1589 * userspace knows about and won't get confused about.
1591 * Also, it will make PI more or less work without too
1592 * much confusion -- but then, stop work should not
1593 * rely on PI working anyway.
1595 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
1597 stop
->sched_class
= &stop_sched_class
;
1600 cpu_rq(cpu
)->stop
= stop
;
1604 * Reset it back to a normal scheduling class so that
1605 * it can die in pieces.
1607 old_stop
->sched_class
= &rt_sched_class
;
1613 static inline int __set_cpus_allowed_ptr(struct task_struct
*p
,
1614 const struct cpumask
*new_mask
, bool check
)
1616 return set_cpus_allowed_ptr(p
, new_mask
);
1619 #endif /* CONFIG_SMP */
1622 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
1626 if (!schedstat_enabled())
1632 if (cpu
== rq
->cpu
) {
1633 __schedstat_inc(rq
->ttwu_local
);
1634 __schedstat_inc(p
->se
.statistics
.nr_wakeups_local
);
1636 struct sched_domain
*sd
;
1638 __schedstat_inc(p
->se
.statistics
.nr_wakeups_remote
);
1640 for_each_domain(rq
->cpu
, sd
) {
1641 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
1642 __schedstat_inc(sd
->ttwu_wake_remote
);
1649 if (wake_flags
& WF_MIGRATED
)
1650 __schedstat_inc(p
->se
.statistics
.nr_wakeups_migrate
);
1651 #endif /* CONFIG_SMP */
1653 __schedstat_inc(rq
->ttwu_count
);
1654 __schedstat_inc(p
->se
.statistics
.nr_wakeups
);
1656 if (wake_flags
& WF_SYNC
)
1657 __schedstat_inc(p
->se
.statistics
.nr_wakeups_sync
);
1660 static inline void ttwu_activate(struct rq
*rq
, struct task_struct
*p
, int en_flags
)
1662 activate_task(rq
, p
, en_flags
);
1663 p
->on_rq
= TASK_ON_RQ_QUEUED
;
1665 /* If a worker is waking up, notify the workqueue: */
1666 if (p
->flags
& PF_WQ_WORKER
)
1667 wq_worker_waking_up(p
, cpu_of(rq
));
1671 * Mark the task runnable and perform wakeup-preemption.
1673 static void ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
,
1674 struct rq_flags
*rf
)
1676 check_preempt_curr(rq
, p
, wake_flags
);
1677 p
->state
= TASK_RUNNING
;
1678 trace_sched_wakeup(p
);
1681 if (p
->sched_class
->task_woken
) {
1683 * Our task @p is fully woken up and running; so its safe to
1684 * drop the rq->lock, hereafter rq is only used for statistics.
1686 rq_unpin_lock(rq
, rf
);
1687 p
->sched_class
->task_woken(rq
, p
);
1688 rq_repin_lock(rq
, rf
);
1691 if (rq
->idle_stamp
) {
1692 u64 delta
= rq_clock(rq
) - rq
->idle_stamp
;
1693 u64 max
= 2*rq
->max_idle_balance_cost
;
1695 update_avg(&rq
->avg_idle
, delta
);
1697 if (rq
->avg_idle
> max
)
1706 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
,
1707 struct rq_flags
*rf
)
1709 int en_flags
= ENQUEUE_WAKEUP
| ENQUEUE_NOCLOCK
;
1711 lockdep_assert_held(&rq
->lock
);
1714 if (p
->sched_contributes_to_load
)
1715 rq
->nr_uninterruptible
--;
1717 if (wake_flags
& WF_MIGRATED
)
1718 en_flags
|= ENQUEUE_MIGRATED
;
1721 ttwu_activate(rq
, p
, en_flags
);
1722 ttwu_do_wakeup(rq
, p
, wake_flags
, rf
);
1726 * Called in case the task @p isn't fully descheduled from its runqueue,
1727 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1728 * since all we need to do is flip p->state to TASK_RUNNING, since
1729 * the task is still ->on_rq.
1731 static int ttwu_remote(struct task_struct
*p
, int wake_flags
)
1737 rq
= __task_rq_lock(p
, &rf
);
1738 if (task_on_rq_queued(p
)) {
1739 /* check_preempt_curr() may use rq clock */
1740 update_rq_clock(rq
);
1741 ttwu_do_wakeup(rq
, p
, wake_flags
, &rf
);
1744 __task_rq_unlock(rq
, &rf
);
1750 void sched_ttwu_pending(void)
1752 struct rq
*rq
= this_rq();
1753 struct llist_node
*llist
= llist_del_all(&rq
->wake_list
);
1754 struct task_struct
*p
, *t
;
1760 rq_lock_irqsave(rq
, &rf
);
1761 update_rq_clock(rq
);
1763 llist_for_each_entry_safe(p
, t
, llist
, wake_entry
)
1764 ttwu_do_activate(rq
, p
, p
->sched_remote_wakeup
? WF_MIGRATED
: 0, &rf
);
1766 rq_unlock_irqrestore(rq
, &rf
);
1769 void scheduler_ipi(void)
1772 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1773 * TIF_NEED_RESCHED remotely (for the first time) will also send
1776 preempt_fold_need_resched();
1778 if (llist_empty(&this_rq()->wake_list
) && !got_nohz_idle_kick())
1782 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1783 * traditionally all their work was done from the interrupt return
1784 * path. Now that we actually do some work, we need to make sure
1787 * Some archs already do call them, luckily irq_enter/exit nest
1790 * Arguably we should visit all archs and update all handlers,
1791 * however a fair share of IPIs are still resched only so this would
1792 * somewhat pessimize the simple resched case.
1795 sched_ttwu_pending();
1798 * Check if someone kicked us for doing the nohz idle load balance.
1800 if (unlikely(got_nohz_idle_kick())) {
1801 this_rq()->idle_balance
= 1;
1802 raise_softirq_irqoff(SCHED_SOFTIRQ
);
1807 static void ttwu_queue_remote(struct task_struct
*p
, int cpu
, int wake_flags
)
1809 struct rq
*rq
= cpu_rq(cpu
);
1811 p
->sched_remote_wakeup
= !!(wake_flags
& WF_MIGRATED
);
1813 if (llist_add(&p
->wake_entry
, &cpu_rq(cpu
)->wake_list
)) {
1814 if (!set_nr_if_polling(rq
->idle
))
1815 smp_send_reschedule(cpu
);
1817 trace_sched_wake_idle_without_ipi(cpu
);
1821 void wake_up_if_idle(int cpu
)
1823 struct rq
*rq
= cpu_rq(cpu
);
1828 if (!is_idle_task(rcu_dereference(rq
->curr
)))
1831 if (set_nr_if_polling(rq
->idle
)) {
1832 trace_sched_wake_idle_without_ipi(cpu
);
1834 rq_lock_irqsave(rq
, &rf
);
1835 if (is_idle_task(rq
->curr
))
1836 smp_send_reschedule(cpu
);
1837 /* Else CPU is not idle, do nothing here: */
1838 rq_unlock_irqrestore(rq
, &rf
);
1845 bool cpus_share_cache(int this_cpu
, int that_cpu
)
1847 return per_cpu(sd_llc_id
, this_cpu
) == per_cpu(sd_llc_id
, that_cpu
);
1849 #endif /* CONFIG_SMP */
1851 static void ttwu_queue(struct task_struct
*p
, int cpu
, int wake_flags
)
1853 struct rq
*rq
= cpu_rq(cpu
);
1856 #if defined(CONFIG_SMP)
1857 if (sched_feat(TTWU_QUEUE
) && !cpus_share_cache(smp_processor_id(), cpu
)) {
1858 sched_clock_cpu(cpu
); /* Sync clocks across CPUs */
1859 ttwu_queue_remote(p
, cpu
, wake_flags
);
1865 update_rq_clock(rq
);
1866 ttwu_do_activate(rq
, p
, wake_flags
, &rf
);
1871 * Notes on Program-Order guarantees on SMP systems.
1875 * The basic program-order guarantee on SMP systems is that when a task [t]
1876 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1877 * execution on its new CPU [c1].
1879 * For migration (of runnable tasks) this is provided by the following means:
1881 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1882 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1883 * rq(c1)->lock (if not at the same time, then in that order).
1884 * C) LOCK of the rq(c1)->lock scheduling in task
1886 * Transitivity guarantees that B happens after A and C after B.
1887 * Note: we only require RCpc transitivity.
1888 * Note: the CPU doing B need not be c0 or c1
1897 * UNLOCK rq(0)->lock
1899 * LOCK rq(0)->lock // orders against CPU0
1901 * UNLOCK rq(0)->lock
1905 * UNLOCK rq(1)->lock
1907 * LOCK rq(1)->lock // orders against CPU2
1910 * UNLOCK rq(1)->lock
1913 * BLOCKING -- aka. SLEEP + WAKEUP
1915 * For blocking we (obviously) need to provide the same guarantee as for
1916 * migration. However the means are completely different as there is no lock
1917 * chain to provide order. Instead we do:
1919 * 1) smp_store_release(X->on_cpu, 0)
1920 * 2) smp_cond_load_acquire(!X->on_cpu)
1924 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1926 * LOCK rq(0)->lock LOCK X->pi_lock
1929 * smp_store_release(X->on_cpu, 0);
1931 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1937 * X->state = RUNNING
1938 * UNLOCK rq(2)->lock
1940 * LOCK rq(2)->lock // orders against CPU1
1943 * UNLOCK rq(2)->lock
1946 * UNLOCK rq(0)->lock
1949 * However; for wakeups there is a second guarantee we must provide, namely we
1950 * must observe the state that lead to our wakeup. That is, not only must our
1951 * task observe its own prior state, it must also observe the stores prior to
1954 * This means that any means of doing remote wakeups must order the CPU doing
1955 * the wakeup against the CPU the task is going to end up running on. This,
1956 * however, is already required for the regular Program-Order guarantee above,
1957 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1962 * try_to_wake_up - wake up a thread
1963 * @p: the thread to be awakened
1964 * @state: the mask of task states that can be woken
1965 * @wake_flags: wake modifier flags (WF_*)
1967 * If (@state & @p->state) @p->state = TASK_RUNNING.
1969 * If the task was not queued/runnable, also place it back on a runqueue.
1971 * Atomic against schedule() which would dequeue a task, also see
1972 * set_current_state().
1974 * Return: %true if @p->state changes (an actual wakeup was done),
1978 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
1980 unsigned long flags
;
1981 int cpu
, success
= 0;
1984 * If we are going to wake up a thread waiting for CONDITION we
1985 * need to ensure that CONDITION=1 done by the caller can not be
1986 * reordered with p->state check below. This pairs with mb() in
1987 * set_current_state() the waiting thread does.
1989 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
1990 smp_mb__after_spinlock();
1991 if (!(p
->state
& state
))
1994 trace_sched_waking(p
);
1996 /* We're going to change ->state: */
2001 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2002 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2003 * in smp_cond_load_acquire() below.
2005 * sched_ttwu_pending() try_to_wake_up()
2006 * [S] p->on_rq = 1; [L] P->state
2007 * UNLOCK rq->lock -----.
2011 * LOCK rq->lock -----'
2015 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2017 * Pairs with the UNLOCK+LOCK on rq->lock from the
2018 * last wakeup of our task and the schedule that got our task
2022 if (p
->on_rq
&& ttwu_remote(p
, wake_flags
))
2027 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2028 * possible to, falsely, observe p->on_cpu == 0.
2030 * One must be running (->on_cpu == 1) in order to remove oneself
2031 * from the runqueue.
2033 * [S] ->on_cpu = 1; [L] ->on_rq
2037 * [S] ->on_rq = 0; [L] ->on_cpu
2039 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2040 * from the consecutive calls to schedule(); the first switching to our
2041 * task, the second putting it to sleep.
2046 * If the owning (remote) CPU is still in the middle of schedule() with
2047 * this task as prev, wait until its done referencing the task.
2049 * Pairs with the smp_store_release() in finish_task().
2051 * This ensures that tasks getting woken will be fully ordered against
2052 * their previous state and preserve Program Order.
2054 smp_cond_load_acquire(&p
->on_cpu
, !VAL
);
2056 p
->sched_contributes_to_load
= !!task_contributes_to_load(p
);
2057 p
->state
= TASK_WAKING
;
2060 delayacct_blkio_end(p
);
2061 atomic_dec(&task_rq(p
)->nr_iowait
);
2064 cpu
= select_task_rq(p
, p
->wake_cpu
, SD_BALANCE_WAKE
, wake_flags
);
2065 if (task_cpu(p
) != cpu
) {
2066 wake_flags
|= WF_MIGRATED
;
2067 set_task_cpu(p
, cpu
);
2070 #else /* CONFIG_SMP */
2073 delayacct_blkio_end(p
);
2074 atomic_dec(&task_rq(p
)->nr_iowait
);
2077 #endif /* CONFIG_SMP */
2079 ttwu_queue(p
, cpu
, wake_flags
);
2081 ttwu_stat(p
, cpu
, wake_flags
);
2083 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2089 * try_to_wake_up_local - try to wake up a local task with rq lock held
2090 * @p: the thread to be awakened
2091 * @rf: request-queue flags for pinning
2093 * Put @p on the run-queue if it's not already there. The caller must
2094 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2097 static void try_to_wake_up_local(struct task_struct
*p
, struct rq_flags
*rf
)
2099 struct rq
*rq
= task_rq(p
);
2101 if (WARN_ON_ONCE(rq
!= this_rq()) ||
2102 WARN_ON_ONCE(p
== current
))
2105 lockdep_assert_held(&rq
->lock
);
2107 if (!raw_spin_trylock(&p
->pi_lock
)) {
2109 * This is OK, because current is on_cpu, which avoids it being
2110 * picked for load-balance and preemption/IRQs are still
2111 * disabled avoiding further scheduler activity on it and we've
2112 * not yet picked a replacement task.
2115 raw_spin_lock(&p
->pi_lock
);
2119 if (!(p
->state
& TASK_NORMAL
))
2122 trace_sched_waking(p
);
2124 if (!task_on_rq_queued(p
)) {
2126 delayacct_blkio_end(p
);
2127 atomic_dec(&rq
->nr_iowait
);
2129 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
| ENQUEUE_NOCLOCK
);
2132 ttwu_do_wakeup(rq
, p
, 0, rf
);
2133 ttwu_stat(p
, smp_processor_id(), 0);
2135 raw_spin_unlock(&p
->pi_lock
);
2139 * wake_up_process - Wake up a specific process
2140 * @p: The process to be woken up.
2142 * Attempt to wake up the nominated process and move it to the set of runnable
2145 * Return: 1 if the process was woken up, 0 if it was already running.
2147 * It may be assumed that this function implies a write memory barrier before
2148 * changing the task state if and only if any tasks are woken up.
2150 int wake_up_process(struct task_struct
*p
)
2152 return try_to_wake_up(p
, TASK_NORMAL
, 0);
2154 EXPORT_SYMBOL(wake_up_process
);
2156 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2158 return try_to_wake_up(p
, state
, 0);
2162 * Perform scheduler related setup for a newly forked process p.
2163 * p is forked by current.
2165 * __sched_fork() is basic setup used by init_idle() too:
2167 static void __sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
2172 p
->se
.exec_start
= 0;
2173 p
->se
.sum_exec_runtime
= 0;
2174 p
->se
.prev_sum_exec_runtime
= 0;
2175 p
->se
.nr_migrations
= 0;
2177 INIT_LIST_HEAD(&p
->se
.group_node
);
2179 #ifdef CONFIG_FAIR_GROUP_SCHED
2180 p
->se
.cfs_rq
= NULL
;
2183 #ifdef CONFIG_SCHEDSTATS
2184 /* Even if schedstat is disabled, there should not be garbage */
2185 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2188 RB_CLEAR_NODE(&p
->dl
.rb_node
);
2189 init_dl_task_timer(&p
->dl
);
2190 init_dl_inactive_task_timer(&p
->dl
);
2191 __dl_clear_params(p
);
2193 INIT_LIST_HEAD(&p
->rt
.run_list
);
2195 p
->rt
.time_slice
= sched_rr_timeslice
;
2199 #ifdef CONFIG_PREEMPT_NOTIFIERS
2200 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2203 #ifdef CONFIG_NUMA_BALANCING
2204 if (p
->mm
&& atomic_read(&p
->mm
->mm_users
) == 1) {
2205 p
->mm
->numa_next_scan
= jiffies
+ msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
2206 p
->mm
->numa_scan_seq
= 0;
2209 if (clone_flags
& CLONE_VM
)
2210 p
->numa_preferred_nid
= current
->numa_preferred_nid
;
2212 p
->numa_preferred_nid
= -1;
2214 p
->node_stamp
= 0ULL;
2215 p
->numa_scan_seq
= p
->mm
? p
->mm
->numa_scan_seq
: 0;
2216 p
->numa_scan_period
= sysctl_numa_balancing_scan_delay
;
2217 p
->numa_work
.next
= &p
->numa_work
;
2218 p
->numa_faults
= NULL
;
2219 p
->last_task_numa_placement
= 0;
2220 p
->last_sum_exec_runtime
= 0;
2222 p
->numa_group
= NULL
;
2223 #endif /* CONFIG_NUMA_BALANCING */
2226 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing
);
2228 #ifdef CONFIG_NUMA_BALANCING
2230 void set_numabalancing_state(bool enabled
)
2233 static_branch_enable(&sched_numa_balancing
);
2235 static_branch_disable(&sched_numa_balancing
);
2238 #ifdef CONFIG_PROC_SYSCTL
2239 int sysctl_numa_balancing(struct ctl_table
*table
, int write
,
2240 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2244 int state
= static_branch_likely(&sched_numa_balancing
);
2246 if (write
&& !capable(CAP_SYS_ADMIN
))
2251 err
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
2255 set_numabalancing_state(state
);
2261 #ifdef CONFIG_SCHEDSTATS
2263 DEFINE_STATIC_KEY_FALSE(sched_schedstats
);
2264 static bool __initdata __sched_schedstats
= false;
2266 static void set_schedstats(bool enabled
)
2269 static_branch_enable(&sched_schedstats
);
2271 static_branch_disable(&sched_schedstats
);
2274 void force_schedstat_enabled(void)
2276 if (!schedstat_enabled()) {
2277 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2278 static_branch_enable(&sched_schedstats
);
2282 static int __init
setup_schedstats(char *str
)
2289 * This code is called before jump labels have been set up, so we can't
2290 * change the static branch directly just yet. Instead set a temporary
2291 * variable so init_schedstats() can do it later.
