xtensa: support DMA buffers in high memory
[cris-mirror.git] / mm / page_alloc.c
blob81e18ceef579cd7726dfbabc45a5fbfd133a837b
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION (8)
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
94 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96 int _node_numa_mem_[MAX_NUMNODES];
97 #endif
99 /* work_structs for global per-cpu drains */
100 DEFINE_MUTEX(pcpu_drain_mutex);
101 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104 volatile unsigned long latent_entropy __latent_entropy;
105 EXPORT_SYMBOL(latent_entropy);
106 #endif
109 * Array of node states.
111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 [N_POSSIBLE] = NODE_MASK_ALL,
113 [N_ONLINE] = { { [0] = 1UL } },
114 #ifndef CONFIG_NUMA
115 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
116 #ifdef CONFIG_HIGHMEM
117 [N_HIGH_MEMORY] = { { [0] = 1UL } },
118 #endif
119 [N_MEMORY] = { { [0] = 1UL } },
120 [N_CPU] = { { [0] = 1UL } },
121 #endif /* NUMA */
123 EXPORT_SYMBOL(node_states);
125 /* Protect totalram_pages and zone->managed_pages */
126 static DEFINE_SPINLOCK(managed_page_count_lock);
128 unsigned long totalram_pages __read_mostly;
129 unsigned long totalreserve_pages __read_mostly;
130 unsigned long totalcma_pages __read_mostly;
132 int percpu_pagelist_fraction;
133 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
136 * A cached value of the page's pageblock's migratetype, used when the page is
137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139 * Also the migratetype set in the page does not necessarily match the pcplist
140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141 * other index - this ensures that it will be put on the correct CMA freelist.
143 static inline int get_pcppage_migratetype(struct page *page)
145 return page->index;
148 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
150 page->index = migratetype;
153 #ifdef CONFIG_PM_SLEEP
155 * The following functions are used by the suspend/hibernate code to temporarily
156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157 * while devices are suspended. To avoid races with the suspend/hibernate code,
158 * they should always be called with pm_mutex held (gfp_allowed_mask also should
159 * only be modified with pm_mutex held, unless the suspend/hibernate code is
160 * guaranteed not to run in parallel with that modification).
163 static gfp_t saved_gfp_mask;
165 void pm_restore_gfp_mask(void)
167 WARN_ON(!mutex_is_locked(&pm_mutex));
168 if (saved_gfp_mask) {
169 gfp_allowed_mask = saved_gfp_mask;
170 saved_gfp_mask = 0;
174 void pm_restrict_gfp_mask(void)
176 WARN_ON(!mutex_is_locked(&pm_mutex));
177 WARN_ON(saved_gfp_mask);
178 saved_gfp_mask = gfp_allowed_mask;
179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
182 bool pm_suspended_storage(void)
184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
185 return false;
186 return true;
188 #endif /* CONFIG_PM_SLEEP */
190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191 unsigned int pageblock_order __read_mostly;
192 #endif
194 static void __free_pages_ok(struct page *page, unsigned int order);
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
207 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
208 #ifdef CONFIG_ZONE_DMA
209 256,
210 #endif
211 #ifdef CONFIG_ZONE_DMA32
212 256,
213 #endif
214 #ifdef CONFIG_HIGHMEM
216 #endif
220 EXPORT_SYMBOL(totalram_pages);
222 static char * const zone_names[MAX_NR_ZONES] = {
223 #ifdef CONFIG_ZONE_DMA
224 "DMA",
225 #endif
226 #ifdef CONFIG_ZONE_DMA32
227 "DMA32",
228 #endif
229 "Normal",
230 #ifdef CONFIG_HIGHMEM
231 "HighMem",
232 #endif
233 "Movable",
234 #ifdef CONFIG_ZONE_DEVICE
235 "Device",
236 #endif
239 char * const migratetype_names[MIGRATE_TYPES] = {
240 "Unmovable",
241 "Movable",
242 "Reclaimable",
243 "HighAtomic",
244 #ifdef CONFIG_CMA
245 "CMA",
246 #endif
247 #ifdef CONFIG_MEMORY_ISOLATION
248 "Isolate",
249 #endif
252 compound_page_dtor * const compound_page_dtors[] = {
253 NULL,
254 free_compound_page,
255 #ifdef CONFIG_HUGETLB_PAGE
256 free_huge_page,
257 #endif
258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
259 free_transhuge_page,
260 #endif
263 int min_free_kbytes = 1024;
264 int user_min_free_kbytes = -1;
265 int watermark_scale_factor = 10;
267 static unsigned long __meminitdata nr_kernel_pages;
268 static unsigned long __meminitdata nr_all_pages;
269 static unsigned long __meminitdata dma_reserve;
271 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
272 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
273 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
274 static unsigned long __initdata required_kernelcore;
275 static unsigned long __initdata required_movablecore;
276 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
277 static bool mirrored_kernelcore;
279 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
280 int movable_zone;
281 EXPORT_SYMBOL(movable_zone);
282 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
284 #if MAX_NUMNODES > 1
285 int nr_node_ids __read_mostly = MAX_NUMNODES;
286 int nr_online_nodes __read_mostly = 1;
287 EXPORT_SYMBOL(nr_node_ids);
288 EXPORT_SYMBOL(nr_online_nodes);
289 #endif
291 int page_group_by_mobility_disabled __read_mostly;
293 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
296 * Determine how many pages need to be initialized during early boot
297 * (non-deferred initialization).
298 * The value of first_deferred_pfn will be set later, once non-deferred pages
299 * are initialized, but for now set it ULONG_MAX.
301 static inline void reset_deferred_meminit(pg_data_t *pgdat)
303 phys_addr_t start_addr, end_addr;
304 unsigned long max_pgcnt;
305 unsigned long reserved;
308 * Initialise at least 2G of a node but also take into account that
309 * two large system hashes that can take up 1GB for 0.25TB/node.
311 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
312 (pgdat->node_spanned_pages >> 8));
315 * Compensate the all the memblock reservations (e.g. crash kernel)
316 * from the initial estimation to make sure we will initialize enough
317 * memory to boot.
319 start_addr = PFN_PHYS(pgdat->node_start_pfn);
320 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
321 reserved = memblock_reserved_memory_within(start_addr, end_addr);
322 max_pgcnt += PHYS_PFN(reserved);
324 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
325 pgdat->first_deferred_pfn = ULONG_MAX;
328 /* Returns true if the struct page for the pfn is uninitialised */
329 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
331 int nid = early_pfn_to_nid(pfn);
333 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
334 return true;
336 return false;
340 * Returns false when the remaining initialisation should be deferred until
341 * later in the boot cycle when it can be parallelised.
343 static inline bool update_defer_init(pg_data_t *pgdat,
344 unsigned long pfn, unsigned long zone_end,
345 unsigned long *nr_initialised)
347 /* Always populate low zones for address-constrained allocations */
348 if (zone_end < pgdat_end_pfn(pgdat))
349 return true;
350 (*nr_initialised)++;
351 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
352 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
353 pgdat->first_deferred_pfn = pfn;
354 return false;
357 return true;
359 #else
360 static inline void reset_deferred_meminit(pg_data_t *pgdat)
364 static inline bool early_page_uninitialised(unsigned long pfn)
366 return false;
369 static inline bool update_defer_init(pg_data_t *pgdat,
370 unsigned long pfn, unsigned long zone_end,
371 unsigned long *nr_initialised)
373 return true;
375 #endif
377 /* Return a pointer to the bitmap storing bits affecting a block of pages */
378 static inline unsigned long *get_pageblock_bitmap(struct page *page,
379 unsigned long pfn)
381 #ifdef CONFIG_SPARSEMEM
382 return __pfn_to_section(pfn)->pageblock_flags;
383 #else
384 return page_zone(page)->pageblock_flags;
385 #endif /* CONFIG_SPARSEMEM */
388 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
390 #ifdef CONFIG_SPARSEMEM
391 pfn &= (PAGES_PER_SECTION-1);
392 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
393 #else
394 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
395 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
396 #endif /* CONFIG_SPARSEMEM */
400 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
401 * @page: The page within the block of interest
402 * @pfn: The target page frame number
403 * @end_bitidx: The last bit of interest to retrieve
404 * @mask: mask of bits that the caller is interested in
406 * Return: pageblock_bits flags
408 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
409 unsigned long pfn,
410 unsigned long end_bitidx,
411 unsigned long mask)
413 unsigned long *bitmap;
414 unsigned long bitidx, word_bitidx;
415 unsigned long word;
417 bitmap = get_pageblock_bitmap(page, pfn);
418 bitidx = pfn_to_bitidx(page, pfn);
419 word_bitidx = bitidx / BITS_PER_LONG;
420 bitidx &= (BITS_PER_LONG-1);
422 word = bitmap[word_bitidx];
423 bitidx += end_bitidx;
424 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
427 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
428 unsigned long end_bitidx,
429 unsigned long mask)
431 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
434 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
436 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
440 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
441 * @page: The page within the block of interest
442 * @flags: The flags to set
443 * @pfn: The target page frame number
444 * @end_bitidx: The last bit of interest
445 * @mask: mask of bits that the caller is interested in
447 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
448 unsigned long pfn,
449 unsigned long end_bitidx,
450 unsigned long mask)
452 unsigned long *bitmap;
453 unsigned long bitidx, word_bitidx;
454 unsigned long old_word, word;
456 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
458 bitmap = get_pageblock_bitmap(page, pfn);
459 bitidx = pfn_to_bitidx(page, pfn);
460 word_bitidx = bitidx / BITS_PER_LONG;
461 bitidx &= (BITS_PER_LONG-1);
463 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
465 bitidx += end_bitidx;
466 mask <<= (BITS_PER_LONG - bitidx - 1);
467 flags <<= (BITS_PER_LONG - bitidx - 1);
469 word = READ_ONCE(bitmap[word_bitidx]);
470 for (;;) {
471 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
472 if (word == old_word)
473 break;
474 word = old_word;
478 void set_pageblock_migratetype(struct page *page, int migratetype)
480 if (unlikely(page_group_by_mobility_disabled &&
481 migratetype < MIGRATE_PCPTYPES))
482 migratetype = MIGRATE_UNMOVABLE;
484 set_pageblock_flags_group(page, (unsigned long)migratetype,
485 PB_migrate, PB_migrate_end);
488 #ifdef CONFIG_DEBUG_VM
489 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
491 int ret = 0;
492 unsigned seq;
493 unsigned long pfn = page_to_pfn(page);
494 unsigned long sp, start_pfn;
496 do {
497 seq = zone_span_seqbegin(zone);
498 start_pfn = zone->zone_start_pfn;
499 sp = zone->spanned_pages;
500 if (!zone_spans_pfn(zone, pfn))
501 ret = 1;
502 } while (zone_span_seqretry(zone, seq));
504 if (ret)
505 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
506 pfn, zone_to_nid(zone), zone->name,
507 start_pfn, start_pfn + sp);
509 return ret;
512 static int page_is_consistent(struct zone *zone, struct page *page)
514 if (!pfn_valid_within(page_to_pfn(page)))
515 return 0;
516 if (zone != page_zone(page))
517 return 0;
519 return 1;
522 * Temporary debugging check for pages not lying within a given zone.
524 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
526 if (page_outside_zone_boundaries(zone, page))
527 return 1;
528 if (!page_is_consistent(zone, page))
529 return 1;
531 return 0;
533 #else
534 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
536 return 0;
538 #endif
540 static void bad_page(struct page *page, const char *reason,
541 unsigned long bad_flags)
543 static unsigned long resume;
544 static unsigned long nr_shown;
545 static unsigned long nr_unshown;
548 * Allow a burst of 60 reports, then keep quiet for that minute;
549 * or allow a steady drip of one report per second.
551 if (nr_shown == 60) {
552 if (time_before(jiffies, resume)) {
553 nr_unshown++;
554 goto out;
556 if (nr_unshown) {
557 pr_alert(
558 "BUG: Bad page state: %lu messages suppressed\n",
559 nr_unshown);
560 nr_unshown = 0;
562 nr_shown = 0;
564 if (nr_shown++ == 0)
565 resume = jiffies + 60 * HZ;
567 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
568 current->comm, page_to_pfn(page));
569 __dump_page(page, reason);
570 bad_flags &= page->flags;
571 if (bad_flags)
572 pr_alert("bad because of flags: %#lx(%pGp)\n",
573 bad_flags, &bad_flags);
574 dump_page_owner(page);
576 print_modules();
577 dump_stack();
578 out:
579 /* Leave bad fields for debug, except PageBuddy could make trouble */
580 page_mapcount_reset(page); /* remove PageBuddy */
581 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
585 * Higher-order pages are called "compound pages". They are structured thusly:
587 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
589 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
590 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
592 * The first tail page's ->compound_dtor holds the offset in array of compound
593 * page destructors. See compound_page_dtors.
595 * The first tail page's ->compound_order holds the order of allocation.
596 * This usage means that zero-order pages may not be compound.
599 void free_compound_page(struct page *page)
601 __free_pages_ok(page, compound_order(page));
604 void prep_compound_page(struct page *page, unsigned int order)
606 int i;
607 int nr_pages = 1 << order;
609 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
610 set_compound_order(page, order);
611 __SetPageHead(page);
612 for (i = 1; i < nr_pages; i++) {
613 struct page *p = page + i;
614 set_page_count(p, 0);
615 p->mapping = TAIL_MAPPING;
616 set_compound_head(p, page);
618 atomic_set(compound_mapcount_ptr(page), -1);
621 #ifdef CONFIG_DEBUG_PAGEALLOC
622 unsigned int _debug_guardpage_minorder;
623 bool _debug_pagealloc_enabled __read_mostly
624 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
625 EXPORT_SYMBOL(_debug_pagealloc_enabled);
626 bool _debug_guardpage_enabled __read_mostly;
628 static int __init early_debug_pagealloc(char *buf)
630 if (!buf)
631 return -EINVAL;
632 return kstrtobool(buf, &_debug_pagealloc_enabled);
634 early_param("debug_pagealloc", early_debug_pagealloc);
636 static bool need_debug_guardpage(void)
638 /* If we don't use debug_pagealloc, we don't need guard page */
639 if (!debug_pagealloc_enabled())
640 return false;
642 if (!debug_guardpage_minorder())
643 return false;
645 return true;
648 static void init_debug_guardpage(void)
650 if (!debug_pagealloc_enabled())
651 return;
653 if (!debug_guardpage_minorder())
654 return;
656 _debug_guardpage_enabled = true;
659 struct page_ext_operations debug_guardpage_ops = {
660 .need = need_debug_guardpage,
661 .init = init_debug_guardpage,
664 static int __init debug_guardpage_minorder_setup(char *buf)
666 unsigned long res;
668 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
669 pr_err("Bad debug_guardpage_minorder value\n");
670 return 0;
672 _debug_guardpage_minorder = res;
673 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
674 return 0;
676 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
678 static inline bool set_page_guard(struct zone *zone, struct page *page,
679 unsigned int order, int migratetype)
681 struct page_ext *page_ext;
683 if (!debug_guardpage_enabled())
684 return false;
686 if (order >= debug_guardpage_minorder())
687 return false;
689 page_ext = lookup_page_ext(page);
690 if (unlikely(!page_ext))
691 return false;
693 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
695 INIT_LIST_HEAD(&page->lru);
696 set_page_private(page, order);
697 /* Guard pages are not available for any usage */
698 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
700 return true;
703 static inline void clear_page_guard(struct zone *zone, struct page *page,
704 unsigned int order, int migratetype)
706 struct page_ext *page_ext;
708 if (!debug_guardpage_enabled())
709 return;
711 page_ext = lookup_page_ext(page);
712 if (unlikely(!page_ext))
713 return;
715 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
717 set_page_private(page, 0);
718 if (!is_migrate_isolate(migratetype))
719 __mod_zone_freepage_state(zone, (1 << order), migratetype);
721 #else
722 struct page_ext_operations debug_guardpage_ops;
723 static inline bool set_page_guard(struct zone *zone, struct page *page,
724 unsigned int order, int migratetype) { return false; }
725 static inline void clear_page_guard(struct zone *zone, struct page *page,
726 unsigned int order, int migratetype) {}
727 #endif
729 static inline void set_page_order(struct page *page, unsigned int order)
731 set_page_private(page, order);
732 __SetPageBuddy(page);
735 static inline void rmv_page_order(struct page *page)
737 __ClearPageBuddy(page);
738 set_page_private(page, 0);
742 * This function checks whether a page is free && is the buddy
743 * we can do coalesce a page and its buddy if
744 * (a) the buddy is not in a hole (check before calling!) &&
745 * (b) the buddy is in the buddy system &&
746 * (c) a page and its buddy have the same order &&
747 * (d) a page and its buddy are in the same zone.
749 * For recording whether a page is in the buddy system, we set ->_mapcount
750 * PAGE_BUDDY_MAPCOUNT_VALUE.
751 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
752 * serialized by zone->lock.
754 * For recording page's order, we use page_private(page).
756 static inline int page_is_buddy(struct page *page, struct page *buddy,
757 unsigned int order)
759 if (page_is_guard(buddy) && page_order(buddy) == order) {
760 if (page_zone_id(page) != page_zone_id(buddy))
761 return 0;
763 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
765 return 1;
768 if (PageBuddy(buddy) && page_order(buddy) == order) {
770 * zone check is done late to avoid uselessly
771 * calculating zone/node ids for pages that could
772 * never merge.
774 if (page_zone_id(page) != page_zone_id(buddy))
775 return 0;
777 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
779 return 1;
781 return 0;
785 * Freeing function for a buddy system allocator.
787 * The concept of a buddy system is to maintain direct-mapped table
788 * (containing bit values) for memory blocks of various "orders".
789 * The bottom level table contains the map for the smallest allocatable
790 * units of memory (here, pages), and each level above it describes
791 * pairs of units from the levels below, hence, "buddies".
792 * At a high level, all that happens here is marking the table entry
793 * at the bottom level available, and propagating the changes upward
794 * as necessary, plus some accounting needed to play nicely with other
795 * parts of the VM system.
796 * At each level, we keep a list of pages, which are heads of continuous
797 * free pages of length of (1 << order) and marked with _mapcount
798 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
799 * field.
800 * So when we are allocating or freeing one, we can derive the state of the
801 * other. That is, if we allocate a small block, and both were
802 * free, the remainder of the region must be split into blocks.
803 * If a block is freed, and its buddy is also free, then this
804 * triggers coalescing into a block of larger size.
806 * -- nyc
809 static inline void __free_one_page(struct page *page,
810 unsigned long pfn,
811 struct zone *zone, unsigned int order,
812 int migratetype)
814 unsigned long combined_pfn;
815 unsigned long uninitialized_var(buddy_pfn);
816 struct page *buddy;
817 unsigned int max_order;
819 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
821 VM_BUG_ON(!zone_is_initialized(zone));
822 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
824 VM_BUG_ON(migratetype == -1);
825 if (likely(!is_migrate_isolate(migratetype)))
826 __mod_zone_freepage_state(zone, 1 << order, migratetype);
828 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
829 VM_BUG_ON_PAGE(bad_range(zone, page), page);
831 continue_merging:
832 while (order < max_order - 1) {
833 buddy_pfn = __find_buddy_pfn(pfn, order);
834 buddy = page + (buddy_pfn - pfn);
836 if (!pfn_valid_within(buddy_pfn))
837 goto done_merging;
838 if (!page_is_buddy(page, buddy, order))
839 goto done_merging;
841 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
842 * merge with it and move up one order.
844 if (page_is_guard(buddy)) {
845 clear_page_guard(zone, buddy, order, migratetype);
846 } else {
847 list_del(&buddy->lru);
848 zone->free_area[order].nr_free--;
849 rmv_page_order(buddy);
851 combined_pfn = buddy_pfn & pfn;
852 page = page + (combined_pfn - pfn);
853 pfn = combined_pfn;
854 order++;
856 if (max_order < MAX_ORDER) {
857 /* If we are here, it means order is >= pageblock_order.
858 * We want to prevent merge between freepages on isolate
859 * pageblock and normal pageblock. Without this, pageblock
860 * isolation could cause incorrect freepage or CMA accounting.
862 * We don't want to hit this code for the more frequent
863 * low-order merging.
865 if (unlikely(has_isolate_pageblock(zone))) {
866 int buddy_mt;
868 buddy_pfn = __find_buddy_pfn(pfn, order);
869 buddy = page + (buddy_pfn - pfn);
870 buddy_mt = get_pageblock_migratetype(buddy);
872 if (migratetype != buddy_mt
873 && (is_migrate_isolate(migratetype) ||
874 is_migrate_isolate(buddy_mt)))
875 goto done_merging;
877 max_order++;
878 goto continue_merging;
881 done_merging:
882 set_page_order(page, order);
885 * If this is not the largest possible page, check if the buddy
886 * of the next-highest order is free. If it is, it's possible
887 * that pages are being freed that will coalesce soon. In case,
888 * that is happening, add the free page to the tail of the list
889 * so it's less likely to be used soon and more likely to be merged
890 * as a higher order page
892 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
893 struct page *higher_page, *higher_buddy;
894 combined_pfn = buddy_pfn & pfn;
895 higher_page = page + (combined_pfn - pfn);
896 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
897 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
898 if (pfn_valid_within(buddy_pfn) &&
899 page_is_buddy(higher_page, higher_buddy, order + 1)) {
900 list_add_tail(&page->lru,
901 &zone->free_area[order].free_list[migratetype]);
902 goto out;
906 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
907 out:
908 zone->free_area[order].nr_free++;
912 * A bad page could be due to a number of fields. Instead of multiple branches,
913 * try and check multiple fields with one check. The caller must do a detailed
914 * check if necessary.
916 static inline bool page_expected_state(struct page *page,
917 unsigned long check_flags)
919 if (unlikely(atomic_read(&page->_mapcount) != -1))
920 return false;
922 if (unlikely((unsigned long)page->mapping |
923 page_ref_count(page) |
924 #ifdef CONFIG_MEMCG
925 (unsigned long)page->mem_cgroup |
926 #endif
927 (page->flags & check_flags)))
928 return false;
930 return true;
933 static void free_pages_check_bad(struct page *page)
935 const char *bad_reason;
936 unsigned long bad_flags;
938 bad_reason = NULL;
939 bad_flags = 0;
941 if (unlikely(atomic_read(&page->_mapcount) != -1))
942 bad_reason = "nonzero mapcount";
943 if (unlikely(page->mapping != NULL))
944 bad_reason = "non-NULL mapping";
945 if (unlikely(page_ref_count(page) != 0))
946 bad_reason = "nonzero _refcount";
947 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
948 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
949 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
951 #ifdef CONFIG_MEMCG
952 if (unlikely(page->mem_cgroup))
953 bad_reason = "page still charged to cgroup";
954 #endif
955 bad_page(page, bad_reason, bad_flags);
958 static inline int free_pages_check(struct page *page)
960 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
961 return 0;
963 /* Something has gone sideways, find it */
964 free_pages_check_bad(page);
965 return 1;
968 static int free_tail_pages_check(struct page *head_page, struct page *page)
970 int ret = 1;
973 * We rely page->lru.next never has bit 0 set, unless the page
974 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
976 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
978 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
979 ret = 0;
980 goto out;
982 switch (page - head_page) {
983 case 1:
984 /* the first tail page: ->mapping is compound_mapcount() */
985 if (unlikely(compound_mapcount(page))) {
986 bad_page(page, "nonzero compound_mapcount", 0);
987 goto out;
989 break;
990 case 2:
992 * the second tail page: ->mapping is
993 * page_deferred_list().next -- ignore value.
995 break;
996 default:
997 if (page->mapping != TAIL_MAPPING) {
998 bad_page(page, "corrupted mapping in tail page", 0);
999 goto out;
1001 break;
1003 if (unlikely(!PageTail(page))) {
1004 bad_page(page, "PageTail not set", 0);
1005 goto out;
1007 if (unlikely(compound_head(page) != head_page)) {
1008 bad_page(page, "compound_head not consistent", 0);
1009 goto out;
1011 ret = 0;
1012 out:
1013 page->mapping = NULL;
1014 clear_compound_head(page);
1015 return ret;
1018 static __always_inline bool free_pages_prepare(struct page *page,
1019 unsigned int order, bool check_free)
1021 int bad = 0;
1023 VM_BUG_ON_PAGE(PageTail(page), page);
1025 trace_mm_page_free(page, order);
1028 * Check tail pages before head page information is cleared to
1029 * avoid checking PageCompound for order-0 pages.
1031 if (unlikely(order)) {
1032 bool compound = PageCompound(page);
1033 int i;
1035 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1037 if (compound)
1038 ClearPageDoubleMap(page);
1039 for (i = 1; i < (1 << order); i++) {
1040 if (compound)
1041 bad += free_tail_pages_check(page, page + i);
1042 if (unlikely(free_pages_check(page + i))) {
1043 bad++;
1044 continue;
1046 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1049 if (PageMappingFlags(page))
1050 page->mapping = NULL;
1051 if (memcg_kmem_enabled() && PageKmemcg(page))
1052 memcg_kmem_uncharge(page, order);
1053 if (check_free)
1054 bad += free_pages_check(page);
1055 if (bad)
1056 return false;
1058 page_cpupid_reset_last(page);
1059 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1060 reset_page_owner(page, order);
1062 if (!PageHighMem(page)) {
1063 debug_check_no_locks_freed(page_address(page),
1064 PAGE_SIZE << order);
1065 debug_check_no_obj_freed(page_address(page),
1066 PAGE_SIZE << order);
1068 arch_free_page(page, order);
1069 kernel_poison_pages(page, 1 << order, 0);
1070 kernel_map_pages(page, 1 << order, 0);
1071 kasan_free_pages(page, order);
1073 return true;
1076 #ifdef CONFIG_DEBUG_VM
1077 static inline bool free_pcp_prepare(struct page *page)
1079 return free_pages_prepare(page, 0, true);
1082 static inline bool bulkfree_pcp_prepare(struct page *page)
1084 return false;
1086 #else
1087 static bool free_pcp_prepare(struct page *page)
1089 return free_pages_prepare(page, 0, false);
1092 static bool bulkfree_pcp_prepare(struct page *page)
1094 return free_pages_check(page);
1096 #endif /* CONFIG_DEBUG_VM */
1099 * Frees a number of pages from the PCP lists
1100 * Assumes all pages on list are in same zone, and of same order.
