xtensa: support DMA buffers in high memory
[cris-mirror.git] / mm / memory-failure.c
blob4b80ccee4535f103552735fe56d4362302692c96
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
65 int sysctl_memory_failure_recovery __read_mostly = 1;
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
71 u32 hwpoison_filter_enable = 0;
72 u32 hwpoison_filter_dev_major = ~0U;
73 u32 hwpoison_filter_dev_minor = ~0U;
74 u64 hwpoison_filter_flags_mask;
75 u64 hwpoison_filter_flags_value;
76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
82 static int hwpoison_filter_dev(struct page *p)
84 struct address_space *mapping;
85 dev_t dev;
87 if (hwpoison_filter_dev_major == ~0U &&
88 hwpoison_filter_dev_minor == ~0U)
89 return 0;
92 * page_mapping() does not accept slab pages.
94 if (PageSlab(p))
95 return -EINVAL;
97 mapping = page_mapping(p);
98 if (mapping == NULL || mapping->host == NULL)
99 return -EINVAL;
101 dev = mapping->host->i_sb->s_dev;
102 if (hwpoison_filter_dev_major != ~0U &&
103 hwpoison_filter_dev_major != MAJOR(dev))
104 return -EINVAL;
105 if (hwpoison_filter_dev_minor != ~0U &&
106 hwpoison_filter_dev_minor != MINOR(dev))
107 return -EINVAL;
109 return 0;
112 static int hwpoison_filter_flags(struct page *p)
114 if (!hwpoison_filter_flags_mask)
115 return 0;
117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 hwpoison_filter_flags_value)
119 return 0;
120 else
121 return -EINVAL;
125 * This allows stress tests to limit test scope to a collection of tasks
126 * by putting them under some memcg. This prevents killing unrelated/important
127 * processes such as /sbin/init. Note that the target task may share clean
128 * pages with init (eg. libc text), which is harmless. If the target task
129 * share _dirty_ pages with another task B, the test scheme must make sure B
130 * is also included in the memcg. At last, due to race conditions this filter
131 * can only guarantee that the page either belongs to the memcg tasks, or is
132 * a freed page.
134 #ifdef CONFIG_MEMCG
135 u64 hwpoison_filter_memcg;
136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
137 static int hwpoison_filter_task(struct page *p)
139 if (!hwpoison_filter_memcg)
140 return 0;
142 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
143 return -EINVAL;
145 return 0;
147 #else
148 static int hwpoison_filter_task(struct page *p) { return 0; }
149 #endif
151 int hwpoison_filter(struct page *p)
153 if (!hwpoison_filter_enable)
154 return 0;
156 if (hwpoison_filter_dev(p))
157 return -EINVAL;
159 if (hwpoison_filter_flags(p))
160 return -EINVAL;
162 if (hwpoison_filter_task(p))
163 return -EINVAL;
165 return 0;
167 #else
168 int hwpoison_filter(struct page *p)
170 return 0;
172 #endif
174 EXPORT_SYMBOL_GPL(hwpoison_filter);
177 * Send all the processes who have the page mapped a signal.
178 * ``action optional'' if they are not immediately affected by the error
179 * ``action required'' if error happened in current execution context
181 static int kill_proc(struct task_struct *t, unsigned long addr,
182 unsigned long pfn, struct page *page, int flags)
184 short addr_lsb;
185 int ret;
187 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
188 pfn, t->comm, t->pid);
189 addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
191 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
192 ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr,
193 addr_lsb, current);
194 } else {
196 * Don't use force here, it's convenient if the signal
197 * can be temporarily blocked.
198 * This could cause a loop when the user sets SIGBUS
199 * to SIG_IGN, but hopefully no one will do that?
201 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)addr,
202 addr_lsb, t); /* synchronous? */
204 if (ret < 0)
205 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
206 t->comm, t->pid, ret);
207 return ret;
211 * When a unknown page type is encountered drain as many buffers as possible
212 * in the hope to turn the page into a LRU or free page, which we can handle.
214 void shake_page(struct page *p, int access)
216 if (PageHuge(p))
217 return;
219 if (!PageSlab(p)) {
220 lru_add_drain_all();
221 if (PageLRU(p))
222 return;
223 drain_all_pages(page_zone(p));
224 if (PageLRU(p) || is_free_buddy_page(p))
225 return;
229 * Only call shrink_node_slabs here (which would also shrink
230 * other caches) if access is not potentially fatal.
232 if (access)
233 drop_slab_node(page_to_nid(p));
235 EXPORT_SYMBOL_GPL(shake_page);
238 * Kill all processes that have a poisoned page mapped and then isolate
239 * the page.
241 * General strategy:
242 * Find all processes having the page mapped and kill them.
243 * But we keep a page reference around so that the page is not
244 * actually freed yet.
245 * Then stash the page away
247 * There's no convenient way to get back to mapped processes
248 * from the VMAs. So do a brute-force search over all
249 * running processes.
251 * Remember that machine checks are not common (or rather
252 * if they are common you have other problems), so this shouldn't
253 * be a performance issue.
255 * Also there are some races possible while we get from the
256 * error detection to actually handle it.
259 struct to_kill {
260 struct list_head nd;
261 struct task_struct *tsk;
262 unsigned long addr;
263 char addr_valid;
267 * Failure handling: if we can't find or can't kill a process there's
268 * not much we can do. We just print a message and ignore otherwise.
272 * Schedule a process for later kill.
273 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
274 * TBD would GFP_NOIO be enough?