2293 if (!strcmp(str
, "enable")) {
2294 __sched_schedstats
= true;
2296 } else if (!strcmp(str
, "disable")) {
2297 __sched_schedstats
= false;
2302 pr_warn("Unable to parse schedstats=\n");
2306 __setup("schedstats=", setup_schedstats
);
2308 static void __init
init_schedstats(void)
2310 set_schedstats(__sched_schedstats
);
2313 #ifdef CONFIG_PROC_SYSCTL
2314 int sysctl_schedstats(struct ctl_table
*table
, int write
,
2315 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2319 int state
= static_branch_likely(&sched_schedstats
);
2321 if (write
&& !capable(CAP_SYS_ADMIN
))
2326 err
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
2330 set_schedstats(state
);
2333 #endif /* CONFIG_PROC_SYSCTL */
2334 #else /* !CONFIG_SCHEDSTATS */
2335 static inline void init_schedstats(void) {}
2336 #endif /* CONFIG_SCHEDSTATS */
2339 * fork()/clone()-time setup:
2341 int sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
2343 unsigned long flags
;
2344 int cpu
= get_cpu();
2346 __sched_fork(clone_flags
, p
);
2348 * We mark the process as NEW here. This guarantees that
2349 * nobody will actually run it, and a signal or other external
2350 * event cannot wake it up and insert it on the runqueue either.
2352 p
->state
= TASK_NEW
;
2355 * Make sure we do not leak PI boosting priority to the child.
2357 p
->prio
= current
->normal_prio
;
2360 * Revert to default priority/policy on fork if requested.
2362 if (unlikely(p
->sched_reset_on_fork
)) {
2363 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
2364 p
->policy
= SCHED_NORMAL
;
2365 p
->static_prio
= NICE_TO_PRIO(0);
2367 } else if (PRIO_TO_NICE(p
->static_prio
) < 0)
2368 p
->static_prio
= NICE_TO_PRIO(0);
2370 p
->prio
= p
->normal_prio
= __normal_prio(p
);
2371 set_load_weight(p
, false);
2374 * We don't need the reset flag anymore after the fork. It has
2375 * fulfilled its duty:
2377 p
->sched_reset_on_fork
= 0;
2380 if (dl_prio(p
->prio
)) {
2383 } else if (rt_prio(p
->prio
)) {
2384 p
->sched_class
= &rt_sched_class
;
2386 p
->sched_class
= &fair_sched_class
;
2389 init_entity_runnable_average(&p
->se
);
2392 * The child is not yet in the pid-hash so no cgroup attach races,
2393 * and the cgroup is pinned to this child due to cgroup_fork()
2394 * is ran before sched_fork().
2396 * Silence PROVE_RCU.
2398 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2400 * We're setting the CPU for the first time, we don't migrate,
2401 * so use __set_task_cpu().
2403 __set_task_cpu(p
, cpu
);
2404 if (p
->sched_class
->task_fork
)
2405 p
->sched_class
->task_fork(p
);
2406 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2408 #ifdef CONFIG_SCHED_INFO
2409 if (likely(sched_info_on()))
2410 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2412 #if defined(CONFIG_SMP)
2415 init_task_preempt_count(p
);
2417 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2418 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
2425 unsigned long to_ratio(u64 period
, u64 runtime
)
2427 if (runtime
== RUNTIME_INF
)
2431 * Doing this here saves a lot of checks in all
2432 * the calling paths, and returning zero seems
2433 * safe for them anyway.
2438 return div64_u64(runtime
<< BW_SHIFT
, period
);
2442 * wake_up_new_task - wake up a newly created task for the first time.
2444 * This function will do some initial scheduler statistics housekeeping
2445 * that must be done for every newly created context, then puts the task
2446 * on the runqueue and wakes it.
2448 void wake_up_new_task(struct task_struct
*p
)
2453 raw_spin_lock_irqsave(&p
->pi_lock
, rf
.flags
);
2454 p
->state
= TASK_RUNNING
;
2457 * Fork balancing, do it here and not earlier because:
2458 * - cpus_allowed can change in the fork path
2459 * - any previously selected CPU might disappear through hotplug
2461 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2462 * as we're not fully set-up yet.
2464 p
->recent_used_cpu
= task_cpu(p
);
2465 __set_task_cpu(p
, select_task_rq(p
, task_cpu(p
), SD_BALANCE_FORK
, 0));
2467 rq
= __task_rq_lock(p
, &rf
);
2468 update_rq_clock(rq
);
2469 post_init_entity_util_avg(&p
->se
);
2471 activate_task(rq
, p
, ENQUEUE_NOCLOCK
);
2472 p
->on_rq
= TASK_ON_RQ_QUEUED
;
2473 trace_sched_wakeup_new(p
);
2474 check_preempt_curr(rq
, p
, WF_FORK
);
2476 if (p
->sched_class
->task_woken
) {
2478 * Nothing relies on rq->lock after this, so its fine to
2481 rq_unpin_lock(rq
, &rf
);
2482 p
->sched_class
->task_woken(rq
, p
);
2483 rq_repin_lock(rq
, &rf
);
2486 task_rq_unlock(rq
, p
, &rf
);
2489 #ifdef CONFIG_PREEMPT_NOTIFIERS
2491 static struct static_key preempt_notifier_key
= STATIC_KEY_INIT_FALSE
;
2493 void preempt_notifier_inc(void)
2495 static_key_slow_inc(&preempt_notifier_key
);
2497 EXPORT_SYMBOL_GPL(preempt_notifier_inc
);
2499 void preempt_notifier_dec(void)
2501 static_key_slow_dec(&preempt_notifier_key
);
2503 EXPORT_SYMBOL_GPL(preempt_notifier_dec
);
2506 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2507 * @notifier: notifier struct to register
2509 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2511 if (!static_key_false(&preempt_notifier_key
))
2512 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2514 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2516 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2519 * preempt_notifier_unregister - no longer interested in preemption notifications
2520 * @notifier: notifier struct to unregister
2522 * This is *not* safe to call from within a preemption notifier.
2524 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2526 hlist_del(¬ifier
->link
);
2528 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2530 static void __fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2532 struct preempt_notifier
*notifier
;
2534 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2535 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2538 static __always_inline
void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2540 if (static_key_false(&preempt_notifier_key
))
2541 __fire_sched_in_preempt_notifiers(curr
);
2545 __fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2546 struct task_struct
*next
)
2548 struct preempt_notifier
*notifier
;
2550 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2551 notifier
->ops
->sched_out(notifier
, next
);
2554 static __always_inline
void
2555 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2556 struct task_struct
*next
)
2558 if (static_key_false(&preempt_notifier_key
))
2559 __fire_sched_out_preempt_notifiers(curr
, next
);
2562 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2564 static inline void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2569 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2570 struct task_struct
*next
)
2574 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2576 static inline void prepare_task(struct task_struct
*next
)
2580 * Claim the task as running, we do this before switching to it
2581 * such that any running task will have this set.
2587 static inline void finish_task(struct task_struct
*prev
)
2591 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2592 * We must ensure this doesn't happen until the switch is completely
2595 * In particular, the load of prev->state in finish_task_switch() must
2596 * happen before this.
2598 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2600 smp_store_release(&prev
->on_cpu
, 0);
2604 static inline void finish_lock_switch(struct rq
*rq
)
2606 #ifdef CONFIG_DEBUG_SPINLOCK
2607 /* this is a valid case when another task releases the spinlock */
2608 rq
->lock
.owner
= current
;
2611 * If we are tracking spinlock dependencies then we have to
2612 * fix up the runqueue lock - which gets 'carried over' from
2613 * prev into current:
2615 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
2617 raw_spin_unlock_irq(&rq
->lock
);
2621 * prepare_task_switch - prepare to switch tasks
2622 * @rq: the runqueue preparing to switch
2623 * @prev: the current task that is being switched out
2624 * @next: the task we are going to switch to.
2626 * This is called with the rq lock held and interrupts off. It must
2627 * be paired with a subsequent finish_task_switch after the context
2630 * prepare_task_switch sets up locking and calls architecture specific
2634 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2635 struct task_struct
*next
)
2637 sched_info_switch(rq
, prev
, next
);
2638 perf_event_task_sched_out(prev
, next
);
2639 fire_sched_out_preempt_notifiers(prev
, next
);
2641 prepare_arch_switch(next
);
2645 * finish_task_switch - clean up after a task-switch
2646 * @prev: the thread we just switched away from.
2648 * finish_task_switch must be called after the context switch, paired
2649 * with a prepare_task_switch call before the context switch.
2650 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2651 * and do any other architecture-specific cleanup actions.
2653 * Note that we may have delayed dropping an mm in context_switch(). If
2654 * so, we finish that here outside of the runqueue lock. (Doing it
2655 * with the lock held can cause deadlocks; see schedule() for
2658 * The context switch have flipped the stack from under us and restored the
2659 * local variables which were saved when this task called schedule() in the
2660 * past. prev == current is still correct but we need to recalculate this_rq
2661 * because prev may have moved to another CPU.
2663 static struct rq
*finish_task_switch(struct task_struct
*prev
)
2664 __releases(rq
->lock
)
2666 struct rq
*rq
= this_rq();
2667 struct mm_struct
*mm
= rq
->prev_mm
;
2671 * The previous task will have left us with a preempt_count of 2
2672 * because it left us after:
2675 * preempt_disable(); // 1
2677 * raw_spin_lock_irq(&rq->lock) // 2
2679 * Also, see FORK_PREEMPT_COUNT.
2681 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET
,
2682 "corrupted preempt_count: %s/%d/0x%x\n",
2683 current
->comm
, current
->pid
, preempt_count()))
2684 preempt_count_set(FORK_PREEMPT_COUNT
);
2689 * A task struct has one reference for the use as "current".
2690 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2691 * schedule one last time. The schedule call will never return, and
2692 * the scheduled task must drop that reference.
2694 * We must observe prev->state before clearing prev->on_cpu (in
2695 * finish_task), otherwise a concurrent wakeup can get prev
2696 * running on another CPU and we could rave with its RUNNING -> DEAD
2697 * transition, resulting in a double drop.
2699 prev_state
= prev
->state
;
2700 vtime_task_switch(prev
);
2701 perf_event_task_sched_in(prev
, current
);
2703 finish_lock_switch(rq
);
2704 finish_arch_post_lock_switch();
2706 fire_sched_in_preempt_notifiers(current
);
2708 * When switching through a kernel thread, the loop in
2709 * membarrier_{private,global}_expedited() may have observed that
2710 * kernel thread and not issued an IPI. It is therefore possible to
2711 * schedule between user->kernel->user threads without passing though
2712 * switch_mm(). Membarrier requires a barrier after storing to
2713 * rq->curr, before returning to userspace, so provide them here:
2715 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2716 * provided by mmdrop(),
2717 * - a sync_core for SYNC_CORE.
2720 membarrier_mm_sync_core_before_usermode(mm
);
2723 if (unlikely(prev_state
== TASK_DEAD
)) {
2724 if (prev
->sched_class
->task_dead
)
2725 prev
->sched_class
->task_dead(prev
);
2728 * Remove function-return probe instances associated with this
2729 * task and put them back on the free list.
2731 kprobe_flush_task(prev
);
2733 /* Task is done with its stack. */
2734 put_task_stack(prev
);
2736 put_task_struct(prev
);
2739 tick_nohz_task_switch();
2745 /* rq->lock is NOT held, but preemption is disabled */
2746 static void __balance_callback(struct rq
*rq
)
2748 struct callback_head
*head
, *next
;
2749 void (*func
)(struct rq
*rq
);
2750 unsigned long flags
;
2752 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2753 head
= rq
->balance_callback
;
2754 rq
->balance_callback
= NULL
;
2756 func
= (void (*)(struct rq
*))head
->func
;
2763 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2766 static inline void balance_callback(struct rq
*rq
)
2768 if (unlikely(rq
->balance_callback
))
2769 __balance_callback(rq
);
2774 static inline void balance_callback(struct rq
*rq
)
2781 * schedule_tail - first thing a freshly forked thread must call.
2782 * @prev: the thread we just switched away from.
2784 asmlinkage __visible
void schedule_tail(struct task_struct
*prev
)
2785 __releases(rq
->lock
)
2790 * New tasks start with FORK_PREEMPT_COUNT, see there and
2791 * finish_task_switch() for details.
2793 * finish_task_switch() will drop rq->lock() and lower preempt_count
2794 * and the preempt_enable() will end up enabling preemption (on
2795 * PREEMPT_COUNT kernels).
2798 rq
= finish_task_switch(prev
);
2799 balance_callback(rq
);
2802 if (current
->set_child_tid
)
2803 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2807 * context_switch - switch to the new MM and the new thread's register state.
2809 static __always_inline
struct rq
*
2810 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2811 struct task_struct
*next
, struct rq_flags
*rf
)
2813 struct mm_struct
*mm
, *oldmm
;
2815 prepare_task_switch(rq
, prev
, next
);
2818 oldmm
= prev
->active_mm
;
2820 * For paravirt, this is coupled with an exit in switch_to to
2821 * combine the page table reload and the switch backend into
2824 arch_start_context_switch(prev
);
2827 * If mm is non-NULL, we pass through switch_mm(). If mm is
2828 * NULL, we will pass through mmdrop() in finish_task_switch().
2829 * Both of these contain the full memory barrier required by
2830 * membarrier after storing to rq->curr, before returning to
2834 next
->active_mm
= oldmm
;
2836 enter_lazy_tlb(oldmm
, next
);
2838 switch_mm_irqs_off(oldmm
, mm
, next
);
2841 prev
->active_mm
= NULL
;
2842 rq
->prev_mm
= oldmm
;
2845 rq
->clock_update_flags
&= ~(RQCF_ACT_SKIP
|RQCF_REQ_SKIP
);
2848 * Since the runqueue lock will be released by the next
2849 * task (which is an invalid locking op but in the case
2850 * of the scheduler it's an obvious special-case), so we
2851 * do an early lockdep release here:
2853 rq_unpin_lock(rq
, rf
);
2854 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2856 /* Here we just switch the register state and the stack. */
2857 switch_to(prev
, next
, prev
);
2860 return finish_task_switch(prev
);
2864 * nr_running and nr_context_switches:
2866 * externally visible scheduler statistics: current number of runnable
2867 * threads, total number of context switches performed since bootup.
2869 unsigned long nr_running(void)
2871 unsigned long i
, sum
= 0;
2873 for_each_online_cpu(i
)
2874 sum
+= cpu_rq(i
)->nr_running
;
2880 * Check if only the current task is running on the CPU.
2882 * Caution: this function does not check that the caller has disabled
2883 * preemption, thus the result might have a time-of-check-to-time-of-use
2884 * race. The caller is responsible to use it correctly, for example:
2886 * - from a non-preemptable section (of course)
2888 * - from a thread that is bound to a single CPU
2890 * - in a loop with very short iterations (e.g. a polling loop)
2892 bool single_task_running(void)
2894 return raw_rq()->nr_running
== 1;
2896 EXPORT_SYMBOL(single_task_running
);
2898 unsigned long long nr_context_switches(void)
2901 unsigned long long sum
= 0;
2903 for_each_possible_cpu(i
)
2904 sum
+= cpu_rq(i
)->nr_switches
;
2910 * IO-wait accounting, and how its mostly bollocks (on SMP).
2912 * The idea behind IO-wait account is to account the idle time that we could
2913 * have spend running if it were not for IO. That is, if we were to improve the
2914 * storage performance, we'd have a proportional reduction in IO-wait time.
2916 * This all works nicely on UP, where, when a task blocks on IO, we account
2917 * idle time as IO-wait, because if the storage were faster, it could've been
2918 * running and we'd not be idle.
2920 * This has been extended to SMP, by doing the same for each CPU. This however
2923 * Imagine for instance the case where two tasks block on one CPU, only the one
2924 * CPU will have IO-wait accounted, while the other has regular idle. Even
2925 * though, if the storage were faster, both could've ran at the same time,
2926 * utilising both CPUs.
2928 * This means, that when looking globally, the current IO-wait accounting on
2929 * SMP is a lower bound, by reason of under accounting.
2931 * Worse, since the numbers are provided per CPU, they are sometimes
2932 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2933 * associated with any one particular CPU, it can wake to another CPU than it
2934 * blocked on. This means the per CPU IO-wait number is meaningless.
2936 * Task CPU affinities can make all that even more 'interesting'.
