2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <linux/static_key.h>
28 #include <net/inet_common.h>
30 #include <net/busy_poll.h>
32 static bool tcp_in_window(u32 seq
, u32 end_seq
, u32 s_win
, u32 e_win
)
36 if (after(end_seq
, s_win
) && before(seq
, e_win
))
38 return seq
== e_win
&& seq
== end_seq
;
41 static enum tcp_tw_status
42 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock
*tw
,
43 const struct sk_buff
*skb
, int mib_idx
)
45 struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
47 if (!tcp_oow_rate_limited(twsk_net(tw
), skb
, mib_idx
,
48 &tcptw
->tw_last_oow_ack_time
)) {
49 /* Send ACK. Note, we do not put the bucket,
50 * it will be released by caller.
55 /* We are rate-limiting, so just release the tw sock and drop skb. */
57 return TCP_TW_SUCCESS
;
61 * * Main purpose of TIME-WAIT state is to close connection gracefully,
62 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
63 * (and, probably, tail of data) and one or more our ACKs are lost.
64 * * What is TIME-WAIT timeout? It is associated with maximal packet
65 * lifetime in the internet, which results in wrong conclusion, that
66 * it is set to catch "old duplicate segments" wandering out of their path.
67 * It is not quite correct. This timeout is calculated so that it exceeds
68 * maximal retransmission timeout enough to allow to lose one (or more)
69 * segments sent by peer and our ACKs. This time may be calculated from RTO.
70 * * When TIME-WAIT socket receives RST, it means that another end
71 * finally closed and we are allowed to kill TIME-WAIT too.
72 * * Second purpose of TIME-WAIT is catching old duplicate segments.
73 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
74 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
75 * * If we invented some more clever way to catch duplicates
76 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
78 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
79 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
80 * from the very beginning.
82 * NOTE. With recycling (and later with fin-wait-2) TW bucket
83 * is _not_ stateless. It means, that strictly speaking we must
84 * spinlock it. I do not want! Well, probability of misbehaviour
85 * is ridiculously low and, seems, we could use some mb() tricks
86 * to avoid misread sequence numbers, states etc. --ANK
88 * We don't need to initialize tmp_out.sack_ok as we don't use the results
91 tcp_timewait_state_process(struct inet_timewait_sock
*tw
, struct sk_buff
*skb
,
92 const struct tcphdr
*th
)
94 struct tcp_options_received tmp_opt
;
95 struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
96 bool paws_reject
= false;
98 tmp_opt
.saw_tstamp
= 0;
99 if (th
->doff
> (sizeof(*th
) >> 2) && tcptw
->tw_ts_recent_stamp
) {
100 tcp_parse_options(twsk_net(tw
), skb
, &tmp_opt
, 0, NULL
);
102 if (tmp_opt
.saw_tstamp
) {
103 if (tmp_opt
.rcv_tsecr
)
104 tmp_opt
.rcv_tsecr
-= tcptw
->tw_ts_offset
;
105 tmp_opt
.ts_recent
= tcptw
->tw_ts_recent
;
106 tmp_opt
.ts_recent_stamp
= tcptw
->tw_ts_recent_stamp
;
107 paws_reject
= tcp_paws_reject(&tmp_opt
, th
->rst
);
111 if (tw
->tw_substate
== TCP_FIN_WAIT2
) {
112 /* Just repeat all the checks of tcp_rcv_state_process() */
114 /* Out of window, send ACK */
116 !tcp_in_window(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
,
118 tcptw
->tw_rcv_nxt
+ tcptw
->tw_rcv_wnd
))
119 return tcp_timewait_check_oow_rate_limit(
120 tw
, skb
, LINUX_MIB_TCPACKSKIPPEDFINWAIT2
);
125 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tcptw
->tw_rcv_nxt
))
130 !after(TCP_SKB_CB(skb
)->end_seq
, tcptw
->tw_rcv_nxt
) ||
131 TCP_SKB_CB(skb
)->end_seq
== TCP_SKB_CB(skb
)->seq
) {
133 return TCP_TW_SUCCESS
;
136 /* New data or FIN. If new data arrive after half-duplex close,
140 TCP_SKB_CB(skb
)->end_seq
!= tcptw
->tw_rcv_nxt
+ 1)
143 /* FIN arrived, enter true time-wait state. */
144 tw
->tw_substate
= TCP_TIME_WAIT
;
145 tcptw
->tw_rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
146 if (tmp_opt
.saw_tstamp
) {
147 tcptw
->tw_ts_recent_stamp
= get_seconds();
148 tcptw
->tw_ts_recent
= tmp_opt
.rcv_tsval
;
151 inet_twsk_reschedule(tw
, TCP_TIMEWAIT_LEN
);
156 * Now real TIME-WAIT state.
