xtensa: support DMA buffers in high memory
[cris-mirror.git] / mm / vmstat.c
blob40b2db6db6b16df89ff5c313cab83c95b8c0f38e
1 /*
2 * linux/mm/vmstat.c
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 * Copyright (C) 2008-2014 Christoph Lameter
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/vmstat.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/debugfs.h>
23 #include <linux/sched.h>
24 #include <linux/math64.h>
25 #include <linux/writeback.h>
26 #include <linux/compaction.h>
27 #include <linux/mm_inline.h>
28 #include <linux/page_ext.h>
29 #include <linux/page_owner.h>
31 #include "internal.h"
33 #define NUMA_STATS_THRESHOLD (U16_MAX - 2)
35 #ifdef CONFIG_NUMA
36 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
38 /* zero numa counters within a zone */
39 static void zero_zone_numa_counters(struct zone *zone)
41 int item, cpu;
43 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) {
44 atomic_long_set(&zone->vm_numa_stat[item], 0);
45 for_each_online_cpu(cpu)
46 per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]
47 = 0;
51 /* zero numa counters of all the populated zones */
52 static void zero_zones_numa_counters(void)
54 struct zone *zone;
56 for_each_populated_zone(zone)
57 zero_zone_numa_counters(zone);
60 /* zero global numa counters */
61 static void zero_global_numa_counters(void)
63 int item;
65 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++)
66 atomic_long_set(&vm_numa_stat[item], 0);
69 static void invalid_numa_statistics(void)
71 zero_zones_numa_counters();
72 zero_global_numa_counters();
75 static DEFINE_MUTEX(vm_numa_stat_lock);
77 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
78 void __user *buffer, size_t *length, loff_t *ppos)
80 int ret, oldval;
82 mutex_lock(&vm_numa_stat_lock);
83 if (write)
84 oldval = sysctl_vm_numa_stat;
85 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
86 if (ret || !write)
87 goto out;
89 if (oldval == sysctl_vm_numa_stat)
90 goto out;
91 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92 static_branch_enable(&vm_numa_stat_key);
93 pr_info("enable numa statistics\n");
94 } else {
95 static_branch_disable(&vm_numa_stat_key);
96 invalid_numa_statistics();
97 pr_info("disable numa statistics, and clear numa counters\n");
100 out:
101 mutex_unlock(&vm_numa_stat_lock);
102 return ret;
104 #endif
106 #ifdef CONFIG_VM_EVENT_COUNTERS
107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108 EXPORT_PER_CPU_SYMBOL(vm_event_states);
110 static void sum_vm_events(unsigned long *ret)
112 int cpu;
113 int i;
115 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
117 for_each_online_cpu(cpu) {
118 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
120 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121 ret[i] += this->event[i];
126 * Accumulate the vm event counters across all CPUs.
127 * The result is unavoidably approximate - it can change
128 * during and after execution of this function.
130 void all_vm_events(unsigned long *ret)
132 get_online_cpus();
133 sum_vm_events(ret);
134 put_online_cpus();
136 EXPORT_SYMBOL_GPL(all_vm_events);
139 * Fold the foreign cpu events into our own.
141 * This is adding to the events on one processor
142 * but keeps the global counts constant.
144 void vm_events_fold_cpu(int cpu)
146 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
147 int i;
149 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150 count_vm_events(i, fold_state->event[i]);
151 fold_state->event[i] = 0;
155 #endif /* CONFIG_VM_EVENT_COUNTERS */
158 * Manage combined zone based / global counters
160 * vm_stat contains the global counters
162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
165 EXPORT_SYMBOL(vm_zone_stat);
166 EXPORT_SYMBOL(vm_numa_stat);
167 EXPORT_SYMBOL(vm_node_stat);
169 #ifdef CONFIG_SMP
171 int calculate_pressure_threshold(struct zone *zone)
173 int threshold;
174 int watermark_distance;
177 * As vmstats are not up to date, there is drift between the estimated
178 * and real values. For high thresholds and a high number of CPUs, it
179 * is possible for the min watermark to be breached while the estimated
180 * value looks fine. The pressure threshold is a reduced value such
181 * that even the maximum amount of drift will not accidentally breach
182 * the min watermark
184 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
185 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
188 * Maximum threshold is 125
190 threshold = min(125, threshold);
192 return threshold;
195 int calculate_normal_threshold(struct zone *zone)
197 int threshold;
198 int mem; /* memory in 128 MB units */
201 * The threshold scales with the number of processors and the amount
202 * of memory per zone. More memory means that we can defer updates for
203 * longer, more processors could lead to more contention.
204 * fls() is used to have a cheap way of logarithmic scaling.
206 * Some sample thresholds:
208 * Threshold Processors (fls) Zonesize fls(mem+1)
209 * ------------------------------------------------------------------
210 * 8 1 1 0.9-1 GB 4
211 * 16 2 2 0.9-1 GB 4
212 * 20 2 2 1-2 GB 5
213 * 24 2 2 2-4 GB 6
214 * 28 2 2 4-8 GB 7
215 * 32 2 2 8-16 GB 8
216 * 4 2 2 <128M 1
217 * 30 4 3 2-4 GB 5
218 * 48 4 3 8-16 GB 8
219 * 32 8 4 1-2 GB 4
220 * 32 8 4 0.9-1GB 4
221 * 10 16 5 <128M 1
222 * 40 16 5 900M 4
223 * 70 64 7 2-4 GB 5
224 * 84 64 7 4-8 GB 6
225 * 108 512 9 4-8 GB 6
226 * 125 1024 10 8-16 GB 8
227 * 125 1024 10 16-32 GB 9
230 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
232 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
235 * Maximum threshold is 125
237 threshold = min(125, threshold);
239 return threshold;
243 * Refresh the thresholds for each zone.
245 void refresh_zone_stat_thresholds(void)
247 struct pglist_data *pgdat;
248 struct zone *zone;
249 int cpu;
250 int threshold;
252 /* Zero current pgdat thresholds */
253 for_each_online_pgdat(pgdat) {
254 for_each_online_cpu(cpu) {
255 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
259 for_each_populated_zone(zone) {
260 struct pglist_data *pgdat = zone->zone_pgdat;
261 unsigned long max_drift, tolerate_drift;
263 threshold = calculate_normal_threshold(zone);
265 for_each_online_cpu(cpu) {
266 int pgdat_threshold;
268 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
269 = threshold;
271 /* Base nodestat threshold on the largest populated zone. */
272 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
273 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
274 = max(threshold, pgdat_threshold);
278 * Only set percpu_drift_mark if there is a danger that
279 * NR_FREE_PAGES reports the low watermark is ok when in fact
280 * the min watermark could be breached by an allocation
282 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
283 max_drift = num_online_cpus() * threshold;
284 if (max_drift > tolerate_drift)
285 zone->percpu_drift_mark = high_wmark_pages(zone) +
286 max_drift;
290 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
291 int (*calculate_pressure)(struct zone *))
293 struct zone *zone;
294 int cpu;
295 int threshold;
296 int i;
298 for (i = 0; i < pgdat->nr_zones; i++) {
299 zone = &pgdat->node_zones[i];
300 if (!zone->percpu_drift_mark)
301 continue;
303 threshold = (*calculate_pressure)(zone);
304 for_each_online_cpu(cpu)
305 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
306 = threshold;
311 * For use when we know that interrupts are disabled,
312 * or when we know that preemption is disabled and that
313 * particular counter cannot be updated from interrupt context.