1101 * count is the number of pages to free.
1103 * If the zone was previously in an "all pages pinned" state then look to
1104 * see if this freeing clears that state.
1106 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1107 * pinned" detection logic.
1109 static void free_pcppages_bulk(struct zone *zone, int count,
1110 struct per_cpu_pages *pcp)
1112 int migratetype = 0;
1113 int batch_free = 0;
1114 bool isolated_pageblocks;
1116 spin_lock(&zone->lock);
1117 isolated_pageblocks = has_isolate_pageblock(zone);
1119 while (count) {
1120 struct page *page;
1121 struct list_head *list;
1124 * Remove pages from lists in a round-robin fashion. A
1125 * batch_free count is maintained that is incremented when an
1126 * empty list is encountered. This is so more pages are freed
1127 * off fuller lists instead of spinning excessively around empty
1128 * lists
1130 do {
1131 batch_free++;
1132 if (++migratetype == MIGRATE_PCPTYPES)
1133 migratetype = 0;
1134 list = &pcp->lists[migratetype];
1135 } while (list_empty(list));
1137 /* This is the only non-empty list. Free them all. */
1138 if (batch_free == MIGRATE_PCPTYPES)
1139 batch_free = count;
1141 do {
1142 int mt; /* migratetype of the to-be-freed page */
1144 page = list_last_entry(list, struct page, lru);
1145 /* must delete as __free_one_page list manipulates */
1146 list_del(&page->lru);
1148 mt = get_pcppage_migratetype(page);
1149 /* MIGRATE_ISOLATE page should not go to pcplists */
1150 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1151 /* Pageblock could have been isolated meanwhile */
1152 if (unlikely(isolated_pageblocks))
1153 mt = get_pageblock_migratetype(page);
1155 if (bulkfree_pcp_prepare(page))
1156 continue;
1158 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1159 trace_mm_page_pcpu_drain(page, 0, mt);
1160 } while (--count && --batch_free && !list_empty(list));
1162 spin_unlock(&zone->lock);
1165 static void free_one_page(struct zone *zone,
1166 struct page *page, unsigned long pfn,
1167 unsigned int order,
1168 int migratetype)
1170 spin_lock(&zone->lock);
1171 if (unlikely(has_isolate_pageblock(zone) ||
1172 is_migrate_isolate(migratetype))) {
1173 migratetype = get_pfnblock_migratetype(page, pfn);
1175 __free_one_page(page, pfn, zone, order, migratetype);
1176 spin_unlock(&zone->lock);
1179 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1180 unsigned long zone, int nid, bool zero)
1182 if (zero)
1183 mm_zero_struct_page(page);
1184 set_page_links(page, zone, nid, pfn);
1185 init_page_count(page);
1186 page_mapcount_reset(page);
1187 page_cpupid_reset_last(page);
1189 INIT_LIST_HEAD(&page->lru);
1190 #ifdef WANT_PAGE_VIRTUAL
1191 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1192 if (!is_highmem_idx(zone))
1193 set_page_address(page, __va(pfn << PAGE_SHIFT));
1194 #endif
1197 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1198 int nid, bool zero)
1200 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid, zero);
1203 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1204 static void __meminit init_reserved_page(unsigned long pfn)
1206 pg_data_t *pgdat;
1207 int nid, zid;
1209 if (!early_page_uninitialised(pfn))
1210 return;
1212 nid = early_pfn_to_nid(pfn);
1213 pgdat = NODE_DATA(nid);
1215 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1216 struct zone *zone = &pgdat->node_zones[zid];
1218 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1219 break;
1221 __init_single_pfn(pfn, zid, nid, true);
1223 #else
1224 static inline void init_reserved_page(unsigned long pfn)
1227 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1230 * Initialised pages do not have PageReserved set. This function is
1231 * called for each range allocated by the bootmem allocator and
1232 * marks the pages PageReserved. The remaining valid pages are later
1233 * sent to the buddy page allocator.
1235 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1237 unsigned long start_pfn = PFN_DOWN(start);
1238 unsigned long end_pfn = PFN_UP(end);
1240 for (; start_pfn < end_pfn; start_pfn++) {
1241 if (pfn_valid(start_pfn)) {
1242 struct page *page = pfn_to_page(start_pfn);
1244 init_reserved_page(start_pfn);
1246 /* Avoid false-positive PageTail() */
1247 INIT_LIST_HEAD(&page->lru);
1249 SetPageReserved(page);
1254 static void __free_pages_ok(struct page *page, unsigned int order)
1256 unsigned long flags;
1257 int migratetype;
1258 unsigned long pfn = page_to_pfn(page);
1260 if (!free_pages_prepare(page, order, true))
1261 return;
1263 migratetype = get_pfnblock_migratetype(page, pfn);
1264 local_irq_save(flags);
1265 __count_vm_events(PGFREE, 1 << order);
1266 free_one_page(page_zone(page), page, pfn, order, migratetype);
1267 local_irq_restore(flags);
1270 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1272 unsigned int nr_pages = 1 << order;
1273 struct page *p = page;
1274 unsigned int loop;
1276 prefetchw(p);
1277 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1278 prefetchw(p + 1);
1279 __ClearPageReserved(p);
1280 set_page_count(p, 0);
1282 __ClearPageReserved(p);
1283 set_page_count(p, 0);
1285 page_zone(page)->managed_pages += nr_pages;
1286 set_page_refcounted(page);
1287 __free_pages(page, order);
1290 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1291 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1293 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1295 int __meminit early_pfn_to_nid(unsigned long pfn)
1297 static DEFINE_SPINLOCK(early_pfn_lock);
1298 int nid;
1300 spin_lock(&early_pfn_lock);
1301 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1302 if (nid < 0)
1303 nid = first_online_node;
1304 spin_unlock(&early_pfn_lock);
1306 return nid;
1308 #endif
1310 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1311 static inline bool __meminit __maybe_unused
1312 meminit_pfn_in_nid(unsigned long pfn, int node,
1313 struct mminit_pfnnid_cache *state)
1315 int nid;
1317 nid = __early_pfn_to_nid(pfn, state);
1318 if (nid >= 0 && nid != node)
1319 return false;
1320 return true;
1323 /* Only safe to use early in boot when initialisation is single-threaded */
1324 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1326 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1329 #else
1331 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1333 return true;
1335 static inline bool __meminit __maybe_unused
1336 meminit_pfn_in_nid(unsigned long pfn, int node,
1337 struct mminit_pfnnid_cache *state)
1339 return true;
1341 #endif
1344 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1345 unsigned int order)
1347 if (early_page_uninitialised(pfn))
1348 return;
1349 return __free_pages_boot_core(page, order);
1353 * Check that the whole (or subset of) a pageblock given by the interval of
1354 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1355 * with the migration of free compaction scanner. The scanners then need to
1356 * use only pfn_valid_within() check for arches that allow holes within
1357 * pageblocks.
1359 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1361 * It's possible on some configurations to have a setup like node0 node1 node0
1362 * i.e. it's possible that all pages within a zones range of pages do not
1363 * belong to a single zone. We assume that a border between node0 and node1
1364 * can occur within a single pageblock, but not a node0 node1 node0
1365 * interleaving within a single pageblock. It is therefore sufficient to check
1366 * the first and last page of a pageblock and avoid checking each individual
1367 * page in a pageblock.
1369 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1370 unsigned long end_pfn, struct zone *zone)
1372 struct page *start_page;
1373 struct page *end_page;
1375 /* end_pfn is one past the range we are checking */
1376 end_pfn--;
1378 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1379 return NULL;
1381 start_page = pfn_to_online_page(start_pfn);
1382 if (!start_page)
1383 return NULL;
1385 if (page_zone(start_page) != zone)
1386 return NULL;
1388 end_page = pfn_to_page(end_pfn);
1390 /* This gives a shorter code than deriving page_zone(end_page) */
1391 if (page_zone_id(start_page) != page_zone_id(end_page))
1392 return NULL;
1394 return start_page;
1397 void set_zone_contiguous(struct zone *zone)
1399 unsigned long block_start_pfn = zone->zone_start_pfn;
1400 unsigned long block_end_pfn;
1402 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1403 for (; block_start_pfn < zone_end_pfn(zone);
1404 block_start_pfn = block_end_pfn,
1405 block_end_pfn += pageblock_nr_pages) {
1407 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1409 if (!__pageblock_pfn_to_page(block_start_pfn,
1410 block_end_pfn, zone))
1411 return;
1414 /* We confirm that there is no hole */
1415 zone->contiguous = true;
1418 void clear_zone_contiguous(struct zone *zone)
1420 zone->contiguous = false;
1423 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1424 static void __init deferred_free_range(unsigned long pfn,
1425 unsigned long nr_pages)
1427 struct page *page;
1428 unsigned long i;
1430 if (!nr_pages)
1431 return;
1433 page = pfn_to_page(pfn);
1435 /* Free a large naturally-aligned chunk if possible */
1436 if (nr_pages == pageblock_nr_pages &&
1437 (pfn & (pageblock_nr_pages - 1)) == 0) {
1438 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1439 __free_pages_boot_core(page, pageblock_order);
1440 return;
1443 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1444 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1445 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1446 __free_pages_boot_core(page, 0);
1450 /* Completion tracking for deferred_init_memmap() threads */
1451 static atomic_t pgdat_init_n_undone __initdata;
1452 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1454 static inline void __init pgdat_init_report_one_done(void)
1456 if (atomic_dec_and_test(&pgdat_init_n_undone))
1457 complete(&pgdat_init_all_done_comp);
1461 * Returns true if page needs to be initialized or freed to buddy allocator.
1463 * First we check if pfn is valid on architectures where it is possible to have
1464 * holes within pageblock_nr_pages. On systems where it is not possible, this
1465 * function is optimized out.
1467 * Then, we check if a current large page is valid by only checking the validity
1468 * of the head pfn.
1470 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1471 * within a node: a pfn is between start and end of a node, but does not belong
1472 * to this memory node.
1474 static inline bool __init
1475 deferred_pfn_valid(int nid, unsigned long pfn,
1476 struct mminit_pfnnid_cache *nid_init_state)
1478 if (!pfn_valid_within(pfn))
1479 return false;
1480 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1481 return false;
1482 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1483 return false;
1484 return true;
1488 * Free pages to buddy allocator. Try to free aligned pages in
1489 * pageblock_nr_pages sizes.
1491 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1492 unsigned long end_pfn)
1494 struct mminit_pfnnid_cache nid_init_state = { };
1495 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1496 unsigned long nr_free = 0;
1498 for (; pfn < end_pfn; pfn++) {
1499 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1500 deferred_free_range(pfn - nr_free, nr_free);
1501 nr_free = 0;
1502 } else if (!(pfn & nr_pgmask)) {
1503 deferred_free_range(pfn - nr_free, nr_free);
1504 nr_free = 1;
1505 cond_resched();
1506 } else {
1507 nr_free++;
1510 /* Free the last block of pages to allocator */
1511 deferred_free_range(pfn - nr_free, nr_free);
1515 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1516 * by performing it only once every pageblock_nr_pages.
1517 * Return number of pages initialized.
1519 static unsigned long __init deferred_init_pages(int nid, int zid,
1520 unsigned long pfn,
1521 unsigned long end_pfn)
1523 struct mminit_pfnnid_cache nid_init_state = { };
1524 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1525 unsigned long nr_pages = 0;
1526 struct page *page = NULL;
1528 for (; pfn < end_pfn; pfn++) {
1529 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1530 page = NULL;
1531 continue;
1532 } else if (!page || !(pfn & nr_pgmask)) {
1533 page = pfn_to_page(pfn);
1534 cond_resched();
1535 } else {
1536 page++;
1538 __init_single_page(page, pfn, zid, nid, true);
1539 nr_pages++;
1541 return (nr_pages);
1544 /* Initialise remaining memory on a node */
1545 static int __init deferred_init_memmap(void *data)
1547 pg_data_t *pgdat = data;
1548 int nid = pgdat->node_id;
1549 unsigned long start = jiffies;
1550 unsigned long nr_pages = 0;
1551 unsigned long spfn, epfn;
1552 phys_addr_t spa, epa;
1553 int zid;
1554 struct zone *zone;
1555 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1556 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1557 u64 i;
1559 if (first_init_pfn == ULONG_MAX) {
1560 pgdat_init_report_one_done();
1561 return 0;
1564 /* Bind memory initialisation thread to a local node if possible */
1565 if (!cpumask_empty(cpumask))
1566 set_cpus_allowed_ptr(current, cpumask);
1568 /* Sanity check boundaries */
1569 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1570 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1571 pgdat->first_deferred_pfn = ULONG_MAX;
1573 /* Only the highest zone is deferred so find it */
1574 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1575 zone = pgdat->node_zones + zid;
1576 if (first_init_pfn < zone_end_pfn(zone))
1577 break;
1579 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1582 * Initialize and free pages. We do it in two loops: first we initialize
1583 * struct page, than free to buddy allocator, because while we are
1584 * freeing pages we can access pages that are ahead (computing buddy
1585 * page in __free_one_page()).
1587 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1588 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1589 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1590 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1592 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1593 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1594 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1595 deferred_free_pages(nid, zid, spfn, epfn);
1598 /* Sanity check that the next zone really is unpopulated */
1599 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1601 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1602 jiffies_to_msecs(jiffies - start));
1604 pgdat_init_report_one_done();
1605 return 0;
1607 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1609 void __init page_alloc_init_late(void)
1611 struct zone *zone;
1613 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1614 int nid;
1616 /* There will be num_node_state(N_MEMORY) threads */
1617 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1618 for_each_node_state(nid, N_MEMORY) {
1619 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1622 /* Block until all are initialised */
1623 wait_for_completion(&pgdat_init_all_done_comp);
1625 /* Reinit limits that are based on free pages after the kernel is up */
1626 files_maxfiles_init();
1627 #endif
1628 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1629 /* Discard memblock private memory */
1630 memblock_discard();
1631 #endif
1633 for_each_populated_zone(zone)
1634 set_zone_contiguous(zone);
1637 #ifdef CONFIG_CMA
1638 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1639 void __init init_cma_reserved_pageblock(struct page *page)
1641 unsigned i = pageblock_nr_pages;
1642 struct page *p = page;
1644 do {
1645 __ClearPageReserved(p);
1646 set_page_count(p, 0);
1647 } while (++p, --i);
1649 set_pageblock_migratetype(page, MIGRATE_CMA);
1651 if (pageblock_order >= MAX_ORDER) {
1652 i = pageblock_nr_pages;
1653 p = page;
1654 do {
1655 set_page_refcounted(p);
1656 __free_pages(p, MAX_ORDER - 1);
1657 p += MAX_ORDER_NR_PAGES;
1658 } while (i -= MAX_ORDER_NR_PAGES);
1659 } else {
1660 set_page_refcounted(page);
1661 __free_pages(page, pageblock_order);
1664 adjust_managed_page_count(page, pageblock_nr_pages);
1666 #endif
1669 * The order of subdivision here is critical for the IO subsystem.
1670 * Please do not alter this order without good reasons and regression
1671 * testing. Specifically, as large blocks of memory are subdivided,
1672 * the order in which smaller blocks are delivered depends on the order
1673 * they're subdivided in this function. This is the primary factor
1674 * influencing the order in which pages are delivered to the IO
1675 * subsystem according to empirical testing, and this is also justified
1676 * by considering the behavior of a buddy system containing a single
1677 * large block of memory acted on by a series of small allocations.
1678 * This behavior is a critical factor in sglist merging's success.
1680 * -- nyc
1682 static inline void expand(struct zone *zone, struct page *page,
1683 int low, int high, struct free_area *area,
1684 int migratetype)
1686 unsigned long size = 1 << high;
1688 while (high > low) {
1689 area--;
1690 high--;
1691 size >>= 1;
1692 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1695 * Mark as guard pages (or page), that will allow to
1696 * merge back to allocator when buddy will be freed.
1697 * Corresponding page table entries will not be touched,
1698 * pages will stay not present in virtual address space
1700 if (set_page_guard(zone, &page[size], high, migratetype))
1701 continue;
1703 list_add(&page[size].lru, &area->free_list[migratetype]);
1704 area->nr_free++;
1705 set_page_order(&page[size], high);
1709 static void check_new_page_bad(struct page *page)
1711 const char *bad_reason = NULL;
1712 unsigned long bad_flags = 0;
1714 if (unlikely(atomic_read(&page->_mapcount) != -1))
1715 bad_reason = "nonzero mapcount";
1716 if (unlikely(page->mapping != NULL))
1717 bad_reason = "non-NULL mapping";
1718 if (unlikely(page_ref_count(page) != 0))
1719 bad_reason = "nonzero _count";
1720 if (unlikely(page->flags & __PG_HWPOISON)) {
1721 bad_reason = "HWPoisoned (hardware-corrupted)";
1722 bad_flags = __PG_HWPOISON;
1723 /* Don't complain about hwpoisoned pages */
1724 page_mapcount_reset(page); /* remove PageBuddy */
1725 return;
1727 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1728 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1729 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1731 #ifdef CONFIG_MEMCG
1732 if (unlikely(page->mem_cgroup))
1733 bad_reason = "page still charged to cgroup";
1734 #endif
1735 bad_page(page, bad_reason, bad_flags);
1739 * This page is about to be returned from the page allocator
1741 static inline int check_new_page(struct page *page)
1743 if (likely(page_expected_state(page,
1744 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1745 return 0;
1747 check_new_page_bad(page);
1748 return 1;
1751 static inline bool free_pages_prezeroed(void)
1753 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1754 page_poisoning_enabled();
1757 #ifdef CONFIG_DEBUG_VM
1758 static bool check_pcp_refill(struct page *page)
1760 return false;
1763 static bool check_new_pcp(struct page *page)
1765 return check_new_page(page);
1767 #else
1768 static bool check_pcp_refill(struct page *page)
1770 return check_new_page(page);
1772 static bool check_new_pcp(struct page *page)
1774 return false;
1776 #endif /* CONFIG_DEBUG_VM */
1778 static bool check_new_pages(struct page *page, unsigned int order)
1780 int i;
1781 for (i = 0; i < (1 << order); i++) {
1782 struct page *p = page + i;
1784 if (unlikely(check_new_page(p)))
1785 return true;
1788 return false;
1791 inline void post_alloc_hook(struct page *page, unsigned int order,
1792 gfp_t gfp_flags)
1794 set_page_private(page, 0);
1795 set_page_refcounted(page);
1797 arch_alloc_page(page, order);
1798 kernel_map_pages(page, 1 << order, 1);
1799 kernel_poison_pages(page, 1 << order, 1);
1800 kasan_alloc_pages(page, order);
1801 set_page_owner(page, order, gfp_flags);
1804 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1805 unsigned int alloc_flags)
1807 int i;
1809 post_alloc_hook(page, order, gfp_flags);
1811 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1812 for (i = 0; i < (1 << order); i++)
1813 clear_highpage(page + i);
1815 if (order && (gfp_flags & __GFP_COMP))
1816 prep_compound_page(page, order);
1819 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1820 * allocate the page. The expectation is that the caller is taking
1821 * steps that will free more memory. The caller should avoid the page
1822 * being used for !PFMEMALLOC purposes.
1824 if (alloc_flags & ALLOC_NO_WATERMARKS)
1825 set_page_pfmemalloc(page);
1826 else
1827 clear_page_pfmemalloc(page);
1831 * Go through the free lists for the given migratetype and remove
1832 * the smallest available page from the freelists
1834 static __always_inline
1835 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1836 int migratetype)
1838 unsigned int current_order;
1839 struct free_area *area;
1840 struct page *page;
1842 /* Find a page of the appropriate size in the preferred list */
1843 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1844 area = &(zone->free_area[current_order]);
1845 page = list_first_entry_or_null(&area->free_list[migratetype],
1846 struct page, lru);
1847 if (!page)
1848 continue;
1849 list_del(&page->lru);
1850 rmv_page_order(page);
1851 area->nr_free--;
1852 expand(zone, page, order, current_order, area, migratetype);
1853 set_pcppage_migratetype(page, migratetype);
1854 return page;
1857 return NULL;
1862 * This array describes the order lists are fallen back to when
1863 * the free lists for the desirable migrate type are depleted
1865 static int fallbacks[MIGRATE_TYPES][4] = {
1866 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1867 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1868 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1869 #ifdef CONFIG_CMA
1870 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1871 #endif
1872 #ifdef CONFIG_MEMORY_ISOLATION
1873 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1874 #endif
1877 #ifdef CONFIG_CMA
1878 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1879 unsigned int order)
1881 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1883 #else
1884 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1885 unsigned int order) { return NULL; }
1886 #endif
1889 * Move the free pages in a range to the free lists of the requested type.
1890 * Note that start_page and end_pages are not aligned on a pageblock
1891 * boundary. If alignment is required, use move_freepages_block()
1893 static int move_freepages(struct zone *zone,
1894 struct page *start_page, struct page *end_page,
1895 int migratetype, int *num_movable)
1897 struct page *page;
1898 unsigned int order;
1899 int pages_moved = 0;
1901 #ifndef CONFIG_HOLES_IN_ZONE
1903 * page_zone is not safe to call in this context when
1904 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1905 * anyway as we check zone boundaries in move_freepages_block().
1906 * Remove at a later date when no bug reports exist related to
1907 * grouping pages by mobility
1909 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1910 #endif
1912 if (num_movable)
1913 *num_movable = 0;
1915 for (page = start_page; page <= end_page;) {
1916 if (!pfn_valid_within(page_to_pfn(page))) {
1917 page++;
1918 continue;
1921 /* Make sure we are not inadvertently changing nodes */
1922 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1924 if (!PageBuddy(page)) {
1926 * We assume that pages that could be isolated for
1927 * migration are movable. But we don't actually try
1928 * isolating, as that would be expensive.
1930 if (num_movable &&
1931 (PageLRU(page) || __PageMovable(page)))
1932 (*num_movable)++;
1934 page++;
1935 continue;
1938 order = page_order(page);
1939 list_move(&page->lru,
1940 &zone->free_area[order].free_list[migratetype]);
1941 page += 1 << order;
1942 pages_moved += 1 << order;
1945 return pages_moved;
1948 int move_freepages_block(struct zone *zone, struct page *page,
1949 int migratetype, int *num_movable)
1951 unsigned long start_pfn, end_pfn;
1952 struct page *start_page, *end_page;
1954 start_pfn = page_to_pfn(page);
1955 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1956 start_page = pfn_to_page(start_pfn);
1957 end_page = start_page + pageblock_nr_pages - 1;
1958 end_pfn = start_pfn + pageblock_nr_pages - 1;
1960 /* Do not cross zone boundaries */
1961 if (!zone_spans_pfn(zone, start_pfn))
1962 start_page = page;
1963 if (!zone_spans_pfn(zone, end_pfn))
1964 return 0;
1966 return move_freepages(zone, start_page, end_page, migratetype,
1967 num_movable);
1970 static void change_pageblock_range(struct page *pageblock_page,
1971 int start_order, int migratetype)
1973 int nr_pageblocks = 1 << (start_order - pageblock_order);
1975 while (nr_pageblocks--) {
1976 set_pageblock_migratetype(pageblock_page, migratetype);
1977 pageblock_page += pageblock_nr_pages;
1982 * When we are falling back to another migratetype during allocation, try to
1983 * steal extra free pages from the same pageblocks to satisfy further
1984 * allocations, instead of polluting multiple pageblocks.
1986 * If we are stealing a relatively large buddy page, it is likely there will
1987 * be more free pages in the pageblock, so try to steal them all. For
1988 * reclaimable and unmovable allocations, we steal regardless of page size,
1989 * as fragmentation caused by those allocations polluting movable pageblocks
1990 * is worse than movable allocations stealing from unmovable and reclaimable
1991 * pageblocks.
1993 static bool can_steal_fallback(unsigned int order, int start_mt)
1996 * Leaving this order check is intended, although there is
1997 * relaxed order check in next check. The reason is that
1998 * we can actually steal whole pageblock if this condition met,
1999 * but, below check doesn't guarantee it and that is just heuristic
2000 * so could be changed anytime.
2002 if (order >= pageblock_order)
2003 return true;
2005 if (order >= pageblock_order / 2 ||
2006 start_mt == MIGRATE_RECLAIMABLE ||
2007 start_mt == MIGRATE_UNMOVABLE ||
2008 page_group_by_mobility_disabled)
2009 return true;
2011 return false;
2015 * This function implements actual steal behaviour. If order is large enough,
2016 * we can steal whole pageblock. If not, we first move freepages in this
2017 * pageblock to our migratetype and determine how many already-allocated pages
2018 * are there in the pageblock with a compatible migratetype. If at least half
2019 * of pages are free or compatible, we can change migratetype of the pageblock
2020 * itself, so pages freed in the future will be put on the correct free list.
2022 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2023 int start_type, bool whole_block)
2025 unsigned int current_order = page_order(page);
2026 struct free_area *area;
2027 int free_pages, movable_pages, alike_pages;
2028 int old_block_type;
2030 old_block_type = get_pageblock_migratetype(page);
2033 * This can happen due to races and we want to prevent broken
2034 * highatomic accounting.
2036 if (is_migrate_highatomic(old_block_type))
2037 goto single_page;
2039 /* Take ownership for orders >= pageblock_order */
2040 if (current_order >= pageblock_order) {
2041 change_pageblock_range(page, current_order, start_type);
2042 goto single_page;
2045 /* We are not allowed to try stealing from the whole block */
2046 if (!whole_block)
2047 goto single_page;
2049 free_pages = move_freepages_block(zone, page, start_type,
2050 &movable_pages);
2052 * Determine how many pages are compatible with our allocation.
2053 * For movable allocation, it's the number of movable pages which
2054 * we just obtained. For other types it's a bit more tricky.
2056 if (start_type == MIGRATE_MOVABLE) {
2057 alike_pages = movable_pages;
2058 } else {
2060 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2061 * to MOVABLE pageblock, consider all non-movable pages as
2062 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2063 * vice versa, be conservative since we can't distinguish the
2064 * exact migratetype of non-movable pages.