276 static void add_to_kill(struct task_struct *tsk, struct page *p,
277 struct vm_area_struct *vma,
278 struct list_head *to_kill,
279 struct to_kill **tkc)
281 struct to_kill *tk;
283 if (*tkc) {
284 tk = *tkc;
285 *tkc = NULL;
286 } else {
287 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
288 if (!tk) {
289 pr_err("Memory failure: Out of memory while machine check handling\n");
290 return;
293 tk->addr = page_address_in_vma(p, vma);
294 tk->addr_valid = 1;
297 * In theory we don't have to kill when the page was
298 * munmaped. But it could be also a mremap. Since that's
299 * likely very rare kill anyways just out of paranoia, but use
300 * a SIGKILL because the error is not contained anymore.
302 if (tk->addr == -EFAULT) {
303 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
304 page_to_pfn(p), tsk->comm);
305 tk->addr_valid = 0;
307 get_task_struct(tsk);
308 tk->tsk = tsk;
309 list_add_tail(&tk->nd, to_kill);
313 * Kill the processes that have been collected earlier.
315 * Only do anything when DOIT is set, otherwise just free the list
316 * (this is used for clean pages which do not need killing)
317 * Also when FAIL is set do a force kill because something went
318 * wrong earlier.
320 static void kill_procs(struct list_head *to_kill, int forcekill,
321 bool fail, struct page *page, unsigned long pfn,
322 int flags)
324 struct to_kill *tk, *next;
326 list_for_each_entry_safe (tk, next, to_kill, nd) {
327 if (forcekill) {
329 * In case something went wrong with munmapping
330 * make sure the process doesn't catch the
331 * signal and then access the memory. Just kill it.
333 if (fail || tk->addr_valid == 0) {
334 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
335 pfn, tk->tsk->comm, tk->tsk->pid);
336 force_sig(SIGKILL, tk->tsk);
340 * In theory the process could have mapped
341 * something else on the address in-between. We could
342 * check for that, but we need to tell the
343 * process anyways.
345 else if (kill_proc(tk->tsk, tk->addr,
346 pfn, page, flags) < 0)
347 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
348 pfn, tk->tsk->comm, tk->tsk->pid);
350 put_task_struct(tk->tsk);
351 kfree(tk);
356 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
357 * on behalf of the thread group. Return task_struct of the (first found)
358 * dedicated thread if found, and return NULL otherwise.
360 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
361 * have to call rcu_read_lock/unlock() in this function.
363 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
365 struct task_struct *t;
367 for_each_thread(tsk, t)
368 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
369 return t;
370 return NULL;
374 * Determine whether a given process is "early kill" process which expects
375 * to be signaled when some page under the process is hwpoisoned.
376 * Return task_struct of the dedicated thread (main thread unless explicitly
377 * specified) if the process is "early kill," and otherwise returns NULL.
379 static struct task_struct *task_early_kill(struct task_struct *tsk,
380 int force_early)
382 struct task_struct *t;
383 if (!tsk->mm)
384 return NULL;
385 if (force_early)
386 return tsk;
387 t = find_early_kill_thread(tsk);
388 if (t)
389 return t;
390 if (sysctl_memory_failure_early_kill)
391 return tsk;
392 return NULL;
396 * Collect processes when the error hit an anonymous page.
398 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
399 struct to_kill **tkc, int force_early)
401 struct vm_area_struct *vma;
402 struct task_struct *tsk;
403 struct anon_vma *av;
404 pgoff_t pgoff;
406 av = page_lock_anon_vma_read(page);
407 if (av == NULL) /* Not actually mapped anymore */
408 return;
410 pgoff = page_to_pgoff(page);
411 read_lock(&tasklist_lock);
412 for_each_process (tsk) {
413 struct anon_vma_chain *vmac;
414 struct task_struct *t = task_early_kill(tsk, force_early);
416 if (!t)
417 continue;
418 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
419 pgoff, pgoff) {
420 vma = vmac->vma;
421 if (!page_mapped_in_vma(page, vma))
422 continue;
423 if (vma->vm_mm == t->mm)
424 add_to_kill(t, page, vma, to_kill, tkc);
427 read_unlock(&tasklist_lock);
428 page_unlock_anon_vma_read(av);
432 * Collect processes when the error hit a file mapped page.
434 static void collect_procs_file(struct page *page, struct list_head *to_kill,
435 struct to_kill **tkc, int force_early)
437 struct vm_area_struct *vma;
438 struct task_struct *tsk;
439 struct address_space *mapping = page->mapping;
441 i_mmap_lock_read(mapping);
442 read_lock(&tasklist_lock);
443 for_each_process(tsk) {
444 pgoff_t pgoff = page_to_pgoff(page);
445 struct task_struct *t = task_early_kill(tsk, force_early);
447 if (!t)
448 continue;
449 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
450 pgoff) {
452 * Send early kill signal to tasks where a vma covers
453 * the page but the corrupted page is not necessarily
454 * mapped it in its pte.
455 * Assume applications who requested early kill want
456 * to be informed of all such data corruptions.
458 if (vma->vm_mm == t->mm)
459 add_to_kill(t, page, vma, to_kill, tkc);
462 read_unlock(&tasklist_lock);
463 i_mmap_unlock_read(mapping);
467 * Collect the processes who have the corrupted page mapped to kill.
468 * This is done in two steps for locking reasons.
469 * First preallocate one tokill structure outside the spin locks,
470 * so that we can kill at least one process reasonably reliable.