315 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
316 long delta)
318 struct per_cpu_pageset __percpu *pcp = zone->pageset;
319 s8 __percpu *p = pcp->vm_stat_diff + item;
320 long x;
321 long t;
323 x = delta + __this_cpu_read(*p);
325 t = __this_cpu_read(pcp->stat_threshold);
327 if (unlikely(x > t || x < -t)) {
328 zone_page_state_add(x, zone, item);
329 x = 0;
331 __this_cpu_write(*p, x);
333 EXPORT_SYMBOL(__mod_zone_page_state);
335 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
336 long delta)
338 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
339 s8 __percpu *p = pcp->vm_node_stat_diff + item;
340 long x;
341 long t;
343 x = delta + __this_cpu_read(*p);
345 t = __this_cpu_read(pcp->stat_threshold);
347 if (unlikely(x > t || x < -t)) {
348 node_page_state_add(x, pgdat, item);
349 x = 0;
351 __this_cpu_write(*p, x);
353 EXPORT_SYMBOL(__mod_node_page_state);
356 * Optimized increment and decrement functions.
358 * These are only for a single page and therefore can take a struct page *
359 * argument instead of struct zone *. This allows the inclusion of the code
360 * generated for page_zone(page) into the optimized functions.
362 * No overflow check is necessary and therefore the differential can be
363 * incremented or decremented in place which may allow the compilers to
364 * generate better code.
365 * The increment or decrement is known and therefore one boundary check can
366 * be omitted.
368 * NOTE: These functions are very performance sensitive. Change only
369 * with care.
371 * Some processors have inc/dec instructions that are atomic vs an interrupt.
372 * However, the code must first determine the differential location in a zone
373 * based on the processor number and then inc/dec the counter. There is no
374 * guarantee without disabling preemption that the processor will not change
375 * in between and therefore the atomicity vs. interrupt cannot be exploited
376 * in a useful way here.
378 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
380 struct per_cpu_pageset __percpu *pcp = zone->pageset;
381 s8 __percpu *p = pcp->vm_stat_diff + item;
382 s8 v, t;
384 v = __this_cpu_inc_return(*p);
385 t = __this_cpu_read(pcp->stat_threshold);
386 if (unlikely(v > t)) {
387 s8 overstep = t >> 1;
389 zone_page_state_add(v + overstep, zone, item);
390 __this_cpu_write(*p, -overstep);
394 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
396 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
397 s8 __percpu *p = pcp->vm_node_stat_diff + item;
398 s8 v, t;
400 v = __this_cpu_inc_return(*p);
401 t = __this_cpu_read(pcp->stat_threshold);
402 if (unlikely(v > t)) {
403 s8 overstep = t >> 1;
405 node_page_state_add(v + overstep, pgdat, item);
406 __this_cpu_write(*p, -overstep);
410 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
412 __inc_zone_state(page_zone(page), item);
414 EXPORT_SYMBOL(__inc_zone_page_state);
416 void __inc_node_page_state(struct page *page, enum node_stat_item item)
418 __inc_node_state(page_pgdat(page), item);
420 EXPORT_SYMBOL(__inc_node_page_state);
422 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
424 struct per_cpu_pageset __percpu *pcp = zone->pageset;
425 s8 __percpu *p = pcp->vm_stat_diff + item;
426 s8 v, t;
428 v = __this_cpu_dec_return(*p);
429 t = __this_cpu_read(pcp->stat_threshold);
430 if (unlikely(v < - t)) {
431 s8 overstep = t >> 1;
433 zone_page_state_add(v - overstep, zone, item);
434 __this_cpu_write(*p, overstep);
438 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
440 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
441 s8 __percpu *p = pcp->vm_node_stat_diff + item;
442 s8 v, t;
444 v = __this_cpu_dec_return(*p);
445 t = __this_cpu_read(pcp->stat_threshold);
446 if (unlikely(v < - t)) {
447 s8 overstep = t >> 1;
449 node_page_state_add(v - overstep, pgdat, item);
450 __this_cpu_write(*p, overstep);
454 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
456 __dec_zone_state(page_zone(page), item);
458 EXPORT_SYMBOL(__dec_zone_page_state);
460 void __dec_node_page_state(struct page *page, enum node_stat_item item)
462 __dec_node_state(page_pgdat(page), item);
464 EXPORT_SYMBOL(__dec_node_page_state);
466 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
468 * If we have cmpxchg_local support then we do not need to incur the overhead
469 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
471 * mod_state() modifies the zone counter state through atomic per cpu
472 * operations.
474 * Overstep mode specifies how overstep should handled:
475 * 0 No overstepping
476 * 1 Overstepping half of threshold
477 * -1 Overstepping minus half of threshold
479 static inline void mod_zone_state(struct zone *zone,
480 enum zone_stat_item item, long delta, int overstep_mode)
482 struct per_cpu_pageset __percpu *pcp = zone->pageset;
483 s8 __percpu *p = pcp->vm_stat_diff + item;
484 long o, n, t, z;
486 do {
487 z = 0; /* overflow to zone counters */
490 * The fetching of the stat_threshold is racy. We may apply
491 * a counter threshold to the wrong the cpu if we get
492 * rescheduled while executing here. However, the next
493 * counter update will apply the threshold again and
494 * therefore bring the counter under the threshold again.
496 * Most of the time the thresholds are the same anyways
497 * for all cpus in a zone.
499 t = this_cpu_read(pcp->stat_threshold);
501 o = this_cpu_read(*p);
502 n = delta + o;
504 if (n > t || n < -t) {
505 int os = overstep_mode * (t >> 1) ;
507 /* Overflow must be added to zone counters */
508 z = n + os;
509 n = -os;
511 } while (this_cpu_cmpxchg(*p, o, n) != o);
513 if (z)
514 zone_page_state_add(z, zone, item);
517 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
518 long delta)
520 mod_zone_state(zone, item, delta, 0);
522 EXPORT_SYMBOL(mod_zone_page_state);
524 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
526 mod_zone_state(page_zone(page), item, 1, 1);
528 EXPORT_SYMBOL(inc_zone_page_state);
530 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
532 mod_zone_state(page_zone(page), item, -1, -1);
534 EXPORT_SYMBOL(dec_zone_page_state);
536 static inline void mod_node_state(struct pglist_data *pgdat,
537 enum node_stat_item item, int delta, int overstep_mode)
539 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
540 s8 __percpu *p = pcp->vm_node_stat_diff + item;
541 long o, n, t, z;
543 do {
544 z = 0; /* overflow to node counters */
547 * The fetching of the stat_threshold is racy. We may apply
548 * a counter threshold to the wrong the cpu if we get
549 * rescheduled while executing here. However, the next
550 * counter update will apply the threshold again and
551 * therefore bring the counter under the threshold again.
553 * Most of the time the thresholds are the same anyways
554 * for all cpus in a node.
