xtensa: support DMA buffers in high memory
[cris-mirror.git] / net / mac80211 / sta_info.c
blob0c5627f8a104e17fb54f55c09da597ef84af5be3
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
4 * Copyright 2013-2014 Intel Mobile Communications GmbH
5 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/etherdevice.h>
15 #include <linux/netdevice.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/skbuff.h>
19 #include <linux/if_arp.h>
20 #include <linux/timer.h>
21 #include <linux/rtnetlink.h>
23 #include <net/codel.h>
24 #include <net/mac80211.h>
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "rate.h"
28 #include "sta_info.h"
29 #include "debugfs_sta.h"
30 #include "mesh.h"
31 #include "wme.h"
33 /**
34 * DOC: STA information lifetime rules
36 * STA info structures (&struct sta_info) are managed in a hash table
37 * for faster lookup and a list for iteration. They are managed using
38 * RCU, i.e. access to the list and hash table is protected by RCU.
40 * Upon allocating a STA info structure with sta_info_alloc(), the caller
41 * owns that structure. It must then insert it into the hash table using
42 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
43 * case (which acquires an rcu read section but must not be called from
44 * within one) will the pointer still be valid after the call. Note that
45 * the caller may not do much with the STA info before inserting it, in
46 * particular, it may not start any mesh peer link management or add
47 * encryption keys.
49 * When the insertion fails (sta_info_insert()) returns non-zero), the
50 * structure will have been freed by sta_info_insert()!
52 * Station entries are added by mac80211 when you establish a link with a
53 * peer. This means different things for the different type of interfaces
54 * we support. For a regular station this mean we add the AP sta when we
55 * receive an association response from the AP. For IBSS this occurs when
56 * get to know about a peer on the same IBSS. For WDS we add the sta for
57 * the peer immediately upon device open. When using AP mode we add stations
58 * for each respective station upon request from userspace through nl80211.
60 * In order to remove a STA info structure, various sta_info_destroy_*()
61 * calls are available.
63 * There is no concept of ownership on a STA entry, each structure is
64 * owned by the global hash table/list until it is removed. All users of
65 * the structure need to be RCU protected so that the structure won't be
66 * freed before they are done using it.
69 static const struct rhashtable_params sta_rht_params = {
70 .nelem_hint = 3, /* start small */
71 .automatic_shrinking = true,
72 .head_offset = offsetof(struct sta_info, hash_node),
73 .key_offset = offsetof(struct sta_info, addr),
74 .key_len = ETH_ALEN,
75 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
78 /* Caller must hold local->sta_mtx */
79 static int sta_info_hash_del(struct ieee80211_local *local,
80 struct sta_info *sta)
82 return rhltable_remove(&local->sta_hash, &sta->hash_node,
83 sta_rht_params);
86 static void __cleanup_single_sta(struct sta_info *sta)
88 int ac, i;
89 struct tid_ampdu_tx *tid_tx;
90 struct ieee80211_sub_if_data *sdata = sta->sdata;
91 struct ieee80211_local *local = sdata->local;
92 struct fq *fq = &local->fq;
93 struct ps_data *ps;
95 if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
96 test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
97 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
98 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
99 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
100 ps = &sdata->bss->ps;
101 else if (ieee80211_vif_is_mesh(&sdata->vif))
102 ps = &sdata->u.mesh.ps;
103 else
104 return;
106 clear_sta_flag(sta, WLAN_STA_PS_STA);
107 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
108 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
110 atomic_dec(&ps->num_sta_ps);
113 if (sta->sta.txq[0]) {
114 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
115 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]);
117 spin_lock_bh(&fq->lock);
118 ieee80211_txq_purge(local, txqi);
119 spin_unlock_bh(&fq->lock);
123 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
124 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
125 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
126 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
129 if (ieee80211_vif_is_mesh(&sdata->vif))
130 mesh_sta_cleanup(sta);
132 cancel_work_sync(&sta->drv_deliver_wk);
135 * Destroy aggregation state here. It would be nice to wait for the
136 * driver to finish aggregation stop and then clean up, but for now
137 * drivers have to handle aggregation stop being requested, followed
138 * directly by station destruction.
140 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
141 kfree(sta->ampdu_mlme.tid_start_tx[i]);
142 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
143 if (!tid_tx)
144 continue;
145 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
146 kfree(tid_tx);
150 static void cleanup_single_sta(struct sta_info *sta)
152 struct ieee80211_sub_if_data *sdata = sta->sdata;
153 struct ieee80211_local *local = sdata->local;
155 __cleanup_single_sta(sta);
156 sta_info_free(local, sta);
159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
160 const u8 *addr)
162 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
165 /* protected by RCU */
166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
167 const u8 *addr)
169 struct ieee80211_local *local = sdata->local;
170 struct rhlist_head *tmp;
171 struct sta_info *sta;
173 rcu_read_lock();
174 for_each_sta_info(local, addr, sta, tmp) {
175 if (sta->sdata == sdata) {
176 rcu_read_unlock();
177 /* this is safe as the caller must already hold
178 * another rcu read section or the mutex
180 return sta;
183 rcu_read_unlock();
184 return NULL;
188 * Get sta info either from the specified interface
189 * or from one of its vlans
191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
192 const u8 *addr)
194 struct ieee80211_local *local = sdata->local;
195 struct rhlist_head *tmp;
196 struct sta_info *sta;
198 rcu_read_lock();
199 for_each_sta_info(local, addr, sta, tmp) {
200 if (sta->sdata == sdata ||
201 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
202 rcu_read_unlock();
203 /* this is safe as the caller must already hold
204 * another rcu read section or the mutex
206 return sta;
209 rcu_read_unlock();
210 return NULL;
213 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
214 int idx)
216 struct ieee80211_local *local = sdata->local;
217 struct sta_info *sta;
218 int i = 0;
220 list_for_each_entry_rcu(sta, &local->sta_list, list) {
221 if (sdata != sta->sdata)
222 continue;
223 if (i < idx) {
224 ++i;
225 continue;
227 return sta;
230 return NULL;
234 * sta_info_free - free STA
236 * @local: pointer to the global information
237 * @sta: STA info to free
239 * This function must undo everything done by sta_info_alloc()
240 * that may happen before sta_info_insert(). It may only be
241 * called when sta_info_insert() has not been attempted (and
242 * if that fails, the station is freed anyway.)