2939 unsigned long nr_iowait(void)
2941 unsigned long i
, sum
= 0;
2943 for_each_possible_cpu(i
)
2944 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2950 * Consumers of these two interfaces, like for example the cpufreq menu
2951 * governor are using nonsensical data. Boosting frequency for a CPU that has
2952 * IO-wait which might not even end up running the task when it does become
2956 unsigned long nr_iowait_cpu(int cpu
)
2958 struct rq
*this = cpu_rq(cpu
);
2959 return atomic_read(&this->nr_iowait
);
2962 void get_iowait_load(unsigned long *nr_waiters
, unsigned long *load
)
2964 struct rq
*rq
= this_rq();
2965 *nr_waiters
= atomic_read(&rq
->nr_iowait
);
2966 *load
= rq
->load
.weight
;
2972 * sched_exec - execve() is a valuable balancing opportunity, because at
2973 * this point the task has the smallest effective memory and cache footprint.
2975 void sched_exec(void)
2977 struct task_struct
*p
= current
;
2978 unsigned long flags
;
2981 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2982 dest_cpu
= p
->sched_class
->select_task_rq(p
, task_cpu(p
), SD_BALANCE_EXEC
, 0);
2983 if (dest_cpu
== smp_processor_id())
2986 if (likely(cpu_active(dest_cpu
))) {
2987 struct migration_arg arg
= { p
, dest_cpu
};
2989 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2990 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
2994 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2999 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3000 DEFINE_PER_CPU(struct kernel_cpustat
, kernel_cpustat
);
3002 EXPORT_PER_CPU_SYMBOL(kstat
);
3003 EXPORT_PER_CPU_SYMBOL(kernel_cpustat
);
3006 * The function fair_sched_class.update_curr accesses the struct curr
3007 * and its field curr->exec_start; when called from task_sched_runtime(),
3008 * we observe a high rate of cache misses in practice.
3009 * Prefetching this data results in improved performance.
3011 static inline void prefetch_curr_exec_start(struct task_struct
*p
)
3013 #ifdef CONFIG_FAIR_GROUP_SCHED
3014 struct sched_entity
*curr
= (&p
->se
)->cfs_rq
->curr
;
3016 struct sched_entity
*curr
= (&task_rq(p
)->cfs
)->curr
;
3019 prefetch(&curr
->exec_start
);
3023 * Return accounted runtime for the task.
3024 * In case the task is currently running, return the runtime plus current's
3025 * pending runtime that have not been accounted yet.
3027 unsigned long long task_sched_runtime(struct task_struct
*p
)
3033 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3035 * 64-bit doesn't need locks to atomically read a 64bit value.
3036 * So we have a optimization chance when the task's delta_exec is 0.
3037 * Reading ->on_cpu is racy, but this is ok.
3039 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3040 * If we race with it entering CPU, unaccounted time is 0. This is
3041 * indistinguishable from the read occurring a few cycles earlier.
3042 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3043 * been accounted, so we're correct here as well.
3045 if (!p
->on_cpu
|| !task_on_rq_queued(p
))
3046 return p
->se
.sum_exec_runtime
;
3049 rq
= task_rq_lock(p
, &rf
);
3051 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3052 * project cycles that may never be accounted to this
3053 * thread, breaking clock_gettime().
3055 if (task_current(rq
, p
) && task_on_rq_queued(p
)) {
3056 prefetch_curr_exec_start(p
);
3057 update_rq_clock(rq
);
3058 p
->sched_class
->update_curr(rq
);
3060 ns
= p
->se
.sum_exec_runtime
;
3061 task_rq_unlock(rq
, p
, &rf
);
3067 * This function gets called by the timer code, with HZ frequency.
3068 * We call it with interrupts disabled.
3070 void scheduler_tick(void)
3072 int cpu
= smp_processor_id();
3073 struct rq
*rq
= cpu_rq(cpu
);
3074 struct task_struct
*curr
= rq
->curr
;
3081 update_rq_clock(rq
);
3082 curr
->sched_class
->task_tick(rq
, curr
, 0);
3083 cpu_load_update_active(rq
);
3084 calc_global_load_tick(rq
);
3088 perf_event_task_tick();
3091 rq
->idle_balance
= idle_cpu(cpu
);
3092 trigger_load_balance(rq
);
3094 rq_last_tick_reset(rq
);
3097 #ifdef CONFIG_NO_HZ_FULL
3099 * scheduler_tick_max_deferment
3101 * Keep at least one tick per second when a single
3102 * active task is running because the scheduler doesn't
3103 * yet completely support full dynticks environment.
3105 * This makes sure that uptime, CFS vruntime, load
3106 * balancing, etc... continue to move forward, even
3107 * with a very low granularity.
3109 * Return: Maximum deferment in nanoseconds.
3111 u64
scheduler_tick_max_deferment(void)
3113 struct rq
*rq
= this_rq();
3114 unsigned long next
, now
= READ_ONCE(jiffies
);
3116 next
= rq
->last_sched_tick
+ HZ
;
3118 if (time_before_eq(next
, now
))
3121 return jiffies_to_nsecs(next
- now
);
3125 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3126 defined(CONFIG_PREEMPT_TRACER))
3128 * If the value passed in is equal to the current preempt count
3129 * then we just disabled preemption. Start timing the latency.
3131 static inline void preempt_latency_start(int val
)
3133 if (preempt_count() == val
) {
3134 unsigned long ip
= get_lock_parent_ip();
3135 #ifdef CONFIG_DEBUG_PREEMPT
3136 current
->preempt_disable_ip
= ip
;
3138 trace_preempt_off(CALLER_ADDR0
, ip
);
3142 void preempt_count_add(int val
)
3144 #ifdef CONFIG_DEBUG_PREEMPT
3148 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3151 __preempt_count_add(val
);
3152 #ifdef CONFIG_DEBUG_PREEMPT
3154 * Spinlock count overflowing soon?
3156 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3159 preempt_latency_start(val
);
3161 EXPORT_SYMBOL(preempt_count_add
);
3162 NOKPROBE_SYMBOL(preempt_count_add
);
3165 * If the value passed in equals to the current preempt count
3166 * then we just enabled preemption. Stop timing the latency.
3168 static inline void preempt_latency_stop(int val
)
3170 if (preempt_count() == val
)
3171 trace_preempt_on(CALLER_ADDR0
, get_lock_parent_ip());
3174 void preempt_count_sub(int val
)
3176 #ifdef CONFIG_DEBUG_PREEMPT
3180 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3183 * Is the spinlock portion underflowing?
3185 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3186 !(preempt_count() & PREEMPT_MASK
)))
3190 preempt_latency_stop(val
);
3191 __preempt_count_sub(val
);
3193 EXPORT_SYMBOL(preempt_count_sub
);
3194 NOKPROBE_SYMBOL(preempt_count_sub
);
3197 static inline void preempt_latency_start(int val
) { }
3198 static inline void preempt_latency_stop(int val
) { }
3201 static inline unsigned long get_preempt_disable_ip(struct task_struct
*p
)
3203 #ifdef CONFIG_DEBUG_PREEMPT
3204 return p
->preempt_disable_ip
;
3211 * Print scheduling while atomic bug:
3213 static noinline
void __schedule_bug(struct task_struct
*prev
)
3215 /* Save this before calling printk(), since that will clobber it */
3216 unsigned long preempt_disable_ip
= get_preempt_disable_ip(current
);
3218 if (oops_in_progress
)
3221 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3222 prev
->comm
, prev
->pid
, preempt_count());
3224 debug_show_held_locks(prev
);
3226 if (irqs_disabled())
3227 print_irqtrace_events(prev
);
3228 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT
)
3229 && in_atomic_preempt_off()) {
3230 pr_err("Preemption disabled at:");
3231 print_ip_sym(preempt_disable_ip
);
3235 panic("scheduling while atomic\n");
3238 add_taint(TAINT_WARN
, LOCKDEP_STILL_OK
);
3242 * Various schedule()-time debugging checks and statistics:
3244 static inline void schedule_debug(struct task_struct
*prev
)
3246 #ifdef CONFIG_SCHED_STACK_END_CHECK
3247 if (task_stack_end_corrupted(prev
))
3248 panic("corrupted stack end detected inside scheduler\n");
3251 if (unlikely(in_atomic_preempt_off())) {
3252 __schedule_bug(prev
);
3253 preempt_count_set(PREEMPT_DISABLED
);
3257 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3259 schedstat_inc(this_rq()->sched_count
);
3263 * Pick up the highest-prio task:
3265 static inline struct task_struct
*
3266 pick_next_task(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
3268 const struct sched_class
*class;
3269 struct task_struct
*p
;
3272 * Optimization: we know that if all tasks are in the fair class we can
3273 * call that function directly, but only if the @prev task wasn't of a
3274 * higher scheduling class, because otherwise those loose the
3275 * opportunity to pull in more work from other CPUs.
3277 if (likely((prev
->sched_class
== &idle_sched_class
||
3278 prev
->sched_class
== &fair_sched_class
) &&
3279 rq
->nr_running
== rq
->cfs
.h_nr_running
)) {
3281 p
= fair_sched_class
.pick_next_task(rq
, prev
, rf
);
3282 if (unlikely(p
== RETRY_TASK
))
3285 /* Assumes fair_sched_class->next == idle_sched_class */
3287 p
= idle_sched_class
.pick_next_task(rq
, prev
, rf
);
3293 for_each_class(class) {
3294 p
= class->pick_next_task(rq
, prev
, rf
);
3296 if (unlikely(p
== RETRY_TASK
))
3302 /* The idle class should always have a runnable task: */
3307 * __schedule() is the main scheduler function.
3309 * The main means of driving the scheduler and thus entering this function are:
3311 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3313 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3314 * paths. For example, see arch/x86/entry_64.S.
3316 * To drive preemption between tasks, the scheduler sets the flag in timer
3317 * interrupt handler scheduler_tick().
3319 * 3. Wakeups don't really cause entry into schedule(). They add a
3320 * task to the run-queue and that's it.
3322 * Now, if the new task added to the run-queue preempts the current
3323 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3324 * called on the nearest possible occasion:
3326 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3328 * - in syscall or exception context, at the next outmost
3329 * preempt_enable(). (this might be as soon as the wake_up()'s
3332 * - in IRQ context, return from interrupt-handler to
3333 * preemptible context
3335 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3338 * - cond_resched() call
3339 * - explicit schedule() call
3340 * - return from syscall or exception to user-space
3341 * - return from interrupt-handler to user-space
3343 * WARNING: must be called with preemption disabled!
3345 static void __sched notrace
__schedule(bool preempt
)
3347 struct task_struct
*prev
, *next
;
3348 unsigned long *switch_count
;
3353 cpu
= smp_processor_id();
3357 schedule_debug(prev
);
3359 if (sched_feat(HRTICK
))
3362 local_irq_disable();
3363 rcu_note_context_switch(preempt
);
3366 * Make sure that signal_pending_state()->signal_pending() below
3367 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3368 * done by the caller to avoid the race with signal_wake_up().
3370 * The membarrier system call requires a full memory barrier
3371 * after coming from user-space, before storing to rq->curr.
3374 smp_mb__after_spinlock();
3376 /* Promote REQ to ACT */
3377 rq
->clock_update_flags
<<= 1;
3378 update_rq_clock(rq
);
3380 switch_count
= &prev
->nivcsw
;
3381 if (!preempt
&& prev
->state
) {
3382 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
3383 prev
->state
= TASK_RUNNING
;
3385 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
| DEQUEUE_NOCLOCK
);
3388 if (prev
->in_iowait
) {
3389 atomic_inc(&rq
->nr_iowait
);
3390 delayacct_blkio_start();
3394 * If a worker went to sleep, notify and ask workqueue
3395 * whether it wants to wake up a task to maintain
3398 if (prev
->flags
& PF_WQ_WORKER
) {
3399 struct task_struct
*to_wakeup
;
3401 to_wakeup
= wq_worker_sleeping(prev
);
3403 try_to_wake_up_local(to_wakeup
, &rf
);
3406 switch_count
= &prev
->nvcsw
;
3409 next
= pick_next_task(rq
, prev
, &rf
);
3410 clear_tsk_need_resched(prev
);
3411 clear_preempt_need_resched();
3413 if (likely(prev
!= next
)) {
3417 * The membarrier system call requires each architecture
3418 * to have a full memory barrier after updating
3419 * rq->curr, before returning to user-space.
3421 * Here are the schemes providing that barrier on the
3422 * various architectures:
3423 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3424 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3425 * - finish_lock_switch() for weakly-ordered
3426 * architectures where spin_unlock is a full barrier,
3427 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3428 * is a RELEASE barrier),
3432 trace_sched_switch(preempt
, prev
, next
);
3434 /* Also unlocks the rq: */
3435 rq
= context_switch(rq
, prev
, next
, &rf
);
3437 rq
->clock_update_flags
&= ~(RQCF_ACT_SKIP
|RQCF_REQ_SKIP
);
3438 rq_unlock_irq(rq
, &rf
);
3441 balance_callback(rq
);
3444 void __noreturn
do_task_dead(void)
3447 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3448 * when the following two conditions become true.
3449 * - There is race condition of mmap_sem (It is acquired by
3451 * - SMI occurs before setting TASK_RUNINNG.
3452 * (or hypervisor of virtual machine switches to other guest)
3453 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3455 * To avoid it, we have to wait for releasing tsk->pi_lock which
3456 * is held by try_to_wake_up()
3458 raw_spin_lock_irq(¤t
->pi_lock
);
3459 raw_spin_unlock_irq(¤t
->pi_lock
);
3461 /* Causes final put_task_struct in finish_task_switch(): */
3462 __set_current_state(TASK_DEAD
);
3464 /* Tell freezer to ignore us: */
3465 current
->flags
|= PF_NOFREEZE
;
3470 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3475 static inline void sched_submit_work(struct task_struct
*tsk
)
3477 if (!tsk
->state
|| tsk_is_pi_blocked(tsk
))
3480 * If we are going to sleep and we have plugged IO queued,
3481 * make sure to submit it to avoid deadlocks.
3483 if (blk_needs_flush_plug(tsk
))
3484 blk_schedule_flush_plug(tsk
);
3487 asmlinkage __visible
void __sched
schedule(void)
3489 struct task_struct
*tsk
= current
;
3491 sched_submit_work(tsk
);
3495 sched_preempt_enable_no_resched();
3496 } while (need_resched());
3498 EXPORT_SYMBOL(schedule
);
3501 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3502 * state (have scheduled out non-voluntarily) by making sure that all
3503 * tasks have either left the run queue or have gone into user space.
3504 * As idle tasks do not do either, they must not ever be preempted
3505 * (schedule out non-voluntarily).
3507 * schedule_idle() is similar to schedule_preempt_disable() except that it
3508 * never enables preemption because it does not call sched_submit_work().
3510 void __sched
schedule_idle(void)
3513 * As this skips calling sched_submit_work(), which the idle task does
3514 * regardless because that function is a nop when the task is in a
3515 * TASK_RUNNING state, make sure this isn't used someplace that the
3516 * current task can be in any other state. Note, idle is always in the
3517 * TASK_RUNNING state.
3519 WARN_ON_ONCE(current
->state
);
3522 } while (need_resched());
3525 #ifdef CONFIG_CONTEXT_TRACKING
3526 asmlinkage __visible
void __sched
schedule_user(void)
3529 * If we come here after a random call to set_need_resched(),
3530 * or we have been woken up remotely but the IPI has not yet arrived,
3531 * we haven't yet exited the RCU idle mode. Do it here manually until
3532 * we find a better solution.
3534 * NB: There are buggy callers of this function. Ideally we
3535 * should warn if prev_state != CONTEXT_USER, but that will trigger
3536 * too frequently to make sense yet.
3538 enum ctx_state prev_state
= exception_enter();
3540 exception_exit(prev_state
);
3545 * schedule_preempt_disabled - called with preemption disabled
3547 * Returns with preemption disabled. Note: preempt_count must be 1
3549 void __sched
schedule_preempt_disabled(void)
3551 sched_preempt_enable_no_resched();
3556 static void __sched notrace
preempt_schedule_common(void)
3560 * Because the function tracer can trace preempt_count_sub()
3561 * and it also uses preempt_enable/disable_notrace(), if
3562 * NEED_RESCHED is set, the preempt_enable_notrace() called
3563 * by the function tracer will call this function again and
3564 * cause infinite recursion.
3566 * Preemption must be disabled here before the function
3567 * tracer can trace. Break up preempt_disable() into two
3568 * calls. One to disable preemption without fear of being
3569 * traced. The other to still record the preemption latency,
3570 * which can also be traced by the function tracer.
3572 preempt_disable_notrace();
3573 preempt_latency_start(1);
3575 preempt_latency_stop(1);
3576 preempt_enable_no_resched_notrace();
3579 * Check again in case we missed a preemption opportunity
3580 * between schedule and now.
3582 } while (need_resched());
3585 #ifdef CONFIG_PREEMPT
3587 * this is the entry point to schedule() from in-kernel preemption
3588 * off of preempt_enable. Kernel preemptions off return from interrupt
3589 * occur there and call schedule directly.
3591 asmlinkage __visible
void __sched notrace
preempt_schedule(void)
3594 * If there is a non-zero preempt_count or interrupts are disabled,
3595 * we do not want to preempt the current task. Just return..
3597 if (likely(!preemptible()))
3600 preempt_schedule_common();
3602 NOKPROBE_SYMBOL(preempt_schedule
);
3603 EXPORT_SYMBOL(preempt_schedule
);
3606 * preempt_schedule_notrace - preempt_schedule called by tracing
3608 * The tracing infrastructure uses preempt_enable_notrace to prevent
3609 * recursion and tracing preempt enabling caused by the tracing
3610 * infrastructure itself. But as tracing can happen in areas coming
3611 * from userspace or just about to enter userspace, a preempt enable
3612 * can occur before user_exit() is called. This will cause the scheduler
3613 * to be called when the system is still in usermode.