556 t = this_cpu_read(pcp->stat_threshold);
558 o = this_cpu_read(*p);
559 n = delta + o;
561 if (n > t || n < -t) {
562 int os = overstep_mode * (t >> 1) ;
564 /* Overflow must be added to node counters */
565 z = n + os;
566 n = -os;
568 } while (this_cpu_cmpxchg(*p, o, n) != o);
570 if (z)
571 node_page_state_add(z, pgdat, item);
574 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
575 long delta)
577 mod_node_state(pgdat, item, delta, 0);
579 EXPORT_SYMBOL(mod_node_page_state);
581 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
583 mod_node_state(pgdat, item, 1, 1);
586 void inc_node_page_state(struct page *page, enum node_stat_item item)
588 mod_node_state(page_pgdat(page), item, 1, 1);
590 EXPORT_SYMBOL(inc_node_page_state);
592 void dec_node_page_state(struct page *page, enum node_stat_item item)
594 mod_node_state(page_pgdat(page), item, -1, -1);
596 EXPORT_SYMBOL(dec_node_page_state);
597 #else
599 * Use interrupt disable to serialize counter updates
601 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
602 long delta)
604 unsigned long flags;
606 local_irq_save(flags);
607 __mod_zone_page_state(zone, item, delta);
608 local_irq_restore(flags);
610 EXPORT_SYMBOL(mod_zone_page_state);
612 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
614 unsigned long flags;
615 struct zone *zone;
617 zone = page_zone(page);
618 local_irq_save(flags);
619 __inc_zone_state(zone, item);
620 local_irq_restore(flags);
622 EXPORT_SYMBOL(inc_zone_page_state);
624 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
626 unsigned long flags;
628 local_irq_save(flags);
629 __dec_zone_page_state(page, item);
630 local_irq_restore(flags);
632 EXPORT_SYMBOL(dec_zone_page_state);
634 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
636 unsigned long flags;
638 local_irq_save(flags);
639 __inc_node_state(pgdat, item);
640 local_irq_restore(flags);
642 EXPORT_SYMBOL(inc_node_state);
644 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
645 long delta)
647 unsigned long flags;
649 local_irq_save(flags);
650 __mod_node_page_state(pgdat, item, delta);
651 local_irq_restore(flags);
653 EXPORT_SYMBOL(mod_node_page_state);
655 void inc_node_page_state(struct page *page, enum node_stat_item item)
657 unsigned long flags;
658 struct pglist_data *pgdat;
660 pgdat = page_pgdat(page);
661 local_irq_save(flags);
662 __inc_node_state(pgdat, item);
663 local_irq_restore(flags);
665 EXPORT_SYMBOL(inc_node_page_state);
667 void dec_node_page_state(struct page *page, enum node_stat_item item)
669 unsigned long flags;
671 local_irq_save(flags);
672 __dec_node_page_state(page, item);
673 local_irq_restore(flags);
675 EXPORT_SYMBOL(dec_node_page_state);
676 #endif
679 * Fold a differential into the global counters.
680 * Returns the number of counters updated.
682 #ifdef CONFIG_NUMA
683 static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff)
685 int i;
686 int changes = 0;
688 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
689 if (zone_diff[i]) {
690 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
691 changes++;
694 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
695 if (numa_diff[i]) {
696 atomic_long_add(numa_diff[i], &vm_numa_stat[i]);
697 changes++;
700 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
701 if (node_diff[i]) {
702 atomic_long_add(node_diff[i], &vm_node_stat[i]);
703 changes++;
705 return changes;
707 #else
708 static int fold_diff(int *zone_diff, int *node_diff)
710 int i;
711 int changes = 0;
713 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
714 if (zone_diff[i]) {
715 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
716 changes++;
719 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
720 if (node_diff[i]) {
721 atomic_long_add(node_diff[i], &vm_node_stat[i]);
722 changes++;
724 return changes;
726 #endif /* CONFIG_NUMA */
729 * Update the zone counters for the current cpu.
731 * Note that refresh_cpu_vm_stats strives to only access
732 * node local memory. The per cpu pagesets on remote zones are placed
733 * in the memory local to the processor using that pageset. So the
734 * loop over all zones will access a series of cachelines local to
735 * the processor.
737 * The call to zone_page_state_add updates the cachelines with the
738 * statistics in the remote zone struct as well as the global cachelines
739 * with the global counters. These could cause remote node cache line
740 * bouncing and will have to be only done when necessary.
742 * The function returns the number of global counters updated.
744 static int refresh_cpu_vm_stats(bool do_pagesets)
746 struct pglist_data *pgdat;
747 struct zone *zone;
748 int i;
749 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
750 #ifdef CONFIG_NUMA
751 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
752 #endif
753 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
754 int changes = 0;
756 for_each_populated_zone(zone) {
757 struct per_cpu_pageset __percpu *p = zone->pageset;
759 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
760 int v;
762 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
763 if (v) {
765 atomic_long_add(v, &zone->vm_stat[i]);
766 global_zone_diff[i] += v;
767 #ifdef CONFIG_NUMA
768 /* 3 seconds idle till flush */
769 __this_cpu_write(p->expire, 3);
770 #endif
773 #ifdef CONFIG_NUMA
774 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
775 int v;
777 v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0);
778 if (v) {
780 atomic_long_add(v, &zone->vm_numa_stat[i]);
781 global_numa_diff[i] += v;
782 __this_cpu_write(p->expire, 3);
786 if (do_pagesets) {
787 cond_resched();
789 * Deal with draining the remote pageset of this
790 * processor
792 * Check if there are pages remaining in this pageset
793 * if not then there is nothing to expire.
795 if (!__this_cpu_read(p->expire) ||
796 !__this_cpu_read(p->pcp.count))
797 continue;
800 * We never drain zones local to this processor.
802 if (zone_to_nid(zone) == numa_node_id()) {
803 __this_cpu_write(p->expire, 0);
804 continue;
807 if (__this_cpu_dec_return(p->expire))
808 continue;
810 if (__this_cpu_read(p->pcp.count)) {
811 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
812 changes++;
815 #endif
818 for_each_online_pgdat(pgdat) {
819 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
821 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
822 int v;
824 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
825 if (v) {
826 atomic_long_add(v, &pgdat->vm_stat[i]);
827 global_node_diff[i] += v;
832 #ifdef CONFIG_NUMA
833 changes += fold_diff(global_zone_diff, global_numa_diff,
834 global_node_diff);
835 #else
836 changes += fold_diff(global_zone_diff, global_node_diff);
837 #endif
838 return changes;
842 * Fold the data for an offline cpu into the global array.
843 * There cannot be any access by the offline cpu and therefore
844 * synchronization is simplified.
846 void cpu_vm_stats_fold(int cpu)
848 struct pglist_data *pgdat;
849 struct zone *zone;
850 int i;
851 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
852 #ifdef CONFIG_NUMA
853 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
854 #endif
855 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
857 for_each_populated_zone(zone) {
858 struct per_cpu_pageset *p;
860 p = per_cpu_ptr(zone->pageset, cpu);
862 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
863 if (p->vm_stat_diff[i]) {
864 int v;
866 v = p->vm_stat_diff[i];
867 p->vm_stat_diff[i] = 0;
868 atomic_long_add(v, &zone->vm_stat[i]);
869 global_zone_diff[i] += v;
872 #ifdef CONFIG_NUMA
873 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
874 if (p->vm_numa_stat_diff[i]) {
875 int v;
877 v = p->vm_numa_stat_diff[i];
878 p->vm_numa_stat_diff[i] = 0;
879 atomic_long_add(v, &zone->vm_numa_stat[i]);
880 global_numa_diff[i] += v;
882 #endif
885 for_each_online_pgdat(pgdat) {
886 struct per_cpu_nodestat *p;
888 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
890 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
891 if (p->vm_node_stat_diff[i]) {
892 int v;
894 v = p->vm_node_stat_diff[i];
895 p->vm_node_stat_diff[i] = 0;
896 atomic_long_add(v, &pgdat->vm_stat[i]);
897 global_node_diff[i] += v;
901 #ifdef CONFIG_NUMA
902 fold_diff(global_zone_diff, global_numa_diff, global_node_diff);
903 #else
904 fold_diff(global_zone_diff, global_node_diff);
905 #endif
909 * this is only called if !populated_zone(zone), which implies no other users of
910 * pset->vm_stat_diff[] exsist.