159 * "When a connection is [...] on TIME-WAIT state [...]
160 * [a TCP] MAY accept a new SYN from the remote TCP to
161 * reopen the connection directly, if it:
163 * (1) assigns its initial sequence number for the new
164 * connection to be larger than the largest sequence
165 * number it used on the previous connection incarnation,
168 * (2) returns to TIME-WAIT state if the SYN turns out
169 * to be an old duplicate".
173 (TCP_SKB_CB(skb
)->seq
== tcptw
->tw_rcv_nxt
&&
174 (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
|| th
->rst
))) {
175 /* In window segment, it may be only reset or bare ack. */
178 /* This is TIME_WAIT assassination, in two flavors.
179 * Oh well... nobody has a sufficient solution to this
182 if (twsk_net(tw
)->ipv4
.sysctl_tcp_rfc1337
== 0) {
184 inet_twsk_deschedule_put(tw
);
185 return TCP_TW_SUCCESS
;
188 inet_twsk_reschedule(tw
, TCP_TIMEWAIT_LEN
);
190 if (tmp_opt
.saw_tstamp
) {
191 tcptw
->tw_ts_recent
= tmp_opt
.rcv_tsval
;
192 tcptw
->tw_ts_recent_stamp
= get_seconds();
196 return TCP_TW_SUCCESS
;
199 /* Out of window segment.
201 All the segments are ACKed immediately.
203 The only exception is new SYN. We accept it, if it is
204 not old duplicate and we are not in danger to be killed
205 by delayed old duplicates. RFC check is that it has
206 newer sequence number works at rates <40Mbit/sec.
207 However, if paws works, it is reliable AND even more,
208 we even may relax silly seq space cutoff.
210 RED-PEN: we violate main RFC requirement, if this SYN will appear
211 old duplicate (i.e. we receive RST in reply to SYN-ACK),
212 we must return socket to time-wait state. It is not good,
216 if (th
->syn
&& !th
->rst
&& !th
->ack
&& !paws_reject
&&
217 (after(TCP_SKB_CB(skb
)->seq
, tcptw
->tw_rcv_nxt
) ||
218 (tmp_opt
.saw_tstamp
&&
219 (s32
)(tcptw
->tw_ts_recent
- tmp_opt
.rcv_tsval
) < 0))) {
220 u32 isn
= tcptw
->tw_snd_nxt
+ 65535 + 2;
223 TCP_SKB_CB(skb
)->tcp_tw_isn
= isn
;
228 __NET_INC_STATS(twsk_net(tw
), LINUX_MIB_PAWSESTABREJECTED
);
231 /* In this case we must reset the TIMEWAIT timer.
233 * If it is ACKless SYN it may be both old duplicate
234 * and new good SYN with random sequence number <rcv_nxt.
235 * Do not reschedule in the last case.
237 if (paws_reject
|| th
->ack
)
238 inet_twsk_reschedule(tw
, TCP_TIMEWAIT_LEN
);
240 return tcp_timewait_check_oow_rate_limit(
241 tw
, skb
, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT
);
244 return TCP_TW_SUCCESS
;
246 EXPORT_SYMBOL(tcp_timewait_state_process
);
249 * Move a socket to time-wait or dead fin-wait-2 state.