3615 * To prevent this, the preempt_enable_notrace will use this function
3616 * instead of preempt_schedule() to exit user context if needed before
3617 * calling the scheduler.
3619 asmlinkage __visible
void __sched notrace
preempt_schedule_notrace(void)
3621 enum ctx_state prev_ctx
;
3623 if (likely(!preemptible()))
3628 * Because the function tracer can trace preempt_count_sub()
3629 * and it also uses preempt_enable/disable_notrace(), if
3630 * NEED_RESCHED is set, the preempt_enable_notrace() called
3631 * by the function tracer will call this function again and
3632 * cause infinite recursion.
3634 * Preemption must be disabled here before the function
3635 * tracer can trace. Break up preempt_disable() into two
3636 * calls. One to disable preemption without fear of being
3637 * traced. The other to still record the preemption latency,
3638 * which can also be traced by the function tracer.
3640 preempt_disable_notrace();
3641 preempt_latency_start(1);
3643 * Needs preempt disabled in case user_exit() is traced
3644 * and the tracer calls preempt_enable_notrace() causing
3645 * an infinite recursion.
3647 prev_ctx
= exception_enter();
3649 exception_exit(prev_ctx
);
3651 preempt_latency_stop(1);
3652 preempt_enable_no_resched_notrace();
3653 } while (need_resched());
3655 EXPORT_SYMBOL_GPL(preempt_schedule_notrace
);
3657 #endif /* CONFIG_PREEMPT */
3660 * this is the entry point to schedule() from kernel preemption
3661 * off of irq context.
3662 * Note, that this is called and return with irqs disabled. This will
3663 * protect us against recursive calling from irq.
3665 asmlinkage __visible
void __sched
preempt_schedule_irq(void)
3667 enum ctx_state prev_state
;
3669 /* Catch callers which need to be fixed */
3670 BUG_ON(preempt_count() || !irqs_disabled());
3672 prev_state
= exception_enter();
3678 local_irq_disable();
3679 sched_preempt_enable_no_resched();
3680 } while (need_resched());
3682 exception_exit(prev_state
);
3685 int default_wake_function(wait_queue_entry_t
*curr
, unsigned mode
, int wake_flags
,
3688 return try_to_wake_up(curr
->private, mode
, wake_flags
);
3690 EXPORT_SYMBOL(default_wake_function
);
3692 #ifdef CONFIG_RT_MUTEXES
3694 static inline int __rt_effective_prio(struct task_struct
*pi_task
, int prio
)
3697 prio
= min(prio
, pi_task
->prio
);
3702 static inline int rt_effective_prio(struct task_struct
*p
, int prio
)
3704 struct task_struct
*pi_task
= rt_mutex_get_top_task(p
);
3706 return __rt_effective_prio(pi_task
, prio
);
3710 * rt_mutex_setprio - set the current priority of a task
3712 * @pi_task: donor task
3714 * This function changes the 'effective' priority of a task. It does
3715 * not touch ->normal_prio like __setscheduler().
3717 * Used by the rt_mutex code to implement priority inheritance
3718 * logic. Call site only calls if the priority of the task changed.
3720 void rt_mutex_setprio(struct task_struct
*p
, struct task_struct
*pi_task
)
3722 int prio
, oldprio
, queued
, running
, queue_flag
=
3723 DEQUEUE_SAVE
| DEQUEUE_MOVE
| DEQUEUE_NOCLOCK
;
3724 const struct sched_class
*prev_class
;
3728 /* XXX used to be waiter->prio, not waiter->task->prio */
3729 prio
= __rt_effective_prio(pi_task
, p
->normal_prio
);
3732 * If nothing changed; bail early.
3734 if (p
->pi_top_task
== pi_task
&& prio
== p
->prio
&& !dl_prio(prio
))
3737 rq
= __task_rq_lock(p
, &rf
);
3738 update_rq_clock(rq
);
3740 * Set under pi_lock && rq->lock, such that the value can be used under
3743 * Note that there is loads of tricky to make this pointer cache work
3744 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3745 * ensure a task is de-boosted (pi_task is set to NULL) before the
3746 * task is allowed to run again (and can exit). This ensures the pointer
3747 * points to a blocked task -- which guaratees the task is present.
3749 p
->pi_top_task
= pi_task
;
3752 * For FIFO/RR we only need to set prio, if that matches we're done.
3754 if (prio
== p
->prio
&& !dl_prio(prio
))
3758 * Idle task boosting is a nono in general. There is one
3759 * exception, when PREEMPT_RT and NOHZ is active:
3761 * The idle task calls get_next_timer_interrupt() and holds
3762 * the timer wheel base->lock on the CPU and another CPU wants
3763 * to access the timer (probably to cancel it). We can safely
3764 * ignore the boosting request, as the idle CPU runs this code
3765 * with interrupts disabled and will complete the lock
3766 * protected section without being interrupted. So there is no
3767 * real need to boost.
3769 if (unlikely(p
== rq
->idle
)) {
3770 WARN_ON(p
!= rq
->curr
);
3771 WARN_ON(p
->pi_blocked_on
);
3775 trace_sched_pi_setprio(p
, pi_task
);
3778 if (oldprio
== prio
)
3779 queue_flag
&= ~DEQUEUE_MOVE
;
3781 prev_class
= p
->sched_class
;
3782 queued
= task_on_rq_queued(p
);
3783 running
= task_current(rq
, p
);
3785 dequeue_task(rq
, p
, queue_flag
);
3787 put_prev_task(rq
, p
);
3790 * Boosting condition are:
3791 * 1. -rt task is running and holds mutex A
3792 * --> -dl task blocks on mutex A
3794 * 2. -dl task is running and holds mutex A
3795 * --> -dl task blocks on mutex A and could preempt the
3798 if (dl_prio(prio
)) {
3799 if (!dl_prio(p
->normal_prio
) ||
3800 (pi_task
&& dl_entity_preempt(&pi_task
->dl
, &p
->dl
))) {
3801 p
->dl
.dl_boosted
= 1;
3802 queue_flag
|= ENQUEUE_REPLENISH
;
3804 p
->dl
.dl_boosted
= 0;
3805 p
->sched_class
= &dl_sched_class
;
3806 } else if (rt_prio(prio
)) {
3807 if (dl_prio(oldprio
))
3808 p
->dl
.dl_boosted
= 0;
3810 queue_flag
|= ENQUEUE_HEAD
;
3811 p
->sched_class
= &rt_sched_class
;
3813 if (dl_prio(oldprio
))
3814 p
->dl
.dl_boosted
= 0;
3815 if (rt_prio(oldprio
))
3817 p
->sched_class
= &fair_sched_class
;
3823 enqueue_task(rq
, p
, queue_flag
);
3825 set_curr_task(rq
, p
);
3827 check_class_changed(rq
, p
, prev_class
, oldprio
);
3829 /* Avoid rq from going away on us: */
3831 __task_rq_unlock(rq
, &rf
);
3833 balance_callback(rq
);
3837 static inline int rt_effective_prio(struct task_struct
*p
, int prio
)
3843 void set_user_nice(struct task_struct
*p
, long nice
)
3845 bool queued
, running
;
3846 int old_prio
, delta
;
3850 if (task_nice(p
) == nice
|| nice
< MIN_NICE
|| nice
> MAX_NICE
)
3853 * We have to be careful, if called from sys_setpriority(),
3854 * the task might be in the middle of scheduling on another CPU.
3856 rq
= task_rq_lock(p
, &rf
);
3857 update_rq_clock(rq
);
3860 * The RT priorities are set via sched_setscheduler(), but we still
3861 * allow the 'normal' nice value to be set - but as expected
3862 * it wont have any effect on scheduling until the task is
3863 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3865 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
3866 p
->static_prio
= NICE_TO_PRIO(nice
);
3869 queued
= task_on_rq_queued(p
);
3870 running
= task_current(rq
, p
);
3872 dequeue_task(rq
, p
, DEQUEUE_SAVE
| DEQUEUE_NOCLOCK
);
3874 put_prev_task(rq
, p
);
3876 p
->static_prio
= NICE_TO_PRIO(nice
);
3877 set_load_weight(p
, true);
3879 p
->prio
= effective_prio(p
);
3880 delta
= p
->prio
- old_prio
;
3883 enqueue_task(rq
, p
, ENQUEUE_RESTORE
| ENQUEUE_NOCLOCK
);
3885 * If the task increased its priority or is running and
3886 * lowered its priority, then reschedule its CPU:
3888 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3892 set_curr_task(rq
, p
);
3894 task_rq_unlock(rq
, p
, &rf
);
3896 EXPORT_SYMBOL(set_user_nice
);
3899 * can_nice - check if a task can reduce its nice value
3903 int can_nice(const struct task_struct
*p
, const int nice
)
3905 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
3906 int nice_rlim
= nice_to_rlimit(nice
);
3908 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
3909 capable(CAP_SYS_NICE
));
3912 #ifdef __ARCH_WANT_SYS_NICE
3915 * sys_nice - change the priority of the current process.
3916 * @increment: priority increment
3918 * sys_setpriority is a more generic, but much slower function that
3919 * does similar things.
3921 SYSCALL_DEFINE1(nice
, int, increment
)
3926 * Setpriority might change our priority at the same moment.
3927 * We don't have to worry. Conceptually one call occurs first
3928 * and we have a single winner.
3930 increment
= clamp(increment
, -NICE_WIDTH
, NICE_WIDTH
);
3931 nice
= task_nice(current
) + increment
;
3933 nice
= clamp_val(nice
, MIN_NICE
, MAX_NICE
);
3934 if (increment
< 0 && !can_nice(current
, nice
))
3937 retval
= security_task_setnice(current
, nice
);
3941 set_user_nice(current
, nice
);
3948 * task_prio - return the priority value of a given task.
3949 * @p: the task in question.
3951 * Return: The priority value as seen by users in /proc.
3952 * RT tasks are offset by -200. Normal tasks are centered
3953 * around 0, value goes from -16 to +15.
3955 int task_prio(const struct task_struct
*p
)
3957 return p
->prio
- MAX_RT_PRIO
;
3961 * idle_cpu - is a given CPU idle currently?
3962 * @cpu: the processor in question.
3964 * Return: 1 if the CPU is currently idle. 0 otherwise.
3966 int idle_cpu(int cpu
)
3968 struct rq
*rq
= cpu_rq(cpu
);
3970 if (rq
->curr
!= rq
->idle
)
3977 if (!llist_empty(&rq
->wake_list
))
3985 * idle_task - return the idle task for a given CPU.
3986 * @cpu: the processor in question.
3988 * Return: The idle task for the CPU @cpu.
3990 struct task_struct
*idle_task(int cpu
)
3992 return cpu_rq(cpu
)->idle
;
3996 * find_process_by_pid - find a process with a matching PID value.
3997 * @pid: the pid in question.
3999 * The task of @pid, if found. %NULL otherwise.
4001 static struct task_struct
*find_process_by_pid(pid_t pid
)
4003 return pid
? find_task_by_vpid(pid
) : current
;
4007 * sched_setparam() passes in -1 for its policy, to let the functions
4008 * it calls know not to change it.
4010 #define SETPARAM_POLICY -1
4012 static void __setscheduler_params(struct task_struct
*p
,
4013 const struct sched_attr
*attr
)
4015 int policy
= attr
->sched_policy
;
4017 if (policy
== SETPARAM_POLICY
)
4022 if (dl_policy(policy
))
4023 __setparam_dl(p
, attr
);
4024 else if (fair_policy(policy
))
4025 p
->static_prio
= NICE_TO_PRIO(attr
->sched_nice
);
4028 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4029 * !rt_policy. Always setting this ensures that things like
4030 * getparam()/getattr() don't report silly values for !rt tasks.
4032 p
->rt_priority
= attr
->sched_priority
;
4033 p
->normal_prio
= normal_prio(p
);
4034 set_load_weight(p
, true);
4037 /* Actually do priority change: must hold pi & rq lock. */
4038 static void __setscheduler(struct rq
*rq
, struct task_struct
*p
,
4039 const struct sched_attr
*attr
, bool keep_boost
)
4041 __setscheduler_params(p
, attr
);
4044 * Keep a potential priority boosting if called from
4045 * sched_setscheduler().
4047 p
->prio
= normal_prio(p
);
4049 p
->prio
= rt_effective_prio(p
, p
->prio
);
4051 if (dl_prio(p
->prio
))
4052 p
->sched_class
= &dl_sched_class
;
4053 else if (rt_prio(p
->prio
))
4054 p
->sched_class
= &rt_sched_class
;
4056 p
->sched_class
= &fair_sched_class
;
4060 * Check the target process has a UID that matches the current process's:
4062 static bool check_same_owner(struct task_struct
*p
)
4064 const struct cred
*cred
= current_cred(), *pcred
;
4068 pcred
= __task_cred(p
);
4069 match
= (uid_eq(cred
->euid
, pcred
->euid
) ||
4070 uid_eq(cred
->euid
, pcred
->uid
));
4075 static int __sched_setscheduler(struct task_struct
*p
,
4076 const struct sched_attr
*attr
,
4079 int newprio
= dl_policy(attr
->sched_policy
) ? MAX_DL_PRIO
- 1 :
4080 MAX_RT_PRIO
- 1 - attr
->sched_priority
;
4081 int retval
, oldprio
, oldpolicy
= -1, queued
, running
;
4082 int new_effective_prio
, policy
= attr
->sched_policy
;
4083 const struct sched_class
*prev_class
;
4086 int queue_flags
= DEQUEUE_SAVE
| DEQUEUE_MOVE
| DEQUEUE_NOCLOCK
;
4089 /* The pi code expects interrupts enabled */
4090 BUG_ON(pi
&& in_interrupt());
4092 /* Double check policy once rq lock held: */
4094 reset_on_fork
= p
->sched_reset_on_fork
;
4095 policy
= oldpolicy
= p
->policy
;
4097 reset_on_fork
= !!(attr
->sched_flags
& SCHED_FLAG_RESET_ON_FORK
);
4099 if (!valid_policy(policy
))
4103 if (attr
->sched_flags
& ~(SCHED_FLAG_ALL
| SCHED_FLAG_SUGOV
))
4107 * Valid priorities for SCHED_FIFO and SCHED_RR are
4108 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4109 * SCHED_BATCH and SCHED_IDLE is 0.
4111 if ((p
->mm
&& attr
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4112 (!p
->mm
&& attr
->sched_priority
> MAX_RT_PRIO
-1))
4114 if ((dl_policy(policy
) && !__checkparam_dl(attr
)) ||
4115 (rt_policy(policy
) != (attr
->sched_priority
!= 0)))
4119 * Allow unprivileged RT tasks to decrease priority:
4121 if (user
&& !capable(CAP_SYS_NICE
)) {
4122 if (fair_policy(policy
)) {
4123 if (attr
->sched_nice
< task_nice(p
) &&
4124 !can_nice(p
, attr
->sched_nice
))
4128 if (rt_policy(policy
)) {
4129 unsigned long rlim_rtprio
=
4130 task_rlimit(p
, RLIMIT_RTPRIO
);
4132 /* Can't set/change the rt policy: */
4133 if (policy
!= p
->policy
&& !rlim_rtprio
)
4136 /* Can't increase priority: */
4137 if (attr
->sched_priority
> p
->rt_priority
&&
4138 attr
->sched_priority
> rlim_rtprio
)
4143 * Can't set/change SCHED_DEADLINE policy at all for now
4144 * (safest behavior); in the future we would like to allow
4145 * unprivileged DL tasks to increase their relative deadline
4146 * or reduce their runtime (both ways reducing utilization)
4148 if (dl_policy(policy
))
4152 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4153 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4155 if (idle_policy(p
->policy
) && !idle_policy(policy
)) {
4156 if (!can_nice(p
, task_nice(p
)))
4160 /* Can't change other user's priorities: */
4161 if (!check_same_owner(p
))
4164 /* Normal users shall not reset the sched_reset_on_fork flag: */
4165 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
4170 if (attr
->sched_flags
& SCHED_FLAG_SUGOV
)
4173 retval
= security_task_setscheduler(p
);
4179 * Make sure no PI-waiters arrive (or leave) while we are
4180 * changing the priority of the task:
4182 * To be able to change p->policy safely, the appropriate
4183 * runqueue lock must be held.
4185 rq
= task_rq_lock(p
, &rf
);
4186 update_rq_clock(rq
);
4189 * Changing the policy of the stop threads its a very bad idea:
4191 if (p
== rq
->stop
) {
4192 task_rq_unlock(rq
, p
, &rf
);
4197 * If not changing anything there's no need to proceed further,
4198 * but store a possible modification of reset_on_fork.
4200 if (unlikely(policy
== p
->policy
)) {
4201 if (fair_policy(policy
) && attr
->sched_nice
!= task_nice(p
))
4203 if (rt_policy(policy
) && attr
->sched_priority
!= p
->rt_priority
)
4205 if (dl_policy(policy
) && dl_param_changed(p
, attr
))
4208 p
->sched_reset_on_fork
= reset_on_fork
;
4209 task_rq_unlock(rq
, p
, &rf
);
4215 #ifdef CONFIG_RT_GROUP_SCHED
4217 * Do not allow realtime tasks into groups that have no runtime
4220 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
4221 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
4222 !task_group_is_autogroup(task_group(p
))) {
4223 task_rq_unlock(rq
, p
, &rf
);
4228 if (dl_bandwidth_enabled() && dl_policy(policy
) &&
4229 !(attr
->sched_flags
& SCHED_FLAG_SUGOV
)) {
4230 cpumask_t
*span
= rq
->rd
->span
;
4233 * Don't allow tasks with an affinity mask smaller than
4234 * the entire root_domain to become SCHED_DEADLINE. We
4235 * will also fail if there's no bandwidth available.