912 void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
914 int i;
916 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
917 if (pset->vm_stat_diff[i]) {
918 int v = pset->vm_stat_diff[i];
919 pset->vm_stat_diff[i] = 0;
920 atomic_long_add(v, &zone->vm_stat[i]);
921 atomic_long_add(v, &vm_zone_stat[i]);
924 #ifdef CONFIG_NUMA
925 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
926 if (pset->vm_numa_stat_diff[i]) {
927 int v = pset->vm_numa_stat_diff[i];
929 pset->vm_numa_stat_diff[i] = 0;
930 atomic_long_add(v, &zone->vm_numa_stat[i]);
931 atomic_long_add(v, &vm_numa_stat[i]);
933 #endif
935 #endif
937 #ifdef CONFIG_NUMA
938 void __inc_numa_state(struct zone *zone,
939 enum numa_stat_item item)
941 struct per_cpu_pageset __percpu *pcp = zone->pageset;
942 u16 __percpu *p = pcp->vm_numa_stat_diff + item;
943 u16 v;
945 v = __this_cpu_inc_return(*p);
947 if (unlikely(v > NUMA_STATS_THRESHOLD)) {
948 zone_numa_state_add(v, zone, item);
949 __this_cpu_write(*p, 0);
954 * Determine the per node value of a stat item. This function
955 * is called frequently in a NUMA machine, so try to be as
956 * frugal as possible.
958 unsigned long sum_zone_node_page_state(int node,
959 enum zone_stat_item item)
961 struct zone *zones = NODE_DATA(node)->node_zones;
962 int i;
963 unsigned long count = 0;
965 for (i = 0; i < MAX_NR_ZONES; i++)
966 count += zone_page_state(zones + i, item);
968 return count;
972 * Determine the per node value of a numa stat item. To avoid deviation,
973 * the per cpu stat number in vm_numa_stat_diff[] is also included.
975 unsigned long sum_zone_numa_state(int node,
976 enum numa_stat_item item)
978 struct zone *zones = NODE_DATA(node)->node_zones;
979 int i;
980 unsigned long count = 0;
982 for (i = 0; i < MAX_NR_ZONES; i++)
983 count += zone_numa_state_snapshot(zones + i, item);
985 return count;
989 * Determine the per node value of a stat item.
991 unsigned long node_page_state(struct pglist_data *pgdat,
992 enum node_stat_item item)
994 long x = atomic_long_read(&pgdat->vm_stat[item]);
995 #ifdef CONFIG_SMP
996 if (x < 0)
997 x = 0;
998 #endif
999 return x;
1001 #endif
1003 #ifdef CONFIG_COMPACTION
1005 struct contig_page_info {
1006 unsigned long free_pages;
1007 unsigned long free_blocks_total;
1008 unsigned long free_blocks_suitable;
1012 * Calculate the number of free pages in a zone, how many contiguous
1013 * pages are free and how many are large enough to satisfy an allocation of
1014 * the target size. Note that this function makes no attempt to estimate
1015 * how many suitable free blocks there *might* be if MOVABLE pages were
1016 * migrated. Calculating that is possible, but expensive and can be
1017 * figured out from userspace
1019 static void fill_contig_page_info(struct zone *zone,
1020 unsigned int suitable_order,
1021 struct contig_page_info *info)
1023 unsigned int order;
1025 info->free_pages = 0;
1026 info->free_blocks_total = 0;
1027 info->free_blocks_suitable = 0;
1029 for (order = 0; order < MAX_ORDER; order++) {
1030 unsigned long blocks;
1032 /* Count number of free blocks */
1033 blocks = zone->free_area[order].nr_free;
1034 info->free_blocks_total += blocks;
1036 /* Count free base pages */
1037 info->free_pages += blocks << order;
1039 /* Count the suitable free blocks */
1040 if (order >= suitable_order)
1041 info->free_blocks_suitable += blocks <<
1042 (order - suitable_order);
1047 * A fragmentation index only makes sense if an allocation of a requested
1048 * size would fail. If that is true, the fragmentation index indicates
1049 * whether external fragmentation or a lack of memory was the problem.
1050 * The value can be used to determine if page reclaim or compaction
1051 * should be used
1053 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1055 unsigned long requested = 1UL << order;
1057 if (WARN_ON_ONCE(order >= MAX_ORDER))
1058 return 0;
1060 if (!info->free_blocks_total)
1061 return 0;
1063 /* Fragmentation index only makes sense when a request would fail */
1064 if (info->free_blocks_suitable)
1065 return -1000;
1068 * Index is between 0 and 1 so return within 3 decimal places
1070 * 0 => allocation would fail due to lack of memory
1071 * 1 => allocation would fail due to fragmentation
1073 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1076 /* Same as __fragmentation index but allocs contig_page_info on stack */
1077 int fragmentation_index(struct zone *zone, unsigned int order)
1079 struct contig_page_info info;
1081 fill_contig_page_info(zone, order, &info);
1082 return __fragmentation_index(order, &info);
1084 #endif
1086 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
1087 #ifdef CONFIG_ZONE_DMA
1088 #define TEXT_FOR_DMA(xx) xx "_dma",
1089 #else
1090 #define TEXT_FOR_DMA(xx)
1091 #endif
1093 #ifdef CONFIG_ZONE_DMA32
1094 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1095 #else
1096 #define TEXT_FOR_DMA32(xx)
1097 #endif
1099 #ifdef CONFIG_HIGHMEM
1100 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1101 #else
1102 #define TEXT_FOR_HIGHMEM(xx)
1103 #endif
1105 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1106 TEXT_FOR_HIGHMEM(xx) xx "_movable",
1108 const char * const vmstat_text[] = {
1109 /* enum zone_stat_item countes */
1110 "nr_free_pages",
1111 "nr_zone_inactive_anon",
1112 "nr_zone_active_anon",
1113 "nr_zone_inactive_file",
1114 "nr_zone_active_file",
1115 "nr_zone_unevictable",
1116 "nr_zone_write_pending",
1117 "nr_mlock",
1118 "nr_page_table_pages",
1119 "nr_kernel_stack",
1120 "nr_bounce",
1121 #if IS_ENABLED(CONFIG_ZSMALLOC)
1122 "nr_zspages",
1123 #endif
1124 "nr_free_cma",