2066 if (old_block_type == MIGRATE_MOVABLE)
2067 alike_pages = pageblock_nr_pages
2068 - (free_pages + movable_pages);
2069 else
2070 alike_pages = 0;
2073 /* moving whole block can fail due to zone boundary conditions */
2074 if (!free_pages)
2075 goto single_page;
2078 * If a sufficient number of pages in the block are either free or of
2079 * comparable migratability as our allocation, claim the whole block.
2081 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2082 page_group_by_mobility_disabled)
2083 set_pageblock_migratetype(page, start_type);
2085 return;
2087 single_page:
2088 area = &zone->free_area[current_order];
2089 list_move(&page->lru, &area->free_list[start_type]);
2093 * Check whether there is a suitable fallback freepage with requested order.
2094 * If only_stealable is true, this function returns fallback_mt only if
2095 * we can steal other freepages all together. This would help to reduce
2096 * fragmentation due to mixed migratetype pages in one pageblock.
2098 int find_suitable_fallback(struct free_area *area, unsigned int order,
2099 int migratetype, bool only_stealable, bool *can_steal)
2101 int i;
2102 int fallback_mt;
2104 if (area->nr_free == 0)
2105 return -1;
2107 *can_steal = false;
2108 for (i = 0;; i++) {
2109 fallback_mt = fallbacks[migratetype][i];
2110 if (fallback_mt == MIGRATE_TYPES)
2111 break;
2113 if (list_empty(&area->free_list[fallback_mt]))
2114 continue;
2116 if (can_steal_fallback(order, migratetype))
2117 *can_steal = true;
2119 if (!only_stealable)
2120 return fallback_mt;
2122 if (*can_steal)
2123 return fallback_mt;
2126 return -1;
2130 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2131 * there are no empty page blocks that contain a page with a suitable order
2133 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2134 unsigned int alloc_order)
2136 int mt;
2137 unsigned long max_managed, flags;
2140 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2141 * Check is race-prone but harmless.
2143 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2144 if (zone->nr_reserved_highatomic >= max_managed)
2145 return;
2147 spin_lock_irqsave(&zone->lock, flags);
2149 /* Recheck the nr_reserved_highatomic limit under the lock */
2150 if (zone->nr_reserved_highatomic >= max_managed)
2151 goto out_unlock;
2153 /* Yoink! */
2154 mt = get_pageblock_migratetype(page);
2155 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2156 && !is_migrate_cma(mt)) {
2157 zone->nr_reserved_highatomic += pageblock_nr_pages;
2158 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2159 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2162 out_unlock:
2163 spin_unlock_irqrestore(&zone->lock, flags);
2167 * Used when an allocation is about to fail under memory pressure. This
2168 * potentially hurts the reliability of high-order allocations when under
2169 * intense memory pressure but failed atomic allocations should be easier
2170 * to recover from than an OOM.
2172 * If @force is true, try to unreserve a pageblock even though highatomic
2173 * pageblock is exhausted.
2175 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2176 bool force)
2178 struct zonelist *zonelist = ac->zonelist;
2179 unsigned long flags;
2180 struct zoneref *z;
2181 struct zone *zone;
2182 struct page *page;
2183 int order;
2184 bool ret;
2186 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2187 ac->nodemask) {
2189 * Preserve at least one pageblock unless memory pressure
2190 * is really high.
2192 if (!force && zone->nr_reserved_highatomic <=
2193 pageblock_nr_pages)
2194 continue;
2196 spin_lock_irqsave(&zone->lock, flags);
2197 for (order = 0; order < MAX_ORDER; order++) {
2198 struct free_area *area = &(zone->free_area[order]);
2200 page = list_first_entry_or_null(
2201 &area->free_list[MIGRATE_HIGHATOMIC],
2202 struct page, lru);
2203 if (!page)
2204 continue;
2207 * In page freeing path, migratetype change is racy so
2208 * we can counter several free pages in a pageblock
2209 * in this loop althoug we changed the pageblock type
2210 * from highatomic to ac->migratetype. So we should
2211 * adjust the count once.
2213 if (is_migrate_highatomic_page(page)) {
2215 * It should never happen but changes to
2216 * locking could inadvertently allow a per-cpu
2217 * drain to add pages to MIGRATE_HIGHATOMIC
2218 * while unreserving so be safe and watch for
2219 * underflows.
2221 zone->nr_reserved_highatomic -= min(
2222 pageblock_nr_pages,
2223 zone->nr_reserved_highatomic);
2227 * Convert to ac->migratetype and avoid the normal
2228 * pageblock stealing heuristics. Minimally, the caller
2229 * is doing the work and needs the pages. More
2230 * importantly, if the block was always converted to
2231 * MIGRATE_UNMOVABLE or another type then the number
2232 * of pageblocks that cannot be completely freed
2233 * may increase.
2235 set_pageblock_migratetype(page, ac->migratetype);
2236 ret = move_freepages_block(zone, page, ac->migratetype,
2237 NULL);
2238 if (ret) {
2239 spin_unlock_irqrestore(&zone->lock, flags);
2240 return ret;
2243 spin_unlock_irqrestore(&zone->lock, flags);
2246 return false;
2250 * Try finding a free buddy page on the fallback list and put it on the free
2251 * list of requested migratetype, possibly along with other pages from the same
2252 * block, depending on fragmentation avoidance heuristics. Returns true if
2253 * fallback was found so that __rmqueue_smallest() can grab it.
2255 * The use of signed ints for order and current_order is a deliberate
2256 * deviation from the rest of this file, to make the for loop
2257 * condition simpler.
2259 static __always_inline bool
2260 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2262 struct free_area *area;
2263 int current_order;
2264 struct page *page;
2265 int fallback_mt;
2266 bool can_steal;
2269 * Find the largest available free page in the other list. This roughly
2270 * approximates finding the pageblock with the most free pages, which
2271 * would be too costly to do exactly.
2273 for (current_order = MAX_ORDER - 1; current_order >= order;
2274 --current_order) {
2275 area = &(zone->free_area[current_order]);
2276 fallback_mt = find_suitable_fallback(area, current_order,
2277 start_migratetype, false, &can_steal);
2278 if (fallback_mt == -1)
2279 continue;
2282 * We cannot steal all free pages from the pageblock and the
2283 * requested migratetype is movable. In that case it's better to
2284 * steal and split the smallest available page instead of the
2285 * largest available page, because even if the next movable
2286 * allocation falls back into a different pageblock than this
2287 * one, it won't cause permanent fragmentation.
2289 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2290 && current_order > order)
2291 goto find_smallest;
2293 goto do_steal;
2296 return false;
2298 find_smallest:
2299 for (current_order = order; current_order < MAX_ORDER;
2300 current_order++) {
2301 area = &(zone->free_area[current_order]);
2302 fallback_mt = find_suitable_fallback(area, current_order,
2303 start_migratetype, false, &can_steal);
2304 if (fallback_mt != -1)
2305 break;
2309 * This should not happen - we already found a suitable fallback
2310 * when looking for the largest page.
2312 VM_BUG_ON(current_order == MAX_ORDER);
2314 do_steal:
2315 page = list_first_entry(&area->free_list[fallback_mt],
2316 struct page, lru);
2318 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2320 trace_mm_page_alloc_extfrag(page, order, current_order,
2321 start_migratetype, fallback_mt);
2323 return true;
2328 * Do the hard work of removing an element from the buddy allocator.
2329 * Call me with the zone->lock already held.
2331 static __always_inline struct page *
2332 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2334 struct page *page;
2336 retry:
2337 page = __rmqueue_smallest(zone, order, migratetype);
2338 if (unlikely(!page)) {
2339 if (migratetype == MIGRATE_MOVABLE)
2340 page = __rmqueue_cma_fallback(zone, order);
2342 if (!page && __rmqueue_fallback(zone, order, migratetype))
2343 goto retry;
2346 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2347 return page;
2351 * Obtain a specified number of elements from the buddy allocator, all under
2352 * a single hold of the lock, for efficiency. Add them to the supplied list.
2353 * Returns the number of new pages which were placed at *list.
2355 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2356 unsigned long count, struct list_head *list,
2357 int migratetype)
2359 int i, alloced = 0;
2361 spin_lock(&zone->lock);
2362 for (i = 0; i < count; ++i) {
2363 struct page *page = __rmqueue(zone, order, migratetype);
2364 if (unlikely(page == NULL))
2365 break;
2367 if (unlikely(check_pcp_refill(page)))
2368 continue;
2371 * Split buddy pages returned by expand() are received here in
2372 * physical page order. The page is added to the tail of
2373 * caller's list. From the callers perspective, the linked list
2374 * is ordered by page number under some conditions. This is
2375 * useful for IO devices that can forward direction from the
2376 * head, thus also in the physical page order. This is useful
2377 * for IO devices that can merge IO requests if the physical
2378 * pages are ordered properly.
2380 list_add_tail(&page->lru, list);
2381 alloced++;
2382 if (is_migrate_cma(get_pcppage_migratetype(page)))
2383 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2384 -(1 << order));
2388 * i pages were removed from the buddy list even if some leak due
2389 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2390 * on i. Do not confuse with 'alloced' which is the number of
2391 * pages added to the pcp list.
2393 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2394 spin_unlock(&zone->lock);
2395 return alloced;
2398 #ifdef CONFIG_NUMA
2400 * Called from the vmstat counter updater to drain pagesets of this
2401 * currently executing processor on remote nodes after they have
2402 * expired.
2404 * Note that this function must be called with the thread pinned to
2405 * a single processor.
2407 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2409 unsigned long flags;
2410 int to_drain, batch;
2412 local_irq_save(flags);
2413 batch = READ_ONCE(pcp->batch);
2414 to_drain = min(pcp->count, batch);
2415 if (to_drain > 0) {
2416 free_pcppages_bulk(zone, to_drain, pcp);
2417 pcp->count -= to_drain;
2419 local_irq_restore(flags);
2421 #endif
2424 * Drain pcplists of the indicated processor and zone.
2426 * The processor must either be the current processor and the
2427 * thread pinned to the current processor or a processor that
2428 * is not online.
2430 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2432 unsigned long flags;
2433 struct per_cpu_pageset *pset;
2434 struct per_cpu_pages *pcp;
2436 local_irq_save(flags);
2437 pset = per_cpu_ptr(zone->pageset, cpu);
2439 pcp = &pset->pcp;
2440 if (pcp->count) {
2441 free_pcppages_bulk(zone, pcp->count, pcp);
2442 pcp->count = 0;
2444 local_irq_restore(flags);
2448 * Drain pcplists of all zones on the indicated processor.
2450 * The processor must either be the current processor and the
2451 * thread pinned to the current processor or a processor that
2452 * is not online.
2454 static void drain_pages(unsigned int cpu)
2456 struct zone *zone;
2458 for_each_populated_zone(zone) {
2459 drain_pages_zone(cpu, zone);
2464 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2466 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2467 * the single zone's pages.
2469 void drain_local_pages(struct zone *zone)
2471 int cpu = smp_processor_id();
2473 if (zone)
2474 drain_pages_zone(cpu, zone);
2475 else
2476 drain_pages(cpu);
2479 static void drain_local_pages_wq(struct work_struct *work)
2482 * drain_all_pages doesn't use proper cpu hotplug protection so
2483 * we can race with cpu offline when the WQ can move this from
2484 * a cpu pinned worker to an unbound one. We can operate on a different
2485 * cpu which is allright but we also have to make sure to not move to
2486 * a different one.
2488 preempt_disable();
2489 drain_local_pages(NULL);
2490 preempt_enable();
2494 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2496 * When zone parameter is non-NULL, spill just the single zone's pages.
2498 * Note that this can be extremely slow as the draining happens in a workqueue.
2500 void drain_all_pages(struct zone *zone)
2502 int cpu;
2505 * Allocate in the BSS so we wont require allocation in
2506 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2508 static cpumask_t cpus_with_pcps;
2511 * Make sure nobody triggers this path before mm_percpu_wq is fully
2512 * initialized.
2514 if (WARN_ON_ONCE(!mm_percpu_wq))
2515 return;
2518 * Do not drain if one is already in progress unless it's specific to
2519 * a zone. Such callers are primarily CMA and memory hotplug and need
2520 * the drain to be complete when the call returns.
2522 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2523 if (!zone)
2524 return;
2525 mutex_lock(&pcpu_drain_mutex);
2529 * We don't care about racing with CPU hotplug event
2530 * as offline notification will cause the notified
2531 * cpu to drain that CPU pcps and on_each_cpu_mask
2532 * disables preemption as part of its processing
2534 for_each_online_cpu(cpu) {
2535 struct per_cpu_pageset *pcp;
2536 struct zone *z;
2537 bool has_pcps = false;
2539 if (zone) {
2540 pcp = per_cpu_ptr(zone->pageset, cpu);
2541 if (pcp->pcp.count)
2542 has_pcps = true;
2543 } else {
2544 for_each_populated_zone(z) {
2545 pcp = per_cpu_ptr(z->pageset, cpu);
2546 if (pcp->pcp.count) {
2547 has_pcps = true;
2548 break;
2553 if (has_pcps)
2554 cpumask_set_cpu(cpu, &cpus_with_pcps);
2555 else
2556 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2559 for_each_cpu(cpu, &cpus_with_pcps) {
2560 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2561 INIT_WORK(work, drain_local_pages_wq);
2562 queue_work_on(cpu, mm_percpu_wq, work);
2564 for_each_cpu(cpu, &cpus_with_pcps)
2565 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2567 mutex_unlock(&pcpu_drain_mutex);
2570 #ifdef CONFIG_HIBERNATION
2573 * Touch the watchdog for every WD_PAGE_COUNT pages.
2575 #define WD_PAGE_COUNT (128*1024)
2577 void mark_free_pages(struct zone *zone)
2579 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2580 unsigned long flags;
2581 unsigned int order, t;
2582 struct page *page;
2584 if (zone_is_empty(zone))
2585 return;
2587 spin_lock_irqsave(&zone->lock, flags);
2589 max_zone_pfn = zone_end_pfn(zone);
2590 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2591 if (pfn_valid(pfn)) {
2592 page = pfn_to_page(pfn);
2594 if (!--page_count) {
2595 touch_nmi_watchdog();
2596 page_count = WD_PAGE_COUNT;
2599 if (page_zone(page) != zone)
2600 continue;
2602 if (!swsusp_page_is_forbidden(page))
2603 swsusp_unset_page_free(page);
2606 for_each_migratetype_order(order, t) {
2607 list_for_each_entry(page,
2608 &zone->free_area[order].free_list[t], lru) {
2609 unsigned long i;
2611 pfn = page_to_pfn(page);
2612 for (i = 0; i < (1UL << order); i++) {
2613 if (!--page_count) {
2614 touch_nmi_watchdog();
2615 page_count = WD_PAGE_COUNT;
2617 swsusp_set_page_free(pfn_to_page(pfn + i));
2621 spin_unlock_irqrestore(&zone->lock, flags);
2623 #endif /* CONFIG_PM */
2625 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2627 int migratetype;
2629 if (!free_pcp_prepare(page))
2630 return false;
2632 migratetype = get_pfnblock_migratetype(page, pfn);
2633 set_pcppage_migratetype(page, migratetype);
2634 return true;
2637 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2639 struct zone *zone = page_zone(page);
2640 struct per_cpu_pages *pcp;
2641 int migratetype;
2643 migratetype = get_pcppage_migratetype(page);
2644 __count_vm_event(PGFREE);
2647 * We only track unmovable, reclaimable and movable on pcp lists.
2648 * Free ISOLATE pages back to the allocator because they are being
2649 * offlined but treat HIGHATOMIC as movable pages so we can get those
2650 * areas back if necessary. Otherwise, we may have to free
2651 * excessively into the page allocator
2653 if (migratetype >= MIGRATE_PCPTYPES) {
2654 if (unlikely(is_migrate_isolate(migratetype))) {
2655 free_one_page(zone, page, pfn, 0, migratetype);
2656 return;
2658 migratetype = MIGRATE_MOVABLE;
2661 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2662 list_add(&page->lru, &pcp->lists[migratetype]);
2663 pcp->count++;
2664 if (pcp->count >= pcp->high) {
2665 unsigned long batch = READ_ONCE(pcp->batch);
2666 free_pcppages_bulk(zone, batch, pcp);
2667 pcp->count -= batch;
2672 * Free a 0-order page
2674 void free_unref_page(struct page *page)
2676 unsigned long flags;
2677 unsigned long pfn = page_to_pfn(page);
2679 if (!free_unref_page_prepare(page, pfn))
2680 return;
2682 local_irq_save(flags);
2683 free_unref_page_commit(page, pfn);
2684 local_irq_restore(flags);
2688 * Free a list of 0-order pages
2690 void free_unref_page_list(struct list_head *list)
2692 struct page *page, *next;
2693 unsigned long flags, pfn;
2694 int batch_count = 0;
2696 /* Prepare pages for freeing */
2697 list_for_each_entry_safe(page, next, list, lru) {
2698 pfn = page_to_pfn(page);
2699 if (!free_unref_page_prepare(page, pfn))
2700 list_del(&page->lru);
2701 set_page_private(page, pfn);
2704 local_irq_save(flags);
2705 list_for_each_entry_safe(page, next, list, lru) {
2706 unsigned long pfn = page_private(page);
2708 set_page_private(page, 0);
2709 trace_mm_page_free_batched(page);
2710 free_unref_page_commit(page, pfn);
2713 * Guard against excessive IRQ disabled times when we get
2714 * a large list of pages to free.
2716 if (++batch_count == SWAP_CLUSTER_MAX) {
2717 local_irq_restore(flags);
2718 batch_count = 0;
2719 local_irq_save(flags);
2722 local_irq_restore(flags);
2726 * split_page takes a non-compound higher-order page, and splits it into
2727 * n (1<<order) sub-pages: page[0..n]
2728 * Each sub-page must be freed individually.
2730 * Note: this is probably too low level an operation for use in drivers.
2731 * Please consult with lkml before using this in your driver.
2733 void split_page(struct page *page, unsigned int order)
2735 int i;
2737 VM_BUG_ON_PAGE(PageCompound(page), page);
2738 VM_BUG_ON_PAGE(!page_count(page), page);
2740 for (i = 1; i < (1 << order); i++)
2741 set_page_refcounted(page + i);
2742 split_page_owner(page, order);
2744 EXPORT_SYMBOL_GPL(split_page);
2746 int __isolate_free_page(struct page *page, unsigned int order)
2748 unsigned long watermark;
2749 struct zone *zone;
2750 int mt;
2752 BUG_ON(!PageBuddy(page));
2754 zone = page_zone(page);
2755 mt = get_pageblock_migratetype(page);
2757 if (!is_migrate_isolate(mt)) {
2759 * Obey watermarks as if the page was being allocated. We can
2760 * emulate a high-order watermark check with a raised order-0
2761 * watermark, because we already know our high-order page
2762 * exists.
2764 watermark = min_wmark_pages(zone) + (1UL << order);
2765 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2766 return 0;
2768 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2771 /* Remove page from free list */
2772 list_del(&page->lru);
2773 zone->free_area[order].nr_free--;
2774 rmv_page_order(page);
2777 * Set the pageblock if the isolated page is at least half of a
2778 * pageblock
2780 if (order >= pageblock_order - 1) {
2781 struct page *endpage = page + (1 << order) - 1;
2782 for (; page < endpage; page += pageblock_nr_pages) {
2783 int mt = get_pageblock_migratetype(page);
2784 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2785 && !is_migrate_highatomic(mt))
2786 set_pageblock_migratetype(page,
2787 MIGRATE_MOVABLE);
2792 return 1UL << order;
2796 * Update NUMA hit/miss statistics
2798 * Must be called with interrupts disabled.
2800 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2802 #ifdef CONFIG_NUMA
2803 enum numa_stat_item local_stat = NUMA_LOCAL;
2805 /* skip numa counters update if numa stats is disabled */
2806 if (!static_branch_likely(&vm_numa_stat_key))
2807 return;
2809 if (z->node != numa_node_id())
2810 local_stat = NUMA_OTHER;
2812 if (z->node == preferred_zone->node)
2813 __inc_numa_state(z, NUMA_HIT);
2814 else {
2815 __inc_numa_state(z, NUMA_MISS);
2816 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2818 __inc_numa_state(z, local_stat);
2819 #endif
2822 /* Remove page from the per-cpu list, caller must protect the list */
2823 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2824 struct per_cpu_pages *pcp,
2825 struct list_head *list)
2827 struct page *page;
2829 do {
2830 if (list_empty(list)) {
2831 pcp->count += rmqueue_bulk(zone, 0,
2832 pcp->batch, list,
2833 migratetype);
2834 if (unlikely(list_empty(list)))
2835 return NULL;
2838 page = list_first_entry(list, struct page, lru);
2839 list_del(&page->lru);
2840 pcp->count--;
2841 } while (check_new_pcp(page));
2843 return page;
2846 /* Lock and remove page from the per-cpu list */
2847 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2848 struct zone *zone, unsigned int order,
2849 gfp_t gfp_flags, int migratetype)
2851 struct per_cpu_pages *pcp;
2852 struct list_head *list;
2853 struct page *page;
2854 unsigned long flags;
2856 local_irq_save(flags);
2857 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2858 list = &pcp->lists[migratetype];
2859 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
2860 if (page) {
2861 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2862 zone_statistics(preferred_zone, zone);
2864 local_irq_restore(flags);
2865 return page;
2869 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2871 static inline
2872 struct page *rmqueue(struct zone *preferred_zone,
2873 struct zone *zone, unsigned int order,
2874 gfp_t gfp_flags, unsigned int alloc_flags,
2875 int migratetype)
2877 unsigned long flags;
2878 struct page *page;
2880 if (likely(order == 0)) {
2881 page = rmqueue_pcplist(preferred_zone, zone, order,
2882 gfp_flags, migratetype);
2883 goto out;
2887 * We most definitely don't want callers attempting to
2888 * allocate greater than order-1 page units with __GFP_NOFAIL.
2890 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2891 spin_lock_irqsave(&zone->lock, flags);
2893 do {
2894 page = NULL;
2895 if (alloc_flags & ALLOC_HARDER) {
2896 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2897 if (page)
2898 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2900 if (!page)
2901 page = __rmqueue(zone, order, migratetype);
2902 } while (page && check_new_pages(page, order));
2903 spin_unlock(&zone->lock);
2904 if (!page)
2905 goto failed;
2906 __mod_zone_freepage_state(zone, -(1 << order),
2907 get_pcppage_migratetype(page));
2909 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2910 zone_statistics(preferred_zone, zone);
2911 local_irq_restore(flags);
2913 out:
2914 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2915 return page;
2917 failed:
2918 local_irq_restore(flags);
2919 return NULL;
2922 #ifdef CONFIG_FAIL_PAGE_ALLOC
2924 static struct {
2925 struct fault_attr attr;
2927 bool ignore_gfp_highmem;
2928 bool ignore_gfp_reclaim;
2929 u32 min_order;
2930 } fail_page_alloc = {
2931 .attr = FAULT_ATTR_INITIALIZER,
2932 .ignore_gfp_reclaim = true,
2933 .ignore_gfp_highmem = true,
2934 .min_order = 1,
2937 static int __init setup_fail_page_alloc(char *str)
2939 return setup_fault_attr(&fail_page_alloc.attr, str);
2941 __setup("fail_page_alloc=", setup_fail_page_alloc);
2943 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2945 if (order < fail_page_alloc.min_order)
2946 return false;
2947 if (gfp_mask & __GFP_NOFAIL)
2948 return false;
2949 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2950 return false;
2951 if (fail_page_alloc.ignore_gfp_reclaim &&
2952 (gfp_mask & __GFP_DIRECT_RECLAIM))
2953 return false;
2955 return should_fail(&fail_page_alloc.attr, 1 << order);
2958 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2960 static int __init fail_page_alloc_debugfs(void)
2962 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2963 struct dentry *dir;
2965 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2966 &fail_page_alloc.attr);
2967 if (IS_ERR(dir))
2968 return PTR_ERR(dir);
2970 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2971 &fail_page_alloc.ignore_gfp_reclaim))
2972 goto fail;
2973 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2974 &fail_page_alloc.ignore_gfp_highmem))
2975 goto fail;
2976 if (!debugfs_create_u32("min-order", mode, dir,
2977 &fail_page_alloc.min_order))
2978 goto fail;
2980 return 0;
2981 fail:
2982 debugfs_remove_recursive(dir);
2984 return -ENOMEM;
2987 late_initcall(fail_page_alloc_debugfs);
2989 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2991 #else /* CONFIG_FAIL_PAGE_ALLOC */
2993 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2995 return false;
2998 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3001 * Return true if free base pages are above 'mark'. For high-order checks it
3002 * will return true of the order-0 watermark is reached and there is at least
3003 * one free page of a suitable size. Checking now avoids taking the zone lock
3004 * to check in the allocation paths if no pages are free.
3006 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3007 int classzone_idx, unsigned int alloc_flags,
3008 long free_pages)
3010 long min = mark;
3011 int o;
3012 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3014 /* free_pages may go negative - that's OK */
3015 free_pages -= (1 << order) - 1;
3017 if (alloc_flags & ALLOC_HIGH)
3018 min -= min / 2;
3021 * If the caller does not have rights to ALLOC_HARDER then subtract
3022 * the high-atomic reserves. This will over-estimate the size of the
3023 * atomic reserve but it avoids a search.
3025 if (likely(!alloc_harder)) {
3026 free_pages -= z->nr_reserved_highatomic;
3027 } else {
3029 * OOM victims can try even harder than normal ALLOC_HARDER
3030 * users on the grounds that it's definitely going to be in
3031 * the exit path shortly and free memory. Any allocation it
3032 * makes during the free path will be small and short-lived.
3034 if (alloc_flags & ALLOC_OOM)
3035 min -= min / 2;
3036 else
3037 min -= min / 4;
3041 #ifdef CONFIG_CMA
3042 /* If allocation can't use CMA areas don't use free CMA pages */
3043 if (!(alloc_flags & ALLOC_CMA))
3044 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3045 #endif
3048 * Check watermarks for an order-0 allocation request. If these
3049 * are not met, then a high-order request also cannot go ahead
3050 * even if a suitable page happened to be free.