4237 if (!cpumask_subset(span
, &p
->cpus_allowed
) ||
4238 rq
->rd
->dl_bw
.bw
== 0) {
4239 task_rq_unlock(rq
, p
, &rf
);
4246 /* Re-check policy now with rq lock held: */
4247 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4248 policy
= oldpolicy
= -1;
4249 task_rq_unlock(rq
, p
, &rf
);
4254 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4255 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4258 if ((dl_policy(policy
) || dl_task(p
)) && sched_dl_overflow(p
, policy
, attr
)) {
4259 task_rq_unlock(rq
, p
, &rf
);
4263 p
->sched_reset_on_fork
= reset_on_fork
;
4268 * Take priority boosted tasks into account. If the new
4269 * effective priority is unchanged, we just store the new
4270 * normal parameters and do not touch the scheduler class and
4271 * the runqueue. This will be done when the task deboost
4274 new_effective_prio
= rt_effective_prio(p
, newprio
);
4275 if (new_effective_prio
== oldprio
)
4276 queue_flags
&= ~DEQUEUE_MOVE
;
4279 queued
= task_on_rq_queued(p
);
4280 running
= task_current(rq
, p
);
4282 dequeue_task(rq
, p
, queue_flags
);
4284 put_prev_task(rq
, p
);
4286 prev_class
= p
->sched_class
;
4287 __setscheduler(rq
, p
, attr
, pi
);
4291 * We enqueue to tail when the priority of a task is
4292 * increased (user space view).
4294 if (oldprio
< p
->prio
)
4295 queue_flags
|= ENQUEUE_HEAD
;
4297 enqueue_task(rq
, p
, queue_flags
);
4300 set_curr_task(rq
, p
);
4302 check_class_changed(rq
, p
, prev_class
, oldprio
);
4304 /* Avoid rq from going away on us: */
4306 task_rq_unlock(rq
, p
, &rf
);
4309 rt_mutex_adjust_pi(p
);
4311 /* Run balance callbacks after we've adjusted the PI chain: */
4312 balance_callback(rq
);
4318 static int _sched_setscheduler(struct task_struct
*p
, int policy
,
4319 const struct sched_param
*param
, bool check
)
4321 struct sched_attr attr
= {
4322 .sched_policy
= policy
,
4323 .sched_priority
= param
->sched_priority
,
4324 .sched_nice
= PRIO_TO_NICE(p
->static_prio
),
4327 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4328 if ((policy
!= SETPARAM_POLICY
) && (policy
& SCHED_RESET_ON_FORK
)) {
4329 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
4330 policy
&= ~SCHED_RESET_ON_FORK
;
4331 attr
.sched_policy
= policy
;
4334 return __sched_setscheduler(p
, &attr
, check
, true);
4337 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4338 * @p: the task in question.
4339 * @policy: new policy.
4340 * @param: structure containing the new RT priority.
4342 * Return: 0 on success. An error code otherwise.
4344 * NOTE that the task may be already dead.
4346 int sched_setscheduler(struct task_struct
*p
, int policy
,
4347 const struct sched_param
*param
)
4349 return _sched_setscheduler(p
, policy
, param
, true);
4351 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4353 int sched_setattr(struct task_struct
*p
, const struct sched_attr
*attr
)
4355 return __sched_setscheduler(p
, attr
, true, true);
4357 EXPORT_SYMBOL_GPL(sched_setattr
);
4359 int sched_setattr_nocheck(struct task_struct
*p
, const struct sched_attr
*attr
)
4361 return __sched_setscheduler(p
, attr
, false, true);
4365 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4366 * @p: the task in question.
4367 * @policy: new policy.
4368 * @param: structure containing the new RT priority.
4370 * Just like sched_setscheduler, only don't bother checking if the
4371 * current context has permission. For example, this is needed in
4372 * stop_machine(): we create temporary high priority worker threads,
4373 * but our caller might not have that capability.
4375 * Return: 0 on success. An error code otherwise.
4377 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
4378 const struct sched_param
*param
)
4380 return _sched_setscheduler(p
, policy
, param
, false);
4382 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck
);
4385 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4387 struct sched_param lparam
;
4388 struct task_struct
*p
;
4391 if (!param
|| pid
< 0)
4393 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4398 p
= find_process_by_pid(pid
);
4400 retval
= sched_setscheduler(p
, policy
, &lparam
);
4407 * Mimics kernel/events/core.c perf_copy_attr().
4409 static int sched_copy_attr(struct sched_attr __user
*uattr
, struct sched_attr
*attr
)
4414 if (!access_ok(VERIFY_WRITE
, uattr
, SCHED_ATTR_SIZE_VER0
))
4417 /* Zero the full structure, so that a short copy will be nice: */
4418 memset(attr
, 0, sizeof(*attr
));
4420 ret
= get_user(size
, &uattr
->size
);
4424 /* Bail out on silly large: */
4425 if (size
> PAGE_SIZE
)
4428 /* ABI compatibility quirk: */
4430 size
= SCHED_ATTR_SIZE_VER0
;
4432 if (size
< SCHED_ATTR_SIZE_VER0
)
4436 * If we're handed a bigger struct than we know of,
4437 * ensure all the unknown bits are 0 - i.e. new
4438 * user-space does not rely on any kernel feature
4439 * extensions we dont know about yet.
4441 if (size
> sizeof(*attr
)) {
4442 unsigned char __user
*addr
;
4443 unsigned char __user
*end
;
4446 addr
= (void __user
*)uattr
+ sizeof(*attr
);
4447 end
= (void __user
*)uattr
+ size
;
4449 for (; addr
< end
; addr
++) {
4450 ret
= get_user(val
, addr
);
4456 size
= sizeof(*attr
);
4459 ret
= copy_from_user(attr
, uattr
, size
);
4464 * XXX: Do we want to be lenient like existing syscalls; or do we want
4465 * to be strict and return an error on out-of-bounds values?
4467 attr
->sched_nice
= clamp(attr
->sched_nice
, MIN_NICE
, MAX_NICE
);
4472 put_user(sizeof(*attr
), &uattr
->size
);
4477 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4478 * @pid: the pid in question.
4479 * @policy: new policy.
4480 * @param: structure containing the new RT priority.
4482 * Return: 0 on success. An error code otherwise.
4484 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
, struct sched_param __user
*, param
)
4489 return do_sched_setscheduler(pid
, policy
, param
);
4493 * sys_sched_setparam - set/change the RT priority of a thread
4494 * @pid: the pid in question.
4495 * @param: structure containing the new RT priority.
4497 * Return: 0 on success. An error code otherwise.
4499 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4501 return do_sched_setscheduler(pid
, SETPARAM_POLICY
, param
);
4505 * sys_sched_setattr - same as above, but with extended sched_attr
4506 * @pid: the pid in question.
4507 * @uattr: structure containing the extended parameters.
4508 * @flags: for future extension.
4510 SYSCALL_DEFINE3(sched_setattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
4511 unsigned int, flags
)
4513 struct sched_attr attr
;
4514 struct task_struct
*p
;
4517 if (!uattr
|| pid
< 0 || flags
)
4520 retval
= sched_copy_attr(uattr
, &attr
);
4524 if ((int)attr
.sched_policy
< 0)
4529 p
= find_process_by_pid(pid
);
4531 retval
= sched_setattr(p
, &attr
);
4538 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4539 * @pid: the pid in question.
4541 * Return: On success, the policy of the thread. Otherwise, a negative error
4544 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
4546 struct task_struct
*p
;
4554 p
= find_process_by_pid(pid
);
4556 retval
= security_task_getscheduler(p
);
4559 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
4566 * sys_sched_getparam - get the RT priority of a thread
4567 * @pid: the pid in question.
4568 * @param: structure containing the RT priority.
4570 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4573 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4575 struct sched_param lp
= { .sched_priority
= 0 };
4576 struct task_struct
*p
;
4579 if (!param
|| pid
< 0)
4583 p
= find_process_by_pid(pid
);
4588 retval
= security_task_getscheduler(p
);
4592 if (task_has_rt_policy(p
))
4593 lp
.sched_priority
= p
->rt_priority
;
4597 * This one might sleep, we cannot do it with a spinlock held ...
4599 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4608 static int sched_read_attr(struct sched_attr __user
*uattr
,
4609 struct sched_attr
*attr
,
4614 if (!access_ok(VERIFY_WRITE
, uattr
, usize
))
4618 * If we're handed a smaller struct than we know of,
4619 * ensure all the unknown bits are 0 - i.e. old
4620 * user-space does not get uncomplete information.
4622 if (usize
< sizeof(*attr
)) {
4623 unsigned char *addr
;
4626 addr
= (void *)attr
+ usize
;
4627 end
= (void *)attr
+ sizeof(*attr
);
4629 for (; addr
< end
; addr
++) {
4637 ret
= copy_to_user(uattr
, attr
, attr
->size
);
4645 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4646 * @pid: the pid in question.
4647 * @uattr: structure containing the extended parameters.
4648 * @size: sizeof(attr) for fwd/bwd comp.
4649 * @flags: for future extension.
4651 SYSCALL_DEFINE4(sched_getattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
4652 unsigned int, size
, unsigned int, flags
)
4654 struct sched_attr attr
= {
4655 .size
= sizeof(struct sched_attr
),
4657 struct task_struct
*p
;
4660 if (!uattr
|| pid
< 0 || size
> PAGE_SIZE
||
4661 size
< SCHED_ATTR_SIZE_VER0
|| flags
)
4665 p
= find_process_by_pid(pid
);
4670 retval
= security_task_getscheduler(p
);
4674 attr
.sched_policy
= p
->policy
;
4675 if (p
->sched_reset_on_fork
)
4676 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
4677 if (task_has_dl_policy(p
))
4678 __getparam_dl(p
, &attr
);
4679 else if (task_has_rt_policy(p
))
4680 attr
.sched_priority
= p
->rt_priority
;
4682 attr
.sched_nice
= task_nice(p
);
4686 retval
= sched_read_attr(uattr
, &attr
, size
);
4694 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
4696 cpumask_var_t cpus_allowed
, new_mask
;
4697 struct task_struct
*p
;
4702 p
= find_process_by_pid(pid
);
4708 /* Prevent p going away */
4712 if (p
->flags
& PF_NO_SETAFFINITY
) {
4716 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
4720 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
4722 goto out_free_cpus_allowed
;
4725 if (!check_same_owner(p
)) {
4727 if (!ns_capable(__task_cred(p
)->user_ns
, CAP_SYS_NICE
)) {
4729 goto out_free_new_mask
;
4734 retval
= security_task_setscheduler(p
);
4736 goto out_free_new_mask
;
4739 cpuset_cpus_allowed(p
, cpus_allowed
);
4740 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
4743 * Since bandwidth control happens on root_domain basis,
4744 * if admission test is enabled, we only admit -deadline
4745 * tasks allowed to run on all the CPUs in the task's
4749 if (task_has_dl_policy(p
) && dl_bandwidth_enabled()) {
4751 if (!cpumask_subset(task_rq(p
)->rd
->span
, new_mask
)) {
4754 goto out_free_new_mask
;
4760 retval
= __set_cpus_allowed_ptr(p
, new_mask
, true);
4763 cpuset_cpus_allowed(p
, cpus_allowed
);
4764 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
4766 * We must have raced with a concurrent cpuset
4767 * update. Just reset the cpus_allowed to the
4768 * cpuset's cpus_allowed
4770 cpumask_copy(new_mask
, cpus_allowed
);
4775 free_cpumask_var(new_mask
);
4776 out_free_cpus_allowed
:
4777 free_cpumask_var(cpus_allowed
);
4783 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4784 struct cpumask
*new_mask
)
4786 if (len
< cpumask_size())
4787 cpumask_clear(new_mask
);
4788 else if (len
> cpumask_size())
4789 len
= cpumask_size();
4791 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4795 * sys_sched_setaffinity - set the CPU affinity of a process
4796 * @pid: pid of the process
4797 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4798 * @user_mask_ptr: user-space pointer to the new CPU mask
4800 * Return: 0 on success. An error code otherwise.
4802 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
4803 unsigned long __user
*, user_mask_ptr
)
4805 cpumask_var_t new_mask
;
4808 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
4811 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
4813 retval
= sched_setaffinity(pid
, new_mask
);
4814 free_cpumask_var(new_mask
);
4818 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
4820 struct task_struct
*p
;
4821 unsigned long flags
;
4827 p
= find_process_by_pid(pid
);
4831 retval
= security_task_getscheduler(p
);
4835 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4836 cpumask_and(mask
, &p
->cpus_allowed
, cpu_active_mask
);
4837 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4846 * sys_sched_getaffinity - get the CPU affinity of a process
4847 * @pid: pid of the process
4848 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4849 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4851 * Return: size of CPU mask copied to user_mask_ptr on success. An
4852 * error code otherwise.
4854 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
4855 unsigned long __user
*, user_mask_ptr
)
4860 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
4862 if (len
& (sizeof(unsigned long)-1))
4865 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
4868 ret
= sched_getaffinity(pid
, mask
);
4870 unsigned int retlen
= min(len
, cpumask_size());
4872 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
4877 free_cpumask_var(mask
);
4883 * sys_sched_yield - yield the current processor to other threads.
4885 * This function yields the current CPU to other tasks. If there are no
4886 * other threads running on this CPU then this function will return.
4890 SYSCALL_DEFINE0(sched_yield
)
4895 local_irq_disable();
4899 schedstat_inc(rq
->yld_count
);
4900 current
->sched_class
->yield_task(rq
);
4903 * Since we are going to call schedule() anyway, there's
4904 * no need to preempt or enable interrupts:
4908 sched_preempt_enable_no_resched();
4915 #ifndef CONFIG_PREEMPT
4916 int __sched
_cond_resched(void)
4918 if (should_resched(0)) {
4919 preempt_schedule_common();
4925 EXPORT_SYMBOL(_cond_resched
);
4929 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4930 * call schedule, and on return reacquire the lock.
4932 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4933 * operations here to prevent schedule() from being called twice (once via
4934 * spin_unlock(), once by hand).
4936 int __cond_resched_lock(spinlock_t
*lock
)
4938 int resched
= should_resched(PREEMPT_LOCK_OFFSET
);
4941 lockdep_assert_held(lock
);
4943 if (spin_needbreak(lock
) || resched
) {
4946 preempt_schedule_common();
4954 EXPORT_SYMBOL(__cond_resched_lock
);
4956 int __sched
__cond_resched_softirq(void)
4958 BUG_ON(!in_softirq());
4960 if (should_resched(SOFTIRQ_DISABLE_OFFSET
)) {
4962 preempt_schedule_common();
4968 EXPORT_SYMBOL(__cond_resched_softirq
);
4971 * yield - yield the current processor to other threads.
4973 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4975 * The scheduler is at all times free to pick the calling task as the most
4976 * eligible task to run, if removing the yield() call from your code breaks
4977 * it, its already broken.
4979 * Typical broken usage is:
4984 * where one assumes that yield() will let 'the other' process run that will
4985 * make event true. If the current task is a SCHED_FIFO task that will never
4986 * happen. Never use yield() as a progress guarantee!!
4988 * If you want to use yield() to wait for something, use wait_event().
4989 * If you want to use yield() to be 'nice' for others, use cond_resched().
4990 * If you still want to use yield(), do not!
4992 void __sched
yield(void)
4994 set_current_state(TASK_RUNNING
);
4997 EXPORT_SYMBOL(yield
);
5000 * yield_to - yield the current processor to another thread in
5001 * your thread group, or accelerate that thread toward the
5002 * processor it's on.
5004 * @preempt: whether task preemption is allowed or not
5006 * It's the caller's job to ensure that the target task struct
5007 * can't go away on us before we can do any checks.
5010 * true (>0) if we indeed boosted the target task.
5011 * false (0) if we failed to boost the target.
5012 * -ESRCH if there's no task to yield to.
5014 int __sched
yield_to(struct task_struct
*p
, bool preempt
)
5016 struct task_struct
*curr
= current
;
5017 struct rq
*rq
, *p_rq
;
5018 unsigned long flags
;
5021 local_irq_save(flags
);
5027 * If we're the only runnable task on the rq and target rq also
5028 * has only one task, there's absolutely no point in yielding.
5030 if (rq
->nr_running
== 1 && p_rq
->nr_running
== 1) {
5035 double_rq_lock(rq
, p_rq
);
5036 if (task_rq(p
) != p_rq
) {
5037 double_rq_unlock(rq
, p_rq
);
5041 if (!curr
->sched_class
->yield_to_task
)
5044 if (curr
->sched_class
!= p
->sched_class
)
5047 if (task_running(p_rq
, p
) || p
->state
)
5050 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
5052 schedstat_inc(rq
->yld_count
);
5054 * Make p's CPU reschedule; pick_next_entity takes care of
5057 if (preempt
&& rq
!= p_rq
)
5062 double_rq_unlock(rq
, p_rq
);
5064 local_irq_restore(flags
);
5071 EXPORT_SYMBOL_GPL(yield_to
);
5073 int io_schedule_prepare(void)
5075 int old_iowait
= current
->in_iowait
;
5077 current
->in_iowait
= 1;
5078 blk_schedule_flush_plug(current
);
5083 void io_schedule_finish(int token
)
5085 current
->in_iowait
= token
;
5089 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5090 * that process accounting knows that this is a task in IO wait state.