1126 /* enum numa_stat_item counters */
1127 #ifdef CONFIG_NUMA
1128 "numa_hit",
1129 "numa_miss",
1130 "numa_foreign",
1131 "numa_interleave",
1132 "numa_local",
1133 "numa_other",
1134 #endif
1136 /* Node-based counters */
1137 "nr_inactive_anon",
1138 "nr_active_anon",
1139 "nr_inactive_file",
1140 "nr_active_file",
1141 "nr_unevictable",
1142 "nr_slab_reclaimable",
1143 "nr_slab_unreclaimable",
1144 "nr_isolated_anon",
1145 "nr_isolated_file",
1146 "workingset_refault",
1147 "workingset_activate",
1148 "workingset_nodereclaim",
1149 "nr_anon_pages",
1150 "nr_mapped",
1151 "nr_file_pages",
1152 "nr_dirty",
1153 "nr_writeback",
1154 "nr_writeback_temp",
1155 "nr_shmem",
1156 "nr_shmem_hugepages",
1157 "nr_shmem_pmdmapped",
1158 "nr_anon_transparent_hugepages",
1159 "nr_unstable",
1160 "nr_vmscan_write",
1161 "nr_vmscan_immediate_reclaim",
1162 "nr_dirtied",
1163 "nr_written",
1165 /* enum writeback_stat_item counters */
1166 "nr_dirty_threshold",
1167 "nr_dirty_background_threshold",
1169 #ifdef CONFIG_VM_EVENT_COUNTERS
1170 /* enum vm_event_item counters */
1171 "pgpgin",
1172 "pgpgout",
1173 "pswpin",
1174 "pswpout",
1176 TEXTS_FOR_ZONES("pgalloc")
1177 TEXTS_FOR_ZONES("allocstall")
1178 TEXTS_FOR_ZONES("pgskip")
1180 "pgfree",
1181 "pgactivate",
1182 "pgdeactivate",
1183 "pglazyfree",
1185 "pgfault",
1186 "pgmajfault",
1187 "pglazyfreed",
1189 "pgrefill",
1190 "pgsteal_kswapd",
1191 "pgsteal_direct",
1192 "pgscan_kswapd",
1193 "pgscan_direct",
1194 "pgscan_direct_throttle",
1196 #ifdef CONFIG_NUMA
1197 "zone_reclaim_failed",
1198 #endif
1199 "pginodesteal",
1200 "slabs_scanned",
1201 "kswapd_inodesteal",
1202 "kswapd_low_wmark_hit_quickly",
1203 "kswapd_high_wmark_hit_quickly",
1204 "pageoutrun",
1206 "pgrotated",
1208 "drop_pagecache",
1209 "drop_slab",
1210 "oom_kill",
1212 #ifdef CONFIG_NUMA_BALANCING
1213 "numa_pte_updates",
1214 "numa_huge_pte_updates",
1215 "numa_hint_faults",
1216 "numa_hint_faults_local",
1217 "numa_pages_migrated",
1218 #endif
1219 #ifdef CONFIG_MIGRATION
1220 "pgmigrate_success",
1221 "pgmigrate_fail",
1222 #endif
1223 #ifdef CONFIG_COMPACTION
1224 "compact_migrate_scanned",
1225 "compact_free_scanned",
1226 "compact_isolated",
1227 "compact_stall",
1228 "compact_fail",
1229 "compact_success",
1230 "compact_daemon_wake",
1231 "compact_daemon_migrate_scanned",
1232 "compact_daemon_free_scanned",
1233 #endif
1235 #ifdef CONFIG_HUGETLB_PAGE
1236 "htlb_buddy_alloc_success",
1237 "htlb_buddy_alloc_fail",
1238 #endif
1239 "unevictable_pgs_culled",
1240 "unevictable_pgs_scanned",
1241 "unevictable_pgs_rescued",
1242 "unevictable_pgs_mlocked",
1243 "unevictable_pgs_munlocked",
1244 "unevictable_pgs_cleared",
1245 "unevictable_pgs_stranded",
1247 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1248 "thp_fault_alloc",
1249 "thp_fault_fallback",
1250 "thp_collapse_alloc",
1251 "thp_collapse_alloc_failed",
1252 "thp_file_alloc",
1253 "thp_file_mapped",
1254 "thp_split_page",
1255 "thp_split_page_failed",
1256 "thp_deferred_split_page",
1257 "thp_split_pmd",
1258 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1259 "thp_split_pud",
1260 #endif
1261 "thp_zero_page_alloc",
1262 "thp_zero_page_alloc_failed",
1263 "thp_swpout",
1264 "thp_swpout_fallback",
1265 #endif
1266 #ifdef CONFIG_MEMORY_BALLOON
1267 "balloon_inflate",
1268 "balloon_deflate",
1269 #ifdef CONFIG_BALLOON_COMPACTION
1270 "balloon_migrate",
1271 #endif
1272 #endif /* CONFIG_MEMORY_BALLOON */
1273 #ifdef CONFIG_DEBUG_TLBFLUSH
1274 #ifdef CONFIG_SMP
1275 "nr_tlb_remote_flush",
1276 "nr_tlb_remote_flush_received",
1277 #endif /* CONFIG_SMP */
1278 "nr_tlb_local_flush_all",
1279 "nr_tlb_local_flush_one",
1280 #endif /* CONFIG_DEBUG_TLBFLUSH */
1282 #ifdef CONFIG_DEBUG_VM_VMACACHE
1283 "vmacache_find_calls",
1284 "vmacache_find_hits",
1285 "vmacache_full_flushes",
1286 #endif
1287 #ifdef CONFIG_SWAP
1288 "swap_ra",
1289 "swap_ra_hit",
1290 #endif
1291 #endif /* CONFIG_VM_EVENTS_COUNTERS */
1293 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
1295 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1296 defined(CONFIG_PROC_FS)
1297 static void *frag_start(struct seq_file *m, loff_t *pos)
1299 pg_data_t *pgdat;
1300 loff_t node = *pos;
1302 for (pgdat = first_online_pgdat();
1303 pgdat && node;
1304 pgdat = next_online_pgdat(pgdat))
1305 --node;
1307 return pgdat;
1310 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1312 pg_data_t *pgdat = (pg_data_t *)arg;
1314 (*pos)++;
1315 return next_online_pgdat(pgdat);
1318 static void frag_stop(struct seq_file *m, void *arg)
1323 * Walk zones in a node and print using a callback.
1324 * If @assert_populated is true, only use callback for zones that are populated.
1326 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1327 bool assert_populated, bool nolock,
1328 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1330 struct zone *zone;
1331 struct zone *node_zones = pgdat->node_zones;
1332 unsigned long flags;
1334 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1335 if (assert_populated && !populated_zone(zone))
1336 continue;
1338 if (!nolock)
1339 spin_lock_irqsave(&zone->lock, flags);
1340 print(m, pgdat, zone);
1341 if (!nolock)
1342 spin_unlock_irqrestore(&zone->lock, flags);
1345 #endif
1347 #ifdef CONFIG_PROC_FS
1348 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1349 struct zone *zone)
1351 int order;
1353 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1354 for (order = 0; order < MAX_ORDER; ++order)
1355 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1356 seq_putc(m, '\n');
1360 * This walks the free areas for each zone.