472 static void collect_procs(struct page *page, struct list_head *tokill,
473 int force_early)
475 struct to_kill *tk;
477 if (!page->mapping)
478 return;
480 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
481 if (!tk)
482 return;
483 if (PageAnon(page))
484 collect_procs_anon(page, tokill, &tk, force_early);
485 else
486 collect_procs_file(page, tokill, &tk, force_early);
487 kfree(tk);
490 static const char *action_name[] = {
491 [MF_IGNORED] = "Ignored",
492 [MF_FAILED] = "Failed",
493 [MF_DELAYED] = "Delayed",
494 [MF_RECOVERED] = "Recovered",
497 static const char * const action_page_types[] = {
498 [MF_MSG_KERNEL] = "reserved kernel page",
499 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
500 [MF_MSG_SLAB] = "kernel slab page",
501 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
502 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
503 [MF_MSG_HUGE] = "huge page",
504 [MF_MSG_FREE_HUGE] = "free huge page",
505 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
506 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
507 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
508 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
509 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
510 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
511 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
512 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
513 [MF_MSG_CLEAN_LRU] = "clean LRU page",
514 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
515 [MF_MSG_BUDDY] = "free buddy page",
516 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
517 [MF_MSG_UNKNOWN] = "unknown page",
521 * XXX: It is possible that a page is isolated from LRU cache,
522 * and then kept in swap cache or failed to remove from page cache.
523 * The page count will stop it from being freed by unpoison.
524 * Stress tests should be aware of this memory leak problem.
526 static int delete_from_lru_cache(struct page *p)
528 if (!isolate_lru_page(p)) {
530 * Clear sensible page flags, so that the buddy system won't
531 * complain when the page is unpoison-and-freed.
533 ClearPageActive(p);
534 ClearPageUnevictable(p);
537 * Poisoned page might never drop its ref count to 0 so we have
538 * to uncharge it manually from its memcg.
540 mem_cgroup_uncharge(p);
543 * drop the page count elevated by isolate_lru_page()
545 put_page(p);
546 return 0;
548 return -EIO;
551 static int truncate_error_page(struct page *p, unsigned long pfn,
552 struct address_space *mapping)
554 int ret = MF_FAILED;
556 if (mapping->a_ops->error_remove_page) {
557 int err = mapping->a_ops->error_remove_page(mapping, p);
559 if (err != 0) {
560 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
561 pfn, err);
562 } else if (page_has_private(p) &&
563 !try_to_release_page(p, GFP_NOIO)) {
564 pr_info("Memory failure: %#lx: failed to release buffers\n",
565 pfn);
566 } else {
567 ret = MF_RECOVERED;
569 } else {
571 * If the file system doesn't support it just invalidate
572 * This fails on dirty or anything with private pages
574 if (invalidate_inode_page(p))
575 ret = MF_RECOVERED;
576 else
577 pr_info("Memory failure: %#lx: Failed to invalidate\n",
578 pfn);
581 return ret;
585 * Error hit kernel page.
586 * Do nothing, try to be lucky and not touch this instead. For a few cases we
587 * could be more sophisticated.
589 static int me_kernel(struct page *p, unsigned long pfn)
591 return MF_IGNORED;
595 * Page in unknown state. Do nothing.
597 static int me_unknown(struct page *p, unsigned long pfn)
599 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
600 return MF_FAILED;
604 * Clean (or cleaned) page cache page.
606 static int me_pagecache_clean(struct page *p, unsigned long pfn)
608 struct address_space *mapping;
610 delete_from_lru_cache(p);
613 * For anonymous pages we're done the only reference left
614 * should be the one m_f() holds.
616 if (PageAnon(p))
617 return MF_RECOVERED;
620 * Now truncate the page in the page cache. This is really
621 * more like a "temporary hole punch"
622 * Don't do this for block devices when someone else
623 * has a reference, because it could be file system metadata
624 * and that's not safe to truncate.
626 mapping = page_mapping(p);
627 if (!mapping) {
629 * Page has been teared down in the meanwhile
631 return MF_FAILED;
635 * Truncation is a bit tricky. Enable it per file system for now.
637 * Open: to take i_mutex or not for this? Right now we don't.
639 return truncate_error_page(p, pfn, mapping);
643 * Dirty pagecache page
644 * Issues: when the error hit a hole page the error is not properly
645 * propagated.
647 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
649 struct address_space *mapping = page_mapping(p);
651 SetPageError(p);
652 /* TBD: print more information about the file. */
653 if (mapping) {
655 * IO error will be reported by write(), fsync(), etc.
656 * who check the mapping.
657 * This way the application knows that something went
658 * wrong with its dirty file data.
660 * There's one open issue:
662 * The EIO will be only reported on the next IO
663 * operation and then cleared through the IO map.
664 * Normally Linux has two mechanisms to pass IO error
665 * first through the AS_EIO flag in the address space
666 * and then through the PageError flag in the page.
667 * Since we drop pages on memory failure handling the
668 * only mechanism open to use is through AS_AIO.
670 * This has the disadvantage that it gets cleared on
671 * the first operation that returns an error, while
672 * the PageError bit is more sticky and only cleared
673 * when the page is reread or dropped. If an
674 * application assumes it will always get error on
675 * fsync, but does other operations on the fd before
676 * and the page is dropped between then the error
677 * will not be properly reported.
679 * This can already happen even without hwpoisoned
680 * pages: first on metadata IO errors (which only
681 * report through AS_EIO) or when the page is dropped
682 * at the wrong time.
684 * So right now we assume that the application DTRT on
685 * the first EIO, but we're not worse than other parts
686 * of the kernel.