5092 long __sched
io_schedule_timeout(long timeout
)
5097 token
= io_schedule_prepare();
5098 ret
= schedule_timeout(timeout
);
5099 io_schedule_finish(token
);
5103 EXPORT_SYMBOL(io_schedule_timeout
);
5105 void io_schedule(void)
5109 token
= io_schedule_prepare();
5111 io_schedule_finish(token
);
5113 EXPORT_SYMBOL(io_schedule
);
5116 * sys_sched_get_priority_max - return maximum RT priority.
5117 * @policy: scheduling class.
5119 * Return: On success, this syscall returns the maximum
5120 * rt_priority that can be used by a given scheduling class.
5121 * On failure, a negative error code is returned.
5123 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5130 ret
= MAX_USER_RT_PRIO
-1;
5132 case SCHED_DEADLINE
:
5143 * sys_sched_get_priority_min - return minimum RT priority.
5144 * @policy: scheduling class.
5146 * Return: On success, this syscall returns the minimum
5147 * rt_priority that can be used by a given scheduling class.
5148 * On failure, a negative error code is returned.
5150 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5159 case SCHED_DEADLINE
:
5168 static int sched_rr_get_interval(pid_t pid
, struct timespec64
*t
)
5170 struct task_struct
*p
;
5171 unsigned int time_slice
;
5181 p
= find_process_by_pid(pid
);
5185 retval
= security_task_getscheduler(p
);
5189 rq
= task_rq_lock(p
, &rf
);
5191 if (p
->sched_class
->get_rr_interval
)
5192 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5193 task_rq_unlock(rq
, p
, &rf
);
5196 jiffies_to_timespec64(time_slice
, t
);
5205 * sys_sched_rr_get_interval - return the default timeslice of a process.
5206 * @pid: pid of the process.
5207 * @interval: userspace pointer to the timeslice value.
5209 * this syscall writes the default timeslice value of a given process
5210 * into the user-space timespec buffer. A value of '0' means infinity.
5212 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5215 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5216 struct timespec __user
*, interval
)
5218 struct timespec64 t
;
5219 int retval
= sched_rr_get_interval(pid
, &t
);
5222 retval
= put_timespec64(&t
, interval
);
5227 #ifdef CONFIG_COMPAT
5228 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval
,
5230 struct compat_timespec __user
*, interval
)
5232 struct timespec64 t
;
5233 int retval
= sched_rr_get_interval(pid
, &t
);
5236 retval
= compat_put_timespec64(&t
, interval
);
5241 void sched_show_task(struct task_struct
*p
)
5243 unsigned long free
= 0;
5246 if (!try_get_task_stack(p
))
5249 printk(KERN_INFO
"%-15.15s %c", p
->comm
, task_state_to_char(p
));
5251 if (p
->state
== TASK_RUNNING
)
5252 printk(KERN_CONT
" running task ");
5253 #ifdef CONFIG_DEBUG_STACK_USAGE
5254 free
= stack_not_used(p
);
5259 ppid
= task_pid_nr(rcu_dereference(p
->real_parent
));
5261 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5262 task_pid_nr(p
), ppid
,
5263 (unsigned long)task_thread_info(p
)->flags
);
5265 print_worker_info(KERN_INFO
, p
);
5266 show_stack(p
, NULL
);
5269 EXPORT_SYMBOL_GPL(sched_show_task
);
5272 state_filter_match(unsigned long state_filter
, struct task_struct
*p
)
5274 /* no filter, everything matches */
5278 /* filter, but doesn't match */
5279 if (!(p
->state
& state_filter
))
5283 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5286 if (state_filter
== TASK_UNINTERRUPTIBLE
&& p
->state
== TASK_IDLE
)
5293 void show_state_filter(unsigned long state_filter
)
5295 struct task_struct
*g
, *p
;
5297 #if BITS_PER_LONG == 32
5299 " task PC stack pid father\n");
5302 " task PC stack pid father\n");
5305 for_each_process_thread(g
, p
) {
5307 * reset the NMI-timeout, listing all files on a slow
5308 * console might take a lot of time:
5309 * Also, reset softlockup watchdogs on all CPUs, because
5310 * another CPU might be blocked waiting for us to process
5313 touch_nmi_watchdog();
5314 touch_all_softlockup_watchdogs();
5315 if (state_filter_match(state_filter
, p
))
5319 #ifdef CONFIG_SCHED_DEBUG
5321 sysrq_sched_debug_show();
5325 * Only show locks if all tasks are dumped:
5328 debug_show_all_locks();
5332 * init_idle - set up an idle thread for a given CPU
5333 * @idle: task in question
5334 * @cpu: CPU the idle task belongs to
5336 * NOTE: this function does not set the idle thread's NEED_RESCHED
5337 * flag, to make booting more robust.
5339 void init_idle(struct task_struct
*idle
, int cpu
)
5341 struct rq
*rq
= cpu_rq(cpu
);
5342 unsigned long flags
;
5344 raw_spin_lock_irqsave(&idle
->pi_lock
, flags
);
5345 raw_spin_lock(&rq
->lock
);
5347 __sched_fork(0, idle
);
5348 idle
->state
= TASK_RUNNING
;
5349 idle
->se
.exec_start
= sched_clock();
5350 idle
->flags
|= PF_IDLE
;
5352 kasan_unpoison_task_stack(idle
);
5356 * Its possible that init_idle() gets called multiple times on a task,
5357 * in that case do_set_cpus_allowed() will not do the right thing.
5359 * And since this is boot we can forgo the serialization.
5361 set_cpus_allowed_common(idle
, cpumask_of(cpu
));
5364 * We're having a chicken and egg problem, even though we are
5365 * holding rq->lock, the CPU isn't yet set to this CPU so the
5366 * lockdep check in task_group() will fail.
5368 * Similar case to sched_fork(). / Alternatively we could
5369 * use task_rq_lock() here and obtain the other rq->lock.
5374 __set_task_cpu(idle
, cpu
);
5377 rq
->curr
= rq
->idle
= idle
;
5378 idle
->on_rq
= TASK_ON_RQ_QUEUED
;
5382 raw_spin_unlock(&rq
->lock
);
5383 raw_spin_unlock_irqrestore(&idle
->pi_lock
, flags
);
5385 /* Set the preempt count _outside_ the spinlocks! */
5386 init_idle_preempt_count(idle
, cpu
);
5389 * The idle tasks have their own, simple scheduling class:
5391 idle
->sched_class
= &idle_sched_class
;
5392 ftrace_graph_init_idle_task(idle
, cpu
);
5393 vtime_init_idle(idle
, cpu
);
5395 sprintf(idle
->comm
, "%s/%d", INIT_TASK_COMM
, cpu
);
5401 int cpuset_cpumask_can_shrink(const struct cpumask
*cur
,
5402 const struct cpumask
*trial
)
5406 if (!cpumask_weight(cur
))
5409 ret
= dl_cpuset_cpumask_can_shrink(cur
, trial
);
5414 int task_can_attach(struct task_struct
*p
,
5415 const struct cpumask
*cs_cpus_allowed
)
5420 * Kthreads which disallow setaffinity shouldn't be moved
5421 * to a new cpuset; we don't want to change their CPU
5422 * affinity and isolating such threads by their set of
5423 * allowed nodes is unnecessary. Thus, cpusets are not
5424 * applicable for such threads. This prevents checking for
5425 * success of set_cpus_allowed_ptr() on all attached tasks
5426 * before cpus_allowed may be changed.
5428 if (p
->flags
& PF_NO_SETAFFINITY
) {
5433 if (dl_task(p
) && !cpumask_intersects(task_rq(p
)->rd
->span
,
5435 ret
= dl_task_can_attach(p
, cs_cpus_allowed
);
5441 bool sched_smp_initialized __read_mostly
;
5443 #ifdef CONFIG_NUMA_BALANCING
5444 /* Migrate current task p to target_cpu */
5445 int migrate_task_to(struct task_struct
*p
, int target_cpu
)
5447 struct migration_arg arg
= { p
, target_cpu
};
5448 int curr_cpu
= task_cpu(p
);
5450 if (curr_cpu
== target_cpu
)
5453 if (!cpumask_test_cpu(target_cpu
, &p
->cpus_allowed
))
5456 /* TODO: This is not properly updating schedstats */
5458 trace_sched_move_numa(p
, curr_cpu
, target_cpu
);
5459 return stop_one_cpu(curr_cpu
, migration_cpu_stop
, &arg
);
5463 * Requeue a task on a given node and accurately track the number of NUMA
5464 * tasks on the runqueues
5466 void sched_setnuma(struct task_struct
*p
, int nid
)
5468 bool queued
, running
;
5472 rq
= task_rq_lock(p
, &rf
);
5473 queued
= task_on_rq_queued(p
);
5474 running
= task_current(rq
, p
);
5477 dequeue_task(rq
, p
, DEQUEUE_SAVE
);
5479 put_prev_task(rq
, p
);
5481 p
->numa_preferred_nid
= nid
;
5484 enqueue_task(rq
, p
, ENQUEUE_RESTORE
| ENQUEUE_NOCLOCK
);
5486 set_curr_task(rq
, p
);
5487 task_rq_unlock(rq
, p
, &rf
);
5489 #endif /* CONFIG_NUMA_BALANCING */
5491 #ifdef CONFIG_HOTPLUG_CPU
5493 * Ensure that the idle task is using init_mm right before its CPU goes
5496 void idle_task_exit(void)
5498 struct mm_struct
*mm
= current
->active_mm
;
5500 BUG_ON(cpu_online(smp_processor_id()));
5502 if (mm
!= &init_mm
) {
5503 switch_mm(mm
, &init_mm
, current
);
5504 finish_arch_post_lock_switch();
5510 * Since this CPU is going 'away' for a while, fold any nr_active delta
5511 * we might have. Assumes we're called after migrate_tasks() so that the
5512 * nr_active count is stable. We need to take the teardown thread which
5513 * is calling this into account, so we hand in adjust = 1 to the load
5516 * Also see the comment "Global load-average calculations".
5518 static void calc_load_migrate(struct rq
*rq
)
5520 long delta
= calc_load_fold_active(rq
, 1);
5522 atomic_long_add(delta
, &calc_load_tasks
);
5525 static void put_prev_task_fake(struct rq
*rq
, struct task_struct
*prev
)
5529 static const struct sched_class fake_sched_class
= {
5530 .put_prev_task
= put_prev_task_fake
,
5533 static struct task_struct fake_task
= {
5535 * Avoid pull_{rt,dl}_task()
5537 .prio
= MAX_PRIO
+ 1,
5538 .sched_class
= &fake_sched_class
,
5542 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5543 * try_to_wake_up()->select_task_rq().
5545 * Called with rq->lock held even though we'er in stop_machine() and
5546 * there's no concurrency possible, we hold the required locks anyway
5547 * because of lock validation efforts.
5549 static void migrate_tasks(struct rq
*dead_rq
, struct rq_flags
*rf
)
5551 struct rq
*rq
= dead_rq
;
5552 struct task_struct
*next
, *stop
= rq
->stop
;
5553 struct rq_flags orf
= *rf
;
5557 * Fudge the rq selection such that the below task selection loop
5558 * doesn't get stuck on the currently eligible stop task.
5560 * We're currently inside stop_machine() and the rq is either stuck
5561 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5562 * either way we should never end up calling schedule() until we're
5568 * put_prev_task() and pick_next_task() sched
5569 * class method both need to have an up-to-date
5570 * value of rq->clock[_task]
5572 update_rq_clock(rq
);
5576 * There's this thread running, bail when that's the only
5579 if (rq
->nr_running
== 1)
5583 * pick_next_task() assumes pinned rq->lock:
5585 next
= pick_next_task(rq
, &fake_task
, rf
);
5587 put_prev_task(rq
, next
);
5590 * Rules for changing task_struct::cpus_allowed are holding
5591 * both pi_lock and rq->lock, such that holding either
5592 * stabilizes the mask.
5594 * Drop rq->lock is not quite as disastrous as it usually is
5595 * because !cpu_active at this point, which means load-balance
5596 * will not interfere. Also, stop-machine.
5599 raw_spin_lock(&next
->pi_lock
);
5603 * Since we're inside stop-machine, _nothing_ should have
5604 * changed the task, WARN if weird stuff happened, because in
5605 * that case the above rq->lock drop is a fail too.
5607 if (WARN_ON(task_rq(next
) != rq
|| !task_on_rq_queued(next
))) {
5608 raw_spin_unlock(&next
->pi_lock
);
5612 /* Find suitable destination for @next, with force if needed. */
5613 dest_cpu
= select_fallback_rq(dead_rq
->cpu
, next
);
5614 rq
= __migrate_task(rq
, rf
, next
, dest_cpu
);
5615 if (rq
!= dead_rq
) {
5621 raw_spin_unlock(&next
->pi_lock
);
5626 #endif /* CONFIG_HOTPLUG_CPU */
5628 void set_rq_online(struct rq
*rq
)
5631 const struct sched_class
*class;
5633 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
5636 for_each_class(class) {
5637 if (class->rq_online
)
5638 class->rq_online(rq
);
5643 void set_rq_offline(struct rq
*rq
)
5646 const struct sched_class
*class;
5648 for_each_class(class) {
5649 if (class->rq_offline
)
5650 class->rq_offline(rq
);
5653 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
5658 static void set_cpu_rq_start_time(unsigned int cpu
)
5660 struct rq
*rq
= cpu_rq(cpu
);
5662 rq
->age_stamp
= sched_clock_cpu(cpu
);
5666 * used to mark begin/end of suspend/resume:
5668 static int num_cpus_frozen
;
5671 * Update cpusets according to cpu_active mask. If cpusets are
5672 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5673 * around partition_sched_domains().
5675 * If we come here as part of a suspend/resume, don't touch cpusets because we
5676 * want to restore it back to its original state upon resume anyway.
5678 static void cpuset_cpu_active(void)
5680 if (cpuhp_tasks_frozen
) {
5682 * num_cpus_frozen tracks how many CPUs are involved in suspend
5683 * resume sequence. As long as this is not the last online
5684 * operation in the resume sequence, just build a single sched
5685 * domain, ignoring cpusets.
5687 partition_sched_domains(1, NULL
, NULL
);
5688 if (--num_cpus_frozen
)
5691 * This is the last CPU online operation. So fall through and
5692 * restore the original sched domains by considering the
5693 * cpuset configurations.
5695 cpuset_force_rebuild();
5697 cpuset_update_active_cpus();
5700 static int cpuset_cpu_inactive(unsigned int cpu
)
5702 if (!cpuhp_tasks_frozen
) {
5703 if (dl_cpu_busy(cpu
))
5705 cpuset_update_active_cpus();
5708 partition_sched_domains(1, NULL
, NULL
);
5713 int sched_cpu_activate(unsigned int cpu
)
5715 struct rq
*rq
= cpu_rq(cpu
);
5718 set_cpu_active(cpu
, true);
5720 if (sched_smp_initialized
) {
5721 sched_domains_numa_masks_set(cpu
);
5722 cpuset_cpu_active();
5726 * Put the rq online, if not already. This happens:
5728 * 1) In the early boot process, because we build the real domains
5729 * after all CPUs have been brought up.
5731 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5734 rq_lock_irqsave(rq
, &rf
);
5736 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5739 rq_unlock_irqrestore(rq
, &rf
);
5741 update_max_interval();
5746 int sched_cpu_deactivate(unsigned int cpu
)
5750 set_cpu_active(cpu
, false);
5752 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5753 * users of this state to go away such that all new such users will
5756 * Do sync before park smpboot threads to take care the rcu boost case.
5758 synchronize_rcu_mult(call_rcu
, call_rcu_sched
);
5760 if (!sched_smp_initialized
)
5763 ret
= cpuset_cpu_inactive(cpu
);
5765 set_cpu_active(cpu
, true);
5768 sched_domains_numa_masks_clear(cpu
);
5772 static void sched_rq_cpu_starting(unsigned int cpu
)
5774 struct rq
*rq
= cpu_rq(cpu
);
5776 rq
->calc_load_update
= calc_load_update
;
5777 update_max_interval();
5780 int sched_cpu_starting(unsigned int cpu
)
5782 set_cpu_rq_start_time(cpu
);
5783 sched_rq_cpu_starting(cpu
);
5787 #ifdef CONFIG_HOTPLUG_CPU
5788 int sched_cpu_dying(unsigned int cpu
)
5790 struct rq
*rq
= cpu_rq(cpu
);
5793 /* Handle pending wakeups and then migrate everything off */
5794 sched_ttwu_pending();
5796 rq_lock_irqsave(rq
, &rf
);
5798 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5801 migrate_tasks(rq
, &rf
);
5802 BUG_ON(rq
->nr_running
!= 1);
5803 rq_unlock_irqrestore(rq
, &rf
);
5805 calc_load_migrate(rq
);
5806 update_max_interval();
5807 nohz_balance_exit_idle(cpu
);
5813 #ifdef CONFIG_SCHED_SMT
5814 DEFINE_STATIC_KEY_FALSE(sched_smt_present
);
5816 static void sched_init_smt(void)
5819 * We've enumerated all CPUs and will assume that if any CPU
5820 * has SMT siblings, CPU0 will too.