3052 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3053 return false;
3055 /* If this is an order-0 request then the watermark is fine */
3056 if (!order)
3057 return true;
3059 /* For a high-order request, check at least one suitable page is free */
3060 for (o = order; o < MAX_ORDER; o++) {
3061 struct free_area *area = &z->free_area[o];
3062 int mt;
3064 if (!area->nr_free)
3065 continue;
3067 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3068 if (!list_empty(&area->free_list[mt]))
3069 return true;
3072 #ifdef CONFIG_CMA
3073 if ((alloc_flags & ALLOC_CMA) &&
3074 !list_empty(&area->free_list[MIGRATE_CMA])) {
3075 return true;
3077 #endif
3078 if (alloc_harder &&
3079 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3080 return true;
3082 return false;
3085 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3086 int classzone_idx, unsigned int alloc_flags)
3088 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3089 zone_page_state(z, NR_FREE_PAGES));
3092 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3093 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3095 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3096 long cma_pages = 0;
3098 #ifdef CONFIG_CMA
3099 /* If allocation can't use CMA areas don't use free CMA pages */
3100 if (!(alloc_flags & ALLOC_CMA))
3101 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3102 #endif
3105 * Fast check for order-0 only. If this fails then the reserves
3106 * need to be calculated. There is a corner case where the check
3107 * passes but only the high-order atomic reserve are free. If
3108 * the caller is !atomic then it'll uselessly search the free
3109 * list. That corner case is then slower but it is harmless.
3111 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3112 return true;
3114 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3115 free_pages);
3118 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3119 unsigned long mark, int classzone_idx)
3121 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3123 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3124 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3126 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3127 free_pages);
3130 #ifdef CONFIG_NUMA
3131 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3133 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3134 RECLAIM_DISTANCE;
3136 #else /* CONFIG_NUMA */
3137 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3139 return true;
3141 #endif /* CONFIG_NUMA */
3144 * get_page_from_freelist goes through the zonelist trying to allocate
3145 * a page.
3147 static struct page *
3148 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3149 const struct alloc_context *ac)
3151 struct zoneref *z = ac->preferred_zoneref;
3152 struct zone *zone;
3153 struct pglist_data *last_pgdat_dirty_limit = NULL;
3156 * Scan zonelist, looking for a zone with enough free.
3157 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3159 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3160 ac->nodemask) {
3161 struct page *page;
3162 unsigned long mark;
3164 if (cpusets_enabled() &&
3165 (alloc_flags & ALLOC_CPUSET) &&
3166 !__cpuset_zone_allowed(zone, gfp_mask))
3167 continue;
3169 * When allocating a page cache page for writing, we
3170 * want to get it from a node that is within its dirty
3171 * limit, such that no single node holds more than its
3172 * proportional share of globally allowed dirty pages.
3173 * The dirty limits take into account the node's
3174 * lowmem reserves and high watermark so that kswapd
3175 * should be able to balance it without having to
3176 * write pages from its LRU list.
3178 * XXX: For now, allow allocations to potentially
3179 * exceed the per-node dirty limit in the slowpath
3180 * (spread_dirty_pages unset) before going into reclaim,
3181 * which is important when on a NUMA setup the allowed
3182 * nodes are together not big enough to reach the
3183 * global limit. The proper fix for these situations
3184 * will require awareness of nodes in the
3185 * dirty-throttling and the flusher threads.
3187 if (ac->spread_dirty_pages) {
3188 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3189 continue;
3191 if (!node_dirty_ok(zone->zone_pgdat)) {
3192 last_pgdat_dirty_limit = zone->zone_pgdat;
3193 continue;
3197 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3198 if (!zone_watermark_fast(zone, order, mark,
3199 ac_classzone_idx(ac), alloc_flags)) {
3200 int ret;
3202 /* Checked here to keep the fast path fast */
3203 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3204 if (alloc_flags & ALLOC_NO_WATERMARKS)
3205 goto try_this_zone;
3207 if (node_reclaim_mode == 0 ||
3208 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3209 continue;
3211 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3212 switch (ret) {
3213 case NODE_RECLAIM_NOSCAN:
3214 /* did not scan */
3215 continue;
3216 case NODE_RECLAIM_FULL:
3217 /* scanned but unreclaimable */
3218 continue;
3219 default:
3220 /* did we reclaim enough */
3221 if (zone_watermark_ok(zone, order, mark,
3222 ac_classzone_idx(ac), alloc_flags))
3223 goto try_this_zone;
3225 continue;
3229 try_this_zone:
3230 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3231 gfp_mask, alloc_flags, ac->migratetype);
3232 if (page) {
3233 prep_new_page(page, order, gfp_mask, alloc_flags);
3236 * If this is a high-order atomic allocation then check
3237 * if the pageblock should be reserved for the future
3239 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3240 reserve_highatomic_pageblock(page, zone, order);
3242 return page;
3246 return NULL;
3250 * Large machines with many possible nodes should not always dump per-node
3251 * meminfo in irq context.
3253 static inline bool should_suppress_show_mem(void)
3255 bool ret = false;
3257 #if NODES_SHIFT > 8
3258 ret = in_interrupt();
3259 #endif
3260 return ret;
3263 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3265 unsigned int filter = SHOW_MEM_FILTER_NODES;
3266 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3268 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3269 return;
3272 * This documents exceptions given to allocations in certain
3273 * contexts that are allowed to allocate outside current's set
3274 * of allowed nodes.
3276 if (!(gfp_mask & __GFP_NOMEMALLOC))
3277 if (tsk_is_oom_victim(current) ||
3278 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3279 filter &= ~SHOW_MEM_FILTER_NODES;
3280 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3281 filter &= ~SHOW_MEM_FILTER_NODES;
3283 show_mem(filter, nodemask);
3286 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3288 struct va_format vaf;
3289 va_list args;
3290 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3291 DEFAULT_RATELIMIT_BURST);
3293 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3294 return;
3296 va_start(args, fmt);
3297 vaf.fmt = fmt;
3298 vaf.va = &args;
3299 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3300 current->comm, &vaf, gfp_mask, &gfp_mask,
3301 nodemask_pr_args(nodemask));
3302 va_end(args);
3304 cpuset_print_current_mems_allowed();
3306 dump_stack();
3307 warn_alloc_show_mem(gfp_mask, nodemask);
3310 static inline struct page *
3311 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3312 unsigned int alloc_flags,
3313 const struct alloc_context *ac)
3315 struct page *page;
3317 page = get_page_from_freelist(gfp_mask, order,
3318 alloc_flags|ALLOC_CPUSET, ac);
3320 * fallback to ignore cpuset restriction if our nodes
3321 * are depleted
3323 if (!page)
3324 page = get_page_from_freelist(gfp_mask, order,
3325 alloc_flags, ac);
3327 return page;
3330 static inline struct page *
3331 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3332 const struct alloc_context *ac, unsigned long *did_some_progress)
3334 struct oom_control oc = {
3335 .zonelist = ac->zonelist,
3336 .nodemask = ac->nodemask,
3337 .memcg = NULL,
3338 .gfp_mask = gfp_mask,
3339 .order = order,
3341 struct page *page;
3343 *did_some_progress = 0;
3346 * Acquire the oom lock. If that fails, somebody else is
3347 * making progress for us.
3349 if (!mutex_trylock(&oom_lock)) {
3350 *did_some_progress = 1;
3351 schedule_timeout_uninterruptible(1);
3352 return NULL;
3356 * Go through the zonelist yet one more time, keep very high watermark
3357 * here, this is only to catch a parallel oom killing, we must fail if
3358 * we're still under heavy pressure. But make sure that this reclaim
3359 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3360 * allocation which will never fail due to oom_lock already held.
3362 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3363 ~__GFP_DIRECT_RECLAIM, order,
3364 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3365 if (page)
3366 goto out;
3368 /* Coredumps can quickly deplete all memory reserves */
3369 if (current->flags & PF_DUMPCORE)
3370 goto out;
3371 /* The OOM killer will not help higher order allocs */
3372 if (order > PAGE_ALLOC_COSTLY_ORDER)
3373 goto out;
3375 * We have already exhausted all our reclaim opportunities without any
3376 * success so it is time to admit defeat. We will skip the OOM killer
3377 * because it is very likely that the caller has a more reasonable
3378 * fallback than shooting a random task.
3380 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3381 goto out;
3382 /* The OOM killer does not needlessly kill tasks for lowmem */
3383 if (ac->high_zoneidx < ZONE_NORMAL)
3384 goto out;
3385 if (pm_suspended_storage())
3386 goto out;
3388 * XXX: GFP_NOFS allocations should rather fail than rely on
3389 * other request to make a forward progress.
3390 * We are in an unfortunate situation where out_of_memory cannot
3391 * do much for this context but let's try it to at least get
3392 * access to memory reserved if the current task is killed (see
3393 * out_of_memory). Once filesystems are ready to handle allocation
3394 * failures more gracefully we should just bail out here.
3397 /* The OOM killer may not free memory on a specific node */
3398 if (gfp_mask & __GFP_THISNODE)
3399 goto out;
3401 /* Exhausted what can be done so it's blame time */
3402 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3403 *did_some_progress = 1;
3406 * Help non-failing allocations by giving them access to memory
3407 * reserves
3409 if (gfp_mask & __GFP_NOFAIL)
3410 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3411 ALLOC_NO_WATERMARKS, ac);
3413 out:
3414 mutex_unlock(&oom_lock);
3415 return page;
3419 * Maximum number of compaction retries wit a progress before OOM
3420 * killer is consider as the only way to move forward.
3422 #define MAX_COMPACT_RETRIES 16
3424 #ifdef CONFIG_COMPACTION
3425 /* Try memory compaction for high-order allocations before reclaim */
3426 static struct page *
3427 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3428 unsigned int alloc_flags, const struct alloc_context *ac,
3429 enum compact_priority prio, enum compact_result *compact_result)
3431 struct page *page;
3432 unsigned int noreclaim_flag;
3434 if (!order)
3435 return NULL;
3437 noreclaim_flag = memalloc_noreclaim_save();
3438 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3439 prio);
3440 memalloc_noreclaim_restore(noreclaim_flag);
3442 if (*compact_result <= COMPACT_INACTIVE)
3443 return NULL;
3446 * At least in one zone compaction wasn't deferred or skipped, so let's
3447 * count a compaction stall
3449 count_vm_event(COMPACTSTALL);
3451 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3453 if (page) {
3454 struct zone *zone = page_zone(page);
3456 zone->compact_blockskip_flush = false;
3457 compaction_defer_reset(zone, order, true);
3458 count_vm_event(COMPACTSUCCESS);
3459 return page;
3463 * It's bad if compaction run occurs and fails. The most likely reason
3464 * is that pages exist, but not enough to satisfy watermarks.
3466 count_vm_event(COMPACTFAIL);
3468 cond_resched();
3470 return NULL;
3473 static inline bool
3474 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3475 enum compact_result compact_result,
3476 enum compact_priority *compact_priority,
3477 int *compaction_retries)
3479 int max_retries = MAX_COMPACT_RETRIES;
3480 int min_priority;
3481 bool ret = false;
3482 int retries = *compaction_retries;
3483 enum compact_priority priority = *compact_priority;
3485 if (!order)
3486 return false;
3488 if (compaction_made_progress(compact_result))
3489 (*compaction_retries)++;
3492 * compaction considers all the zone as desperately out of memory
3493 * so it doesn't really make much sense to retry except when the
3494 * failure could be caused by insufficient priority
3496 if (compaction_failed(compact_result))
3497 goto check_priority;
3500 * make sure the compaction wasn't deferred or didn't bail out early
3501 * due to locks contention before we declare that we should give up.
3502 * But do not retry if the given zonelist is not suitable for
3503 * compaction.
3505 if (compaction_withdrawn(compact_result)) {
3506 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3507 goto out;
3511 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3512 * costly ones because they are de facto nofail and invoke OOM
3513 * killer to move on while costly can fail and users are ready
3514 * to cope with that. 1/4 retries is rather arbitrary but we
3515 * would need much more detailed feedback from compaction to
3516 * make a better decision.
3518 if (order > PAGE_ALLOC_COSTLY_ORDER)
3519 max_retries /= 4;
3520 if (*compaction_retries <= max_retries) {
3521 ret = true;
3522 goto out;
3526 * Make sure there are attempts at the highest priority if we exhausted
3527 * all retries or failed at the lower priorities.
3529 check_priority:
3530 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3531 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3533 if (*compact_priority > min_priority) {
3534 (*compact_priority)--;
3535 *compaction_retries = 0;
3536 ret = true;
3538 out:
3539 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3540 return ret;
3542 #else
3543 static inline struct page *
3544 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3545 unsigned int alloc_flags, const struct alloc_context *ac,
3546 enum compact_priority prio, enum compact_result *compact_result)
3548 *compact_result = COMPACT_SKIPPED;
3549 return NULL;
3552 static inline bool
3553 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3554 enum compact_result compact_result,
3555 enum compact_priority *compact_priority,
3556 int *compaction_retries)
3558 struct zone *zone;
3559 struct zoneref *z;
3561 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3562 return false;
3565 * There are setups with compaction disabled which would prefer to loop
3566 * inside the allocator rather than hit the oom killer prematurely.
3567 * Let's give them a good hope and keep retrying while the order-0
3568 * watermarks are OK.
3570 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3571 ac->nodemask) {
3572 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3573 ac_classzone_idx(ac), alloc_flags))
3574 return true;
3576 return false;
3578 #endif /* CONFIG_COMPACTION */
3580 #ifdef CONFIG_LOCKDEP
3581 struct lockdep_map __fs_reclaim_map =
3582 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3584 static bool __need_fs_reclaim(gfp_t gfp_mask)
3586 gfp_mask = current_gfp_context(gfp_mask);
3588 /* no reclaim without waiting on it */
3589 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3590 return false;
3592 /* this guy won't enter reclaim */
3593 if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
3594 return false;
3596 /* We're only interested __GFP_FS allocations for now */
3597 if (!(gfp_mask & __GFP_FS))
3598 return false;
3600 if (gfp_mask & __GFP_NOLOCKDEP)
3601 return false;
3603 return true;
3606 void fs_reclaim_acquire(gfp_t gfp_mask)
3608 if (__need_fs_reclaim(gfp_mask))
3609 lock_map_acquire(&__fs_reclaim_map);
3611 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3613 void fs_reclaim_release(gfp_t gfp_mask)
3615 if (__need_fs_reclaim(gfp_mask))
3616 lock_map_release(&__fs_reclaim_map);
3618 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3619 #endif
3621 /* Perform direct synchronous page reclaim */
3622 static int
3623 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3624 const struct alloc_context *ac)
3626 struct reclaim_state reclaim_state;
3627 int progress;
3628 unsigned int noreclaim_flag;
3630 cond_resched();
3632 /* We now go into synchronous reclaim */
3633 cpuset_memory_pressure_bump();
3634 noreclaim_flag = memalloc_noreclaim_save();
3635 fs_reclaim_acquire(gfp_mask);
3636 reclaim_state.reclaimed_slab = 0;
3637 current->reclaim_state = &reclaim_state;
3639 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3640 ac->nodemask);
3642 current->reclaim_state = NULL;
3643 fs_reclaim_release(gfp_mask);
3644 memalloc_noreclaim_restore(noreclaim_flag);
3646 cond_resched();
3648 return progress;
3651 /* The really slow allocator path where we enter direct reclaim */
3652 static inline struct page *
3653 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3654 unsigned int alloc_flags, const struct alloc_context *ac,
3655 unsigned long *did_some_progress)
3657 struct page *page = NULL;
3658 bool drained = false;
3660 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3661 if (unlikely(!(*did_some_progress)))
3662 return NULL;
3664 retry:
3665 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3668 * If an allocation failed after direct reclaim, it could be because
3669 * pages are pinned on the per-cpu lists or in high alloc reserves.
3670 * Shrink them them and try again
3672 if (!page && !drained) {
3673 unreserve_highatomic_pageblock(ac, false);
3674 drain_all_pages(NULL);
3675 drained = true;
3676 goto retry;
3679 return page;
3682 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3684 struct zoneref *z;
3685 struct zone *zone;
3686 pg_data_t *last_pgdat = NULL;
3688 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3689 ac->high_zoneidx, ac->nodemask) {
3690 if (last_pgdat != zone->zone_pgdat)
3691 wakeup_kswapd(zone, order, ac->high_zoneidx);
3692 last_pgdat = zone->zone_pgdat;
3696 static inline unsigned int
3697 gfp_to_alloc_flags(gfp_t gfp_mask)
3699 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3701 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3702 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3705 * The caller may dip into page reserves a bit more if the caller
3706 * cannot run direct reclaim, or if the caller has realtime scheduling
3707 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3708 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3710 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3712 if (gfp_mask & __GFP_ATOMIC) {
3714 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3715 * if it can't schedule.
3717 if (!(gfp_mask & __GFP_NOMEMALLOC))
3718 alloc_flags |= ALLOC_HARDER;
3720 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3721 * comment for __cpuset_node_allowed().
3723 alloc_flags &= ~ALLOC_CPUSET;
3724 } else if (unlikely(rt_task(current)) && !in_interrupt())
3725 alloc_flags |= ALLOC_HARDER;
3727 #ifdef CONFIG_CMA
3728 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3729 alloc_flags |= ALLOC_CMA;
3730 #endif
3731 return alloc_flags;
3734 static bool oom_reserves_allowed(struct task_struct *tsk)
3736 if (!tsk_is_oom_victim(tsk))
3737 return false;
3740 * !MMU doesn't have oom reaper so give access to memory reserves
3741 * only to the thread with TIF_MEMDIE set
3743 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3744 return false;
3746 return true;
3750 * Distinguish requests which really need access to full memory
3751 * reserves from oom victims which can live with a portion of it
3753 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3755 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3756 return 0;
3757 if (gfp_mask & __GFP_MEMALLOC)
3758 return ALLOC_NO_WATERMARKS;
3759 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3760 return ALLOC_NO_WATERMARKS;
3761 if (!in_interrupt()) {
3762 if (current->flags & PF_MEMALLOC)
3763 return ALLOC_NO_WATERMARKS;
3764 else if (oom_reserves_allowed(current))
3765 return ALLOC_OOM;
3768 return 0;
3771 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3773 return !!__gfp_pfmemalloc_flags(gfp_mask);
3777 * Checks whether it makes sense to retry the reclaim to make a forward progress
3778 * for the given allocation request.
3780 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3781 * without success, or when we couldn't even meet the watermark if we
3782 * reclaimed all remaining pages on the LRU lists.
3784 * Returns true if a retry is viable or false to enter the oom path.
3786 static inline bool
3787 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3788 struct alloc_context *ac, int alloc_flags,
3789 bool did_some_progress, int *no_progress_loops)
3791 struct zone *zone;
3792 struct zoneref *z;
3795 * Costly allocations might have made a progress but this doesn't mean
3796 * their order will become available due to high fragmentation so
3797 * always increment the no progress counter for them
3799 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3800 *no_progress_loops = 0;
3801 else
3802 (*no_progress_loops)++;
3805 * Make sure we converge to OOM if we cannot make any progress
3806 * several times in the row.
3808 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3809 /* Before OOM, exhaust highatomic_reserve */
3810 return unreserve_highatomic_pageblock(ac, true);
3814 * Keep reclaiming pages while there is a chance this will lead
3815 * somewhere. If none of the target zones can satisfy our allocation
3816 * request even if all reclaimable pages are considered then we are
3817 * screwed and have to go OOM.
3819 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3820 ac->nodemask) {
3821 unsigned long available;
3822 unsigned long reclaimable;
3823 unsigned long min_wmark = min_wmark_pages(zone);
3824 bool wmark;
3826 available = reclaimable = zone_reclaimable_pages(zone);
3827 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3830 * Would the allocation succeed if we reclaimed all
3831 * reclaimable pages?
3833 wmark = __zone_watermark_ok(zone, order, min_wmark,
3834 ac_classzone_idx(ac), alloc_flags, available);
3835 trace_reclaim_retry_zone(z, order, reclaimable,
3836 available, min_wmark, *no_progress_loops, wmark);
3837 if (wmark) {
3839 * If we didn't make any progress and have a lot of
3840 * dirty + writeback pages then we should wait for
3841 * an IO to complete to slow down the reclaim and
3842 * prevent from pre mature OOM
3844 if (!did_some_progress) {
3845 unsigned long write_pending;
3847 write_pending = zone_page_state_snapshot(zone,
3848 NR_ZONE_WRITE_PENDING);
3850 if (2 * write_pending > reclaimable) {
3851 congestion_wait(BLK_RW_ASYNC, HZ/10);
3852 return true;
3857 * Memory allocation/reclaim might be called from a WQ
3858 * context and the current implementation of the WQ
3859 * concurrency control doesn't recognize that
3860 * a particular WQ is congested if the worker thread is
3861 * looping without ever sleeping. Therefore we have to
3862 * do a short sleep here rather than calling
3863 * cond_resched().
3865 if (current->flags & PF_WQ_WORKER)
3866 schedule_timeout_uninterruptible(1);
3867 else
3868 cond_resched();
3870 return true;
3874 return false;
3877 static inline bool
3878 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3881 * It's possible that cpuset's mems_allowed and the nodemask from
3882 * mempolicy don't intersect. This should be normally dealt with by
3883 * policy_nodemask(), but it's possible to race with cpuset update in
3884 * such a way the check therein was true, and then it became false
3885 * before we got our cpuset_mems_cookie here.
3886 * This assumes that for all allocations, ac->nodemask can come only
3887 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3888 * when it does not intersect with the cpuset restrictions) or the
3889 * caller can deal with a violated nodemask.
3891 if (cpusets_enabled() && ac->nodemask &&
3892 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3893 ac->nodemask = NULL;
3894 return true;
3898 * When updating a task's mems_allowed or mempolicy nodemask, it is
3899 * possible to race with parallel threads in such a way that our
3900 * allocation can fail while the mask is being updated. If we are about
3901 * to fail, check if the cpuset changed during allocation and if so,
3902 * retry.
3904 if (read_mems_allowed_retry(cpuset_mems_cookie))
3905 return true;
3907 return false;
3910 static inline struct page *
3911 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3912 struct alloc_context *ac)
3914 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3915 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3916 struct page *page = NULL;
3917 unsigned int alloc_flags;
3918 unsigned long did_some_progress;
3919 enum compact_priority compact_priority;
3920 enum compact_result compact_result;
3921 int compaction_retries;
3922 int no_progress_loops;
3923 unsigned int cpuset_mems_cookie;
3924 int reserve_flags;
3927 * In the slowpath, we sanity check order to avoid ever trying to
3928 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3929 * be using allocators in order of preference for an area that is
3930 * too large.
3932 if (order >= MAX_ORDER) {
3933 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3934 return NULL;
3938 * We also sanity check to catch abuse of atomic reserves being used by
3939 * callers that are not in atomic context.
3941 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3942 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3943 gfp_mask &= ~__GFP_ATOMIC;
3945 retry_cpuset:
3946 compaction_retries = 0;
3947 no_progress_loops = 0;
3948 compact_priority = DEF_COMPACT_PRIORITY;
3949 cpuset_mems_cookie = read_mems_allowed_begin();
3952 * The fast path uses conservative alloc_flags to succeed only until
3953 * kswapd needs to be woken up, and to avoid the cost of setting up
3954 * alloc_flags precisely. So we do that now.
3956 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3959 * We need to recalculate the starting point for the zonelist iterator
3960 * because we might have used different nodemask in the fast path, or
3961 * there was a cpuset modification and we are retrying - otherwise we
3962 * could end up iterating over non-eligible zones endlessly.
3964 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3965 ac->high_zoneidx, ac->nodemask);
3966 if (!ac->preferred_zoneref->zone)
3967 goto nopage;
3969 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3970 wake_all_kswapds(order, ac);
3973 * The adjusted alloc_flags might result in immediate success, so try
3974 * that first
3976 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3977 if (page)
3978 goto got_pg;
3981 * For costly allocations, try direct compaction first, as it's likely
3982 * that we have enough base pages and don't need to reclaim. For non-
3983 * movable high-order allocations, do that as well, as compaction will
3984 * try prevent permanent fragmentation by migrating from blocks of the
3985 * same migratetype.
3986 * Don't try this for allocations that are allowed to ignore
3987 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3989 if (can_direct_reclaim &&
3990 (costly_order ||
3991 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3992 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3993 page = __alloc_pages_direct_compact(gfp_mask, order,
3994 alloc_flags, ac,
3995 INIT_COMPACT_PRIORITY,
3996 &compact_result);
3997 if (page)
3998 goto got_pg;
4001 * Checks for costly allocations with __GFP_NORETRY, which
4002 * includes THP page fault allocations
4004 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4006 * If compaction is deferred for high-order allocations,
4007 * it is because sync compaction recently failed. If
4008 * this is the case and the caller requested a THP
4009 * allocation, we do not want to heavily disrupt the
4010 * system, so we fail the allocation instead of entering
4011 * direct reclaim.
4013 if (compact_result == COMPACT_DEFERRED)
4014 goto nopage;
4017 * Looks like reclaim/compaction is worth trying, but
4018 * sync compaction could be very expensive, so keep
4019 * using async compaction.
4021 compact_priority = INIT_COMPACT_PRIORITY;
4025 retry:
4026 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4027 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4028 wake_all_kswapds(order, ac);
4030 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4031 if (reserve_flags)
4032 alloc_flags = reserve_flags;
4035 * Reset the zonelist iterators if memory policies can be ignored.
4036 * These allocations are high priority and system rather than user
4037 * orientated.