1362 static int frag_show(struct seq_file *m, void *arg)
1364 pg_data_t *pgdat = (pg_data_t *)arg;
1365 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1366 return 0;
1369 static void pagetypeinfo_showfree_print(struct seq_file *m,
1370 pg_data_t *pgdat, struct zone *zone)
1372 int order, mtype;
1374 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1375 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1376 pgdat->node_id,
1377 zone->name,
1378 migratetype_names[mtype]);
1379 for (order = 0; order < MAX_ORDER; ++order) {
1380 unsigned long freecount = 0;
1381 struct free_area *area;
1382 struct list_head *curr;
1384 area = &(zone->free_area[order]);
1386 list_for_each(curr, &area->free_list[mtype])
1387 freecount++;
1388 seq_printf(m, "%6lu ", freecount);
1390 seq_putc(m, '\n');
1394 /* Print out the free pages at each order for each migatetype */
1395 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1397 int order;
1398 pg_data_t *pgdat = (pg_data_t *)arg;
1400 /* Print header */
1401 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1402 for (order = 0; order < MAX_ORDER; ++order)
1403 seq_printf(m, "%6d ", order);
1404 seq_putc(m, '\n');
1406 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1408 return 0;
1411 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1412 pg_data_t *pgdat, struct zone *zone)
1414 int mtype;
1415 unsigned long pfn;
1416 unsigned long start_pfn = zone->zone_start_pfn;
1417 unsigned long end_pfn = zone_end_pfn(zone);
1418 unsigned long count[MIGRATE_TYPES] = { 0, };
1420 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1421 struct page *page;
1423 page = pfn_to_online_page(pfn);
1424 if (!page)
1425 continue;
1427 /* Watch for unexpected holes punched in the memmap */
1428 if (!memmap_valid_within(pfn, page, zone))
1429 continue;
1431 if (page_zone(page) != zone)
1432 continue;
1434 mtype = get_pageblock_migratetype(page);
1436 if (mtype < MIGRATE_TYPES)
1437 count[mtype]++;
1440 /* Print counts */
1441 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1442 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1443 seq_printf(m, "%12lu ", count[mtype]);
1444 seq_putc(m, '\n');
1447 /* Print out the number of pageblocks for each migratetype */
1448 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1450 int mtype;
1451 pg_data_t *pgdat = (pg_data_t *)arg;
1453 seq_printf(m, "\n%-23s", "Number of blocks type ");
1454 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1455 seq_printf(m, "%12s ", migratetype_names[mtype]);
1456 seq_putc(m, '\n');
1457 walk_zones_in_node(m, pgdat, true, false,
1458 pagetypeinfo_showblockcount_print);
1460 return 0;
1464 * Print out the number of pageblocks for each migratetype that contain pages
1465 * of other types. This gives an indication of how well fallbacks are being
1466 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1467 * to determine what is going on
1469 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1471 #ifdef CONFIG_PAGE_OWNER
1472 int mtype;
1474 if (!static_branch_unlikely(&page_owner_inited))
1475 return;
1477 drain_all_pages(NULL);
1479 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1480 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1481 seq_printf(m, "%12s ", migratetype_names[mtype]);
1482 seq_putc(m, '\n');
1484 walk_zones_in_node(m, pgdat, true, true,
1485 pagetypeinfo_showmixedcount_print);
1486 #endif /* CONFIG_PAGE_OWNER */
1490 * This prints out statistics in relation to grouping pages by mobility.
1491 * It is expensive to collect so do not constantly read the file.
1493 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1495 pg_data_t *pgdat = (pg_data_t *)arg;
1497 /* check memoryless node */
1498 if (!node_state(pgdat->node_id, N_MEMORY))
1499 return 0;
1501 seq_printf(m, "Page block order: %d\n", pageblock_order);
1502 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1503 seq_putc(m, '\n');
1504 pagetypeinfo_showfree(m, pgdat);
1505 pagetypeinfo_showblockcount(m, pgdat);
1506 pagetypeinfo_showmixedcount(m, pgdat);
1508 return 0;
1511 static const struct seq_operations fragmentation_op = {
1512 .start = frag_start,
1513 .next = frag_next,
1514 .stop = frag_stop,
1515 .show = frag_show,
1518 static int fragmentation_open(struct inode *inode, struct file *file)
1520 return seq_open(file, &fragmentation_op);
1523 static const struct file_operations buddyinfo_file_operations = {
1524 .open = fragmentation_open,
1525 .read = seq_read,
1526 .llseek = seq_lseek,
1527 .release = seq_release,
1530 static const struct seq_operations pagetypeinfo_op = {
1531 .start = frag_start,
1532 .next = frag_next,
1533 .stop = frag_stop,
1534 .show = pagetypeinfo_show,
1537 static int pagetypeinfo_open(struct inode *inode, struct file *file)
1539 return seq_open(file, &pagetypeinfo_op);
1542 static const struct file_operations pagetypeinfo_file_operations = {
1543 .open = pagetypeinfo_open,
1544 .read = seq_read,
1545 .llseek = seq_lseek,
1546 .release = seq_release,
1549 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1551 int zid;
1553 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1554 struct zone *compare = &pgdat->node_zones[zid];
1556 if (populated_zone(compare))
1557 return zone == compare;
1560 return false;
1563 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1564 struct zone *zone)
1566 int i;
1567 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1568 if (is_zone_first_populated(pgdat, zone)) {
1569 seq_printf(m, "\n per-node stats");
1570 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1571 seq_printf(m, "\n %-12s %lu",
1572 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS +
1573 NR_VM_NUMA_STAT_ITEMS],
1574 node_page_state(pgdat, i));
1577 seq_printf(m,
1578 "\n pages free %lu"
1579 "\n min %lu"
1580 "\n low %lu"
1581 "\n high %lu"
1582 "\n spanned %lu"
1583 "\n present %lu"
1584 "\n managed %lu",
1585 zone_page_state(zone, NR_FREE_PAGES),
1586 min_wmark_pages(zone),
1587 low_wmark_pages(zone),
1588 high_wmark_pages(zone),
1589 zone->spanned_pages,
1590 zone->present_pages,
1591 zone->managed_pages);
1593 seq_printf(m,
1594 "\n protection: (%ld",
1595 zone->lowmem_reserve[0]);
1596 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1597 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1598 seq_putc(m, ')');
1600 /* If unpopulated, no other information is useful */
1601 if (!populated_zone(zone)) {
1602 seq_putc(m, '\n');
1603 return;
1606 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1607 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1608 zone_page_state(zone, i));
1610 #ifdef CONFIG_NUMA
1611 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1612 seq_printf(m, "\n %-12s %lu",
1613 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
1614 zone_numa_state_snapshot(zone, i));
1615 #endif
1617 seq_printf(m, "\n pagesets");
1618 for_each_online_cpu(i) {
1619 struct per_cpu_pageset *pageset;
1621 pageset = per_cpu_ptr(zone->pageset, i);
1622 seq_printf(m,
1623 "\n cpu: %i"
1624 "\n count: %i"
1625 "\n high: %i"
1626 "\n batch: %i",
1628 pageset->pcp.count,
1629 pageset->pcp.high,
1630 pageset->pcp.batch);
1631 #ifdef CONFIG_SMP
1632 seq_printf(m, "\n vm stats threshold: %d",
1633 pageset->stat_threshold);
1634 #endif
1636 seq_printf(m,