688 mapping_set_error(mapping, -EIO);
691 return me_pagecache_clean(p, pfn);
695 * Clean and dirty swap cache.
697 * Dirty swap cache page is tricky to handle. The page could live both in page
698 * cache and swap cache(ie. page is freshly swapped in). So it could be
699 * referenced concurrently by 2 types of PTEs:
700 * normal PTEs and swap PTEs. We try to handle them consistently by calling
701 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
702 * and then
703 * - clear dirty bit to prevent IO
704 * - remove from LRU
705 * - but keep in the swap cache, so that when we return to it on
706 * a later page fault, we know the application is accessing
707 * corrupted data and shall be killed (we installed simple
708 * interception code in do_swap_page to catch it).
710 * Clean swap cache pages can be directly isolated. A later page fault will
711 * bring in the known good data from disk.
713 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
715 ClearPageDirty(p);
716 /* Trigger EIO in shmem: */
717 ClearPageUptodate(p);
719 if (!delete_from_lru_cache(p))
720 return MF_DELAYED;
721 else
722 return MF_FAILED;
725 static int me_swapcache_clean(struct page *p, unsigned long pfn)
727 delete_from_swap_cache(p);
729 if (!delete_from_lru_cache(p))
730 return MF_RECOVERED;
731 else
732 return MF_FAILED;
736 * Huge pages. Needs work.
737 * Issues:
738 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
739 * To narrow down kill region to one page, we need to break up pmd.
741 static int me_huge_page(struct page *p, unsigned long pfn)
743 int res = 0;
744 struct page *hpage = compound_head(p);
745 struct address_space *mapping;
747 if (!PageHuge(hpage))
748 return MF_DELAYED;
750 mapping = page_mapping(hpage);
751 if (mapping) {
752 res = truncate_error_page(hpage, pfn, mapping);
753 } else {
754 unlock_page(hpage);
756 * migration entry prevents later access on error anonymous
757 * hugepage, so we can free and dissolve it into buddy to
758 * save healthy subpages.
760 if (PageAnon(hpage))
761 put_page(hpage);
762 dissolve_free_huge_page(p);
763 res = MF_RECOVERED;
764 lock_page(hpage);
767 return res;
771 * Various page states we can handle.
773 * A page state is defined by its current page->flags bits.
774 * The table matches them in order and calls the right handler.
776 * This is quite tricky because we can access page at any time
777 * in its live cycle, so all accesses have to be extremely careful.
779 * This is not complete. More states could be added.
780 * For any missing state don't attempt recovery.
783 #define dirty (1UL << PG_dirty)
784 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
785 #define unevict (1UL << PG_unevictable)
786 #define mlock (1UL << PG_mlocked)
787 #define writeback (1UL << PG_writeback)
788 #define lru (1UL << PG_lru)
789 #define head (1UL << PG_head)
790 #define slab (1UL << PG_slab)
791 #define reserved (1UL << PG_reserved)
793 static struct page_state {
794 unsigned long mask;
795 unsigned long res;
796 enum mf_action_page_type type;
797 int (*action)(struct page *p, unsigned long pfn);
798 } error_states[] = {
799 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
801 * free pages are specially detected outside this table:
802 * PG_buddy pages only make a small fraction of all free pages.
806 * Could in theory check if slab page is free or if we can drop
807 * currently unused objects without touching them. But just
808 * treat it as standard kernel for now.
810 { slab, slab, MF_MSG_SLAB, me_kernel },
812 { head, head, MF_MSG_HUGE, me_huge_page },
814 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
815 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
817 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
818 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
820 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
821 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
823 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
824 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
827 * Catchall entry: must be at end.
829 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
832 #undef dirty
833 #undef sc
834 #undef unevict
835 #undef mlock
836 #undef writeback
837 #undef lru
838 #undef head
839 #undef slab
840 #undef reserved
843 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
844 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
846 static void action_result(unsigned long pfn, enum mf_action_page_type type,
847 enum mf_result result)
849 trace_memory_failure_event(pfn, type, result);
851 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
852 pfn, action_page_types[type], action_name[result]);
855 static int page_action(struct page_state *ps, struct page *p,
856 unsigned long pfn)
858 int result;
859 int count;
861 result = ps->action(p, pfn);
863 count = page_count(p) - 1;
864 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
865 count--;
866 if (count > 0) {
867 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
868 pfn, action_page_types[ps->type], count);
869 result = MF_FAILED;
871 action_result(pfn, ps->type, result);
873 /* Could do more checks here if page looks ok */
875 * Could adjust zone counters here to correct for the missing page.
878 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
882 * get_hwpoison_page() - Get refcount for memory error handling:
883 * @page: raw error page (hit by memory error)
885 * Return: return 0 if failed to grab the refcount, otherwise true (some
886 * non-zero value.)
888 int get_hwpoison_page(struct page *page)
890 struct page *head = compound_head(page);
892 if (!PageHuge(head) && PageTransHuge(head)) {
894 * Non anonymous thp exists only in allocation/free time. We
895 * can't handle such a case correctly, so let's give it up.
896 * This should be better than triggering BUG_ON when kernel
897 * tries to touch the "partially handled" page.
899 if (!PageAnon(head)) {
900 pr_err("Memory failure: %#lx: non anonymous thp\n",
901 page_to_pfn(page));
902 return 0;
906 if (get_page_unless_zero(head)) {
907 if (head == compound_head(page))
908 return 1;
910 pr_info("Memory failure: %#lx cannot catch tail\n",
911 page_to_pfn(page));
912 put_page(head);
915 return 0;
917 EXPORT_SYMBOL_GPL(get_hwpoison_page);
920 * Do all that is necessary to remove user space mappings. Unmap
921 * the pages and send SIGBUS to the processes if the data was dirty.