4039 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4040 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4041 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4042 ac->high_zoneidx, ac->nodemask);
4045 /* Attempt with potentially adjusted zonelist and alloc_flags */
4046 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4047 if (page)
4048 goto got_pg;
4050 /* Caller is not willing to reclaim, we can't balance anything */
4051 if (!can_direct_reclaim)
4052 goto nopage;
4054 /* Avoid recursion of direct reclaim */
4055 if (current->flags & PF_MEMALLOC)
4056 goto nopage;
4058 /* Try direct reclaim and then allocating */
4059 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4060 &did_some_progress);
4061 if (page)
4062 goto got_pg;
4064 /* Try direct compaction and then allocating */
4065 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4066 compact_priority, &compact_result);
4067 if (page)
4068 goto got_pg;
4070 /* Do not loop if specifically requested */
4071 if (gfp_mask & __GFP_NORETRY)
4072 goto nopage;
4075 * Do not retry costly high order allocations unless they are
4076 * __GFP_RETRY_MAYFAIL
4078 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4079 goto nopage;
4081 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4082 did_some_progress > 0, &no_progress_loops))
4083 goto retry;
4086 * It doesn't make any sense to retry for the compaction if the order-0
4087 * reclaim is not able to make any progress because the current
4088 * implementation of the compaction depends on the sufficient amount
4089 * of free memory (see __compaction_suitable)
4091 if (did_some_progress > 0 &&
4092 should_compact_retry(ac, order, alloc_flags,
4093 compact_result, &compact_priority,
4094 &compaction_retries))
4095 goto retry;
4098 /* Deal with possible cpuset update races before we start OOM killing */
4099 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4100 goto retry_cpuset;
4102 /* Reclaim has failed us, start killing things */
4103 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4104 if (page)
4105 goto got_pg;
4107 /* Avoid allocations with no watermarks from looping endlessly */
4108 if (tsk_is_oom_victim(current) &&
4109 (alloc_flags == ALLOC_OOM ||
4110 (gfp_mask & __GFP_NOMEMALLOC)))
4111 goto nopage;
4113 /* Retry as long as the OOM killer is making progress */
4114 if (did_some_progress) {
4115 no_progress_loops = 0;
4116 goto retry;
4119 nopage:
4120 /* Deal with possible cpuset update races before we fail */
4121 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4122 goto retry_cpuset;
4125 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4126 * we always retry
4128 if (gfp_mask & __GFP_NOFAIL) {
4130 * All existing users of the __GFP_NOFAIL are blockable, so warn
4131 * of any new users that actually require GFP_NOWAIT
4133 if (WARN_ON_ONCE(!can_direct_reclaim))
4134 goto fail;
4137 * PF_MEMALLOC request from this context is rather bizarre
4138 * because we cannot reclaim anything and only can loop waiting
4139 * for somebody to do a work for us
4141 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4144 * non failing costly orders are a hard requirement which we
4145 * are not prepared for much so let's warn about these users
4146 * so that we can identify them and convert them to something
4147 * else.
4149 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4152 * Help non-failing allocations by giving them access to memory
4153 * reserves but do not use ALLOC_NO_WATERMARKS because this
4154 * could deplete whole memory reserves which would just make
4155 * the situation worse
4157 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4158 if (page)
4159 goto got_pg;
4161 cond_resched();
4162 goto retry;
4164 fail:
4165 warn_alloc(gfp_mask, ac->nodemask,
4166 "page allocation failure: order:%u", order);
4167 got_pg:
4168 return page;
4171 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4172 int preferred_nid, nodemask_t *nodemask,
4173 struct alloc_context *ac, gfp_t *alloc_mask,
4174 unsigned int *alloc_flags)
4176 ac->high_zoneidx = gfp_zone(gfp_mask);
4177 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4178 ac->nodemask = nodemask;
4179 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4181 if (cpusets_enabled()) {
4182 *alloc_mask |= __GFP_HARDWALL;
4183 if (!ac->nodemask)
4184 ac->nodemask = &cpuset_current_mems_allowed;
4185 else
4186 *alloc_flags |= ALLOC_CPUSET;
4189 fs_reclaim_acquire(gfp_mask);
4190 fs_reclaim_release(gfp_mask);
4192 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4194 if (should_fail_alloc_page(gfp_mask, order))
4195 return false;
4197 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4198 *alloc_flags |= ALLOC_CMA;
4200 return true;
4203 /* Determine whether to spread dirty pages and what the first usable zone */
4204 static inline void finalise_ac(gfp_t gfp_mask,
4205 unsigned int order, struct alloc_context *ac)
4207 /* Dirty zone balancing only done in the fast path */
4208 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4211 * The preferred zone is used for statistics but crucially it is
4212 * also used as the starting point for the zonelist iterator. It
4213 * may get reset for allocations that ignore memory policies.
4215 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4216 ac->high_zoneidx, ac->nodemask);
4220 * This is the 'heart' of the zoned buddy allocator.
4222 struct page *
4223 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4224 nodemask_t *nodemask)
4226 struct page *page;
4227 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4228 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4229 struct alloc_context ac = { };
4231 gfp_mask &= gfp_allowed_mask;
4232 alloc_mask = gfp_mask;
4233 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4234 return NULL;
4236 finalise_ac(gfp_mask, order, &ac);
4238 /* First allocation attempt */
4239 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4240 if (likely(page))
4241 goto out;
4244 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4245 * resp. GFP_NOIO which has to be inherited for all allocation requests
4246 * from a particular context which has been marked by
4247 * memalloc_no{fs,io}_{save,restore}.
4249 alloc_mask = current_gfp_context(gfp_mask);
4250 ac.spread_dirty_pages = false;
4253 * Restore the original nodemask if it was potentially replaced with
4254 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4256 if (unlikely(ac.nodemask != nodemask))
4257 ac.nodemask = nodemask;
4259 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4261 out:
4262 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4263 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4264 __free_pages(page, order);
4265 page = NULL;
4268 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4270 return page;
4272 EXPORT_SYMBOL(__alloc_pages_nodemask);
4275 * Common helper functions.
4277 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4279 struct page *page;
4282 * __get_free_pages() returns a virtual address, which cannot represent
4283 * a highmem page
4285 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4287 page = alloc_pages(gfp_mask, order);
4288 if (!page)
4289 return 0;
4290 return (unsigned long) page_address(page);
4292 EXPORT_SYMBOL(__get_free_pages);
4294 unsigned long get_zeroed_page(gfp_t gfp_mask)
4296 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4298 EXPORT_SYMBOL(get_zeroed_page);
4300 void __free_pages(struct page *page, unsigned int order)
4302 if (put_page_testzero(page)) {
4303 if (order == 0)
4304 free_unref_page(page);
4305 else
4306 __free_pages_ok(page, order);
4310 EXPORT_SYMBOL(__free_pages);
4312 void free_pages(unsigned long addr, unsigned int order)
4314 if (addr != 0) {
4315 VM_BUG_ON(!virt_addr_valid((void *)addr));
4316 __free_pages(virt_to_page((void *)addr), order);
4320 EXPORT_SYMBOL(free_pages);
4323 * Page Fragment:
4324 * An arbitrary-length arbitrary-offset area of memory which resides
4325 * within a 0 or higher order page. Multiple fragments within that page
4326 * are individually refcounted, in the page's reference counter.
4328 * The page_frag functions below provide a simple allocation framework for
4329 * page fragments. This is used by the network stack and network device
4330 * drivers to provide a backing region of memory for use as either an
4331 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4333 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4334 gfp_t gfp_mask)
4336 struct page *page = NULL;
4337 gfp_t gfp = gfp_mask;
4339 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4340 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4341 __GFP_NOMEMALLOC;
4342 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4343 PAGE_FRAG_CACHE_MAX_ORDER);
4344 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4345 #endif
4346 if (unlikely(!page))
4347 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4349 nc->va = page ? page_address(page) : NULL;
4351 return page;
4354 void __page_frag_cache_drain(struct page *page, unsigned int count)
4356 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4358 if (page_ref_sub_and_test(page, count)) {
4359 unsigned int order = compound_order(page);
4361 if (order == 0)
4362 free_unref_page(page);
4363 else
4364 __free_pages_ok(page, order);
4367 EXPORT_SYMBOL(__page_frag_cache_drain);
4369 void *page_frag_alloc(struct page_frag_cache *nc,
4370 unsigned int fragsz, gfp_t gfp_mask)
4372 unsigned int size = PAGE_SIZE;
4373 struct page *page;
4374 int offset;
4376 if (unlikely(!nc->va)) {
4377 refill:
4378 page = __page_frag_cache_refill(nc, gfp_mask);
4379 if (!page)
4380 return NULL;
4382 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4383 /* if size can vary use size else just use PAGE_SIZE */
4384 size = nc->size;
4385 #endif
4386 /* Even if we own the page, we do not use atomic_set().
4387 * This would break get_page_unless_zero() users.
4389 page_ref_add(page, size - 1);
4391 /* reset page count bias and offset to start of new frag */
4392 nc->pfmemalloc = page_is_pfmemalloc(page);
4393 nc->pagecnt_bias = size;
4394 nc->offset = size;
4397 offset = nc->offset - fragsz;
4398 if (unlikely(offset < 0)) {
4399 page = virt_to_page(nc->va);
4401 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4402 goto refill;
4404 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4405 /* if size can vary use size else just use PAGE_SIZE */
4406 size = nc->size;
4407 #endif
4408 /* OK, page count is 0, we can safely set it */
4409 set_page_count(page, size);
4411 /* reset page count bias and offset to start of new frag */
4412 nc->pagecnt_bias = size;
4413 offset = size - fragsz;
4416 nc->pagecnt_bias--;
4417 nc->offset = offset;
4419 return nc->va + offset;
4421 EXPORT_SYMBOL(page_frag_alloc);
4424 * Frees a page fragment allocated out of either a compound or order 0 page.
4426 void page_frag_free(void *addr)
4428 struct page *page = virt_to_head_page(addr);
4430 if (unlikely(put_page_testzero(page)))
4431 __free_pages_ok(page, compound_order(page));
4433 EXPORT_SYMBOL(page_frag_free);
4435 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4436 size_t size)
4438 if (addr) {
4439 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4440 unsigned long used = addr + PAGE_ALIGN(size);
4442 split_page(virt_to_page((void *)addr), order);
4443 while (used < alloc_end) {
4444 free_page(used);
4445 used += PAGE_SIZE;
4448 return (void *)addr;
4452 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4453 * @size: the number of bytes to allocate
4454 * @gfp_mask: GFP flags for the allocation
4456 * This function is similar to alloc_pages(), except that it allocates the
4457 * minimum number of pages to satisfy the request. alloc_pages() can only
4458 * allocate memory in power-of-two pages.
4460 * This function is also limited by MAX_ORDER.
4462 * Memory allocated by this function must be released by free_pages_exact().
4464 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4466 unsigned int order = get_order(size);
4467 unsigned long addr;
4469 addr = __get_free_pages(gfp_mask, order);
4470 return make_alloc_exact(addr, order, size);
4472 EXPORT_SYMBOL(alloc_pages_exact);
4475 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4476 * pages on a node.
4477 * @nid: the preferred node ID where memory should be allocated
4478 * @size: the number of bytes to allocate
4479 * @gfp_mask: GFP flags for the allocation
4481 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4482 * back.
4484 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4486 unsigned int order = get_order(size);
4487 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4488 if (!p)
4489 return NULL;
4490 return make_alloc_exact((unsigned long)page_address(p), order, size);
4494 * free_pages_exact - release memory allocated via alloc_pages_exact()
4495 * @virt: the value returned by alloc_pages_exact.
4496 * @size: size of allocation, same value as passed to alloc_pages_exact().
4498 * Release the memory allocated by a previous call to alloc_pages_exact.
4500 void free_pages_exact(void *virt, size_t size)
4502 unsigned long addr = (unsigned long)virt;
4503 unsigned long end = addr + PAGE_ALIGN(size);
4505 while (addr < end) {
4506 free_page(addr);
4507 addr += PAGE_SIZE;
4510 EXPORT_SYMBOL(free_pages_exact);
4513 * nr_free_zone_pages - count number of pages beyond high watermark
4514 * @offset: The zone index of the highest zone
4516 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4517 * high watermark within all zones at or below a given zone index. For each
4518 * zone, the number of pages is calculated as:
4520 * nr_free_zone_pages = managed_pages - high_pages
4522 static unsigned long nr_free_zone_pages(int offset)
4524 struct zoneref *z;
4525 struct zone *zone;
4527 /* Just pick one node, since fallback list is circular */
4528 unsigned long sum = 0;
4530 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4532 for_each_zone_zonelist(zone, z, zonelist, offset) {
4533 unsigned long size = zone->managed_pages;
4534 unsigned long high = high_wmark_pages(zone);
4535 if (size > high)
4536 sum += size - high;
4539 return sum;
4543 * nr_free_buffer_pages - count number of pages beyond high watermark
4545 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4546 * watermark within ZONE_DMA and ZONE_NORMAL.
4548 unsigned long nr_free_buffer_pages(void)
4550 return nr_free_zone_pages(gfp_zone(GFP_USER));
4552 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4555 * nr_free_pagecache_pages - count number of pages beyond high watermark
4557 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4558 * high watermark within all zones.
4560 unsigned long nr_free_pagecache_pages(void)
4562 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4565 static inline void show_node(struct zone *zone)
4567 if (IS_ENABLED(CONFIG_NUMA))
4568 printk("Node %d ", zone_to_nid(zone));
4571 long si_mem_available(void)
4573 long available;
4574 unsigned long pagecache;
4575 unsigned long wmark_low = 0;
4576 unsigned long pages[NR_LRU_LISTS];
4577 struct zone *zone;
4578 int lru;
4580 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4581 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4583 for_each_zone(zone)
4584 wmark_low += zone->watermark[WMARK_LOW];
4587 * Estimate the amount of memory available for userspace allocations,
4588 * without causing swapping.
4590 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4593 * Not all the page cache can be freed, otherwise the system will
4594 * start swapping. Assume at least half of the page cache, or the
4595 * low watermark worth of cache, needs to stay.
4597 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4598 pagecache -= min(pagecache / 2, wmark_low);
4599 available += pagecache;
4602 * Part of the reclaimable slab consists of items that are in use,
4603 * and cannot be freed. Cap this estimate at the low watermark.
4605 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4606 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4607 wmark_low);
4609 if (available < 0)
4610 available = 0;
4611 return available;
4613 EXPORT_SYMBOL_GPL(si_mem_available);
4615 void si_meminfo(struct sysinfo *val)
4617 val->totalram = totalram_pages;
4618 val->sharedram = global_node_page_state(NR_SHMEM);
4619 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4620 val->bufferram = nr_blockdev_pages();
4621 val->totalhigh = totalhigh_pages;
4622 val->freehigh = nr_free_highpages();
4623 val->mem_unit = PAGE_SIZE;
4626 EXPORT_SYMBOL(si_meminfo);
4628 #ifdef CONFIG_NUMA
4629 void si_meminfo_node(struct sysinfo *val, int nid)
4631 int zone_type; /* needs to be signed */
4632 unsigned long managed_pages = 0;
4633 unsigned long managed_highpages = 0;
4634 unsigned long free_highpages = 0;
4635 pg_data_t *pgdat = NODE_DATA(nid);
4637 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4638 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4639 val->totalram = managed_pages;
4640 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4641 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4642 #ifdef CONFIG_HIGHMEM
4643 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4644 struct zone *zone = &pgdat->node_zones[zone_type];
4646 if (is_highmem(zone)) {
4647 managed_highpages += zone->managed_pages;
4648 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4651 val->totalhigh = managed_highpages;
4652 val->freehigh = free_highpages;
4653 #else
4654 val->totalhigh = managed_highpages;
4655 val->freehigh = free_highpages;
4656 #endif
4657 val->mem_unit = PAGE_SIZE;
4659 #endif
4662 * Determine whether the node should be displayed or not, depending on whether
4663 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4665 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4667 if (!(flags & SHOW_MEM_FILTER_NODES))
4668 return false;
4671 * no node mask - aka implicit memory numa policy. Do not bother with
4672 * the synchronization - read_mems_allowed_begin - because we do not
4673 * have to be precise here.
4675 if (!nodemask)
4676 nodemask = &cpuset_current_mems_allowed;
4678 return !node_isset(nid, *nodemask);
4681 #define K(x) ((x) << (PAGE_SHIFT-10))
4683 static void show_migration_types(unsigned char type)
4685 static const char types[MIGRATE_TYPES] = {
4686 [MIGRATE_UNMOVABLE] = 'U',
4687 [MIGRATE_MOVABLE] = 'M',
4688 [MIGRATE_RECLAIMABLE] = 'E',
4689 [MIGRATE_HIGHATOMIC] = 'H',
4690 #ifdef CONFIG_CMA
4691 [MIGRATE_CMA] = 'C',
4692 #endif
4693 #ifdef CONFIG_MEMORY_ISOLATION
4694 [MIGRATE_ISOLATE] = 'I',
4695 #endif
4697 char tmp[MIGRATE_TYPES + 1];
4698 char *p = tmp;
4699 int i;
4701 for (i = 0; i < MIGRATE_TYPES; i++) {
4702 if (type & (1 << i))
4703 *p++ = types[i];
4706 *p = '\0';
4707 printk(KERN_CONT "(%s) ", tmp);
4711 * Show free area list (used inside shift_scroll-lock stuff)
4712 * We also calculate the percentage fragmentation. We do this by counting the
4713 * memory on each free list with the exception of the first item on the list.
4715 * Bits in @filter:
4716 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4717 * cpuset.
4719 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4721 unsigned long free_pcp = 0;
4722 int cpu;
4723 struct zone *zone;
4724 pg_data_t *pgdat;
4726 for_each_populated_zone(zone) {
4727 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4728 continue;
4730 for_each_online_cpu(cpu)
4731 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4734 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4735 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4736 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4737 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4738 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4739 " free:%lu free_pcp:%lu free_cma:%lu\n",
4740 global_node_page_state(NR_ACTIVE_ANON),
4741 global_node_page_state(NR_INACTIVE_ANON),
4742 global_node_page_state(NR_ISOLATED_ANON),
4743 global_node_page_state(NR_ACTIVE_FILE),
4744 global_node_page_state(NR_INACTIVE_FILE),
4745 global_node_page_state(NR_ISOLATED_FILE),
4746 global_node_page_state(NR_UNEVICTABLE),
4747 global_node_page_state(NR_FILE_DIRTY),
4748 global_node_page_state(NR_WRITEBACK),
4749 global_node_page_state(NR_UNSTABLE_NFS),
4750 global_node_page_state(NR_SLAB_RECLAIMABLE),
4751 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4752 global_node_page_state(NR_FILE_MAPPED),
4753 global_node_page_state(NR_SHMEM),
4754 global_zone_page_state(NR_PAGETABLE),
4755 global_zone_page_state(NR_BOUNCE),
4756 global_zone_page_state(NR_FREE_PAGES),
4757 free_pcp,
4758 global_zone_page_state(NR_FREE_CMA_PAGES));
4760 for_each_online_pgdat(pgdat) {
4761 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4762 continue;
4764 printk("Node %d"
4765 " active_anon:%lukB"
4766 " inactive_anon:%lukB"
4767 " active_file:%lukB"
4768 " inactive_file:%lukB"
4769 " unevictable:%lukB"
4770 " isolated(anon):%lukB"
4771 " isolated(file):%lukB"
4772 " mapped:%lukB"
4773 " dirty:%lukB"
4774 " writeback:%lukB"
4775 " shmem:%lukB"
4776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4777 " shmem_thp: %lukB"
4778 " shmem_pmdmapped: %lukB"
4779 " anon_thp: %lukB"
4780 #endif
4781 " writeback_tmp:%lukB"
4782 " unstable:%lukB"
4783 " all_unreclaimable? %s"
4784 "\n",
4785 pgdat->node_id,
4786 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4787 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4788 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4789 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4790 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4791 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4792 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4793 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4794 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4795 K(node_page_state(pgdat, NR_WRITEBACK)),
4796 K(node_page_state(pgdat, NR_SHMEM)),
4797 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4798 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4799 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4800 * HPAGE_PMD_NR),
4801 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4802 #endif
4803 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4804 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4805 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4806 "yes" : "no");
4809 for_each_populated_zone(zone) {
4810 int i;
4812 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4813 continue;
4815 free_pcp = 0;
4816 for_each_online_cpu(cpu)
4817 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4819 show_node(zone);
4820 printk(KERN_CONT
4821 "%s"
4822 " free:%lukB"
4823 " min:%lukB"
4824 " low:%lukB"
4825 " high:%lukB"
4826 " active_anon:%lukB"
4827 " inactive_anon:%lukB"
4828 " active_file:%lukB"
4829 " inactive_file:%lukB"
4830 " unevictable:%lukB"
4831 " writepending:%lukB"
4832 " present:%lukB"
4833 " managed:%lukB"
4834 " mlocked:%lukB"
4835 " kernel_stack:%lukB"
4836 " pagetables:%lukB"
4837 " bounce:%lukB"
4838 " free_pcp:%lukB"
4839 " local_pcp:%ukB"
4840 " free_cma:%lukB"
4841 "\n",
4842 zone->name,
4843 K(zone_page_state(zone, NR_FREE_PAGES)),
4844 K(min_wmark_pages(zone)),
4845 K(low_wmark_pages(zone)),
4846 K(high_wmark_pages(zone)),
4847 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4848 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4849 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4850 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4851 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4852 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4853 K(zone->present_pages),
4854 K(zone->managed_pages),
4855 K(zone_page_state(zone, NR_MLOCK)),
4856 zone_page_state(zone, NR_KERNEL_STACK_KB),
4857 K(zone_page_state(zone, NR_PAGETABLE)),
4858 K(zone_page_state(zone, NR_BOUNCE)),
4859 K(free_pcp),
4860 K(this_cpu_read(zone->pageset->pcp.count)),
4861 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4862 printk("lowmem_reserve[]:");
4863 for (i = 0; i < MAX_NR_ZONES; i++)
4864 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4865 printk(KERN_CONT "\n");
4868 for_each_populated_zone(zone) {
4869 unsigned int order;
4870 unsigned long nr[MAX_ORDER], flags, total = 0;
4871 unsigned char types[MAX_ORDER];
4873 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4874 continue;
4875 show_node(zone);
4876 printk(KERN_CONT "%s: ", zone->name);
4878 spin_lock_irqsave(&zone->lock, flags);
4879 for (order = 0; order < MAX_ORDER; order++) {
4880 struct free_area *area = &zone->free_area[order];
4881 int type;
4883 nr[order] = area->nr_free;
4884 total += nr[order] << order;
4886 types[order] = 0;
4887 for (type = 0; type < MIGRATE_TYPES; type++) {
4888 if (!list_empty(&area->free_list[type]))
4889 types[order] |= 1 << type;
4892 spin_unlock_irqrestore(&zone->lock, flags);
4893 for (order = 0; order < MAX_ORDER; order++) {
4894 printk(KERN_CONT "%lu*%lukB ",
4895 nr[order], K(1UL) << order);
4896 if (nr[order])
4897 show_migration_types(types[order]);
4899 printk(KERN_CONT "= %lukB\n", K(total));
4902 hugetlb_show_meminfo();
4904 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4906 show_swap_cache_info();
4909 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4911 zoneref->zone = zone;
4912 zoneref->zone_idx = zone_idx(zone);
4916 * Builds allocation fallback zone lists.
4918 * Add all populated zones of a node to the zonelist.
4920 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4922 struct zone *zone;
4923 enum zone_type zone_type = MAX_NR_ZONES;
4924 int nr_zones = 0;
4926 do {
4927 zone_type--;
4928 zone = pgdat->node_zones + zone_type;
4929 if (managed_zone(zone)) {
4930 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4931 check_highest_zone(zone_type);
4933 } while (zone_type);
4935 return nr_zones;
4938 #ifdef CONFIG_NUMA
4940 static int __parse_numa_zonelist_order(char *s)
4943 * We used to support different zonlists modes but they turned
4944 * out to be just not useful. Let's keep the warning in place
4945 * if somebody still use the cmd line parameter so that we do
4946 * not fail it silently
4948 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4949 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
4950 return -EINVAL;
4952 return 0;
4955 static __init int setup_numa_zonelist_order(char *s)
4957 if (!s)
4958 return 0;
4960 return __parse_numa_zonelist_order(s);
4962 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4964 char numa_zonelist_order[] = "Node";
4967 * sysctl handler for numa_zonelist_order
4969 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4970 void __user *buffer, size_t *length,
4971 loff_t *ppos)
4973 char *str;
4974 int ret;
4976 if (!write)
4977 return proc_dostring(table, write, buffer, length, ppos);
4978 str = memdup_user_nul(buffer, 16);
4979 if (IS_ERR(str))
4980 return PTR_ERR(str);
4982 ret = __parse_numa_zonelist_order(str);
4983 kfree(str);
4984 return ret;
4988 #define MAX_NODE_LOAD (nr_online_nodes)
4989 static int node_load[MAX_NUMNODES];
4992 * find_next_best_node - find the next node that should appear in a given node's fallback list
4993 * @node: node whose fallback list we're appending
4994 * @used_node_mask: nodemask_t of already used nodes
4996 * We use a number of factors to determine which is the next node that should
4997 * appear on a given node's fallback list. The node should not have appeared
4998 * already in @node's fallback list, and it should be the next closest node
4999 * according to the distance array (which contains arbitrary distance values
5000 * from each node to each node in the system), and should also prefer nodes
5001 * with no CPUs, since presumably they'll have very little allocation pressure
5002 * on them otherwise.
5003 * It returns -1 if no node is found.
5005 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5007 int n, val;
5008 int min_val = INT_MAX;
5009 int best_node = NUMA_NO_NODE;
5010 const struct cpumask *tmp = cpumask_of_node(0);
5012 /* Use the local node if we haven't already */
5013 if (!node_isset(node, *used_node_mask)) {
5014 node_set(node, *used_node_mask);
5015 return node;
5018 for_each_node_state(n, N_MEMORY) {
5020 /* Don't want a node to appear more than once */
5021 if (node_isset(n, *used_node_mask))
5022 continue;
5024 /* Use the distance array to find the distance */
5025 val = node_distance(node, n);
5027 /* Penalize nodes under us ("prefer the next node") */
5028 val += (n < node);
5030 /* Give preference to headless and unused nodes */
5031 tmp = cpumask_of_node(n);
5032 if (!cpumask_empty(tmp))
5033 val += PENALTY_FOR_NODE_WITH_CPUS;
5035 /* Slight preference for less loaded node */
5036 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5037 val += node_load[n];
5039 if (val < min_val) {
5040 min_val = val;
5041 best_node = n;
5045 if (best_node >= 0)
5046 node_set(best_node, *used_node_mask);
5048 return best_node;
5053 * Build zonelists ordered by node and zones within node.
5054 * This results in maximum locality--normal zone overflows into local
5055 * DMA zone, if any--but risks exhausting DMA zone.