1637 "\n node_unreclaimable: %u"
1638 "\n start_pfn: %lu",
1639 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1640 zone->zone_start_pfn);
1641 seq_putc(m, '\n');
1645 * Output information about zones in @pgdat. All zones are printed regardless
1646 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1647 * set of all zones and userspace would not be aware of such zones if they are
1648 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1650 static int zoneinfo_show(struct seq_file *m, void *arg)
1652 pg_data_t *pgdat = (pg_data_t *)arg;
1653 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1654 return 0;
1657 static const struct seq_operations zoneinfo_op = {
1658 .start = frag_start, /* iterate over all zones. The same as in
1659 * fragmentation. */
1660 .next = frag_next,
1661 .stop = frag_stop,
1662 .show = zoneinfo_show,
1665 static int zoneinfo_open(struct inode *inode, struct file *file)
1667 return seq_open(file, &zoneinfo_op);
1670 static const struct file_operations zoneinfo_file_operations = {
1671 .open = zoneinfo_open,
1672 .read = seq_read,
1673 .llseek = seq_lseek,
1674 .release = seq_release,
1677 enum writeback_stat_item {
1678 NR_DIRTY_THRESHOLD,
1679 NR_DIRTY_BG_THRESHOLD,
1680 NR_VM_WRITEBACK_STAT_ITEMS,
1683 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1685 unsigned long *v;
1686 int i, stat_items_size;
1688 if (*pos >= ARRAY_SIZE(vmstat_text))
1689 return NULL;
1690 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1691 NR_VM_NUMA_STAT_ITEMS * sizeof(unsigned long) +
1692 NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) +
1693 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1695 #ifdef CONFIG_VM_EVENT_COUNTERS
1696 stat_items_size += sizeof(struct vm_event_state);
1697 #endif
1699 v = kmalloc(stat_items_size, GFP_KERNEL);
1700 m->private = v;
1701 if (!v)
1702 return ERR_PTR(-ENOMEM);
1703 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1704 v[i] = global_zone_page_state(i);
1705 v += NR_VM_ZONE_STAT_ITEMS;
1707 #ifdef CONFIG_NUMA
1708 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1709 v[i] = global_numa_state(i);
1710 v += NR_VM_NUMA_STAT_ITEMS;
1711 #endif
1713 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1714 v[i] = global_node_page_state(i);
1715 v += NR_VM_NODE_STAT_ITEMS;
1717 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1718 v + NR_DIRTY_THRESHOLD);
1719 v += NR_VM_WRITEBACK_STAT_ITEMS;
1721 #ifdef CONFIG_VM_EVENT_COUNTERS
1722 all_vm_events(v);
1723 v[PGPGIN] /= 2; /* sectors -> kbytes */
1724 v[PGPGOUT] /= 2;
1725 #endif
1726 return (unsigned long *)m->private + *pos;
1729 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1731 (*pos)++;
1732 if (*pos >= ARRAY_SIZE(vmstat_text))
1733 return NULL;
1734 return (unsigned long *)m->private + *pos;
1737 static int vmstat_show(struct seq_file *m, void *arg)
1739 unsigned long *l = arg;
1740 unsigned long off = l - (unsigned long *)m->private;
1742 seq_puts(m, vmstat_text[off]);
1743 seq_put_decimal_ull(m, " ", *l);
1744 seq_putc(m, '\n');
1745 return 0;
1748 static void vmstat_stop(struct seq_file *m, void *arg)
1750 kfree(m->private);
1751 m->private = NULL;
1754 static const struct seq_operations vmstat_op = {
1755 .start = vmstat_start,
1756 .next = vmstat_next,
1757 .stop = vmstat_stop,
1758 .show = vmstat_show,
1761 static int vmstat_open(struct inode *inode, struct file *file)
1763 return seq_open(file, &vmstat_op);
1766 static const struct file_operations vmstat_file_operations = {
1767 .open = vmstat_open,
1768 .read = seq_read,
1769 .llseek = seq_lseek,
1770 .release = seq_release,
1772 #endif /* CONFIG_PROC_FS */
1774 #ifdef CONFIG_SMP
1775 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1776 int sysctl_stat_interval __read_mostly = HZ;
1778 #ifdef CONFIG_PROC_FS
1779 static void refresh_vm_stats(struct work_struct *work)
1781 refresh_cpu_vm_stats(true);
1784 int vmstat_refresh(struct ctl_table *table, int write,
1785 void __user *buffer, size_t *lenp, loff_t *ppos)
1787 long val;
1788 int err;
1789 int i;
1792 * The regular update, every sysctl_stat_interval, may come later
1793 * than expected: leaving a significant amount in per_cpu buckets.
1794 * This is particularly misleading when checking a quantity of HUGE
1795 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1796 * which can equally be echo'ed to or cat'ted from (by root),
1797 * can be used to update the stats just before reading them.
1799 * Oh, and since global_zone_page_state() etc. are so careful to hide
1800 * transiently negative values, report an error here if any of
1801 * the stats is negative, so we know to go looking for imbalance.
1803 err = schedule_on_each_cpu(refresh_vm_stats);
1804 if (err)
1805 return err;
1806 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1807 val = atomic_long_read(&vm_zone_stat[i]);
1808 if (val < 0) {
1809 pr_warn("%s: %s %ld\n",
1810 __func__, vmstat_text[i], val);
1811 err = -EINVAL;
1814 #ifdef CONFIG_NUMA
1815 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
1816 val = atomic_long_read(&vm_numa_stat[i]);
1817 if (val < 0) {
1818 pr_warn("%s: %s %ld\n",
1819 __func__, vmstat_text[i + NR_VM_ZONE_STAT_ITEMS], val);
1820 err = -EINVAL;
1823 #endif
1824 if (err)
1825 return err;
1826 if (write)
1827 *ppos += *lenp;
1828 else
1829 *lenp = 0;
1830 return 0;
1832 #endif /* CONFIG_PROC_FS */
1834 static void vmstat_update(struct work_struct *w)
1836 if (refresh_cpu_vm_stats(true)) {
1838 * Counters were updated so we expect more updates
1839 * to occur in the future. Keep on running the
1840 * update worker thread.
1842 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1843 this_cpu_ptr(&vmstat_work),
1844 round_jiffies_relative(sysctl_stat_interval));
1849 * Switch off vmstat processing and then fold all the remaining differentials
1850 * until the diffs stay at zero. The function is used by NOHZ and can only be
1851 * invoked when tick processing is not active.
1854 * Check if the diffs for a certain cpu indicate that
1855 * an update is needed.
1857 static bool need_update(int cpu)
1859 struct zone *zone;
1861 for_each_populated_zone(zone) {
1862 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1864 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1865 #ifdef CONFIG_NUMA
1866 BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2);
1867 #endif
1870 * The fast way of checking if there are any vmstat diffs.
1871 * This works because the diffs are byte sized items.
1873 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1874 return true;
1875 #ifdef CONFIG_NUMA
1876 if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS))
1877 return true;
1878 #endif
1880 return false;
1884 * Switch off vmstat processing and then fold all the remaining differentials
1885 * until the diffs stay at zero. The function is used by NOHZ and can only be
1886 * invoked when tick processing is not active.
1888 void quiet_vmstat(void)
1890 if (system_state != SYSTEM_RUNNING)
1891 return;
1893 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1894 return;
1896 if (!need_update(smp_processor_id()))
1897 return;
1900 * Just refresh counters and do not care about the pending delayed
1901 * vmstat_update. It doesn't fire that often to matter and canceling
1902 * it would be too expensive from this path.