923 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
924 int flags, struct page **hpagep)
926 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
927 struct address_space *mapping;
928 LIST_HEAD(tokill);
929 bool unmap_success;
930 int kill = 1, forcekill;
931 struct page *hpage = *hpagep;
932 bool mlocked = PageMlocked(hpage);
935 * Here we are interested only in user-mapped pages, so skip any
936 * other types of pages.
938 if (PageReserved(p) || PageSlab(p))
939 return true;
940 if (!(PageLRU(hpage) || PageHuge(p)))
941 return true;
944 * This check implies we don't kill processes if their pages
945 * are in the swap cache early. Those are always late kills.
947 if (!page_mapped(hpage))
948 return true;
950 if (PageKsm(p)) {
951 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
952 return false;
955 if (PageSwapCache(p)) {
956 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
957 pfn);
958 ttu |= TTU_IGNORE_HWPOISON;
962 * Propagate the dirty bit from PTEs to struct page first, because we
963 * need this to decide if we should kill or just drop the page.
964 * XXX: the dirty test could be racy: set_page_dirty() may not always
965 * be called inside page lock (it's recommended but not enforced).
967 mapping = page_mapping(hpage);
968 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
969 mapping_cap_writeback_dirty(mapping)) {
970 if (page_mkclean(hpage)) {
971 SetPageDirty(hpage);
972 } else {
973 kill = 0;
974 ttu |= TTU_IGNORE_HWPOISON;
975 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
976 pfn);
981 * First collect all the processes that have the page
982 * mapped in dirty form. This has to be done before try_to_unmap,
983 * because ttu takes the rmap data structures down.
985 * Error handling: We ignore errors here because
986 * there's nothing that can be done.
988 if (kill)
989 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
991 unmap_success = try_to_unmap(hpage, ttu);
992 if (!unmap_success)
993 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
994 pfn, page_mapcount(hpage));
997 * try_to_unmap() might put mlocked page in lru cache, so call
998 * shake_page() again to ensure that it's flushed.
1000 if (mlocked)
1001 shake_page(hpage, 0);
1004 * Now that the dirty bit has been propagated to the
1005 * struct page and all unmaps done we can decide if
1006 * killing is needed or not. Only kill when the page
1007 * was dirty or the process is not restartable,
1008 * otherwise the tokill list is merely
1009 * freed. When there was a problem unmapping earlier
1010 * use a more force-full uncatchable kill to prevent
1011 * any accesses to the poisoned memory.
1013 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1014 kill_procs(&tokill, forcekill, !unmap_success, p, pfn, flags);
1016 return unmap_success;
1019 static int identify_page_state(unsigned long pfn, struct page *p,
1020 unsigned long page_flags)
1022 struct page_state *ps;
1025 * The first check uses the current page flags which may not have any
1026 * relevant information. The second check with the saved page flags is
1027 * carried out only if the first check can't determine the page status.
1029 for (ps = error_states;; ps++)
1030 if ((p->flags & ps->mask) == ps->res)
1031 break;
1033 page_flags |= (p->flags & (1UL << PG_dirty));
1035 if (!ps->mask)
1036 for (ps = error_states;; ps++)
1037 if ((page_flags & ps->mask) == ps->res)
1038 break;
1039 return page_action(ps, p, pfn);
1042 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1044 struct page *p = pfn_to_page(pfn);
1045 struct page *head = compound_head(p);
1046 int res;
1047 unsigned long page_flags;
1049 if (TestSetPageHWPoison(head)) {
1050 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1051 pfn);
1052 return 0;
1055 num_poisoned_pages_inc();
1057 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1059 * Check "filter hit" and "race with other subpage."
1061 lock_page(head);
1062 if (PageHWPoison(head)) {
1063 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1064 || (p != head && TestSetPageHWPoison(head))) {
1065 num_poisoned_pages_dec();
1066 unlock_page(head);
1067 return 0;
1070 unlock_page(head);
1071 dissolve_free_huge_page(p);
1072 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1073 return 0;
1076 lock_page(head);
1077 page_flags = head->flags;
1079 if (!PageHWPoison(head)) {
1080 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1081 num_poisoned_pages_dec();
1082 unlock_page(head);
1083 put_hwpoison_page(head);
1084 return 0;
1087 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1088 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1089 res = -EBUSY;
1090 goto out;
1093 res = identify_page_state(pfn, p, page_flags);
1094 out:
1095 unlock_page(head);
1096 return res;
1100 * memory_failure - Handle memory failure of a page.
1101 * @pfn: Page Number of the corrupted page
1102 * @flags: fine tune action taken
1104 * This function is called by the low level machine check code
1105 * of an architecture when it detects hardware memory corruption
1106 * of a page. It tries its best to recover, which includes
1107 * dropping pages, killing processes etc.
1109 * The function is primarily of use for corruptions that
1110 * happen outside the current execution context (e.g. when
1111 * detected by a background scrubber)
1113 * Must run in process context (e.g. a work queue) with interrupts
1114 * enabled and no spinlocks hold.