251 void tcp_time_wait(struct sock
*sk
, int state
, int timeo
)
253 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
254 const struct tcp_sock
*tp
= tcp_sk(sk
);
255 struct inet_timewait_sock
*tw
;
256 struct inet_timewait_death_row
*tcp_death_row
= &sock_net(sk
)->ipv4
.tcp_death_row
;
258 tw
= inet_twsk_alloc(sk
, tcp_death_row
, state
);
261 struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
262 const int rto
= (icsk
->icsk_rto
<< 2) - (icsk
->icsk_rto
>> 1);
263 struct inet_sock
*inet
= inet_sk(sk
);
265 tw
->tw_transparent
= inet
->transparent
;
266 tw
->tw_rcv_wscale
= tp
->rx_opt
.rcv_wscale
;
267 tcptw
->tw_rcv_nxt
= tp
->rcv_nxt
;
268 tcptw
->tw_snd_nxt
= tp
->snd_nxt
;
269 tcptw
->tw_rcv_wnd
= tcp_receive_window(tp
);
270 tcptw
->tw_ts_recent
= tp
->rx_opt
.ts_recent
;
271 tcptw
->tw_ts_recent_stamp
= tp
->rx_opt
.ts_recent_stamp
;
272 tcptw
->tw_ts_offset
= tp
->tsoffset
;
273 tcptw
->tw_last_oow_ack_time
= 0;
275 #if IS_ENABLED(CONFIG_IPV6)
276 if (tw
->tw_family
== PF_INET6
) {
277 struct ipv6_pinfo
*np
= inet6_sk(sk
);
279 tw
->tw_v6_daddr
= sk
->sk_v6_daddr
;
280 tw
->tw_v6_rcv_saddr
= sk
->sk_v6_rcv_saddr
;
281 tw
->tw_tclass
= np
->tclass
;
282 tw
->tw_flowlabel
= be32_to_cpu(np
->flow_label
& IPV6_FLOWLABEL_MASK
);
283 tw
->tw_ipv6only
= sk
->sk_ipv6only
;
287 #ifdef CONFIG_TCP_MD5SIG
289 * The timewait bucket does not have the key DB from the
290 * sock structure. We just make a quick copy of the
291 * md5 key being used (if indeed we are using one)
292 * so the timewait ack generating code has the key.
295 struct tcp_md5sig_key
*key
;
296 tcptw
->tw_md5_key
= NULL
;
297 key
= tp
->af_specific
->md5_lookup(sk
, sk
);
299 tcptw
->tw_md5_key
= kmemdup(key
, sizeof(*key
), GFP_ATOMIC
);
300 BUG_ON(tcptw
->tw_md5_key
&& !tcp_alloc_md5sig_pool());
305 /* Get the TIME_WAIT timeout firing. */
309 tw
->tw_timeout
= TCP_TIMEWAIT_LEN
;
310 if (state
== TCP_TIME_WAIT
)
311 timeo
= TCP_TIMEWAIT_LEN
;
313 /* tw_timer is pinned, so we need to make sure BH are disabled
314 * in following section, otherwise timer handler could run before
315 * we complete the initialization.
318 inet_twsk_schedule(tw
, timeo
);
320 * Note that access to tw after this point is illegal.
322 inet_twsk_hashdance(tw
, sk
, &tcp_hashinfo
);
325 /* Sorry, if we're out of memory, just CLOSE this
326 * socket up. We've got bigger problems than
327 * non-graceful socket closings.
329 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPTIMEWAITOVERFLOW
);
332 tcp_update_metrics(sk
);
336 void tcp_twsk_destructor(struct sock
*sk
)
338 #ifdef CONFIG_TCP_MD5SIG
339 struct tcp_timewait_sock
*twsk
= tcp_twsk(sk
);
341 if (twsk
->tw_md5_key
)
342 kfree_rcu(twsk
->tw_md5_key
, rcu
);
345 EXPORT_SYMBOL_GPL(tcp_twsk_destructor
);
347 /* Warning : This function is called without sk_listener being locked.