5822 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5823 static_branch_enable(&sched_smt_present
);
5826 static inline void sched_init_smt(void) { }
5829 void __init
sched_init_smp(void)
5834 * There's no userspace yet to cause hotplug operations; hence all the
5835 * CPU masks are stable and all blatant races in the below code cannot
5838 mutex_lock(&sched_domains_mutex
);
5839 sched_init_domains(cpu_active_mask
);
5840 mutex_unlock(&sched_domains_mutex
);
5842 /* Move init over to a non-isolated CPU */
5843 if (set_cpus_allowed_ptr(current
, housekeeping_cpumask(HK_FLAG_DOMAIN
)) < 0)
5845 sched_init_granularity();
5847 init_sched_rt_class();
5848 init_sched_dl_class();
5852 sched_smp_initialized
= true;
5855 static int __init
migration_init(void)
5857 sched_rq_cpu_starting(smp_processor_id());
5860 early_initcall(migration_init
);
5863 void __init
sched_init_smp(void)
5865 sched_init_granularity();
5867 #endif /* CONFIG_SMP */
5869 int in_sched_functions(unsigned long addr
)
5871 return in_lock_functions(addr
) ||
5872 (addr
>= (unsigned long)__sched_text_start
5873 && addr
< (unsigned long)__sched_text_end
);
5876 #ifdef CONFIG_CGROUP_SCHED
5878 * Default task group.
5879 * Every task in system belongs to this group at bootup.
5881 struct task_group root_task_group
;
5882 LIST_HEAD(task_groups
);
5884 /* Cacheline aligned slab cache for task_group */
5885 static struct kmem_cache
*task_group_cache __read_mostly
;
5888 DECLARE_PER_CPU(cpumask_var_t
, load_balance_mask
);
5889 DECLARE_PER_CPU(cpumask_var_t
, select_idle_mask
);
5891 void __init
sched_init(void)
5894 unsigned long alloc_size
= 0, ptr
;
5899 #ifdef CONFIG_FAIR_GROUP_SCHED
5900 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
5902 #ifdef CONFIG_RT_GROUP_SCHED
5903 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
5906 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
5908 #ifdef CONFIG_FAIR_GROUP_SCHED
5909 root_task_group
.se
= (struct sched_entity
**)ptr
;
5910 ptr
+= nr_cpu_ids
* sizeof(void **);
5912 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
5913 ptr
+= nr_cpu_ids
* sizeof(void **);
5915 #endif /* CONFIG_FAIR_GROUP_SCHED */
5916 #ifdef CONFIG_RT_GROUP_SCHED
5917 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
5918 ptr
+= nr_cpu_ids
* sizeof(void **);
5920 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
5921 ptr
+= nr_cpu_ids
* sizeof(void **);
5923 #endif /* CONFIG_RT_GROUP_SCHED */
5925 #ifdef CONFIG_CPUMASK_OFFSTACK
5926 for_each_possible_cpu(i
) {
5927 per_cpu(load_balance_mask
, i
) = (cpumask_var_t
)kzalloc_node(
5928 cpumask_size(), GFP_KERNEL
, cpu_to_node(i
));
5929 per_cpu(select_idle_mask
, i
) = (cpumask_var_t
)kzalloc_node(
5930 cpumask_size(), GFP_KERNEL
, cpu_to_node(i
));
5932 #endif /* CONFIG_CPUMASK_OFFSTACK */
5934 init_rt_bandwidth(&def_rt_bandwidth
, global_rt_period(), global_rt_runtime());
5935 init_dl_bandwidth(&def_dl_bandwidth
, global_rt_period(), global_rt_runtime());
5938 init_defrootdomain();
5941 #ifdef CONFIG_RT_GROUP_SCHED
5942 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
5943 global_rt_period(), global_rt_runtime());
5944 #endif /* CONFIG_RT_GROUP_SCHED */
5946 #ifdef CONFIG_CGROUP_SCHED
5947 task_group_cache
= KMEM_CACHE(task_group
, 0);
5949 list_add(&root_task_group
.list
, &task_groups
);
5950 INIT_LIST_HEAD(&root_task_group
.children
);
5951 INIT_LIST_HEAD(&root_task_group
.siblings
);
5952 autogroup_init(&init_task
);
5953 #endif /* CONFIG_CGROUP_SCHED */
5955 for_each_possible_cpu(i
) {
5959 raw_spin_lock_init(&rq
->lock
);
5961 rq
->calc_load_active
= 0;
5962 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
5963 init_cfs_rq(&rq
->cfs
);
5964 init_rt_rq(&rq
->rt
);
5965 init_dl_rq(&rq
->dl
);
5966 #ifdef CONFIG_FAIR_GROUP_SCHED
5967 root_task_group
.shares
= ROOT_TASK_GROUP_LOAD
;
5968 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
5969 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
5971 * How much CPU bandwidth does root_task_group get?
5973 * In case of task-groups formed thr' the cgroup filesystem, it
5974 * gets 100% of the CPU resources in the system. This overall
5975 * system CPU resource is divided among the tasks of
5976 * root_task_group and its child task-groups in a fair manner,
5977 * based on each entity's (task or task-group's) weight
5978 * (se->load.weight).
5980 * In other words, if root_task_group has 10 tasks of weight
5981 * 1024) and two child groups A0 and A1 (of weight 1024 each),
5982 * then A0's share of the CPU resource is:
5984 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
5986 * We achieve this by letting root_task_group's tasks sit
5987 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
5989 init_cfs_bandwidth(&root_task_group
.cfs_bandwidth
);
5990 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
5991 #endif /* CONFIG_FAIR_GROUP_SCHED */
5993 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
5994 #ifdef CONFIG_RT_GROUP_SCHED
5995 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
5998 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
5999 rq
->cpu_load
[j
] = 0;
6004 rq
->cpu_capacity
= rq
->cpu_capacity_orig
= SCHED_CAPACITY_SCALE
;
6005 rq
->balance_callback
= NULL
;
6006 rq
->active_balance
= 0;
6007 rq
->next_balance
= jiffies
;
6012 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
6013 rq
->max_idle_balance_cost
= sysctl_sched_migration_cost
;
6015 INIT_LIST_HEAD(&rq
->cfs_tasks
);
6017 rq_attach_root(rq
, &def_root_domain
);
6018 #ifdef CONFIG_NO_HZ_COMMON
6019 rq
->last_load_update_tick
= jiffies
;
6022 #ifdef CONFIG_NO_HZ_FULL
6023 rq
->last_sched_tick
= 0;
6025 #endif /* CONFIG_SMP */
6027 atomic_set(&rq
->nr_iowait
, 0);
6030 set_load_weight(&init_task
, false);
6033 * The boot idle thread does lazy MMU switching as well:
6036 enter_lazy_tlb(&init_mm
, current
);
6039 * Make us the idle thread. Technically, schedule() should not be
6040 * called from this thread, however somewhere below it might be,
6041 * but because we are the idle thread, we just pick up running again
6042 * when this runqueue becomes "idle".
6044 init_idle(current
, smp_processor_id());
6046 calc_load_update
= jiffies
+ LOAD_FREQ
;
6049 idle_thread_set_boot_cpu();
6050 set_cpu_rq_start_time(smp_processor_id());
6052 init_sched_fair_class();
6056 scheduler_running
= 1;
6059 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6060 static inline int preempt_count_equals(int preempt_offset
)
6062 int nested
= preempt_count() + rcu_preempt_depth();
6064 return (nested
== preempt_offset
);
6067 void __might_sleep(const char *file
, int line
, int preempt_offset
)
6070 * Blocking primitives will set (and therefore destroy) current->state,
6071 * since we will exit with TASK_RUNNING make sure we enter with it,
6072 * otherwise we will destroy state.
6074 WARN_ONCE(current
->state
!= TASK_RUNNING
&& current
->task_state_change
,
6075 "do not call blocking ops when !TASK_RUNNING; "
6076 "state=%lx set at [<%p>] %pS\n",
6078 (void *)current
->task_state_change
,
6079 (void *)current
->task_state_change
);
6081 ___might_sleep(file
, line
, preempt_offset
);
6083 EXPORT_SYMBOL(__might_sleep
);
6085 void ___might_sleep(const char *file
, int line
, int preempt_offset
)
6087 /* Ratelimiting timestamp: */
6088 static unsigned long prev_jiffy
;
6090 unsigned long preempt_disable_ip
;
6092 /* WARN_ON_ONCE() by default, no rate limit required: */
6095 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled() &&
6096 !is_idle_task(current
)) ||
6097 system_state
== SYSTEM_BOOTING
|| system_state
> SYSTEM_RUNNING
||
6101 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6103 prev_jiffy
= jiffies
;
6105 /* Save this before calling printk(), since that will clobber it: */
6106 preempt_disable_ip
= get_preempt_disable_ip(current
);
6109 "BUG: sleeping function called from invalid context at %s:%d\n",
6112 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6113 in_atomic(), irqs_disabled(),
6114 current
->pid
, current
->comm
);
6116 if (task_stack_end_corrupted(current
))
6117 printk(KERN_EMERG
"Thread overran stack, or stack corrupted\n");
6119 debug_show_held_locks(current
);
6120 if (irqs_disabled())
6121 print_irqtrace_events(current
);
6122 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT
)
6123 && !preempt_count_equals(preempt_offset
)) {
6124 pr_err("Preemption disabled at:");
6125 print_ip_sym(preempt_disable_ip
);
6129 add_taint(TAINT_WARN
, LOCKDEP_STILL_OK
);
6131 EXPORT_SYMBOL(___might_sleep
);
6134 #ifdef CONFIG_MAGIC_SYSRQ
6135 void normalize_rt_tasks(void)
6137 struct task_struct
*g
, *p
;
6138 struct sched_attr attr
= {
6139 .sched_policy
= SCHED_NORMAL
,
6142 read_lock(&tasklist_lock
);
6143 for_each_process_thread(g
, p
) {
6145 * Only normalize user tasks:
6147 if (p
->flags
& PF_KTHREAD
)
6150 p
->se
.exec_start
= 0;
6151 schedstat_set(p
->se
.statistics
.wait_start
, 0);
6152 schedstat_set(p
->se
.statistics
.sleep_start
, 0);
6153 schedstat_set(p
->se
.statistics
.block_start
, 0);
6155 if (!dl_task(p
) && !rt_task(p
)) {
6157 * Renice negative nice level userspace
6160 if (task_nice(p
) < 0)
6161 set_user_nice(p
, 0);
6165 __sched_setscheduler(p
, &attr
, false, false);
6167 read_unlock(&tasklist_lock
);
6170 #endif /* CONFIG_MAGIC_SYSRQ */
6172 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6174 * These functions are only useful for the IA64 MCA handling, or kdb.
6176 * They can only be called when the whole system has been
6177 * stopped - every CPU needs to be quiescent, and no scheduling
6178 * activity can take place. Using them for anything else would
6179 * be a serious bug, and as a result, they aren't even visible
6180 * under any other configuration.
6184 * curr_task - return the current task for a given CPU.
6185 * @cpu: the processor in question.
6187 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6189 * Return: The current task for @cpu.
6191 struct task_struct
*curr_task(int cpu
)
6193 return cpu_curr(cpu
);
6196 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6200 * set_curr_task - set the current task for a given CPU.
6201 * @cpu: the processor in question.
6202 * @p: the task pointer to set.
6204 * Description: This function must only be used when non-maskable interrupts
6205 * are serviced on a separate stack. It allows the architecture to switch the
6206 * notion of the current task on a CPU in a non-blocking manner. This function
6207 * must be called with all CPU's synchronized, and interrupts disabled, the
6208 * and caller must save the original value of the current task (see
6209 * curr_task() above) and restore that value before reenabling interrupts and
6210 * re-starting the system.
6212 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6214 void ia64_set_curr_task(int cpu
, struct task_struct
*p
)
6221 #ifdef CONFIG_CGROUP_SCHED
6222 /* task_group_lock serializes the addition/removal of task groups */
6223 static DEFINE_SPINLOCK(task_group_lock
);
6225 static void sched_free_group(struct task_group
*tg
)
6227 free_fair_sched_group(tg
);
6228 free_rt_sched_group(tg
);
6230 kmem_cache_free(task_group_cache
, tg
);
6233 /* allocate runqueue etc for a new task group */
6234 struct task_group
*sched_create_group(struct task_group
*parent
)
6236 struct task_group
*tg
;
6238 tg
= kmem_cache_alloc(task_group_cache
, GFP_KERNEL
| __GFP_ZERO
);
6240 return ERR_PTR(-ENOMEM
);
6242 if (!alloc_fair_sched_group(tg
, parent
))
6245 if (!alloc_rt_sched_group(tg
, parent
))
6251 sched_free_group(tg
);
6252 return ERR_PTR(-ENOMEM
);
6255 void sched_online_group(struct task_group
*tg
, struct task_group
*parent
)
6257 unsigned long flags
;
6259 spin_lock_irqsave(&task_group_lock
, flags
);
6260 list_add_rcu(&tg
->list
, &task_groups
);
6262 /* Root should already exist: */
6265 tg
->parent
= parent
;
6266 INIT_LIST_HEAD(&tg
->children
);
6267 list_add_rcu(&tg
->siblings
, &parent
->children
);
6268 spin_unlock_irqrestore(&task_group_lock
, flags
);
6270 online_fair_sched_group(tg
);
6273 /* rcu callback to free various structures associated with a task group */
6274 static void sched_free_group_rcu(struct rcu_head
*rhp
)
6276 /* Now it should be safe to free those cfs_rqs: */
6277 sched_free_group(container_of(rhp
, struct task_group
, rcu
));
6280 void sched_destroy_group(struct task_group
*tg
)
6282 /* Wait for possible concurrent references to cfs_rqs complete: */
6283 call_rcu(&tg
->rcu
, sched_free_group_rcu
);
6286 void sched_offline_group(struct task_group
*tg
)
6288 unsigned long flags
;
6290 /* End participation in shares distribution: */
6291 unregister_fair_sched_group(tg
);
6293 spin_lock_irqsave(&task_group_lock
, flags
);
6294 list_del_rcu(&tg
->list
);
6295 list_del_rcu(&tg
->siblings
);
6296 spin_unlock_irqrestore(&task_group_lock
, flags
);
6299 static void sched_change_group(struct task_struct
*tsk
, int type
)
6301 struct task_group
*tg
;
6304 * All callers are synchronized by task_rq_lock(); we do not use RCU
6305 * which is pointless here. Thus, we pass "true" to task_css_check()
6306 * to prevent lockdep warnings.
6308 tg
= container_of(task_css_check(tsk
, cpu_cgrp_id
, true),
6309 struct task_group
, css
);
6310 tg
= autogroup_task_group(tsk
, tg
);
6311 tsk
->sched_task_group
= tg
;
6313 #ifdef CONFIG_FAIR_GROUP_SCHED
6314 if (tsk
->sched_class
->task_change_group
)
6315 tsk
->sched_class
->task_change_group(tsk
, type
);
6318 set_task_rq(tsk
, task_cpu(tsk
));
6322 * Change task's runqueue when it moves between groups.
6324 * The caller of this function should have put the task in its new group by
6325 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6328 void sched_move_task(struct task_struct
*tsk
)
6330 int queued
, running
, queue_flags
=
6331 DEQUEUE_SAVE
| DEQUEUE_MOVE
| DEQUEUE_NOCLOCK
;
6335 rq
= task_rq_lock(tsk
, &rf
);
6336 update_rq_clock(rq
);
6338 running
= task_current(rq
, tsk
);
6339 queued
= task_on_rq_queued(tsk
);
6342 dequeue_task(rq
, tsk
, queue_flags
);
6344 put_prev_task(rq
, tsk
);
6346 sched_change_group(tsk
, TASK_MOVE_GROUP
);
6349 enqueue_task(rq
, tsk
, queue_flags
);
6351 set_curr_task(rq
, tsk
);
6353 task_rq_unlock(rq
, tsk
, &rf
);
6356 static inline struct task_group
*css_tg(struct cgroup_subsys_state
*css
)
6358 return css
? container_of(css
, struct task_group
, css
) : NULL
;
6361 static struct cgroup_subsys_state
*
6362 cpu_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
6364 struct task_group
*parent
= css_tg(parent_css
);
6365 struct task_group
*tg
;
6368 /* This is early initialization for the top cgroup */
6369 return &root_task_group
.css
;
6372 tg
= sched_create_group(parent
);
6374 return ERR_PTR(-ENOMEM
);
6379 /* Expose task group only after completing cgroup initialization */
6380 static int cpu_cgroup_css_online(struct cgroup_subsys_state
*css
)
6382 struct task_group
*tg
= css_tg(css
);
6383 struct task_group
*parent
= css_tg(css
->parent
);
6386 sched_online_group(tg
, parent
);
6390 static void cpu_cgroup_css_released(struct cgroup_subsys_state
*css
)
6392 struct task_group
*tg
= css_tg(css
);
6394 sched_offline_group(tg
);
6397 static void cpu_cgroup_css_free(struct cgroup_subsys_state
*css
)
6399 struct task_group
*tg
= css_tg(css
);
6402 * Relies on the RCU grace period between css_released() and this.
6404 sched_free_group(tg
);
6408 * This is called before wake_up_new_task(), therefore we really only
6409 * have to set its group bits, all the other stuff does not apply.
6411 static void cpu_cgroup_fork(struct task_struct
*task
)
6416 rq
= task_rq_lock(task
, &rf
);
6418 update_rq_clock(rq
);
6419 sched_change_group(task
, TASK_SET_GROUP
);
6421 task_rq_unlock(rq
, task
, &rf
);
6424 static int cpu_cgroup_can_attach(struct cgroup_taskset
*tset
)
6426 struct task_struct
*task
;
6427 struct cgroup_subsys_state
*css
;
6430 cgroup_taskset_for_each(task
, css
, tset
) {
6431 #ifdef CONFIG_RT_GROUP_SCHED
6432 if (!sched_rt_can_attach(css_tg(css
), task
))
6435 /* We don't support RT-tasks being in separate groups */
6436 if (task
->sched_class
!= &fair_sched_class
)
6440 * Serialize against wake_up_new_task() such that if its
6441 * running, we're sure to observe its full state.