1116 int memory_failure(unsigned long pfn, int flags)
1118 struct page *p;
1119 struct page *hpage;
1120 struct page *orig_head;
1121 int res;
1122 unsigned long page_flags;
1124 if (!sysctl_memory_failure_recovery)
1125 panic("Memory failure on page %lx", pfn);
1127 if (!pfn_valid(pfn)) {
1128 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1129 pfn);
1130 return -ENXIO;
1133 p = pfn_to_page(pfn);
1134 if (PageHuge(p))
1135 return memory_failure_hugetlb(pfn, flags);
1136 if (TestSetPageHWPoison(p)) {
1137 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1138 pfn);
1139 return 0;
1142 arch_unmap_kpfn(pfn);
1144 orig_head = hpage = compound_head(p);
1145 num_poisoned_pages_inc();
1148 * We need/can do nothing about count=0 pages.
1149 * 1) it's a free page, and therefore in safe hand:
1150 * prep_new_page() will be the gate keeper.
1151 * 2) it's part of a non-compound high order page.
1152 * Implies some kernel user: cannot stop them from
1153 * R/W the page; let's pray that the page has been
1154 * used and will be freed some time later.
1155 * In fact it's dangerous to directly bump up page count from 0,
1156 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1158 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1159 if (is_free_buddy_page(p)) {
1160 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1161 return 0;
1162 } else {
1163 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1164 return -EBUSY;
1168 if (PageTransHuge(hpage)) {
1169 lock_page(p);
1170 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1171 unlock_page(p);
1172 if (!PageAnon(p))
1173 pr_err("Memory failure: %#lx: non anonymous thp\n",
1174 pfn);
1175 else
1176 pr_err("Memory failure: %#lx: thp split failed\n",
1177 pfn);
1178 if (TestClearPageHWPoison(p))
1179 num_poisoned_pages_dec();
1180 put_hwpoison_page(p);
1181 return -EBUSY;
1183 unlock_page(p);
1184 VM_BUG_ON_PAGE(!page_count(p), p);
1185 hpage = compound_head(p);
1189 * We ignore non-LRU pages for good reasons.
1190 * - PG_locked is only well defined for LRU pages and a few others
1191 * - to avoid races with __SetPageLocked()
1192 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1193 * The check (unnecessarily) ignores LRU pages being isolated and
1194 * walked by the page reclaim code, however that's not a big loss.
1196 shake_page(p, 0);
1197 /* shake_page could have turned it free. */
1198 if (!PageLRU(p) && is_free_buddy_page(p)) {
1199 if (flags & MF_COUNT_INCREASED)
1200 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1201 else
1202 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1203 return 0;
1206 lock_page(p);
1209 * The page could have changed compound pages during the locking.
1210 * If this happens just bail out.
1212 if (PageCompound(p) && compound_head(p) != orig_head) {
1213 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1214 res = -EBUSY;
1215 goto out;
1219 * We use page flags to determine what action should be taken, but
1220 * the flags can be modified by the error containment action. One
1221 * example is an mlocked page, where PG_mlocked is cleared by
1222 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1223 * correctly, we save a copy of the page flags at this time.
1225 if (PageHuge(p))
1226 page_flags = hpage->flags;
1227 else
1228 page_flags = p->flags;
1231 * unpoison always clear PG_hwpoison inside page lock
1233 if (!PageHWPoison(p)) {
1234 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1235 num_poisoned_pages_dec();
1236 unlock_page(p);
1237 put_hwpoison_page(p);
1238 return 0;
1240 if (hwpoison_filter(p)) {
1241 if (TestClearPageHWPoison(p))
1242 num_poisoned_pages_dec();
1243 unlock_page(p);
1244 put_hwpoison_page(p);
1245 return 0;
1248 if (!PageTransTail(p) && !PageLRU(p))
1249 goto identify_page_state;
1252 * It's very difficult to mess with pages currently under IO
1253 * and in many cases impossible, so we just avoid it here.
1255 wait_on_page_writeback(p);
1258 * Now take care of user space mappings.
1259 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1261 * When the raw error page is thp tail page, hpage points to the raw
1262 * page after thp split.
1264 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1265 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1266 res = -EBUSY;
1267 goto out;
1271 * Torn down by someone else?
1273 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1274 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1275 res = -EBUSY;
1276 goto out;
1279 identify_page_state:
1280 res = identify_page_state(pfn, p, page_flags);
1281 out:
1282 unlock_page(p);
1283 return res;
1285 EXPORT_SYMBOL_GPL(memory_failure);
1287 #define MEMORY_FAILURE_FIFO_ORDER 4
1288 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1290 struct memory_failure_entry {
1291 unsigned long pfn;
1292 int flags;
1295 struct memory_failure_cpu {
1296 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1297 MEMORY_FAILURE_FIFO_SIZE);
1298 spinlock_t lock;
1299 struct work_struct work;
1302 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1305 * memory_failure_queue - Schedule handling memory failure of a page.
1306 * @pfn: Page Number of the corrupted page
1307 * @flags: Flags for memory failure handling
1309 * This function is called by the low level hardware error handler
1310 * when it detects hardware memory corruption of a page. It schedules
1311 * the recovering of error page, including dropping pages, killing
1312 * processes etc.
1314 * The function is primarily of use for corruptions that
1315 * happen outside the current execution context (e.g. when
1316 * detected by a background scrubber)
1318 * Can run in IRQ context.