348 * Be sure to read socket fields once, as their value could change under us.
350 void tcp_openreq_init_rwin(struct request_sock
*req
,
351 const struct sock
*sk_listener
,
352 const struct dst_entry
*dst
)
354 struct inet_request_sock
*ireq
= inet_rsk(req
);
355 const struct tcp_sock
*tp
= tcp_sk(sk_listener
);
356 int full_space
= tcp_full_space(sk_listener
);
362 mss
= tcp_mss_clamp(tp
, dst_metric_advmss(dst
));
363 window_clamp
= READ_ONCE(tp
->window_clamp
);
364 /* Set this up on the first call only */
365 req
->rsk_window_clamp
= window_clamp
? : dst_metric(dst
, RTAX_WINDOW
);
367 /* limit the window selection if the user enforce a smaller rx buffer */
368 if (sk_listener
->sk_userlocks
& SOCK_RCVBUF_LOCK
&&
369 (req
->rsk_window_clamp
> full_space
|| req
->rsk_window_clamp
== 0))
370 req
->rsk_window_clamp
= full_space
;
372 rcv_wnd
= tcp_rwnd_init_bpf((struct sock
*)req
);
374 rcv_wnd
= dst_metric(dst
, RTAX_INITRWND
);
375 else if (full_space
< rcv_wnd
* mss
)
376 full_space
= rcv_wnd
* mss
;
378 /* tcp_full_space because it is guaranteed to be the first packet */
379 tcp_select_initial_window(sk_listener
, full_space
,
380 mss
- (ireq
->tstamp_ok
? TCPOLEN_TSTAMP_ALIGNED
: 0),
382 &req
->rsk_window_clamp
,
386 ireq
->rcv_wscale
= rcv_wscale
;
388 EXPORT_SYMBOL(tcp_openreq_init_rwin
);
390 static void tcp_ecn_openreq_child(struct tcp_sock
*tp
,
391 const struct request_sock
*req
)
393 tp
->ecn_flags
= inet_rsk(req
)->ecn_ok
? TCP_ECN_OK
: 0;
396 void tcp_ca_openreq_child(struct sock
*sk
, const struct dst_entry
*dst
)
398 struct inet_connection_sock
*icsk
= inet_csk(sk
);
399 u32 ca_key
= dst_metric(dst
, RTAX_CC_ALGO
);
400 bool ca_got_dst
= false;
402 if (ca_key
!= TCP_CA_UNSPEC
) {
403 const struct tcp_congestion_ops
*ca
;
406 ca
= tcp_ca_find_key(ca_key
);
407 if (likely(ca
&& try_module_get(ca
->owner
))) {
408 icsk
->icsk_ca_dst_locked
= tcp_ca_dst_locked(dst
);
409 icsk
->icsk_ca_ops
= ca
;
415 /* If no valid choice made yet, assign current system default ca. */
417 (!icsk
->icsk_ca_setsockopt
||
418 !try_module_get(icsk
->icsk_ca_ops
->owner
)))
419 tcp_assign_congestion_control(sk
);
421 tcp_set_ca_state(sk
, TCP_CA_Open
);
423 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child
);
425 static void smc_check_reset_syn_req(struct tcp_sock
*oldtp
,
426 struct request_sock
*req
,
427 struct tcp_sock
*newtp
)
429 #if IS_ENABLED(CONFIG_SMC)
430 struct inet_request_sock
*ireq
;
432 if (static_branch_unlikely(&tcp_have_smc
)) {
433 ireq
= inet_rsk(req
);
434 if (oldtp
->syn_smc
&& !ireq
->smc_ok
)
440 /* This is not only more efficient than what we used to do, it eliminates
441 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
443 * Actually, we could lots of memory writes here. tp of listening
444 * socket contains all necessary default parameters.