1903 * vmstat_shepherd will take care about that for us.
1905 refresh_cpu_vm_stats(false);
1909 * Shepherd worker thread that checks the
1910 * differentials of processors that have their worker
1911 * threads for vm statistics updates disabled because of
1912 * inactivity.
1914 static void vmstat_shepherd(struct work_struct *w);
1916 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1918 static void vmstat_shepherd(struct work_struct *w)
1920 int cpu;
1922 get_online_cpus();
1923 /* Check processors whose vmstat worker threads have been disabled */
1924 for_each_online_cpu(cpu) {
1925 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1927 if (!delayed_work_pending(dw) && need_update(cpu))
1928 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1930 put_online_cpus();
1932 schedule_delayed_work(&shepherd,
1933 round_jiffies_relative(sysctl_stat_interval));
1936 static void __init start_shepherd_timer(void)
1938 int cpu;
1940 for_each_possible_cpu(cpu)
1941 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1942 vmstat_update);
1944 schedule_delayed_work(&shepherd,
1945 round_jiffies_relative(sysctl_stat_interval));
1948 static void __init init_cpu_node_state(void)
1950 int node;
1952 for_each_online_node(node) {
1953 if (cpumask_weight(cpumask_of_node(node)) > 0)
1954 node_set_state(node, N_CPU);
1958 static int vmstat_cpu_online(unsigned int cpu)
1960 refresh_zone_stat_thresholds();
1961 node_set_state(cpu_to_node(cpu), N_CPU);
1962 return 0;
1965 static int vmstat_cpu_down_prep(unsigned int cpu)
1967 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1968 return 0;
1971 static int vmstat_cpu_dead(unsigned int cpu)
1973 const struct cpumask *node_cpus;
1974 int node;
1976 node = cpu_to_node(cpu);
1978 refresh_zone_stat_thresholds();
1979 node_cpus = cpumask_of_node(node);
1980 if (cpumask_weight(node_cpus) > 0)
1981 return 0;
1983 node_clear_state(node, N_CPU);
1984 return 0;
1987 #endif
1989 struct workqueue_struct *mm_percpu_wq;
1991 void __init init_mm_internals(void)
1993 int ret __maybe_unused;
1995 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
1997 #ifdef CONFIG_SMP
1998 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
1999 NULL, vmstat_cpu_dead);
2000 if (ret < 0)
2001 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2003 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2004 vmstat_cpu_online,
2005 vmstat_cpu_down_prep);
2006 if (ret < 0)
2007 pr_err("vmstat: failed to register 'online' hotplug state\n");
2009 get_online_cpus();
2010 init_cpu_node_state();
2011 put_online_cpus();
2013 start_shepherd_timer();
2014 #endif
2015 #ifdef CONFIG_PROC_FS
2016 proc_create("buddyinfo", 0444, NULL, &buddyinfo_file_operations);
2017 proc_create("pagetypeinfo", 0444, NULL, &pagetypeinfo_file_operations);
2018 proc_create("vmstat", 0444, NULL, &vmstat_file_operations);
2019 proc_create("zoneinfo", 0444, NULL, &zoneinfo_file_operations);
2020 #endif
2023 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2026 * Return an index indicating how much of the available free memory is
2027 * unusable for an allocation of the requested size.
2029 static int unusable_free_index(unsigned int order,
2030 struct contig_page_info *info)
2032 /* No free memory is interpreted as all free memory is unusable */
2033 if (info->free_pages == 0)
2034 return 1000;
2037 * Index should be a value between 0 and 1. Return a value to 3
2038 * decimal places.
2040 * 0 => no fragmentation
2041 * 1 => high fragmentation
2043 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2047 static void unusable_show_print(struct seq_file *m,
2048 pg_data_t *pgdat, struct zone *zone)
2050 unsigned int order;
2051 int index;
2052 struct contig_page_info info;
2054 seq_printf(m, "Node %d, zone %8s ",
2055 pgdat->node_id,
2056 zone->name);
2057 for (order = 0; order < MAX_ORDER; ++order) {
2058 fill_contig_page_info(zone, order, &info);
2059 index = unusable_free_index(order, &info);
2060 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2063 seq_putc(m, '\n');
2067 * Display unusable free space index
2069 * The unusable free space index measures how much of the available free
2070 * memory cannot be used to satisfy an allocation of a given size and is a
2071 * value between 0 and 1. The higher the value, the more of free memory is
2072 * unusable and by implication, the worse the external fragmentation is. This
2073 * can be expressed as a percentage by multiplying by 100.
2075 static int unusable_show(struct seq_file *m, void *arg)
2077 pg_data_t *pgdat = (pg_data_t *)arg;
2079 /* check memoryless node */
2080 if (!node_state(pgdat->node_id, N_MEMORY))
2081 return 0;
2083 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2085 return 0;
2088 static const struct seq_operations unusable_op = {
2089 .start = frag_start,
2090 .next = frag_next,
2091 .stop = frag_stop,
2092 .show = unusable_show,
2095 static int unusable_open(struct inode *inode, struct file *file)
2097 return seq_open(file, &unusable_op);
2100 static const struct file_operations unusable_file_ops = {
2101 .open = unusable_open,
2102 .read = seq_read,
2103 .llseek = seq_lseek,
2104 .release = seq_release,
2107 static void extfrag_show_print(struct seq_file *m,
2108 pg_data_t *pgdat, struct zone *zone)
2110 unsigned int order;
2111 int index;
2113 /* Alloc on stack as interrupts are disabled for zone walk */
2114 struct contig_page_info info;
2116 seq_printf(m, "Node %d, zone %8s ",
2117 pgdat->node_id,
2118 zone->name);
2119 for (order = 0; order < MAX_ORDER; ++order) {
2120 fill_contig_page_info(zone, order, &info);
2121 index = __fragmentation_index(order, &info);
2122 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2125 seq_putc(m, '\n');
2129 * Display fragmentation index for orders that allocations would fail for
2131 static int extfrag_show(struct seq_file *m, void *arg)
2133 pg_data_t *pgdat = (pg_data_t *)arg;
2135 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2137 return 0;
2140 static const struct seq_operations extfrag_op = {
2141 .start = frag_start,
2142 .next = frag_next,
2143 .stop = frag_stop,
2144 .show = extfrag_show,
2147 static int extfrag_open(struct inode *inode, struct file *file)
2149 return seq_open(file, &extfrag_op);
2152 static const struct file_operations extfrag_file_ops = {
2153 .open = extfrag_open,
2154 .read = seq_read,
2155 .llseek = seq_lseek,
2156 .release = seq_release,
2159 static int __init extfrag_debug_init(void)
2161 struct dentry *extfrag_debug_root;
2163 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2164 if (!extfrag_debug_root)
2165 return -ENOMEM;
2167 if (!debugfs_create_file("unusable_index", 0444,
2168 extfrag_debug_root, NULL, &unusable_file_ops))
2169 goto fail;
2171 if (!debugfs_create_file("extfrag_index", 0444,
2172 extfrag_debug_root, NULL, &extfrag_file_ops))
2173 goto fail;
2175 return 0;
2176 fail:
2177 debugfs_remove_recursive(extfrag_debug_root);
2178 return -ENOMEM;
2181 module_init(extfrag_debug_init);
2182 #endif