5057 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5058 unsigned nr_nodes)
5060 struct zoneref *zonerefs;
5061 int i;
5063 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5065 for (i = 0; i < nr_nodes; i++) {
5066 int nr_zones;
5068 pg_data_t *node = NODE_DATA(node_order[i]);
5070 nr_zones = build_zonerefs_node(node, zonerefs);
5071 zonerefs += nr_zones;
5073 zonerefs->zone = NULL;
5074 zonerefs->zone_idx = 0;
5078 * Build gfp_thisnode zonelists
5080 static void build_thisnode_zonelists(pg_data_t *pgdat)
5082 struct zoneref *zonerefs;
5083 int nr_zones;
5085 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5086 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5087 zonerefs += nr_zones;
5088 zonerefs->zone = NULL;
5089 zonerefs->zone_idx = 0;
5093 * Build zonelists ordered by zone and nodes within zones.
5094 * This results in conserving DMA zone[s] until all Normal memory is
5095 * exhausted, but results in overflowing to remote node while memory
5096 * may still exist in local DMA zone.
5099 static void build_zonelists(pg_data_t *pgdat)
5101 static int node_order[MAX_NUMNODES];
5102 int node, load, nr_nodes = 0;
5103 nodemask_t used_mask;
5104 int local_node, prev_node;
5106 /* NUMA-aware ordering of nodes */
5107 local_node = pgdat->node_id;
5108 load = nr_online_nodes;
5109 prev_node = local_node;
5110 nodes_clear(used_mask);
5112 memset(node_order, 0, sizeof(node_order));
5113 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5115 * We don't want to pressure a particular node.
5116 * So adding penalty to the first node in same
5117 * distance group to make it round-robin.
5119 if (node_distance(local_node, node) !=
5120 node_distance(local_node, prev_node))
5121 node_load[node] = load;
5123 node_order[nr_nodes++] = node;
5124 prev_node = node;
5125 load--;
5128 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5129 build_thisnode_zonelists(pgdat);
5132 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5134 * Return node id of node used for "local" allocations.
5135 * I.e., first node id of first zone in arg node's generic zonelist.
5136 * Used for initializing percpu 'numa_mem', which is used primarily
5137 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5139 int local_memory_node(int node)
5141 struct zoneref *z;
5143 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5144 gfp_zone(GFP_KERNEL),
5145 NULL);
5146 return z->zone->node;
5148 #endif
5150 static void setup_min_unmapped_ratio(void);
5151 static void setup_min_slab_ratio(void);
5152 #else /* CONFIG_NUMA */
5154 static void build_zonelists(pg_data_t *pgdat)
5156 int node, local_node;
5157 struct zoneref *zonerefs;
5158 int nr_zones;
5160 local_node = pgdat->node_id;
5162 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5163 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5164 zonerefs += nr_zones;
5167 * Now we build the zonelist so that it contains the zones
5168 * of all the other nodes.
5169 * We don't want to pressure a particular node, so when
5170 * building the zones for node N, we make sure that the
5171 * zones coming right after the local ones are those from
5172 * node N+1 (modulo N)
5174 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5175 if (!node_online(node))
5176 continue;
5177 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5178 zonerefs += nr_zones;
5180 for (node = 0; node < local_node; node++) {
5181 if (!node_online(node))
5182 continue;
5183 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5184 zonerefs += nr_zones;
5187 zonerefs->zone = NULL;
5188 zonerefs->zone_idx = 0;
5191 #endif /* CONFIG_NUMA */
5194 * Boot pageset table. One per cpu which is going to be used for all
5195 * zones and all nodes. The parameters will be set in such a way
5196 * that an item put on a list will immediately be handed over to
5197 * the buddy list. This is safe since pageset manipulation is done
5198 * with interrupts disabled.
5200 * The boot_pagesets must be kept even after bootup is complete for
5201 * unused processors and/or zones. They do play a role for bootstrapping
5202 * hotplugged processors.
5204 * zoneinfo_show() and maybe other functions do
5205 * not check if the processor is online before following the pageset pointer.
5206 * Other parts of the kernel may not check if the zone is available.
5208 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5209 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5210 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5212 static void __build_all_zonelists(void *data)
5214 int nid;
5215 int __maybe_unused cpu;
5216 pg_data_t *self = data;
5217 static DEFINE_SPINLOCK(lock);
5219 spin_lock(&lock);
5221 #ifdef CONFIG_NUMA
5222 memset(node_load, 0, sizeof(node_load));
5223 #endif
5226 * This node is hotadded and no memory is yet present. So just
5227 * building zonelists is fine - no need to touch other nodes.
5229 if (self && !node_online(self->node_id)) {
5230 build_zonelists(self);
5231 } else {
5232 for_each_online_node(nid) {
5233 pg_data_t *pgdat = NODE_DATA(nid);
5235 build_zonelists(pgdat);
5238 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5240 * We now know the "local memory node" for each node--
5241 * i.e., the node of the first zone in the generic zonelist.
5242 * Set up numa_mem percpu variable for on-line cpus. During
5243 * boot, only the boot cpu should be on-line; we'll init the
5244 * secondary cpus' numa_mem as they come on-line. During
5245 * node/memory hotplug, we'll fixup all on-line cpus.
5247 for_each_online_cpu(cpu)
5248 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5249 #endif
5252 spin_unlock(&lock);
5255 static noinline void __init
5256 build_all_zonelists_init(void)
5258 int cpu;
5260 __build_all_zonelists(NULL);
5263 * Initialize the boot_pagesets that are going to be used
5264 * for bootstrapping processors. The real pagesets for
5265 * each zone will be allocated later when the per cpu
5266 * allocator is available.
5268 * boot_pagesets are used also for bootstrapping offline
5269 * cpus if the system is already booted because the pagesets
5270 * are needed to initialize allocators on a specific cpu too.
5271 * F.e. the percpu allocator needs the page allocator which
5272 * needs the percpu allocator in order to allocate its pagesets
5273 * (a chicken-egg dilemma).
5275 for_each_possible_cpu(cpu)
5276 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5278 mminit_verify_zonelist();
5279 cpuset_init_current_mems_allowed();
5283 * unless system_state == SYSTEM_BOOTING.
5285 * __ref due to call of __init annotated helper build_all_zonelists_init
5286 * [protected by SYSTEM_BOOTING].
5288 void __ref build_all_zonelists(pg_data_t *pgdat)
5290 if (system_state == SYSTEM_BOOTING) {
5291 build_all_zonelists_init();
5292 } else {
5293 __build_all_zonelists(pgdat);
5294 /* cpuset refresh routine should be here */
5296 vm_total_pages = nr_free_pagecache_pages();
5298 * Disable grouping by mobility if the number of pages in the
5299 * system is too low to allow the mechanism to work. It would be
5300 * more accurate, but expensive to check per-zone. This check is
5301 * made on memory-hotadd so a system can start with mobility
5302 * disabled and enable it later
5304 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5305 page_group_by_mobility_disabled = 1;
5306 else
5307 page_group_by_mobility_disabled = 0;
5309 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5310 nr_online_nodes,
5311 page_group_by_mobility_disabled ? "off" : "on",
5312 vm_total_pages);
5313 #ifdef CONFIG_NUMA
5314 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5315 #endif
5319 * Initially all pages are reserved - free ones are freed
5320 * up by free_all_bootmem() once the early boot process is
5321 * done. Non-atomic initialization, single-pass.
5323 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5324 unsigned long start_pfn, enum memmap_context context,
5325 struct vmem_altmap *altmap)
5327 unsigned long end_pfn = start_pfn + size;
5328 pg_data_t *pgdat = NODE_DATA(nid);
5329 unsigned long pfn;
5330 unsigned long nr_initialised = 0;
5331 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5332 struct memblock_region *r = NULL, *tmp;
5333 #endif
5335 if (highest_memmap_pfn < end_pfn - 1)
5336 highest_memmap_pfn = end_pfn - 1;
5339 * Honor reservation requested by the driver for this ZONE_DEVICE
5340 * memory
5342 if (altmap && start_pfn == altmap->base_pfn)
5343 start_pfn += altmap->reserve;
5345 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5347 * There can be holes in boot-time mem_map[]s handed to this
5348 * function. They do not exist on hotplugged memory.
5350 if (context != MEMMAP_EARLY)
5351 goto not_early;
5353 if (!early_pfn_valid(pfn)) {
5354 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5356 * Skip to the pfn preceding the next valid one (or
5357 * end_pfn), such that we hit a valid pfn (or end_pfn)
5358 * on our next iteration of the loop.
5360 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5361 #endif
5362 continue;
5364 if (!early_pfn_in_nid(pfn, nid))
5365 continue;
5366 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5367 break;
5369 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5371 * Check given memblock attribute by firmware which can affect
5372 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5373 * mirrored, it's an overlapped memmap init. skip it.
5375 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5376 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5377 for_each_memblock(memory, tmp)
5378 if (pfn < memblock_region_memory_end_pfn(tmp))
5379 break;
5380 r = tmp;
5382 if (pfn >= memblock_region_memory_base_pfn(r) &&
5383 memblock_is_mirror(r)) {
5384 /* already initialized as NORMAL */
5385 pfn = memblock_region_memory_end_pfn(r);
5386 continue;
5389 #endif
5391 not_early:
5393 * Mark the block movable so that blocks are reserved for
5394 * movable at startup. This will force kernel allocations
5395 * to reserve their blocks rather than leaking throughout
5396 * the address space during boot when many long-lived
5397 * kernel allocations are made.
5399 * bitmap is created for zone's valid pfn range. but memmap
5400 * can be created for invalid pages (for alignment)
5401 * check here not to call set_pageblock_migratetype() against
5402 * pfn out of zone.
5404 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5405 * because this is done early in sparse_add_one_section
5407 if (!(pfn & (pageblock_nr_pages - 1))) {
5408 struct page *page = pfn_to_page(pfn);
5410 __init_single_page(page, pfn, zone, nid,
5411 context != MEMMAP_HOTPLUG);
5412 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5413 cond_resched();
5414 } else {
5415 __init_single_pfn(pfn, zone, nid,
5416 context != MEMMAP_HOTPLUG);
5421 static void __meminit zone_init_free_lists(struct zone *zone)
5423 unsigned int order, t;
5424 for_each_migratetype_order(order, t) {
5425 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5426 zone->free_area[order].nr_free = 0;
5430 #ifndef __HAVE_ARCH_MEMMAP_INIT
5431 #define memmap_init(size, nid, zone, start_pfn) \
5432 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
5433 #endif
5435 static int zone_batchsize(struct zone *zone)
5437 #ifdef CONFIG_MMU
5438 int batch;
5441 * The per-cpu-pages pools are set to around 1000th of the
5442 * size of the zone. But no more than 1/2 of a meg.
5444 * OK, so we don't know how big the cache is. So guess.
5446 batch = zone->managed_pages / 1024;
5447 if (batch * PAGE_SIZE > 512 * 1024)
5448 batch = (512 * 1024) / PAGE_SIZE;
5449 batch /= 4; /* We effectively *= 4 below */
5450 if (batch < 1)
5451 batch = 1;
5454 * Clamp the batch to a 2^n - 1 value. Having a power
5455 * of 2 value was found to be more likely to have
5456 * suboptimal cache aliasing properties in some cases.
5458 * For example if 2 tasks are alternately allocating
5459 * batches of pages, one task can end up with a lot
5460 * of pages of one half of the possible page colors
5461 * and the other with pages of the other colors.
5463 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5465 return batch;
5467 #else
5468 /* The deferral and batching of frees should be suppressed under NOMMU
5469 * conditions.
5471 * The problem is that NOMMU needs to be able to allocate large chunks
5472 * of contiguous memory as there's no hardware page translation to
5473 * assemble apparent contiguous memory from discontiguous pages.
5475 * Queueing large contiguous runs of pages for batching, however,
5476 * causes the pages to actually be freed in smaller chunks. As there
5477 * can be a significant delay between the individual batches being
5478 * recycled, this leads to the once large chunks of space being
5479 * fragmented and becoming unavailable for high-order allocations.
5481 return 0;
5482 #endif
5486 * pcp->high and pcp->batch values are related and dependent on one another:
5487 * ->batch must never be higher then ->high.
5488 * The following function updates them in a safe manner without read side
5489 * locking.
5491 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5492 * those fields changing asynchronously (acording the the above rule).
5494 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5495 * outside of boot time (or some other assurance that no concurrent updaters
5496 * exist).
5498 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5499 unsigned long batch)
5501 /* start with a fail safe value for batch */
5502 pcp->batch = 1;
5503 smp_wmb();
5505 /* Update high, then batch, in order */
5506 pcp->high = high;
5507 smp_wmb();
5509 pcp->batch = batch;
5512 /* a companion to pageset_set_high() */
5513 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5515 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5518 static void pageset_init(struct per_cpu_pageset *p)
5520 struct per_cpu_pages *pcp;
5521 int migratetype;
5523 memset(p, 0, sizeof(*p));
5525 pcp = &p->pcp;
5526 pcp->count = 0;
5527 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5528 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5531 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5533 pageset_init(p);
5534 pageset_set_batch(p, batch);
5538 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5539 * to the value high for the pageset p.
5541 static void pageset_set_high(struct per_cpu_pageset *p,
5542 unsigned long high)
5544 unsigned long batch = max(1UL, high / 4);
5545 if ((high / 4) > (PAGE_SHIFT * 8))
5546 batch = PAGE_SHIFT * 8;
5548 pageset_update(&p->pcp, high, batch);
5551 static void pageset_set_high_and_batch(struct zone *zone,
5552 struct per_cpu_pageset *pcp)
5554 if (percpu_pagelist_fraction)
5555 pageset_set_high(pcp,
5556 (zone->managed_pages /
5557 percpu_pagelist_fraction));
5558 else
5559 pageset_set_batch(pcp, zone_batchsize(zone));
5562 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5564 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5566 pageset_init(pcp);
5567 pageset_set_high_and_batch(zone, pcp);
5570 void __meminit setup_zone_pageset(struct zone *zone)
5572 int cpu;
5573 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5574 for_each_possible_cpu(cpu)
5575 zone_pageset_init(zone, cpu);
5579 * Allocate per cpu pagesets and initialize them.
5580 * Before this call only boot pagesets were available.
5582 void __init setup_per_cpu_pageset(void)
5584 struct pglist_data *pgdat;
5585 struct zone *zone;
5587 for_each_populated_zone(zone)
5588 setup_zone_pageset(zone);
5590 for_each_online_pgdat(pgdat)
5591 pgdat->per_cpu_nodestats =
5592 alloc_percpu(struct per_cpu_nodestat);
5595 static __meminit void zone_pcp_init(struct zone *zone)
5598 * per cpu subsystem is not up at this point. The following code
5599 * relies on the ability of the linker to provide the
5600 * offset of a (static) per cpu variable into the per cpu area.
5602 zone->pageset = &boot_pageset;
5604 if (populated_zone(zone))
5605 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5606 zone->name, zone->present_pages,
5607 zone_batchsize(zone));
5610 void __meminit init_currently_empty_zone(struct zone *zone,
5611 unsigned long zone_start_pfn,
5612 unsigned long size)
5614 struct pglist_data *pgdat = zone->zone_pgdat;
5616 pgdat->nr_zones = zone_idx(zone) + 1;
5618 zone->zone_start_pfn = zone_start_pfn;
5620 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5621 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5622 pgdat->node_id,
5623 (unsigned long)zone_idx(zone),
5624 zone_start_pfn, (zone_start_pfn + size));
5626 zone_init_free_lists(zone);
5627 zone->initialized = 1;
5630 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5631 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5634 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5636 int __meminit __early_pfn_to_nid(unsigned long pfn,
5637 struct mminit_pfnnid_cache *state)
5639 unsigned long start_pfn, end_pfn;
5640 int nid;
5642 if (state->last_start <= pfn && pfn < state->last_end)
5643 return state->last_nid;
5645 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5646 if (nid != -1) {
5647 state->last_start = start_pfn;
5648 state->last_end = end_pfn;
5649 state->last_nid = nid;
5652 return nid;
5654 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5657 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5658 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5659 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5661 * If an architecture guarantees that all ranges registered contain no holes
5662 * and may be freed, this this function may be used instead of calling
5663 * memblock_free_early_nid() manually.
5665 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5667 unsigned long start_pfn, end_pfn;
5668 int i, this_nid;
5670 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5671 start_pfn = min(start_pfn, max_low_pfn);
5672 end_pfn = min(end_pfn, max_low_pfn);
5674 if (start_pfn < end_pfn)
5675 memblock_free_early_nid(PFN_PHYS(start_pfn),
5676 (end_pfn - start_pfn) << PAGE_SHIFT,
5677 this_nid);
5682 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5683 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5685 * If an architecture guarantees that all ranges registered contain no holes and may
5686 * be freed, this function may be used instead of calling memory_present() manually.
5688 void __init sparse_memory_present_with_active_regions(int nid)
5690 unsigned long start_pfn, end_pfn;
5691 int i, this_nid;
5693 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5694 memory_present(this_nid, start_pfn, end_pfn);
5698 * get_pfn_range_for_nid - Return the start and end page frames for a node
5699 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5700 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5701 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5703 * It returns the start and end page frame of a node based on information
5704 * provided by memblock_set_node(). If called for a node
5705 * with no available memory, a warning is printed and the start and end
5706 * PFNs will be 0.
5708 void __meminit get_pfn_range_for_nid(unsigned int nid,
5709 unsigned long *start_pfn, unsigned long *end_pfn)
5711 unsigned long this_start_pfn, this_end_pfn;
5712 int i;
5714 *start_pfn = -1UL;
5715 *end_pfn = 0;
5717 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5718 *start_pfn = min(*start_pfn, this_start_pfn);
5719 *end_pfn = max(*end_pfn, this_end_pfn);
5722 if (*start_pfn == -1UL)
5723 *start_pfn = 0;
5727 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5728 * assumption is made that zones within a node are ordered in monotonic
5729 * increasing memory addresses so that the "highest" populated zone is used
5731 static void __init find_usable_zone_for_movable(void)
5733 int zone_index;
5734 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5735 if (zone_index == ZONE_MOVABLE)
5736 continue;
5738 if (arch_zone_highest_possible_pfn[zone_index] >
5739 arch_zone_lowest_possible_pfn[zone_index])
5740 break;
5743 VM_BUG_ON(zone_index == -1);
5744 movable_zone = zone_index;
5748 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5749 * because it is sized independent of architecture. Unlike the other zones,
5750 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5751 * in each node depending on the size of each node and how evenly kernelcore
5752 * is distributed. This helper function adjusts the zone ranges
5753 * provided by the architecture for a given node by using the end of the
5754 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5755 * zones within a node are in order of monotonic increases memory addresses
5757 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5758 unsigned long zone_type,
5759 unsigned long node_start_pfn,
5760 unsigned long node_end_pfn,
5761 unsigned long *zone_start_pfn,
5762 unsigned long *zone_end_pfn)
5764 /* Only adjust if ZONE_MOVABLE is on this node */
5765 if (zone_movable_pfn[nid]) {
5766 /* Size ZONE_MOVABLE */
5767 if (zone_type == ZONE_MOVABLE) {
5768 *zone_start_pfn = zone_movable_pfn[nid];
5769 *zone_end_pfn = min(node_end_pfn,
5770 arch_zone_highest_possible_pfn[movable_zone]);
5772 /* Adjust for ZONE_MOVABLE starting within this range */
5773 } else if (!mirrored_kernelcore &&
5774 *zone_start_pfn < zone_movable_pfn[nid] &&
5775 *zone_end_pfn > zone_movable_pfn[nid]) {
5776 *zone_end_pfn = zone_movable_pfn[nid];
5778 /* Check if this whole range is within ZONE_MOVABLE */
5779 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5780 *zone_start_pfn = *zone_end_pfn;
5785 * Return the number of pages a zone spans in a node, including holes
5786 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5788 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5789 unsigned long zone_type,
5790 unsigned long node_start_pfn,
5791 unsigned long node_end_pfn,
5792 unsigned long *zone_start_pfn,
5793 unsigned long *zone_end_pfn,
5794 unsigned long *ignored)
5796 /* When hotadd a new node from cpu_up(), the node should be empty */
5797 if (!node_start_pfn && !node_end_pfn)
5798 return 0;
5800 /* Get the start and end of the zone */
5801 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5802 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5803 adjust_zone_range_for_zone_movable(nid, zone_type,
5804 node_start_pfn, node_end_pfn,
5805 zone_start_pfn, zone_end_pfn);
5807 /* Check that this node has pages within the zone's required range */
5808 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5809 return 0;
5811 /* Move the zone boundaries inside the node if necessary */
5812 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5813 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5815 /* Return the spanned pages */
5816 return *zone_end_pfn - *zone_start_pfn;
5820 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5821 * then all holes in the requested range will be accounted for.
5823 unsigned long __meminit __absent_pages_in_range(int nid,
5824 unsigned long range_start_pfn,
5825 unsigned long range_end_pfn)
5827 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5828 unsigned long start_pfn, end_pfn;
5829 int i;
5831 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5832 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5833 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5834 nr_absent -= end_pfn - start_pfn;
5836 return nr_absent;
5840 * absent_pages_in_range - Return number of page frames in holes within a range
5841 * @start_pfn: The start PFN to start searching for holes
5842 * @end_pfn: The end PFN to stop searching for holes
5844 * It returns the number of pages frames in memory holes within a range.
5846 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5847 unsigned long end_pfn)
5849 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5852 /* Return the number of page frames in holes in a zone on a node */
5853 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5854 unsigned long zone_type,
5855 unsigned long node_start_pfn,
5856 unsigned long node_end_pfn,
5857 unsigned long *ignored)
5859 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5860 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5861 unsigned long zone_start_pfn, zone_end_pfn;
5862 unsigned long nr_absent;
5864 /* When hotadd a new node from cpu_up(), the node should be empty */
5865 if (!node_start_pfn && !node_end_pfn)
5866 return 0;
5868 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5869 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5871 adjust_zone_range_for_zone_movable(nid, zone_type,
5872 node_start_pfn, node_end_pfn,
5873 &zone_start_pfn, &zone_end_pfn);
5874 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5877 * ZONE_MOVABLE handling.
5878 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5879 * and vice versa.
5881 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5882 unsigned long start_pfn, end_pfn;
5883 struct memblock_region *r;
5885 for_each_memblock(memory, r) {
5886 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5887 zone_start_pfn, zone_end_pfn);
5888 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5889 zone_start_pfn, zone_end_pfn);
5891 if (zone_type == ZONE_MOVABLE &&
5892 memblock_is_mirror(r))
5893 nr_absent += end_pfn - start_pfn;
5895 if (zone_type == ZONE_NORMAL &&
5896 !memblock_is_mirror(r))
5897 nr_absent += end_pfn - start_pfn;
5901 return nr_absent;
5904 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5905 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5906 unsigned long zone_type,
5907 unsigned long node_start_pfn,
5908 unsigned long node_end_pfn,
5909 unsigned long *zone_start_pfn,
5910 unsigned long *zone_end_pfn,
5911 unsigned long *zones_size)
5913 unsigned int zone;
5915 *zone_start_pfn = node_start_pfn;
5916 for (zone = 0; zone < zone_type; zone++)
5917 *zone_start_pfn += zones_size[zone];
5919 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5921 return zones_size[zone_type];
5924 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5925 unsigned long zone_type,
5926 unsigned long node_start_pfn,
5927 unsigned long node_end_pfn,
5928 unsigned long *zholes_size)
5930 if (!zholes_size)
5931 return 0;
5933 return zholes_size[zone_type];
5936 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5938 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5939 unsigned long node_start_pfn,
5940 unsigned long node_end_pfn,
5941 unsigned long *zones_size,
5942 unsigned long *zholes_size)
5944 unsigned long realtotalpages = 0, totalpages = 0;
5945 enum zone_type i;
5947 for (i = 0; i < MAX_NR_ZONES; i++) {
5948 struct zone *zone = pgdat->node_zones + i;
5949 unsigned long zone_start_pfn, zone_end_pfn;
5950 unsigned long size, real_size;
5952 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5953 node_start_pfn,
5954 node_end_pfn,
5955 &zone_start_pfn,
5956 &zone_end_pfn,
5957 zones_size);
5958 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5959 node_start_pfn, node_end_pfn,
5960 zholes_size);
5961 if (size)
5962 zone->zone_start_pfn = zone_start_pfn;
5963 else
5964 zone->zone_start_pfn = 0;
5965 zone->spanned_pages = size;
5966 zone->present_pages = real_size;
5968 totalpages += size;
5969 realtotalpages += real_size;
5972 pgdat->node_spanned_pages = totalpages;
5973 pgdat->node_present_pages = realtotalpages;
5974 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5975 realtotalpages);
5978 #ifndef CONFIG_SPARSEMEM
5980 * Calculate the size of the zone->blockflags rounded to an unsigned long
5981 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5982 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5983 * round what is now in bits to nearest long in bits, then return it in
5984 * bytes.
5986 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5988 unsigned long usemapsize;
5990 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5991 usemapsize = roundup(zonesize, pageblock_nr_pages);
5992 usemapsize = usemapsize >> pageblock_order;
5993 usemapsize *= NR_PAGEBLOCK_BITS;
5994 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5996 return usemapsize / 8;
5999 static void __init setup_usemap(struct pglist_data *pgdat,
6000 struct zone *zone,
6001 unsigned long zone_start_pfn,
6002 unsigned long zonesize)
6004 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6005 zone->pageblock_flags = NULL;
6006 if (usemapsize)
6007 zone->pageblock_flags =
6008 memblock_virt_alloc_node_nopanic(usemapsize,
6009 pgdat->node_id);
6011 #else
6012 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6013 unsigned long zone_start_pfn, unsigned long zonesize) {}
6014 #endif /* CONFIG_SPARSEMEM */
6016 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6018 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6019 void __paginginit set_pageblock_order(void)
6021 unsigned int order;
6023 /* Check that pageblock_nr_pages has not already been setup */
6024 if (pageblock_order)
6025 return;
6027 if (HPAGE_SHIFT > PAGE_SHIFT)
6028 order = HUGETLB_PAGE_ORDER;
6029 else
6030 order = MAX_ORDER - 1;
6033 * Assume the largest contiguous order of interest is a huge page.
6034 * This value may be variable depending on boot parameters on IA64 and
6035 * powerpc.