1320 void memory_failure_queue(unsigned long pfn, int flags)
1322 struct memory_failure_cpu *mf_cpu;
1323 unsigned long proc_flags;
1324 struct memory_failure_entry entry = {
1325 .pfn = pfn,
1326 .flags = flags,
1329 mf_cpu = &get_cpu_var(memory_failure_cpu);
1330 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1331 if (kfifo_put(&mf_cpu->fifo, entry))
1332 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1333 else
1334 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1335 pfn);
1336 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1337 put_cpu_var(memory_failure_cpu);
1339 EXPORT_SYMBOL_GPL(memory_failure_queue);
1341 static void memory_failure_work_func(struct work_struct *work)
1343 struct memory_failure_cpu *mf_cpu;
1344 struct memory_failure_entry entry = { 0, };
1345 unsigned long proc_flags;
1346 int gotten;
1348 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1349 for (;;) {
1350 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1351 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1352 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1353 if (!gotten)
1354 break;
1355 if (entry.flags & MF_SOFT_OFFLINE)
1356 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1357 else
1358 memory_failure(entry.pfn, entry.flags);
1362 static int __init memory_failure_init(void)
1364 struct memory_failure_cpu *mf_cpu;
1365 int cpu;
1367 for_each_possible_cpu(cpu) {
1368 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1369 spin_lock_init(&mf_cpu->lock);
1370 INIT_KFIFO(mf_cpu->fifo);
1371 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1374 return 0;
1376 core_initcall(memory_failure_init);
1378 #define unpoison_pr_info(fmt, pfn, rs) \
1379 ({ \
1380 if (__ratelimit(rs)) \
1381 pr_info(fmt, pfn); \
1385 * unpoison_memory - Unpoison a previously poisoned page
1386 * @pfn: Page number of the to be unpoisoned page
1388 * Software-unpoison a page that has been poisoned by
1389 * memory_failure() earlier.
1391 * This is only done on the software-level, so it only works
1392 * for linux injected failures, not real hardware failures
1394 * Returns 0 for success, otherwise -errno.
1396 int unpoison_memory(unsigned long pfn)
1398 struct page *page;
1399 struct page *p;
1400 int freeit = 0;
1401 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1402 DEFAULT_RATELIMIT_BURST);
1404 if (!pfn_valid(pfn))
1405 return -ENXIO;
1407 p = pfn_to_page(pfn);
1408 page = compound_head(p);
1410 if (!PageHWPoison(p)) {
1411 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1412 pfn, &unpoison_rs);
1413 return 0;
1416 if (page_count(page) > 1) {
1417 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1418 pfn, &unpoison_rs);
1419 return 0;
1422 if (page_mapped(page)) {
1423 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1424 pfn, &unpoison_rs);
1425 return 0;
1428 if (page_mapping(page)) {
1429 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1430 pfn, &unpoison_rs);
1431 return 0;
1435 * unpoison_memory() can encounter thp only when the thp is being
1436 * worked by memory_failure() and the page lock is not held yet.
1437 * In such case, we yield to memory_failure() and make unpoison fail.
1439 if (!PageHuge(page) && PageTransHuge(page)) {
1440 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1441 pfn, &unpoison_rs);
1442 return 0;
1445 if (!get_hwpoison_page(p)) {
1446 if (TestClearPageHWPoison(p))
1447 num_poisoned_pages_dec();
1448 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1449 pfn, &unpoison_rs);
1450 return 0;
1453 lock_page(page);
1455 * This test is racy because PG_hwpoison is set outside of page lock.
1456 * That's acceptable because that won't trigger kernel panic. Instead,
1457 * the PG_hwpoison page will be caught and isolated on the entrance to
1458 * the free buddy page pool.
1460 if (TestClearPageHWPoison(page)) {
1461 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1462 pfn, &unpoison_rs);
1463 num_poisoned_pages_dec();
1464 freeit = 1;
1466 unlock_page(page);
1468 put_hwpoison_page(page);
1469 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1470 put_hwpoison_page(page);
1472 return 0;
1474 EXPORT_SYMBOL(unpoison_memory);
1476 static struct page *new_page(struct page *p, unsigned long private, int **x)
1478 int nid = page_to_nid(p);
1480 return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1484 * Safely get reference count of an arbitrary page.
1485 * Returns 0 for a free page, -EIO for a zero refcount page
1486 * that is not free, and 1 for any other page type.
1487 * For 1 the page is returned with increased page count, otherwise not.
1489 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1491 int ret;
1493 if (flags & MF_COUNT_INCREASED)
1494 return 1;
1497 * When the target page is a free hugepage, just remove it
1498 * from free hugepage list.
1500 if (!get_hwpoison_page(p)) {
1501 if (PageHuge(p)) {
1502 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1503 ret = 0;
1504 } else if (is_free_buddy_page(p)) {
1505 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1506 ret = 0;
1507 } else {
1508 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1509 __func__, pfn, p->flags);
1510 ret = -EIO;
1512 } else {
1513 /* Not a free page */
1514 ret = 1;
1516 return ret;
1519 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1521 int ret = __get_any_page(page, pfn, flags);
1523 if (ret == 1 && !PageHuge(page) &&
1524 !PageLRU(page) && !__PageMovable(page)) {
1526 * Try to free it.
1528 put_hwpoison_page(page);
1529 shake_page(page, 1);
1532 * Did it turn free?
1534 ret = __get_any_page(page, pfn, 0);
1535 if (ret == 1 && !PageLRU(page)) {
1536 /* Drop page reference which is from __get_any_page() */
1537 put_hwpoison_page(page);
1538 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1539 pfn, page->flags, &page->flags);
1540 return -EIO;
1543 return ret;
1546 static int soft_offline_huge_page(struct page *page, int flags)
1548 int ret;
1549 unsigned long pfn = page_to_pfn(page);
1550 struct page *hpage = compound_head(page);
1551 LIST_HEAD(pagelist);
1554 * This double-check of PageHWPoison is to avoid the race with
1555 * memory_failure(). See also comment in __soft_offline_page().