446 struct sock
*tcp_create_openreq_child(const struct sock
*sk
,
447 struct request_sock
*req
,
450 struct sock
*newsk
= inet_csk_clone_lock(sk
, req
, GFP_ATOMIC
);
453 const struct inet_request_sock
*ireq
= inet_rsk(req
);
454 struct tcp_request_sock
*treq
= tcp_rsk(req
);
455 struct inet_connection_sock
*newicsk
= inet_csk(newsk
);
456 struct tcp_sock
*newtp
= tcp_sk(newsk
);
457 struct tcp_sock
*oldtp
= tcp_sk(sk
);
459 smc_check_reset_syn_req(oldtp
, req
, newtp
);
461 /* Now setup tcp_sock */
462 newtp
->pred_flags
= 0;
464 newtp
->rcv_wup
= newtp
->copied_seq
=
465 newtp
->rcv_nxt
= treq
->rcv_isn
+ 1;
468 newtp
->snd_sml
= newtp
->snd_una
=
469 newtp
->snd_nxt
= newtp
->snd_up
= treq
->snt_isn
+ 1;
471 INIT_LIST_HEAD(&newtp
->tsq_node
);
472 INIT_LIST_HEAD(&newtp
->tsorted_sent_queue
);
474 tcp_init_wl(newtp
, treq
->rcv_isn
);
477 newtp
->mdev_us
= jiffies_to_usecs(TCP_TIMEOUT_INIT
);
478 minmax_reset(&newtp
->rtt_min
, tcp_jiffies32
, ~0U);
479 newicsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
480 newicsk
->icsk_ack
.lrcvtime
= tcp_jiffies32
;
482 newtp
->packets_out
= 0;
483 newtp
->retrans_out
= 0;
484 newtp
->sacked_out
= 0;
485 newtp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
486 newtp
->tlp_high_seq
= 0;
487 newtp
->lsndtime
= tcp_jiffies32
;
488 newsk
->sk_txhash
= treq
->txhash
;
489 newtp
->last_oow_ack_time
= 0;
490 newtp
->total_retrans
= req
->num_retrans
;
492 /* So many TCP implementations out there (incorrectly) count the
493 * initial SYN frame in their delayed-ACK and congestion control
494 * algorithms that we must have the following bandaid to talk
495 * efficiently to them. -DaveM
497 newtp
->snd_cwnd
= TCP_INIT_CWND
;
498 newtp
->snd_cwnd_cnt
= 0;
500 /* There's a bubble in the pipe until at least the first ACK. */
501 newtp
->app_limited
= ~0U;
503 tcp_init_xmit_timers(newsk
);
504 newtp
->write_seq
= newtp
->pushed_seq
= treq
->snt_isn
+ 1;
506 newtp
->rx_opt
.saw_tstamp
= 0;
508 newtp
->rx_opt
.dsack
= 0;
509 newtp
->rx_opt
.num_sacks
= 0;
513 if (sock_flag(newsk
, SOCK_KEEPOPEN
))
514 inet_csk_reset_keepalive_timer(newsk
,
515 keepalive_time_when(newtp
));
517 newtp
->rx_opt
.tstamp_ok
= ireq
->tstamp_ok
;
518 newtp
->rx_opt
.sack_ok
= ireq
->sack_ok
;
519 newtp
->window_clamp
= req
->rsk_window_clamp
;
520 newtp
->rcv_ssthresh
= req
->rsk_rcv_wnd
;
521 newtp
->rcv_wnd
= req
->rsk_rcv_wnd
;
522 newtp
->rx_opt
.wscale_ok
= ireq
->wscale_ok
;
523 if (newtp
->rx_opt
.wscale_ok
) {
524 newtp
->rx_opt
.snd_wscale
= ireq
->snd_wscale
;
525 newtp
->rx_opt
.rcv_wscale
= ireq
->rcv_wscale
;
527 newtp
->rx_opt
.snd_wscale
= newtp
->rx_opt
.rcv_wscale
= 0;
528 newtp
->window_clamp
= min(newtp
->window_clamp
, 65535U);
530 newtp
->snd_wnd
= (ntohs(tcp_hdr(skb
)->window
) <<
531 newtp
->rx_opt
.snd_wscale
);
532 newtp
->max_window
= newtp
->snd_wnd
;
534 if (newtp
->rx_opt
.tstamp_ok
) {
535 newtp
->rx_opt
.ts_recent
= req
->ts_recent
;
536 newtp
->rx_opt
.ts_recent_stamp