6037 pageblock_order = order;
6039 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6042 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6043 * is unused as pageblock_order is set at compile-time. See
6044 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6045 * the kernel config
6047 void __paginginit set_pageblock_order(void)
6051 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6053 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6054 unsigned long present_pages)
6056 unsigned long pages = spanned_pages;
6059 * Provide a more accurate estimation if there are holes within
6060 * the zone and SPARSEMEM is in use. If there are holes within the
6061 * zone, each populated memory region may cost us one or two extra
6062 * memmap pages due to alignment because memmap pages for each
6063 * populated regions may not be naturally aligned on page boundary.
6064 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6066 if (spanned_pages > present_pages + (present_pages >> 4) &&
6067 IS_ENABLED(CONFIG_SPARSEMEM))
6068 pages = present_pages;
6070 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6074 * Set up the zone data structures:
6075 * - mark all pages reserved
6076 * - mark all memory queues empty
6077 * - clear the memory bitmaps
6079 * NOTE: pgdat should get zeroed by caller.
6081 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6083 enum zone_type j;
6084 int nid = pgdat->node_id;
6086 pgdat_resize_init(pgdat);
6087 #ifdef CONFIG_NUMA_BALANCING
6088 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6089 pgdat->numabalancing_migrate_nr_pages = 0;
6090 pgdat->numabalancing_migrate_next_window = jiffies;
6091 #endif
6092 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6093 spin_lock_init(&pgdat->split_queue_lock);
6094 INIT_LIST_HEAD(&pgdat->split_queue);
6095 pgdat->split_queue_len = 0;
6096 #endif
6097 init_waitqueue_head(&pgdat->kswapd_wait);
6098 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6099 #ifdef CONFIG_COMPACTION
6100 init_waitqueue_head(&pgdat->kcompactd_wait);
6101 #endif
6102 pgdat_page_ext_init(pgdat);
6103 spin_lock_init(&pgdat->lru_lock);
6104 lruvec_init(node_lruvec(pgdat));
6106 pgdat->per_cpu_nodestats = &boot_nodestats;
6108 for (j = 0; j < MAX_NR_ZONES; j++) {
6109 struct zone *zone = pgdat->node_zones + j;
6110 unsigned long size, realsize, freesize, memmap_pages;
6111 unsigned long zone_start_pfn = zone->zone_start_pfn;
6113 size = zone->spanned_pages;
6114 realsize = freesize = zone->present_pages;
6117 * Adjust freesize so that it accounts for how much memory
6118 * is used by this zone for memmap. This affects the watermark
6119 * and per-cpu initialisations
6121 memmap_pages = calc_memmap_size(size, realsize);
6122 if (!is_highmem_idx(j)) {
6123 if (freesize >= memmap_pages) {
6124 freesize -= memmap_pages;
6125 if (memmap_pages)
6126 printk(KERN_DEBUG
6127 " %s zone: %lu pages used for memmap\n",
6128 zone_names[j], memmap_pages);
6129 } else
6130 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6131 zone_names[j], memmap_pages, freesize);
6134 /* Account for reserved pages */
6135 if (j == 0 && freesize > dma_reserve) {
6136 freesize -= dma_reserve;
6137 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6138 zone_names[0], dma_reserve);
6141 if (!is_highmem_idx(j))
6142 nr_kernel_pages += freesize;
6143 /* Charge for highmem memmap if there are enough kernel pages */
6144 else if (nr_kernel_pages > memmap_pages * 2)
6145 nr_kernel_pages -= memmap_pages;
6146 nr_all_pages += freesize;
6149 * Set an approximate value for lowmem here, it will be adjusted
6150 * when the bootmem allocator frees pages into the buddy system.
6151 * And all highmem pages will be managed by the buddy system.
6153 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6154 #ifdef CONFIG_NUMA
6155 zone->node = nid;
6156 #endif
6157 zone->name = zone_names[j];
6158 zone->zone_pgdat = pgdat;
6159 spin_lock_init(&zone->lock);
6160 zone_seqlock_init(zone);
6161 zone_pcp_init(zone);
6163 if (!size)
6164 continue;
6166 set_pageblock_order();
6167 setup_usemap(pgdat, zone, zone_start_pfn, size);
6168 init_currently_empty_zone(zone, zone_start_pfn, size);
6169 memmap_init(size, nid, j, zone_start_pfn);
6173 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6174 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6176 unsigned long __maybe_unused start = 0;
6177 unsigned long __maybe_unused offset = 0;
6179 /* Skip empty nodes */
6180 if (!pgdat->node_spanned_pages)
6181 return;
6183 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6184 offset = pgdat->node_start_pfn - start;
6185 /* ia64 gets its own node_mem_map, before this, without bootmem */
6186 if (!pgdat->node_mem_map) {
6187 unsigned long size, end;
6188 struct page *map;
6191 * The zone's endpoints aren't required to be MAX_ORDER
6192 * aligned but the node_mem_map endpoints must be in order
6193 * for the buddy allocator to function correctly.
6195 end = pgdat_end_pfn(pgdat);
6196 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6197 size = (end - start) * sizeof(struct page);
6198 map = alloc_remap(pgdat->node_id, size);
6199 if (!map)
6200 map = memblock_virt_alloc_node_nopanic(size,
6201 pgdat->node_id);
6202 pgdat->node_mem_map = map + offset;
6204 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6205 __func__, pgdat->node_id, (unsigned long)pgdat,
6206 (unsigned long)pgdat->node_mem_map);
6207 #ifndef CONFIG_NEED_MULTIPLE_NODES
6209 * With no DISCONTIG, the global mem_map is just set as node 0's
6211 if (pgdat == NODE_DATA(0)) {
6212 mem_map = NODE_DATA(0)->node_mem_map;
6213 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6214 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6215 mem_map -= offset;
6216 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6218 #endif
6220 #else
6221 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6222 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6224 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6225 unsigned long node_start_pfn, unsigned long *zholes_size)
6227 pg_data_t *pgdat = NODE_DATA(nid);
6228 unsigned long start_pfn = 0;
6229 unsigned long end_pfn = 0;
6231 /* pg_data_t should be reset to zero when it's allocated */
6232 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6234 pgdat->node_id = nid;
6235 pgdat->node_start_pfn = node_start_pfn;
6236 pgdat->per_cpu_nodestats = NULL;
6237 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6238 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6239 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6240 (u64)start_pfn << PAGE_SHIFT,
6241 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6242 #else
6243 start_pfn = node_start_pfn;
6244 #endif
6245 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6246 zones_size, zholes_size);
6248 alloc_node_mem_map(pgdat);
6250 reset_deferred_meminit(pgdat);
6251 free_area_init_core(pgdat);
6254 #ifdef CONFIG_HAVE_MEMBLOCK
6256 * Only struct pages that are backed by physical memory are zeroed and
6257 * initialized by going through __init_single_page(). But, there are some
6258 * struct pages which are reserved in memblock allocator and their fields
6259 * may be accessed (for example page_to_pfn() on some configuration accesses
6260 * flags). We must explicitly zero those struct pages.
6262 void __paginginit zero_resv_unavail(void)
6264 phys_addr_t start, end;
6265 unsigned long pfn;
6266 u64 i, pgcnt;
6269 * Loop through ranges that are reserved, but do not have reported
6270 * physical memory backing.
6272 pgcnt = 0;
6273 for_each_resv_unavail_range(i, &start, &end) {
6274 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6275 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6276 continue;
6277 mm_zero_struct_page(pfn_to_page(pfn));
6278 pgcnt++;
6283 * Struct pages that do not have backing memory. This could be because
6284 * firmware is using some of this memory, or for some other reasons.
6285 * Once memblock is changed so such behaviour is not allowed: i.e.
6286 * list of "reserved" memory must be a subset of list of "memory", then
6287 * this code can be removed.
6289 if (pgcnt)
6290 pr_info("Reserved but unavailable: %lld pages", pgcnt);
6292 #endif /* CONFIG_HAVE_MEMBLOCK */
6294 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6296 #if MAX_NUMNODES > 1
6298 * Figure out the number of possible node ids.
6300 void __init setup_nr_node_ids(void)
6302 unsigned int highest;
6304 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6305 nr_node_ids = highest + 1;
6307 #endif
6310 * node_map_pfn_alignment - determine the maximum internode alignment
6312 * This function should be called after node map is populated and sorted.
6313 * It calculates the maximum power of two alignment which can distinguish
6314 * all the nodes.
6316 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6317 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6318 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6319 * shifted, 1GiB is enough and this function will indicate so.
6321 * This is used to test whether pfn -> nid mapping of the chosen memory
6322 * model has fine enough granularity to avoid incorrect mapping for the
6323 * populated node map.
6325 * Returns the determined alignment in pfn's. 0 if there is no alignment
6326 * requirement (single node).
6328 unsigned long __init node_map_pfn_alignment(void)
6330 unsigned long accl_mask = 0, last_end = 0;
6331 unsigned long start, end, mask;
6332 int last_nid = -1;
6333 int i, nid;
6335 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6336 if (!start || last_nid < 0 || last_nid == nid) {
6337 last_nid = nid;
6338 last_end = end;
6339 continue;
6343 * Start with a mask granular enough to pin-point to the
6344 * start pfn and tick off bits one-by-one until it becomes
6345 * too coarse to separate the current node from the last.
6347 mask = ~((1 << __ffs(start)) - 1);
6348 while (mask && last_end <= (start & (mask << 1)))
6349 mask <<= 1;
6351 /* accumulate all internode masks */
6352 accl_mask |= mask;
6355 /* convert mask to number of pages */
6356 return ~accl_mask + 1;
6359 /* Find the lowest pfn for a node */
6360 static unsigned long __init find_min_pfn_for_node(int nid)
6362 unsigned long min_pfn = ULONG_MAX;
6363 unsigned long start_pfn;
6364 int i;
6366 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6367 min_pfn = min(min_pfn, start_pfn);
6369 if (min_pfn == ULONG_MAX) {
6370 pr_warn("Could not find start_pfn for node %d\n", nid);
6371 return 0;
6374 return min_pfn;
6378 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6380 * It returns the minimum PFN based on information provided via
6381 * memblock_set_node().
6383 unsigned long __init find_min_pfn_with_active_regions(void)
6385 return find_min_pfn_for_node(MAX_NUMNODES);
6389 * early_calculate_totalpages()
6390 * Sum pages in active regions for movable zone.
6391 * Populate N_MEMORY for calculating usable_nodes.
6393 static unsigned long __init early_calculate_totalpages(void)
6395 unsigned long totalpages = 0;
6396 unsigned long start_pfn, end_pfn;
6397 int i, nid;
6399 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6400 unsigned long pages = end_pfn - start_pfn;
6402 totalpages += pages;
6403 if (pages)
6404 node_set_state(nid, N_MEMORY);
6406 return totalpages;
6410 * Find the PFN the Movable zone begins in each node. Kernel memory
6411 * is spread evenly between nodes as long as the nodes have enough
6412 * memory. When they don't, some nodes will have more kernelcore than
6413 * others
6415 static void __init find_zone_movable_pfns_for_nodes(void)
6417 int i, nid;
6418 unsigned long usable_startpfn;
6419 unsigned long kernelcore_node, kernelcore_remaining;
6420 /* save the state before borrow the nodemask */
6421 nodemask_t saved_node_state = node_states[N_MEMORY];
6422 unsigned long totalpages = early_calculate_totalpages();
6423 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6424 struct memblock_region *r;
6426 /* Need to find movable_zone earlier when movable_node is specified. */
6427 find_usable_zone_for_movable();
6430 * If movable_node is specified, ignore kernelcore and movablecore
6431 * options.
6433 if (movable_node_is_enabled()) {
6434 for_each_memblock(memory, r) {
6435 if (!memblock_is_hotpluggable(r))
6436 continue;
6438 nid = r->nid;
6440 usable_startpfn = PFN_DOWN(r->base);
6441 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6442 min(usable_startpfn, zone_movable_pfn[nid]) :
6443 usable_startpfn;
6446 goto out2;
6450 * If kernelcore=mirror is specified, ignore movablecore option
6452 if (mirrored_kernelcore) {
6453 bool mem_below_4gb_not_mirrored = false;
6455 for_each_memblock(memory, r) {
6456 if (memblock_is_mirror(r))
6457 continue;
6459 nid = r->nid;
6461 usable_startpfn = memblock_region_memory_base_pfn(r);
6463 if (usable_startpfn < 0x100000) {
6464 mem_below_4gb_not_mirrored = true;
6465 continue;
6468 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6469 min(usable_startpfn, zone_movable_pfn[nid]) :
6470 usable_startpfn;
6473 if (mem_below_4gb_not_mirrored)
6474 pr_warn("This configuration results in unmirrored kernel memory.");
6476 goto out2;
6480 * If movablecore=nn[KMG] was specified, calculate what size of
6481 * kernelcore that corresponds so that memory usable for
6482 * any allocation type is evenly spread. If both kernelcore
6483 * and movablecore are specified, then the value of kernelcore
6484 * will be used for required_kernelcore if it's greater than
6485 * what movablecore would have allowed.
6487 if (required_movablecore) {
6488 unsigned long corepages;
6491 * Round-up so that ZONE_MOVABLE is at least as large as what
6492 * was requested by the user
6494 required_movablecore =
6495 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6496 required_movablecore = min(totalpages, required_movablecore);
6497 corepages = totalpages - required_movablecore;
6499 required_kernelcore = max(required_kernelcore, corepages);
6503 * If kernelcore was not specified or kernelcore size is larger
6504 * than totalpages, there is no ZONE_MOVABLE.
6506 if (!required_kernelcore || required_kernelcore >= totalpages)
6507 goto out;
6509 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6510 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6512 restart:
6513 /* Spread kernelcore memory as evenly as possible throughout nodes */
6514 kernelcore_node = required_kernelcore / usable_nodes;
6515 for_each_node_state(nid, N_MEMORY) {
6516 unsigned long start_pfn, end_pfn;
6519 * Recalculate kernelcore_node if the division per node
6520 * now exceeds what is necessary to satisfy the requested
6521 * amount of memory for the kernel
6523 if (required_kernelcore < kernelcore_node)
6524 kernelcore_node = required_kernelcore / usable_nodes;
6527 * As the map is walked, we track how much memory is usable
6528 * by the kernel using kernelcore_remaining. When it is
6529 * 0, the rest of the node is usable by ZONE_MOVABLE
6531 kernelcore_remaining = kernelcore_node;
6533 /* Go through each range of PFNs within this node */
6534 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6535 unsigned long size_pages;
6537 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6538 if (start_pfn >= end_pfn)
6539 continue;
6541 /* Account for what is only usable for kernelcore */
6542 if (start_pfn < usable_startpfn) {
6543 unsigned long kernel_pages;
6544 kernel_pages = min(end_pfn, usable_startpfn)
6545 - start_pfn;
6547 kernelcore_remaining -= min(kernel_pages,
6548 kernelcore_remaining);
6549 required_kernelcore -= min(kernel_pages,
6550 required_kernelcore);
6552 /* Continue if range is now fully accounted */
6553 if (end_pfn <= usable_startpfn) {
6556 * Push zone_movable_pfn to the end so
6557 * that if we have to rebalance
6558 * kernelcore across nodes, we will
6559 * not double account here
6561 zone_movable_pfn[nid] = end_pfn;
6562 continue;
6564 start_pfn = usable_startpfn;
6568 * The usable PFN range for ZONE_MOVABLE is from
6569 * start_pfn->end_pfn. Calculate size_pages as the
6570 * number of pages used as kernelcore
6572 size_pages = end_pfn - start_pfn;
6573 if (size_pages > kernelcore_remaining)
6574 size_pages = kernelcore_remaining;
6575 zone_movable_pfn[nid] = start_pfn + size_pages;
6578 * Some kernelcore has been met, update counts and
6579 * break if the kernelcore for this node has been
6580 * satisfied
6582 required_kernelcore -= min(required_kernelcore,
6583 size_pages);
6584 kernelcore_remaining -= size_pages;
6585 if (!kernelcore_remaining)
6586 break;
6591 * If there is still required_kernelcore, we do another pass with one
6592 * less node in the count. This will push zone_movable_pfn[nid] further
6593 * along on the nodes that still have memory until kernelcore is
6594 * satisfied
6596 usable_nodes--;
6597 if (usable_nodes && required_kernelcore > usable_nodes)
6598 goto restart;
6600 out2:
6601 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6602 for (nid = 0; nid < MAX_NUMNODES; nid++)
6603 zone_movable_pfn[nid] =
6604 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6606 out:
6607 /* restore the node_state */
6608 node_states[N_MEMORY] = saved_node_state;
6611 /* Any regular or high memory on that node ? */
6612 static void check_for_memory(pg_data_t *pgdat, int nid)
6614 enum zone_type zone_type;
6616 if (N_MEMORY == N_NORMAL_MEMORY)
6617 return;
6619 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6620 struct zone *zone = &pgdat->node_zones[zone_type];
6621 if (populated_zone(zone)) {
6622 node_set_state(nid, N_HIGH_MEMORY);
6623 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6624 zone_type <= ZONE_NORMAL)
6625 node_set_state(nid, N_NORMAL_MEMORY);
6626 break;
6632 * free_area_init_nodes - Initialise all pg_data_t and zone data
6633 * @max_zone_pfn: an array of max PFNs for each zone
6635 * This will call free_area_init_node() for each active node in the system.
6636 * Using the page ranges provided by memblock_set_node(), the size of each
6637 * zone in each node and their holes is calculated. If the maximum PFN
6638 * between two adjacent zones match, it is assumed that the zone is empty.
6639 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6640 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6641 * starts where the previous one ended. For example, ZONE_DMA32 starts
6642 * at arch_max_dma_pfn.
6644 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6646 unsigned long start_pfn, end_pfn;
6647 int i, nid;
6649 /* Record where the zone boundaries are */
6650 memset(arch_zone_lowest_possible_pfn, 0,
6651 sizeof(arch_zone_lowest_possible_pfn));
6652 memset(arch_zone_highest_possible_pfn, 0,
6653 sizeof(arch_zone_highest_possible_pfn));
6655 start_pfn = find_min_pfn_with_active_regions();
6657 for (i = 0; i < MAX_NR_ZONES; i++) {
6658 if (i == ZONE_MOVABLE)
6659 continue;
6661 end_pfn = max(max_zone_pfn[i], start_pfn);
6662 arch_zone_lowest_possible_pfn[i] = start_pfn;
6663 arch_zone_highest_possible_pfn[i] = end_pfn;
6665 start_pfn = end_pfn;
6668 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6669 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6670 find_zone_movable_pfns_for_nodes();
6672 /* Print out the zone ranges */
6673 pr_info("Zone ranges:\n");
6674 for (i = 0; i < MAX_NR_ZONES; i++) {
6675 if (i == ZONE_MOVABLE)
6676 continue;
6677 pr_info(" %-8s ", zone_names[i]);
6678 if (arch_zone_lowest_possible_pfn[i] ==
6679 arch_zone_highest_possible_pfn[i])
6680 pr_cont("empty\n");
6681 else
6682 pr_cont("[mem %#018Lx-%#018Lx]\n",
6683 (u64)arch_zone_lowest_possible_pfn[i]
6684 << PAGE_SHIFT,
6685 ((u64)arch_zone_highest_possible_pfn[i]
6686 << PAGE_SHIFT) - 1);
6689 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6690 pr_info("Movable zone start for each node\n");
6691 for (i = 0; i < MAX_NUMNODES; i++) {
6692 if (zone_movable_pfn[i])
6693 pr_info(" Node %d: %#018Lx\n", i,
6694 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6697 /* Print out the early node map */
6698 pr_info("Early memory node ranges\n");
6699 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6700 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6701 (u64)start_pfn << PAGE_SHIFT,
6702 ((u64)end_pfn << PAGE_SHIFT) - 1);
6704 /* Initialise every node */
6705 mminit_verify_pageflags_layout();
6706 setup_nr_node_ids();
6707 for_each_online_node(nid) {
6708 pg_data_t *pgdat = NODE_DATA(nid);
6709 free_area_init_node(nid, NULL,
6710 find_min_pfn_for_node(nid), NULL);
6712 /* Any memory on that node */
6713 if (pgdat->node_present_pages)
6714 node_set_state(nid, N_MEMORY);
6715 check_for_memory(pgdat, nid);
6717 zero_resv_unavail();
6720 static int __init cmdline_parse_core(char *p, unsigned long *core)
6722 unsigned long long coremem;
6723 if (!p)
6724 return -EINVAL;
6726 coremem = memparse(p, &p);
6727 *core = coremem >> PAGE_SHIFT;
6729 /* Paranoid check that UL is enough for the coremem value */
6730 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6732 return 0;
6736 * kernelcore=size sets the amount of memory for use for allocations that
6737 * cannot be reclaimed or migrated.
6739 static int __init cmdline_parse_kernelcore(char *p)
6741 /* parse kernelcore=mirror */
6742 if (parse_option_str(p, "mirror")) {
6743 mirrored_kernelcore = true;
6744 return 0;
6747 return cmdline_parse_core(p, &required_kernelcore);
6751 * movablecore=size sets the amount of memory for use for allocations that
6752 * can be reclaimed or migrated.
6754 static int __init cmdline_parse_movablecore(char *p)
6756 return cmdline_parse_core(p, &required_movablecore);
6759 early_param("kernelcore", cmdline_parse_kernelcore);
6760 early_param("movablecore", cmdline_parse_movablecore);
6762 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6764 void adjust_managed_page_count(struct page *page, long count)
6766 spin_lock(&managed_page_count_lock);
6767 page_zone(page)->managed_pages += count;
6768 totalram_pages += count;
6769 #ifdef CONFIG_HIGHMEM
6770 if (PageHighMem(page))
6771 totalhigh_pages += count;
6772 #endif
6773 spin_unlock(&managed_page_count_lock);
6775 EXPORT_SYMBOL(adjust_managed_page_count);
6777 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6779 void *pos;
6780 unsigned long pages = 0;
6782 start = (void *)PAGE_ALIGN((unsigned long)start);
6783 end = (void *)((unsigned long)end & PAGE_MASK);
6784 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6785 if ((unsigned int)poison <= 0xFF)
6786 memset(pos, poison, PAGE_SIZE);
6787 free_reserved_page(virt_to_page(pos));
6790 if (pages && s)
6791 pr_info("Freeing %s memory: %ldK\n",
6792 s, pages << (PAGE_SHIFT - 10));
6794 return pages;
6796 EXPORT_SYMBOL(free_reserved_area);
6798 #ifdef CONFIG_HIGHMEM
6799 void free_highmem_page(struct page *page)
6801 __free_reserved_page(page);
6802 totalram_pages++;
6803 page_zone(page)->managed_pages++;
6804 totalhigh_pages++;
6806 #endif
6809 void __init mem_init_print_info(const char *str)
6811 unsigned long physpages, codesize, datasize, rosize, bss_size;
6812 unsigned long init_code_size, init_data_size;
6814 physpages = get_num_physpages();
6815 codesize = _etext - _stext;
6816 datasize = _edata - _sdata;
6817 rosize = __end_rodata - __start_rodata;
6818 bss_size = __bss_stop - __bss_start;
6819 init_data_size = __init_end - __init_begin;
6820 init_code_size = _einittext - _sinittext;
6823 * Detect special cases and adjust section sizes accordingly:
6824 * 1) .init.* may be embedded into .data sections
6825 * 2) .init.text.* may be out of [__init_begin, __init_end],
6826 * please refer to arch/tile/kernel/vmlinux.lds.S.
6827 * 3) .rodata.* may be embedded into .text or .data sections.
6829 #define adj_init_size(start, end, size, pos, adj) \
6830 do { \
6831 if (start <= pos && pos < end && size > adj) \
6832 size -= adj; \
6833 } while (0)
6835 adj_init_size(__init_begin, __init_end, init_data_size,
6836 _sinittext, init_code_size);
6837 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6838 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6839 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6840 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6842 #undef adj_init_size
6844 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6845 #ifdef CONFIG_HIGHMEM
6846 ", %luK highmem"
6847 #endif
6848 "%s%s)\n",
6849 nr_free_pages() << (PAGE_SHIFT - 10),
6850 physpages << (PAGE_SHIFT - 10),
6851 codesize >> 10, datasize >> 10, rosize >> 10,
6852 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6853 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6854 totalcma_pages << (PAGE_SHIFT - 10),
6855 #ifdef CONFIG_HIGHMEM
6856 totalhigh_pages << (PAGE_SHIFT - 10),
6857 #endif
6858 str ? ", " : "", str ? str : "");
6862 * set_dma_reserve - set the specified number of pages reserved in the first zone
6863 * @new_dma_reserve: The number of pages to mark reserved
6865 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6866 * In the DMA zone, a significant percentage may be consumed by kernel image
6867 * and other unfreeable allocations which can skew the watermarks badly. This
6868 * function may optionally be used to account for unfreeable pages in the
6869 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6870 * smaller per-cpu batchsize.
6872 void __init set_dma_reserve(unsigned long new_dma_reserve)
6874 dma_reserve = new_dma_reserve;
6877 void __init free_area_init(unsigned long *zones_size)
6879 free_area_init_node(0, zones_size,
6880 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6881 zero_resv_unavail();
6884 static int page_alloc_cpu_dead(unsigned int cpu)
6887 lru_add_drain_cpu(cpu);
6888 drain_pages(cpu);
6891 * Spill the event counters of the dead processor
6892 * into the current processors event counters.
6893 * This artificially elevates the count of the current
6894 * processor.
6896 vm_events_fold_cpu(cpu);
6899 * Zero the differential counters of the dead processor
6900 * so that the vm statistics are consistent.
6902 * This is only okay since the processor is dead and cannot
6903 * race with what we are doing.
6905 cpu_vm_stats_fold(cpu);
6906 return 0;
6909 void __init page_alloc_init(void)
6911 int ret;
6913 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6914 "mm/page_alloc:dead", NULL,
6915 page_alloc_cpu_dead);
6916 WARN_ON(ret < 0);
6920 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6921 * or min_free_kbytes changes.