6443 raw_spin_lock_irq(&task
->pi_lock
);
6445 * Avoid calling sched_move_task() before wake_up_new_task()
6446 * has happened. This would lead to problems with PELT, due to
6447 * move wanting to detach+attach while we're not attached yet.
6449 if (task
->state
== TASK_NEW
)
6451 raw_spin_unlock_irq(&task
->pi_lock
);
6459 static void cpu_cgroup_attach(struct cgroup_taskset
*tset
)
6461 struct task_struct
*task
;
6462 struct cgroup_subsys_state
*css
;
6464 cgroup_taskset_for_each(task
, css
, tset
)
6465 sched_move_task(task
);
6468 #ifdef CONFIG_FAIR_GROUP_SCHED
6469 static int cpu_shares_write_u64(struct cgroup_subsys_state
*css
,
6470 struct cftype
*cftype
, u64 shareval
)
6472 return sched_group_set_shares(css_tg(css
), scale_load(shareval
));
6475 static u64
cpu_shares_read_u64(struct cgroup_subsys_state
*css
,
6478 struct task_group
*tg
= css_tg(css
);
6480 return (u64
) scale_load_down(tg
->shares
);
6483 #ifdef CONFIG_CFS_BANDWIDTH
6484 static DEFINE_MUTEX(cfs_constraints_mutex
);
6486 const u64 max_cfs_quota_period
= 1 * NSEC_PER_SEC
; /* 1s */
6487 const u64 min_cfs_quota_period
= 1 * NSEC_PER_MSEC
; /* 1ms */
6489 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
);
6491 static int tg_set_cfs_bandwidth(struct task_group
*tg
, u64 period
, u64 quota
)
6493 int i
, ret
= 0, runtime_enabled
, runtime_was_enabled
;
6494 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
6496 if (tg
== &root_task_group
)
6500 * Ensure we have at some amount of bandwidth every period. This is
6501 * to prevent reaching a state of large arrears when throttled via
6502 * entity_tick() resulting in prolonged exit starvation.
6504 if (quota
< min_cfs_quota_period
|| period
< min_cfs_quota_period
)
6508 * Likewise, bound things on the otherside by preventing insane quota
6509 * periods. This also allows us to normalize in computing quota
6512 if (period
> max_cfs_quota_period
)
6516 * Prevent race between setting of cfs_rq->runtime_enabled and
6517 * unthrottle_offline_cfs_rqs().
6520 mutex_lock(&cfs_constraints_mutex
);
6521 ret
= __cfs_schedulable(tg
, period
, quota
);
6525 runtime_enabled
= quota
!= RUNTIME_INF
;
6526 runtime_was_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
6528 * If we need to toggle cfs_bandwidth_used, off->on must occur
6529 * before making related changes, and on->off must occur afterwards
6531 if (runtime_enabled
&& !runtime_was_enabled
)
6532 cfs_bandwidth_usage_inc();
6533 raw_spin_lock_irq(&cfs_b
->lock
);
6534 cfs_b
->period
= ns_to_ktime(period
);
6535 cfs_b
->quota
= quota
;
6537 __refill_cfs_bandwidth_runtime(cfs_b
);
6539 /* Restart the period timer (if active) to handle new period expiry: */
6540 if (runtime_enabled
)
6541 start_cfs_bandwidth(cfs_b
);
6543 raw_spin_unlock_irq(&cfs_b
->lock
);
6545 for_each_online_cpu(i
) {
6546 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[i
];
6547 struct rq
*rq
= cfs_rq
->rq
;
6550 rq_lock_irq(rq
, &rf
);
6551 cfs_rq
->runtime_enabled
= runtime_enabled
;
6552 cfs_rq
->runtime_remaining
= 0;
6554 if (cfs_rq
->throttled
)
6555 unthrottle_cfs_rq(cfs_rq
);
6556 rq_unlock_irq(rq
, &rf
);
6558 if (runtime_was_enabled
&& !runtime_enabled
)
6559 cfs_bandwidth_usage_dec();
6561 mutex_unlock(&cfs_constraints_mutex
);
6567 int tg_set_cfs_quota(struct task_group
*tg
, long cfs_quota_us
)
6571 period
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
6572 if (cfs_quota_us
< 0)
6573 quota
= RUNTIME_INF
;
6575 quota
= (u64
)cfs_quota_us
* NSEC_PER_USEC
;
6577 return tg_set_cfs_bandwidth(tg
, period
, quota
);
6580 long tg_get_cfs_quota(struct task_group
*tg
)
6584 if (tg
->cfs_bandwidth
.quota
== RUNTIME_INF
)
6587 quota_us
= tg
->cfs_bandwidth
.quota
;
6588 do_div(quota_us
, NSEC_PER_USEC
);
6593 int tg_set_cfs_period(struct task_group
*tg
, long cfs_period_us
)
6597 period
= (u64
)cfs_period_us
* NSEC_PER_USEC
;
6598 quota
= tg
->cfs_bandwidth
.quota
;
6600 return tg_set_cfs_bandwidth(tg
, period
, quota
);
6603 long tg_get_cfs_period(struct task_group
*tg
)
6607 cfs_period_us
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
6608 do_div(cfs_period_us
, NSEC_PER_USEC
);
6610 return cfs_period_us
;
6613 static s64
cpu_cfs_quota_read_s64(struct cgroup_subsys_state
*css
,
6616 return tg_get_cfs_quota(css_tg(css
));
6619 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state
*css
,
6620 struct cftype
*cftype
, s64 cfs_quota_us
)
6622 return tg_set_cfs_quota(css_tg(css
), cfs_quota_us
);
6625 static u64
cpu_cfs_period_read_u64(struct cgroup_subsys_state
*css
,
6628 return tg_get_cfs_period(css_tg(css
));
6631 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state
*css
,
6632 struct cftype
*cftype
, u64 cfs_period_us
)
6634 return tg_set_cfs_period(css_tg(css
), cfs_period_us
);
6637 struct cfs_schedulable_data
{
6638 struct task_group
*tg
;
6643 * normalize group quota/period to be quota/max_period
6644 * note: units are usecs
6646 static u64
normalize_cfs_quota(struct task_group
*tg
,
6647 struct cfs_schedulable_data
*d
)
6655 period
= tg_get_cfs_period(tg
);
6656 quota
= tg_get_cfs_quota(tg
);
6659 /* note: these should typically be equivalent */
6660 if (quota
== RUNTIME_INF
|| quota
== -1)
6663 return to_ratio(period
, quota
);
6666 static int tg_cfs_schedulable_down(struct task_group
*tg
, void *data
)
6668 struct cfs_schedulable_data
*d
= data
;
6669 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
6670 s64 quota
= 0, parent_quota
= -1;
6673 quota
= RUNTIME_INF
;
6675 struct cfs_bandwidth
*parent_b
= &tg
->parent
->cfs_bandwidth
;
6677 quota
= normalize_cfs_quota(tg
, d
);
6678 parent_quota
= parent_b
->hierarchical_quota
;
6681 * Ensure max(child_quota) <= parent_quota, inherit when no
6684 if (quota
== RUNTIME_INF
)
6685 quota
= parent_quota
;
6686 else if (parent_quota
!= RUNTIME_INF
&& quota
> parent_quota
)
6689 cfs_b
->hierarchical_quota
= quota
;
6694 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 quota
)
6697 struct cfs_schedulable_data data
= {
6703 if (quota
!= RUNTIME_INF
) {
6704 do_div(data
.period
, NSEC_PER_USEC
);
6705 do_div(data
.quota
, NSEC_PER_USEC
);
6709 ret
= walk_tg_tree(tg_cfs_schedulable_down
, tg_nop
, &data
);
6715 static int cpu_cfs_stat_show(struct seq_file
*sf
, void *v
)
6717 struct task_group
*tg
= css_tg(seq_css(sf
));
6718 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
6720 seq_printf(sf
, "nr_periods %d\n", cfs_b
->nr_periods
);
6721 seq_printf(sf
, "nr_throttled %d\n", cfs_b
->nr_throttled
);
6722 seq_printf(sf
, "throttled_time %llu\n", cfs_b
->throttled_time
);
6726 #endif /* CONFIG_CFS_BANDWIDTH */
6727 #endif /* CONFIG_FAIR_GROUP_SCHED */
6729 #ifdef CONFIG_RT_GROUP_SCHED
6730 static int cpu_rt_runtime_write(struct cgroup_subsys_state
*css
,
6731 struct cftype
*cft
, s64 val
)
6733 return sched_group_set_rt_runtime(css_tg(css
), val
);
6736 static s64
cpu_rt_runtime_read(struct cgroup_subsys_state
*css
,
6739 return sched_group_rt_runtime(css_tg(css
));
6742 static int cpu_rt_period_write_uint(struct cgroup_subsys_state
*css
,
6743 struct cftype
*cftype
, u64 rt_period_us
)
6745 return sched_group_set_rt_period(css_tg(css
), rt_period_us
);
6748 static u64
cpu_rt_period_read_uint(struct cgroup_subsys_state
*css
,
6751 return sched_group_rt_period(css_tg(css
));
6753 #endif /* CONFIG_RT_GROUP_SCHED */
6755 static struct cftype cpu_legacy_files
[] = {
6756 #ifdef CONFIG_FAIR_GROUP_SCHED
6759 .read_u64
= cpu_shares_read_u64
,
6760 .write_u64
= cpu_shares_write_u64
,
6763 #ifdef CONFIG_CFS_BANDWIDTH
6765 .name
= "cfs_quota_us",
6766 .read_s64
= cpu_cfs_quota_read_s64
,
6767 .write_s64
= cpu_cfs_quota_write_s64
,
6770 .name
= "cfs_period_us",
6771 .read_u64
= cpu_cfs_period_read_u64
,
6772 .write_u64
= cpu_cfs_period_write_u64
,
6776 .seq_show
= cpu_cfs_stat_show
,
6779 #ifdef CONFIG_RT_GROUP_SCHED
6781 .name
= "rt_runtime_us",
6782 .read_s64
= cpu_rt_runtime_read
,
6783 .write_s64
= cpu_rt_runtime_write
,
6786 .name
= "rt_period_us",
6787 .read_u64
= cpu_rt_period_read_uint
,
6788 .write_u64
= cpu_rt_period_write_uint
,
6794 static int cpu_extra_stat_show(struct seq_file
*sf
,
6795 struct cgroup_subsys_state
*css
)
6797 #ifdef CONFIG_CFS_BANDWIDTH
6799 struct task_group
*tg
= css_tg(css
);
6800 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
6803 throttled_usec
= cfs_b
->throttled_time
;
6804 do_div(throttled_usec
, NSEC_PER_USEC
);
6806 seq_printf(sf
, "nr_periods %d\n"
6808 "throttled_usec %llu\n",
6809 cfs_b
->nr_periods
, cfs_b
->nr_throttled
,
6816 #ifdef CONFIG_FAIR_GROUP_SCHED
6817 static u64
cpu_weight_read_u64(struct cgroup_subsys_state
*css
,
6820 struct task_group
*tg
= css_tg(css
);
6821 u64 weight
= scale_load_down(tg
->shares
);
6823 return DIV_ROUND_CLOSEST_ULL(weight
* CGROUP_WEIGHT_DFL
, 1024);
6826 static int cpu_weight_write_u64(struct cgroup_subsys_state
*css
,
6827 struct cftype
*cft
, u64 weight
)
6830 * cgroup weight knobs should use the common MIN, DFL and MAX
6831 * values which are 1, 100 and 10000 respectively. While it loses
6832 * a bit of range on both ends, it maps pretty well onto the shares
6833 * value used by scheduler and the round-trip conversions preserve
6834 * the original value over the entire range.
6836 if (weight
< CGROUP_WEIGHT_MIN
|| weight
> CGROUP_WEIGHT_MAX
)
6839 weight
= DIV_ROUND_CLOSEST_ULL(weight
* 1024, CGROUP_WEIGHT_DFL
);
6841 return sched_group_set_shares(css_tg(css
), scale_load(weight
));
6844 static s64
cpu_weight_nice_read_s64(struct cgroup_subsys_state
*css
,
6847 unsigned long weight
= scale_load_down(css_tg(css
)->shares
);
6848 int last_delta
= INT_MAX
;
6851 /* find the closest nice value to the current weight */
6852 for (prio
= 0; prio
< ARRAY_SIZE(sched_prio_to_weight
); prio
++) {
6853 delta
= abs(sched_prio_to_weight
[prio
] - weight
);
6854 if (delta
>= last_delta
)
6859 return PRIO_TO_NICE(prio
- 1 + MAX_RT_PRIO
);
6862 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state
*css
,
6863 struct cftype
*cft
, s64 nice
)
6865 unsigned long weight
;
6867 if (nice
< MIN_NICE
|| nice
> MAX_NICE
)
6870 weight
= sched_prio_to_weight
[NICE_TO_PRIO(nice
) - MAX_RT_PRIO
];
6871 return sched_group_set_shares(css_tg(css
), scale_load(weight
));
6875 static void __maybe_unused
cpu_period_quota_print(struct seq_file
*sf
,
6876 long period
, long quota
)
6879 seq_puts(sf
, "max");
6881 seq_printf(sf
, "%ld", quota
);
6883 seq_printf(sf
, " %ld\n", period
);
6886 /* caller should put the current value in *@periodp before calling */
6887 static int __maybe_unused
cpu_period_quota_parse(char *buf
,
6888 u64
*periodp
, u64
*quotap
)
6890 char tok
[21]; /* U64_MAX */
6892 if (!sscanf(buf
, "%s %llu", tok
, periodp
))
6895 *periodp
*= NSEC_PER_USEC
;
6897 if (sscanf(tok
, "%llu", quotap
))
6898 *quotap
*= NSEC_PER_USEC
;
6899 else if (!strcmp(tok
, "max"))
6900 *quotap
= RUNTIME_INF
;
6907 #ifdef CONFIG_CFS_BANDWIDTH
6908 static int cpu_max_show(struct seq_file
*sf
, void *v
)
6910 struct task_group
*tg
= css_tg(seq_css(sf
));
6912 cpu_period_quota_print(sf
, tg_get_cfs_period(tg
), tg_get_cfs_quota(tg
));
6916 static ssize_t
cpu_max_write(struct kernfs_open_file
*of
,
6917 char *buf
, size_t nbytes
, loff_t off
)
6919 struct task_group
*tg
= css_tg(of_css(of
));
6920 u64 period
= tg_get_cfs_period(tg
);
6924 ret
= cpu_period_quota_parse(buf
, &period
, "a
);
6926 ret
= tg_set_cfs_bandwidth(tg
, period
, quota
);
6927 return ret
?: nbytes
;
6931 static struct cftype cpu_files
[] = {
6932 #ifdef CONFIG_FAIR_GROUP_SCHED
6935 .flags
= CFTYPE_NOT_ON_ROOT
,
6936 .read_u64
= cpu_weight_read_u64
,
6937 .write_u64
= cpu_weight_write_u64
,
6940 .name
= "weight.nice",
6941 .flags
= CFTYPE_NOT_ON_ROOT
,
6942 .read_s64
= cpu_weight_nice_read_s64
,
6943 .write_s64
= cpu_weight_nice_write_s64
,
6946 #ifdef CONFIG_CFS_BANDWIDTH
6949 .flags
= CFTYPE_NOT_ON_ROOT
,
6950 .seq_show
= cpu_max_show
,
6951 .write
= cpu_max_write
,
6957 struct cgroup_subsys cpu_cgrp_subsys
= {
6958 .css_alloc
= cpu_cgroup_css_alloc
,
6959 .css_online
= cpu_cgroup_css_online
,
6960 .css_released
= cpu_cgroup_css_released
,
6961 .css_free
= cpu_cgroup_css_free
,
6962 .css_extra_stat_show
= cpu_extra_stat_show
,
6963 .fork
= cpu_cgroup_fork
,
6964 .can_attach
= cpu_cgroup_can_attach
,
6965 .attach
= cpu_cgroup_attach
,
6966 .legacy_cftypes
= cpu_legacy_files
,
6967 .dfl_cftypes
= cpu_files
,
6972 #endif /* CONFIG_CGROUP_SCHED */
6974 void dump_cpu_task(int cpu
)
6976 pr_info("Task dump for CPU %d:\n", cpu
);
6977 sched_show_task(cpu_curr(cpu
));
6981 * Nice levels are multiplicative, with a gentle 10% change for every
6982 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
6983 * nice 1, it will get ~10% less CPU time than another CPU-bound task
6984 * that remained on nice 0.
6986 * The "10% effect" is relative and cumulative: from _any_ nice level,
6987 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
6988 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
6989 * If a task goes up by ~10% and another task goes down by ~10% then
6990 * the relative distance between them is ~25%.)
6992 const int sched_prio_to_weight
[40] = {
6993 /* -20 */ 88761, 71755, 56483, 46273, 36291,
6994 /* -15 */ 29154, 23254, 18705, 14949, 11916,
6995 /* -10 */ 9548, 7620, 6100, 4904, 3906,
6996 /* -5 */ 3121, 2501, 1991, 1586, 1277,
6997 /* 0 */ 1024, 820, 655, 526, 423,
6998 /* 5 */ 335, 272, 215, 172, 137,
6999 /* 10 */ 110, 87, 70, 56, 45,
7000 /* 15 */ 36, 29, 23, 18, 15,
7004 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7006 * In cases where the weight does not change often, we can use the
7007 * precalculated inverse to speed up arithmetics by turning divisions
7008 * into multiplications:
7010 const u32 sched_prio_to_wmult
[40] = {
7011 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7012 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7013 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7014 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7015 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7016 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7017 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7018 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,