= get_seconds();
537 newtp
->tcp_header_len
= sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
539 newtp
->rx_opt
.ts_recent_stamp
= 0;
540 newtp
->tcp_header_len
= sizeof(struct tcphdr
);
542 newtp
->tsoffset
= treq
->ts_off
;
543 #ifdef CONFIG_TCP_MD5SIG
544 newtp
->md5sig_info
= NULL
; /*XXX*/
545 if (newtp
->af_specific
->md5_lookup(sk
, newsk
))
546 newtp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
548 if (skb
->len
>= TCP_MSS_DEFAULT
+ newtp
->tcp_header_len
)
549 newicsk
->icsk_ack
.last_seg_size
= skb
->len
- newtp
->tcp_header_len
;
550 newtp
->rx_opt
.mss_clamp
= req
->mss
;
551 tcp_ecn_openreq_child(newtp
, req
);
552 newtp
->fastopen_req
= NULL
;
553 newtp
->fastopen_rsk
= NULL
;
554 newtp
->syn_data_acked
= 0;
555 newtp
->rack
.mstamp
= 0;
556 newtp
->rack
.advanced
= 0;
557 newtp
->rack
.reo_wnd_steps
= 1;
558 newtp
->rack
.last_delivered
= 0;
559 newtp
->rack
.reo_wnd_persist
= 0;
560 newtp
->rack
.dsack_seen
= 0;
562 __TCP_INC_STATS(sock_net(sk
), TCP_MIB_PASSIVEOPENS
);
566 EXPORT_SYMBOL(tcp_create_openreq_child
);
569 * Process an incoming packet for SYN_RECV sockets represented as a
570 * request_sock. Normally sk is the listener socket but for TFO it
571 * points to the child socket.
573 * XXX (TFO) - The current impl contains a special check for ack
574 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
576 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
579 struct sock
*tcp_check_req(struct sock
*sk
, struct sk_buff
*skb
,
580 struct request_sock
*req
,
583 struct tcp_options_received tmp_opt
;
585 const struct tcphdr
*th
= tcp_hdr(skb
);
586 __be32 flg
= tcp_flag_word(th
) & (TCP_FLAG_RST
|TCP_FLAG_SYN
|TCP_FLAG_ACK
);
587 bool paws_reject
= false;
590 tmp_opt
.saw_tstamp
= 0;
591 if (th
->doff
> (sizeof(struct tcphdr
)>>2)) {
592 tcp_parse_options(sock_net(sk
), skb
, &tmp_opt
, 0, NULL
);
594 if (tmp_opt
.saw_tstamp
) {
595 tmp_opt
.ts_recent
= req
->ts_recent
;
596 if (tmp_opt
.rcv_tsecr
)
597 tmp_opt
.rcv_tsecr
-= tcp_rsk(req
)->ts_off
;
598 /* We do not store true stamp, but it is not required,
599 * it can be estimated (approximately)
602 tmp_opt
.ts_recent_stamp
= get_seconds() - ((TCP_TIMEOUT_INIT
/HZ
)<<req
->num_timeout
);
603 paws_reject
= tcp_paws_reject(&tmp_opt
, th
->rst
);
607 /* Check for pure retransmitted SYN. */
608 if (TCP_SKB_CB(skb
)->seq
== tcp_rsk(req
)->rcv_isn
&&
609 flg
== TCP_FLAG_SYN
&&
612 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
613 * this case on figure 6 and figure 8, but formal
614 * protocol description says NOTHING.
615 * To be more exact, it says that we should send ACK,
616 * because this segment (at least, if it has no data)
619 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
620 * describe SYN-RECV state. All the description
621 * is wrong, we cannot believe to it and should
622 * rely only on common sense and implementation
625 * Enforce "SYN-ACK" according to figure 8, figure 6
626 * of RFC793, fixed by RFC1122.