6923 static void calculate_totalreserve_pages(void)
6925 struct pglist_data *pgdat;
6926 unsigned long reserve_pages = 0;
6927 enum zone_type i, j;
6929 for_each_online_pgdat(pgdat) {
6931 pgdat->totalreserve_pages = 0;
6933 for (i = 0; i < MAX_NR_ZONES; i++) {
6934 struct zone *zone = pgdat->node_zones + i;
6935 long max = 0;
6937 /* Find valid and maximum lowmem_reserve in the zone */
6938 for (j = i; j < MAX_NR_ZONES; j++) {
6939 if (zone->lowmem_reserve[j] > max)
6940 max = zone->lowmem_reserve[j];
6943 /* we treat the high watermark as reserved pages. */
6944 max += high_wmark_pages(zone);
6946 if (max > zone->managed_pages)
6947 max = zone->managed_pages;
6949 pgdat->totalreserve_pages += max;
6951 reserve_pages += max;
6954 totalreserve_pages = reserve_pages;
6958 * setup_per_zone_lowmem_reserve - called whenever
6959 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6960 * has a correct pages reserved value, so an adequate number of
6961 * pages are left in the zone after a successful __alloc_pages().
6963 static void setup_per_zone_lowmem_reserve(void)
6965 struct pglist_data *pgdat;
6966 enum zone_type j, idx;
6968 for_each_online_pgdat(pgdat) {
6969 for (j = 0; j < MAX_NR_ZONES; j++) {
6970 struct zone *zone = pgdat->node_zones + j;
6971 unsigned long managed_pages = zone->managed_pages;
6973 zone->lowmem_reserve[j] = 0;
6975 idx = j;
6976 while (idx) {
6977 struct zone *lower_zone;
6979 idx--;
6981 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6982 sysctl_lowmem_reserve_ratio[idx] = 1;
6984 lower_zone = pgdat->node_zones + idx;
6985 lower_zone->lowmem_reserve[j] = managed_pages /
6986 sysctl_lowmem_reserve_ratio[idx];
6987 managed_pages += lower_zone->managed_pages;
6992 /* update totalreserve_pages */
6993 calculate_totalreserve_pages();
6996 static void __setup_per_zone_wmarks(void)
6998 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6999 unsigned long lowmem_pages = 0;
7000 struct zone *zone;
7001 unsigned long flags;
7003 /* Calculate total number of !ZONE_HIGHMEM pages */
7004 for_each_zone(zone) {
7005 if (!is_highmem(zone))
7006 lowmem_pages += zone->managed_pages;
7009 for_each_zone(zone) {
7010 u64 tmp;
7012 spin_lock_irqsave(&zone->lock, flags);
7013 tmp = (u64)pages_min * zone->managed_pages;
7014 do_div(tmp, lowmem_pages);
7015 if (is_highmem(zone)) {
7017 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7018 * need highmem pages, so cap pages_min to a small
7019 * value here.
7021 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7022 * deltas control asynch page reclaim, and so should
7023 * not be capped for highmem.
7025 unsigned long min_pages;
7027 min_pages = zone->managed_pages / 1024;
7028 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7029 zone->watermark[WMARK_MIN] = min_pages;
7030 } else {
7032 * If it's a lowmem zone, reserve a number of pages
7033 * proportionate to the zone's size.
7035 zone->watermark[WMARK_MIN] = tmp;
7039 * Set the kswapd watermarks distance according to the
7040 * scale factor in proportion to available memory, but
7041 * ensure a minimum size on small systems.
7043 tmp = max_t(u64, tmp >> 2,
7044 mult_frac(zone->managed_pages,
7045 watermark_scale_factor, 10000));
7047 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7048 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7050 spin_unlock_irqrestore(&zone->lock, flags);
7053 /* update totalreserve_pages */
7054 calculate_totalreserve_pages();
7058 * setup_per_zone_wmarks - called when min_free_kbytes changes
7059 * or when memory is hot-{added|removed}
7061 * Ensures that the watermark[min,low,high] values for each zone are set
7062 * correctly with respect to min_free_kbytes.
7064 void setup_per_zone_wmarks(void)
7066 static DEFINE_SPINLOCK(lock);
7068 spin_lock(&lock);
7069 __setup_per_zone_wmarks();
7070 spin_unlock(&lock);
7074 * Initialise min_free_kbytes.
7076 * For small machines we want it small (128k min). For large machines
7077 * we want it large (64MB max). But it is not linear, because network
7078 * bandwidth does not increase linearly with machine size. We use
7080 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7081 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7083 * which yields
7085 * 16MB: 512k
7086 * 32MB: 724k
7087 * 64MB: 1024k
7088 * 128MB: 1448k
7089 * 256MB: 2048k
7090 * 512MB: 2896k
7091 * 1024MB: 4096k
7092 * 2048MB: 5792k
7093 * 4096MB: 8192k
7094 * 8192MB: 11584k
7095 * 16384MB: 16384k
7097 int __meminit init_per_zone_wmark_min(void)
7099 unsigned long lowmem_kbytes;
7100 int new_min_free_kbytes;
7102 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7103 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7105 if (new_min_free_kbytes > user_min_free_kbytes) {
7106 min_free_kbytes = new_min_free_kbytes;
7107 if (min_free_kbytes < 128)
7108 min_free_kbytes = 128;
7109 if (min_free_kbytes > 65536)
7110 min_free_kbytes = 65536;
7111 } else {
7112 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7113 new_min_free_kbytes, user_min_free_kbytes);
7115 setup_per_zone_wmarks();
7116 refresh_zone_stat_thresholds();
7117 setup_per_zone_lowmem_reserve();
7119 #ifdef CONFIG_NUMA
7120 setup_min_unmapped_ratio();
7121 setup_min_slab_ratio();
7122 #endif
7124 return 0;
7126 core_initcall(init_per_zone_wmark_min)
7129 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7130 * that we can call two helper functions whenever min_free_kbytes
7131 * changes.
7133 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7134 void __user *buffer, size_t *length, loff_t *ppos)
7136 int rc;
7138 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7139 if (rc)
7140 return rc;
7142 if (write) {
7143 user_min_free_kbytes = min_free_kbytes;
7144 setup_per_zone_wmarks();
7146 return 0;
7149 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7150 void __user *buffer, size_t *length, loff_t *ppos)
7152 int rc;
7154 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7155 if (rc)
7156 return rc;
7158 if (write)
7159 setup_per_zone_wmarks();
7161 return 0;
7164 #ifdef CONFIG_NUMA
7165 static void setup_min_unmapped_ratio(void)
7167 pg_data_t *pgdat;
7168 struct zone *zone;
7170 for_each_online_pgdat(pgdat)
7171 pgdat->min_unmapped_pages = 0;
7173 for_each_zone(zone)
7174 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7175 sysctl_min_unmapped_ratio) / 100;
7179 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7180 void __user *buffer, size_t *length, loff_t *ppos)
7182 int rc;
7184 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7185 if (rc)
7186 return rc;
7188 setup_min_unmapped_ratio();
7190 return 0;
7193 static void setup_min_slab_ratio(void)
7195 pg_data_t *pgdat;
7196 struct zone *zone;
7198 for_each_online_pgdat(pgdat)
7199 pgdat->min_slab_pages = 0;
7201 for_each_zone(zone)
7202 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7203 sysctl_min_slab_ratio) / 100;
7206 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7207 void __user *buffer, size_t *length, loff_t *ppos)
7209 int rc;
7211 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7212 if (rc)
7213 return rc;
7215 setup_min_slab_ratio();
7217 return 0;
7219 #endif
7222 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7223 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7224 * whenever sysctl_lowmem_reserve_ratio changes.
7226 * The reserve ratio obviously has absolutely no relation with the
7227 * minimum watermarks. The lowmem reserve ratio can only make sense
7228 * if in function of the boot time zone sizes.
7230 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7231 void __user *buffer, size_t *length, loff_t *ppos)
7233 proc_dointvec_minmax(table, write, buffer, length, ppos);
7234 setup_per_zone_lowmem_reserve();
7235 return 0;
7239 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7240 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7241 * pagelist can have before it gets flushed back to buddy allocator.
7243 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7244 void __user *buffer, size_t *length, loff_t *ppos)
7246 struct zone *zone;
7247 int old_percpu_pagelist_fraction;
7248 int ret;
7250 mutex_lock(&pcp_batch_high_lock);
7251 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7253 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7254 if (!write || ret < 0)
7255 goto out;
7257 /* Sanity checking to avoid pcp imbalance */
7258 if (percpu_pagelist_fraction &&
7259 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7260 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7261 ret = -EINVAL;
7262 goto out;
7265 /* No change? */
7266 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7267 goto out;
7269 for_each_populated_zone(zone) {
7270 unsigned int cpu;
7272 for_each_possible_cpu(cpu)
7273 pageset_set_high_and_batch(zone,
7274 per_cpu_ptr(zone->pageset, cpu));
7276 out:
7277 mutex_unlock(&pcp_batch_high_lock);
7278 return ret;
7281 #ifdef CONFIG_NUMA
7282 int hashdist = HASHDIST_DEFAULT;
7284 static int __init set_hashdist(char *str)
7286 if (!str)
7287 return 0;
7288 hashdist = simple_strtoul(str, &str, 0);
7289 return 1;
7291 __setup("hashdist=", set_hashdist);
7292 #endif
7294 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7296 * Returns the number of pages that arch has reserved but
7297 * is not known to alloc_large_system_hash().
7299 static unsigned long __init arch_reserved_kernel_pages(void)
7301 return 0;
7303 #endif
7306 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7307 * machines. As memory size is increased the scale is also increased but at
7308 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7309 * quadruples the scale is increased by one, which means the size of hash table
7310 * only doubles, instead of quadrupling as well.
7311 * Because 32-bit systems cannot have large physical memory, where this scaling
7312 * makes sense, it is disabled on such platforms.
7314 #if __BITS_PER_LONG > 32
7315 #define ADAPT_SCALE_BASE (64ul << 30)
7316 #define ADAPT_SCALE_SHIFT 2
7317 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7318 #endif
7321 * allocate a large system hash table from bootmem
7322 * - it is assumed that the hash table must contain an exact power-of-2
7323 * quantity of entries
7324 * - limit is the number of hash buckets, not the total allocation size
7326 void *__init alloc_large_system_hash(const char *tablename,
7327 unsigned long bucketsize,
7328 unsigned long numentries,
7329 int scale,
7330 int flags,
7331 unsigned int *_hash_shift,
7332 unsigned int *_hash_mask,
7333 unsigned long low_limit,
7334 unsigned long high_limit)
7336 unsigned long long max = high_limit;
7337 unsigned long log2qty, size;
7338 void *table = NULL;
7339 gfp_t gfp_flags;
7341 /* allow the kernel cmdline to have a say */
7342 if (!numentries) {
7343 /* round applicable memory size up to nearest megabyte */
7344 numentries = nr_kernel_pages;
7345 numentries -= arch_reserved_kernel_pages();
7347 /* It isn't necessary when PAGE_SIZE >= 1MB */
7348 if (PAGE_SHIFT < 20)
7349 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7351 #if __BITS_PER_LONG > 32
7352 if (!high_limit) {
7353 unsigned long adapt;
7355 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7356 adapt <<= ADAPT_SCALE_SHIFT)
7357 scale++;
7359 #endif
7361 /* limit to 1 bucket per 2^scale bytes of low memory */
7362 if (scale > PAGE_SHIFT)
7363 numentries >>= (scale - PAGE_SHIFT);
7364 else
7365 numentries <<= (PAGE_SHIFT - scale);
7367 /* Make sure we've got at least a 0-order allocation.. */
7368 if (unlikely(flags & HASH_SMALL)) {
7369 /* Makes no sense without HASH_EARLY */
7370 WARN_ON(!(flags & HASH_EARLY));
7371 if (!(numentries >> *_hash_shift)) {
7372 numentries = 1UL << *_hash_shift;
7373 BUG_ON(!numentries);
7375 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7376 numentries = PAGE_SIZE / bucketsize;
7378 numentries = roundup_pow_of_two(numentries);
7380 /* limit allocation size to 1/16 total memory by default */
7381 if (max == 0) {
7382 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7383 do_div(max, bucketsize);
7385 max = min(max, 0x80000000ULL);
7387 if (numentries < low_limit)
7388 numentries = low_limit;
7389 if (numentries > max)
7390 numentries = max;
7392 log2qty = ilog2(numentries);
7394 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7395 do {
7396 size = bucketsize << log2qty;
7397 if (flags & HASH_EARLY) {
7398 if (flags & HASH_ZERO)
7399 table = memblock_virt_alloc_nopanic(size, 0);
7400 else
7401 table = memblock_virt_alloc_raw(size, 0);
7402 } else if (hashdist) {
7403 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7404 } else {
7406 * If bucketsize is not a power-of-two, we may free
7407 * some pages at the end of hash table which
7408 * alloc_pages_exact() automatically does
7410 if (get_order(size) < MAX_ORDER) {
7411 table = alloc_pages_exact(size, gfp_flags);
7412 kmemleak_alloc(table, size, 1, gfp_flags);
7415 } while (!table && size > PAGE_SIZE && --log2qty);
7417 if (!table)
7418 panic("Failed to allocate %s hash table\n", tablename);
7420 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7421 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7423 if (_hash_shift)
7424 *_hash_shift = log2qty;
7425 if (_hash_mask)
7426 *_hash_mask = (1 << log2qty) - 1;
7428 return table;
7432 * This function checks whether pageblock includes unmovable pages or not.
7433 * If @count is not zero, it is okay to include less @count unmovable pages
7435 * PageLRU check without isolation or lru_lock could race so that
7436 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7437 * check without lock_page also may miss some movable non-lru pages at
7438 * race condition. So you can't expect this function should be exact.
7440 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7441 int migratetype,
7442 bool skip_hwpoisoned_pages)
7444 unsigned long pfn, iter, found;
7447 * For avoiding noise data, lru_add_drain_all() should be called
7448 * If ZONE_MOVABLE, the zone never contains unmovable pages
7450 if (zone_idx(zone) == ZONE_MOVABLE)
7451 return false;
7454 * CMA allocations (alloc_contig_range) really need to mark isolate
7455 * CMA pageblocks even when they are not movable in fact so consider
7456 * them movable here.
7458 if (is_migrate_cma(migratetype) &&
7459 is_migrate_cma(get_pageblock_migratetype(page)))
7460 return false;
7462 pfn = page_to_pfn(page);
7463 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7464 unsigned long check = pfn + iter;
7466 if (!pfn_valid_within(check))
7467 continue;
7469 page = pfn_to_page(check);
7471 if (PageReserved(page))
7472 return true;
7475 * Hugepages are not in LRU lists, but they're movable.
7476 * We need not scan over tail pages bacause we don't
7477 * handle each tail page individually in migration.
7479 if (PageHuge(page)) {
7480 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7481 continue;
7485 * We can't use page_count without pin a page
7486 * because another CPU can free compound page.
7487 * This check already skips compound tails of THP
7488 * because their page->_refcount is zero at all time.
7490 if (!page_ref_count(page)) {
7491 if (PageBuddy(page))
7492 iter += (1 << page_order(page)) - 1;
7493 continue;
7497 * The HWPoisoned page may be not in buddy system, and
7498 * page_count() is not 0.
7500 if (skip_hwpoisoned_pages && PageHWPoison(page))
7501 continue;
7503 if (__PageMovable(page))
7504 continue;
7506 if (!PageLRU(page))
7507 found++;
7509 * If there are RECLAIMABLE pages, we need to check
7510 * it. But now, memory offline itself doesn't call
7511 * shrink_node_slabs() and it still to be fixed.
7514 * If the page is not RAM, page_count()should be 0.
7515 * we don't need more check. This is an _used_ not-movable page.
7517 * The problematic thing here is PG_reserved pages. PG_reserved
7518 * is set to both of a memory hole page and a _used_ kernel
7519 * page at boot.
7521 if (found > count)
7522 return true;
7524 return false;
7527 bool is_pageblock_removable_nolock(struct page *page)
7529 struct zone *zone;
7530 unsigned long pfn;
7533 * We have to be careful here because we are iterating over memory
7534 * sections which are not zone aware so we might end up outside of
7535 * the zone but still within the section.
7536 * We have to take care about the node as well. If the node is offline
7537 * its NODE_DATA will be NULL - see page_zone.
7539 if (!node_online(page_to_nid(page)))
7540 return false;
7542 zone = page_zone(page);
7543 pfn = page_to_pfn(page);
7544 if (!zone_spans_pfn(zone, pfn))
7545 return false;
7547 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
7550 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7552 static unsigned long pfn_max_align_down(unsigned long pfn)
7554 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7555 pageblock_nr_pages) - 1);
7558 static unsigned long pfn_max_align_up(unsigned long pfn)
7560 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7561 pageblock_nr_pages));
7564 /* [start, end) must belong to a single zone. */
7565 static int __alloc_contig_migrate_range(struct compact_control *cc,
7566 unsigned long start, unsigned long end)
7568 /* This function is based on compact_zone() from compaction.c. */
7569 unsigned long nr_reclaimed;
7570 unsigned long pfn = start;
7571 unsigned int tries = 0;
7572 int ret = 0;
7574 migrate_prep();
7576 while (pfn < end || !list_empty(&cc->migratepages)) {
7577 if (fatal_signal_pending(current)) {
7578 ret = -EINTR;
7579 break;
7582 if (list_empty(&cc->migratepages)) {
7583 cc->nr_migratepages = 0;
7584 pfn = isolate_migratepages_range(cc, pfn, end);
7585 if (!pfn) {
7586 ret = -EINTR;
7587 break;
7589 tries = 0;
7590 } else if (++tries == 5) {
7591 ret = ret < 0 ? ret : -EBUSY;
7592 break;
7595 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7596 &cc->migratepages);
7597 cc->nr_migratepages -= nr_reclaimed;
7599 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7600 NULL, 0, cc->mode, MR_CMA);
7602 if (ret < 0) {
7603 putback_movable_pages(&cc->migratepages);
7604 return ret;
7606 return 0;
7610 * alloc_contig_range() -- tries to allocate given range of pages
7611 * @start: start PFN to allocate
7612 * @end: one-past-the-last PFN to allocate
7613 * @migratetype: migratetype of the underlaying pageblocks (either
7614 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7615 * in range must have the same migratetype and it must
7616 * be either of the two.
7617 * @gfp_mask: GFP mask to use during compaction
7619 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7620 * aligned, however it's the caller's responsibility to guarantee that
7621 * we are the only thread that changes migrate type of pageblocks the
7622 * pages fall in.
7624 * The PFN range must belong to a single zone.
7626 * Returns zero on success or negative error code. On success all
7627 * pages which PFN is in [start, end) are allocated for the caller and
7628 * need to be freed with free_contig_range().
7630 int alloc_contig_range(unsigned long start, unsigned long end,
7631 unsigned migratetype, gfp_t gfp_mask)
7633 unsigned long outer_start, outer_end;
7634 unsigned int order;
7635 int ret = 0;
7637 struct compact_control cc = {
7638 .nr_migratepages = 0,
7639 .order = -1,
7640 .zone = page_zone(pfn_to_page(start)),
7641 .mode = MIGRATE_SYNC,
7642 .ignore_skip_hint = true,
7643 .no_set_skip_hint = true,
7644 .gfp_mask = current_gfp_context(gfp_mask),
7646 INIT_LIST_HEAD(&cc.migratepages);
7649 * What we do here is we mark all pageblocks in range as
7650 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7651 * have different sizes, and due to the way page allocator
7652 * work, we align the range to biggest of the two pages so
7653 * that page allocator won't try to merge buddies from
7654 * different pageblocks and change MIGRATE_ISOLATE to some
7655 * other migration type.
7657 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7658 * migrate the pages from an unaligned range (ie. pages that
7659 * we are interested in). This will put all the pages in
7660 * range back to page allocator as MIGRATE_ISOLATE.
7662 * When this is done, we take the pages in range from page
7663 * allocator removing them from the buddy system. This way
7664 * page allocator will never consider using them.
7666 * This lets us mark the pageblocks back as
7667 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7668 * aligned range but not in the unaligned, original range are
7669 * put back to page allocator so that buddy can use them.
7672 ret = start_isolate_page_range(pfn_max_align_down(start),
7673 pfn_max_align_up(end), migratetype,
7674 false);
7675 if (ret)
7676 return ret;
7679 * In case of -EBUSY, we'd like to know which page causes problem.
7680 * So, just fall through. test_pages_isolated() has a tracepoint
7681 * which will report the busy page.
7683 * It is possible that busy pages could become available before
7684 * the call to test_pages_isolated, and the range will actually be
7685 * allocated. So, if we fall through be sure to clear ret so that
7686 * -EBUSY is not accidentally used or returned to caller.
7688 ret = __alloc_contig_migrate_range(&cc, start, end);
7689 if (ret && ret != -EBUSY)
7690 goto done;
7691 ret =0;
7694 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7695 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7696 * more, all pages in [start, end) are free in page allocator.
7697 * What we are going to do is to allocate all pages from
7698 * [start, end) (that is remove them from page allocator).
7700 * The only problem is that pages at the beginning and at the
7701 * end of interesting range may be not aligned with pages that
7702 * page allocator holds, ie. they can be part of higher order
7703 * pages. Because of this, we reserve the bigger range and
7704 * once this is done free the pages we are not interested in.
7706 * We don't have to hold zone->lock here because the pages are
7707 * isolated thus they won't get removed from buddy.
7710 lru_add_drain_all();
7711 drain_all_pages(cc.zone);
7713 order = 0;
7714 outer_start = start;
7715 while (!PageBuddy(pfn_to_page(outer_start))) {
7716 if (++order >= MAX_ORDER) {
7717 outer_start = start;
7718 break;
7720 outer_start &= ~0UL << order;
7723 if (outer_start != start) {
7724 order = page_order(pfn_to_page(outer_start));
7727 * outer_start page could be small order buddy page and
7728 * it doesn't include start page. Adjust outer_start
7729 * in this case to report failed page properly
7730 * on tracepoint in test_pages_isolated()
7732 if (outer_start + (1UL << order) <= start)
7733 outer_start = start;
7736 /* Make sure the range is really isolated. */
7737 if (test_pages_isolated(outer_start, end, false)) {
7738 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7739 __func__, outer_start, end);
7740 ret = -EBUSY;
7741 goto done;
7744 /* Grab isolated pages from freelists. */
7745 outer_end = isolate_freepages_range(&cc, outer_start, end);
7746 if (!outer_end) {
7747 ret = -EBUSY;
7748 goto done;
7751 /* Free head and tail (if any) */
7752 if (start != outer_start)
7753 free_contig_range(outer_start, start - outer_start);
7754 if (end != outer_end)
7755 free_contig_range(end, outer_end - end);
7757 done:
7758 undo_isolate_page_range(pfn_max_align_down(start),
7759 pfn_max_align_up(end), migratetype);
7760 return ret;
7763 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7765 unsigned int count = 0;
7767 for (; nr_pages--; pfn++) {
7768 struct page *page = pfn_to_page(pfn);
7770 count += page_count(page) != 1;
7771 __free_page(page);
7773 WARN(count != 0, "%d pages are still in use!\n", count);
7775 #endif
7777 #ifdef CONFIG_MEMORY_HOTPLUG
7779 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7780 * page high values need to be recalulated.
7782 void __meminit zone_pcp_update(struct zone *zone)
7784 unsigned cpu;
7785 mutex_lock(&pcp_batch_high_lock);
7786 for_each_possible_cpu(cpu)
7787 pageset_set_high_and_batch(zone,
7788 per_cpu_ptr(zone->pageset, cpu));
7789 mutex_unlock(&pcp_batch_high_lock);
7791 #endif
7793 void zone_pcp_reset(struct zone *zone)
7795 unsigned long flags;
7796 int cpu;
7797 struct per_cpu_pageset *pset;
7799 /* avoid races with drain_pages() */
7800 local_irq_save(flags);
7801 if (zone->pageset != &boot_pageset) {
7802 for_each_online_cpu(cpu) {
7803 pset = per_cpu_ptr(zone->pageset, cpu);
7804 drain_zonestat(zone, pset);
7806 free_percpu(zone->pageset);
7807 zone->pageset = &boot_pageset;
7809 local_irq_restore(flags);
7812 #ifdef CONFIG_MEMORY_HOTREMOVE
7814 * All pages in the range must be in a single zone and isolated
7815 * before calling this.
7817 void
7818 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7820 struct page *page;
7821 struct zone *zone;
7822 unsigned int order, i;
7823 unsigned long pfn;
7824 unsigned long flags;
7825 /* find the first valid pfn */
7826 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7827 if (pfn_valid(pfn))
7828 break;
7829 if (pfn == end_pfn)
7830 return;
7831 offline_mem_sections(pfn, end_pfn);
7832 zone = page_zone(pfn_to_page(pfn));
7833 spin_lock_irqsave(&zone->lock, flags);
7834 pfn = start_pfn;
7835 while (pfn < end_pfn) {
7836 if (!pfn_valid(pfn)) {
7837 pfn++;
7838 continue;
7840 page = pfn_to_page(pfn);
7842 * The HWPoisoned page may be not in buddy system, and
7843 * page_count() is not 0.
7845 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7846 pfn++;
7847 SetPageReserved(page);
7848 continue;
7851 BUG_ON(page_count(page));
7852 BUG_ON(!PageBuddy(page));
7853 order = page_order(page);
7854 #ifdef CONFIG_DEBUG_VM
7855 pr_info("remove from free list %lx %d %lx\n",
7856 pfn, 1 << order, end_pfn);
7857 #endif
7858 list_del(&page->lru);
7859 rmv_page_order(page);
7860 zone->free_area[order].nr_free--;
7861 for (i = 0; i < (1 << order); i++)
7862 SetPageReserved((page+i));
7863 pfn += (1 << order);
7865 spin_unlock_irqrestore(&zone->lock, flags);
7867 #endif
7869 bool is_free_buddy_page(struct page *page)
7871 struct zone *zone = page_zone(page);
7872 unsigned long pfn = page_to_pfn(page);
7873 unsigned long flags;
7874 unsigned int order;
7876 spin_lock_irqsave(&zone->lock, flags);
7877 for (order = 0; order < MAX_ORDER; order++) {
7878 struct page *page_head = page - (pfn & ((1 << order) - 1));
7880 if (PageBuddy(page_head) && page_order(page_head) >= order)
7881 break;
7883 spin_unlock_irqrestore(&zone->lock, flags);
7885 return order < MAX_ORDER;