1557 lock_page(hpage);
1558 if (PageHWPoison(hpage)) {
1559 unlock_page(hpage);
1560 put_hwpoison_page(hpage);
1561 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1562 return -EBUSY;
1564 unlock_page(hpage);
1566 ret = isolate_huge_page(hpage, &pagelist);
1568 * get_any_page() and isolate_huge_page() takes a refcount each,
1569 * so need to drop one here.
1571 put_hwpoison_page(hpage);
1572 if (!ret) {
1573 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1574 return -EBUSY;
1577 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1578 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1579 if (ret) {
1580 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1581 pfn, ret, page->flags, &page->flags);
1582 if (!list_empty(&pagelist))
1583 putback_movable_pages(&pagelist);
1584 if (ret > 0)
1585 ret = -EIO;
1586 } else {
1587 if (PageHuge(page))
1588 dissolve_free_huge_page(page);
1590 return ret;
1593 static int __soft_offline_page(struct page *page, int flags)
1595 int ret;
1596 unsigned long pfn = page_to_pfn(page);
1599 * Check PageHWPoison again inside page lock because PageHWPoison
1600 * is set by memory_failure() outside page lock. Note that
1601 * memory_failure() also double-checks PageHWPoison inside page lock,
1602 * so there's no race between soft_offline_page() and memory_failure().
1604 lock_page(page);
1605 wait_on_page_writeback(page);
1606 if (PageHWPoison(page)) {
1607 unlock_page(page);
1608 put_hwpoison_page(page);
1609 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1610 return -EBUSY;
1613 * Try to invalidate first. This should work for
1614 * non dirty unmapped page cache pages.
1616 ret = invalidate_inode_page(page);
1617 unlock_page(page);
1619 * RED-PEN would be better to keep it isolated here, but we
1620 * would need to fix isolation locking first.
1622 if (ret == 1) {
1623 put_hwpoison_page(page);
1624 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1625 SetPageHWPoison(page);
1626 num_poisoned_pages_inc();
1627 return 0;
1631 * Simple invalidation didn't work.
1632 * Try to migrate to a new page instead. migrate.c
1633 * handles a large number of cases for us.
1635 if (PageLRU(page))
1636 ret = isolate_lru_page(page);
1637 else
1638 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1640 * Drop page reference which is came from get_any_page()
1641 * successful isolate_lru_page() already took another one.
1643 put_hwpoison_page(page);
1644 if (!ret) {
1645 LIST_HEAD(pagelist);
1647 * After isolated lru page, the PageLRU will be cleared,
1648 * so use !__PageMovable instead for LRU page's mapping
1649 * cannot have PAGE_MAPPING_MOVABLE.
1651 if (!__PageMovable(page))
1652 inc_node_page_state(page, NR_ISOLATED_ANON +
1653 page_is_file_cache(page));
1654 list_add(&page->lru, &pagelist);
1655 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1656 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1657 if (ret) {
1658 if (!list_empty(&pagelist))
1659 putback_movable_pages(&pagelist);
1661 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1662 pfn, ret, page->flags, &page->flags);
1663 if (ret > 0)
1664 ret = -EIO;
1666 } else {
1667 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1668 pfn, ret, page_count(page), page->flags, &page->flags);
1670 return ret;
1673 static int soft_offline_in_use_page(struct page *page, int flags)
1675 int ret;
1676 struct page *hpage = compound_head(page);
1678 if (!PageHuge(page) && PageTransHuge(hpage)) {
1679 lock_page(hpage);
1680 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1681 unlock_page(hpage);
1682 if (!PageAnon(hpage))
1683 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1684 else
1685 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1686 put_hwpoison_page(hpage);
1687 return -EBUSY;
1689 unlock_page(hpage);
1690 get_hwpoison_page(page);
1691 put_hwpoison_page(hpage);
1694 if (PageHuge(page))
1695 ret = soft_offline_huge_page(page, flags);
1696 else
1697 ret = __soft_offline_page(page, flags);
1699 return ret;
1702 static void soft_offline_free_page(struct page *page)
1704 struct page *head = compound_head(page);
1706 if (!TestSetPageHWPoison(head)) {
1707 num_poisoned_pages_inc();
1708 if (PageHuge(head))
1709 dissolve_free_huge_page(page);
1714 * soft_offline_page - Soft offline a page.
1715 * @page: page to offline
1716 * @flags: flags. Same as memory_failure().
1718 * Returns 0 on success, otherwise negated errno.
1720 * Soft offline a page, by migration or invalidation,
1721 * without killing anything. This is for the case when
1722 * a page is not corrupted yet (so it's still valid to access),
1723 * but has had a number of corrected errors and is better taken
1724 * out.
1726 * The actual policy on when to do that is maintained by
1727 * user space.
1729 * This should never impact any application or cause data loss,
1730 * however it might take some time.
1732 * This is not a 100% solution for all memory, but tries to be
1733 * ``good enough'' for the majority of memory.
1735 int soft_offline_page(struct page *page, int flags)
1737 int ret;
1738 unsigned long pfn = page_to_pfn(page);
1740 if (PageHWPoison(page)) {
1741 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1742 if (flags & MF_COUNT_INCREASED)
1743 put_hwpoison_page(page);
1744 return -EBUSY;
1747 get_online_mems();
1748 ret = get_any_page(page, pfn, flags);
1749 put_online_mems();
1751 if (ret > 0)
1752 ret = soft_offline_in_use_page(page, flags);
1753 else if (ret == 0)
1754 soft_offline_free_page(page);
1756 return ret;