628 * Note that even if there is new data in the SYN packet
629 * they will be thrown away too.
631 * Reset timer after retransmitting SYNACK, similar to
632 * the idea of fast retransmit in recovery.
634 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
635 LINUX_MIB_TCPACKSKIPPEDSYNRECV
,
636 &tcp_rsk(req
)->last_oow_ack_time
) &&
638 !inet_rtx_syn_ack(sk
, req
)) {
639 unsigned long expires
= jiffies
;
641 expires
+= min(TCP_TIMEOUT_INIT
<< req
->num_timeout
,
644 mod_timer_pending(&req
->rsk_timer
, expires
);
646 req
->rsk_timer
.expires
= expires
;
651 /* Further reproduces section "SEGMENT ARRIVES"
652 for state SYN-RECEIVED of RFC793.
653 It is broken, however, it does not work only
654 when SYNs are crossed.
656 You would think that SYN crossing is impossible here, since
657 we should have a SYN_SENT socket (from connect()) on our end,
658 but this is not true if the crossed SYNs were sent to both
659 ends by a malicious third party. We must defend against this,
660 and to do that we first verify the ACK (as per RFC793, page
661 36) and reset if it is invalid. Is this a true full defense?
662 To convince ourselves, let us consider a way in which the ACK
663 test can still pass in this 'malicious crossed SYNs' case.
664 Malicious sender sends identical SYNs (and thus identical sequence
665 numbers) to both A and B:
670 By our good fortune, both A and B select the same initial
671 send sequence number of seven :-)
673 A: sends SYN|ACK, seq=7, ack_seq=8
674 B: sends SYN|ACK, seq=7, ack_seq=8
676 So we are now A eating this SYN|ACK, ACK test passes. So
677 does sequence test, SYN is truncated, and thus we consider
680 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
681 bare ACK. Otherwise, we create an established connection. Both
682 ends (listening sockets) accept the new incoming connection and try
683 to talk to each other. 8-)
685 Note: This case is both harmless, and rare. Possibility is about the
686 same as us discovering intelligent life on another plant tomorrow.
688 But generally, we should (RFC lies!) to accept ACK
689 from SYNACK both here and in tcp_rcv_state_process().
690 tcp_rcv_state_process() does not, hence, we do not too.
692 Note that the case is absolutely generic:
693 we cannot optimize anything here without
694 violating protocol. All the checks must be made
695 before attempt to create socket.
698 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
699 * and the incoming segment acknowledges something not yet
700 * sent (the segment carries an unacceptable ACK) ...
703 * Invalid ACK: reset will be sent by listening socket.
704 * Note that the ACK validity check for a Fast Open socket is done
705 * elsewhere and is checked directly against the child socket rather
706 * than req because user data may have been sent out.
708 if ((flg
& TCP_FLAG_ACK
) && !fastopen
&&
709 (TCP_SKB_CB(skb
)->ack_seq
!=
710 tcp_rsk(req
)->snt_isn
+ 1))
713 /* Also, it would be not so bad idea to check rcv_tsecr, which
714 * is essentially ACK extension and too early or too late values
715 * should cause reset in unsynchronized states.
718 /* RFC793: "first check sequence number". */
720 if (paws_reject
|| !tcp_in_window(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
,
721 tcp_rsk(req
)->rcv_nxt
, tcp_rsk(req
)->rcv_nxt
+ req
->rsk_rcv_wnd
)) {
722 /* Out of window: send ACK and drop. */
723 if (!(flg
& TCP_FLAG_RST
) &&
724 !tcp_oow_rate_limited(sock_net(sk
), skb
,
725 LINUX_MIB_TCPACKSKIPPEDSYNRECV
,
726 &tcp_rsk(req
)->last_oow_ack_time
))
727 req
->rsk_ops
->send_ack(sk
, skb
, req
);
729 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
733 /* In sequence, PAWS is OK. */
735 if (tmp_opt
.saw_tstamp
&& !after(TCP_SKB_CB(skb
)->seq
, tcp_rsk(req
)->rcv_nxt
))
736 req
->ts_recent
= tmp_opt
.rcv_tsval
;
738 if (TCP_SKB_CB(skb
)->seq
== tcp_rsk(req
)->rcv_isn
) {
739 /* Truncate SYN, it is out of window starting
740 at tcp_rsk(req)->rcv_isn + 1. */
741 flg
&= ~TCP_FLAG_SYN
;
744 /* RFC793: "second check the RST bit" and
745 * "fourth, check the SYN bit"
747 if (flg
& (TCP_FLAG_RST
|TCP_FLAG_SYN
)) {
748 __TCP_INC_STATS(sock_net(sk
), TCP_MIB_ATTEMPTFAILS
);
749 goto embryonic_reset
;
752 /* ACK sequence verified above, just make sure ACK is
753 * set. If ACK not set, just silently drop the packet.
755 * XXX (TFO) - if we ever allow "data after SYN", the
756 * following check needs to be removed.
758 if (!(flg
& TCP_FLAG_ACK
))
761 /* For Fast Open no more processing is needed (sk is the
767 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
768 if (req
->num_timeout
< inet_csk(sk
)->icsk_accept_queue
.rskq_defer_accept
&&
769 TCP_SKB_CB(skb
)->end_seq
== tcp_rsk(req
)->rcv_isn
+ 1) {
770 inet_rsk(req
)->acked
= 1;
771 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDEFERACCEPTDROP
);
775 /* OK, ACK is valid, create big socket and
776 * feed this segment to it. It will repeat all
777 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
778 * ESTABLISHED STATE. If it will be dropped after
779 * socket is created, wait for troubles.
781 child
= inet_csk(sk
)->icsk_af_ops
->syn_recv_sock(sk
, skb
, req
, NULL
,
784 goto listen_overflow
;
786 sock_rps_save_rxhash(child
, skb
);
787 tcp_synack_rtt_meas(child
, req
);
788 return inet_csk_complete_hashdance(sk
, child
, req
, own_req
);
791 if (!sock_net(sk
)->ipv4
.sysctl_tcp_abort_on_overflow
) {
792 inet_rsk(req
)->acked
= 1;
797 if (!(flg
& TCP_FLAG_RST
)) {
798 /* Received a bad SYN pkt - for TFO We try not to reset
799 * the local connection unless it's really necessary to
800 * avoid becoming vulnerable to outside attack aiming at
801 * resetting legit local connections.
803 req
->rsk_ops
->send_reset(sk
, skb
);
804 } else if (fastopen
) { /* received a valid RST pkt */
805 reqsk_fastopen_remove(sk
, req
, true);
809 inet_csk_reqsk_queue_drop(sk
, req
);
810 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_EMBRYONICRSTS
);
814 EXPORT_SYMBOL(tcp_check_req
);
817 * Queue segment on the new socket if the new socket is active,
818 * otherwise we just shortcircuit this and continue with
821 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
822 * when entering. But other states are possible due to a race condition
823 * where after __inet_lookup_established() fails but before the listener
824 * locked is obtained, other packets cause the same connection to
828 int tcp_child_process(struct sock
*parent
, struct sock
*child
,
832 int state
= child
->sk_state
;
834 /* record NAPI ID of child */
835 sk_mark_napi_id(child
, skb
);
837 tcp_segs_in(tcp_sk(child
), skb
);
838 if (!sock_owned_by_user(child
)) {
839 ret
= tcp_rcv_state_process(child
, skb
);
840 /* Wakeup parent, send SIGIO */
841 if (state
== TCP_SYN_RECV
&& child
->sk_state
!= state
)
842 parent
->sk_data_ready(parent
);
844 /* Alas, it is possible again, because we do lookup
845 * in main socket hash table and lock on listening
846 * socket does not protect us more.
848 __sk_add_backlog(child
, skb
);
851 bh_unlock_sock(child
);
855 EXPORT_SYMBOL(tcp_child_process
);