244 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
246 if (sta->rate_ctrl)
247 rate_control_free_sta(sta);
249 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
251 if (sta->sta.txq[0])
252 kfree(to_txq_info(sta->sta.txq[0]));
253 kfree(rcu_dereference_raw(sta->sta.rates));
254 #ifdef CONFIG_MAC80211_MESH
255 kfree(sta->mesh);
256 #endif
257 free_percpu(sta->pcpu_rx_stats);
258 kfree(sta);
261 /* Caller must hold local->sta_mtx */
262 static int sta_info_hash_add(struct ieee80211_local *local,
263 struct sta_info *sta)
265 return rhltable_insert(&local->sta_hash, &sta->hash_node,
266 sta_rht_params);
269 static void sta_deliver_ps_frames(struct work_struct *wk)
271 struct sta_info *sta;
273 sta = container_of(wk, struct sta_info, drv_deliver_wk);
275 if (sta->dead)
276 return;
278 local_bh_disable();
279 if (!test_sta_flag(sta, WLAN_STA_PS_STA))
280 ieee80211_sta_ps_deliver_wakeup(sta);
281 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
282 ieee80211_sta_ps_deliver_poll_response(sta);
283 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
284 ieee80211_sta_ps_deliver_uapsd(sta);
285 local_bh_enable();
288 static int sta_prepare_rate_control(struct ieee80211_local *local,
289 struct sta_info *sta, gfp_t gfp)
291 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
292 return 0;
294 sta->rate_ctrl = local->rate_ctrl;
295 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
296 sta, gfp);
297 if (!sta->rate_ctrl_priv)
298 return -ENOMEM;
300 return 0;
303 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
304 const u8 *addr, gfp_t gfp)
306 struct ieee80211_local *local = sdata->local;
307 struct ieee80211_hw *hw = &local->hw;
308 struct sta_info *sta;
309 int i;
311 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
312 if (!sta)
313 return NULL;
315 if (ieee80211_hw_check(hw, USES_RSS)) {
316 sta->pcpu_rx_stats =
317 alloc_percpu(struct ieee80211_sta_rx_stats);
318 if (!sta->pcpu_rx_stats)
319 goto free;
322 spin_lock_init(&sta->lock);
323 spin_lock_init(&sta->ps_lock);
324 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
325 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
326 mutex_init(&sta->ampdu_mlme.mtx);
327 #ifdef CONFIG_MAC80211_MESH
328 if (ieee80211_vif_is_mesh(&sdata->vif)) {
329 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
330 if (!sta->mesh)
331 goto free;
332 sta->mesh->plink_sta = sta;
333 spin_lock_init(&sta->mesh->plink_lock);
334 if (ieee80211_vif_is_mesh(&sdata->vif) &&
335 !sdata->u.mesh.user_mpm)
336 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer,
338 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
340 #endif
342 memcpy(sta->addr, addr, ETH_ALEN);
343 memcpy(sta->sta.addr, addr, ETH_ALEN);
344 sta->sta.max_rx_aggregation_subframes =
345 local->hw.max_rx_aggregation_subframes;
347 sta->local = local;
348 sta->sdata = sdata;
349 sta->rx_stats.last_rx = jiffies;
351 u64_stats_init(&sta->rx_stats.syncp);
353 sta->sta_state = IEEE80211_STA_NONE;
355 /* Mark TID as unreserved */
356 sta->reserved_tid = IEEE80211_TID_UNRESERVED;
358 sta->last_connected = ktime_get_seconds();
359 ewma_signal_init(&sta->rx_stats_avg.signal);
360 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
361 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
363 if (local->ops->wake_tx_queue) {
364 void *txq_data;
365 int size = sizeof(struct txq_info) +
366 ALIGN(hw->txq_data_size, sizeof(void *));
368 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
369 if (!txq_data)
370 goto free;
372 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
373 struct txq_info *txq = txq_data + i * size;
375 ieee80211_txq_init(sdata, sta, txq, i);
379 if (sta_prepare_rate_control(local, sta, gfp))
380 goto free_txq;
382 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
383 skb_queue_head_init(&sta->ps_tx_buf[i]);
384 skb_queue_head_init(&sta->tx_filtered[i]);
387 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
388 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
390 sta->sta.smps_mode = IEEE80211_SMPS_OFF;
391 if (sdata->vif.type == NL80211_IFTYPE_AP ||
392 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
393 struct ieee80211_supported_band *sband;
394 u8 smps;
396 sband = ieee80211_get_sband(sdata);
397 if (!sband)
398 goto free_txq;
400 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
401 IEEE80211_HT_CAP_SM_PS_SHIFT;
403 * Assume that hostapd advertises our caps in the beacon and
404 * this is the known_smps_mode for a station that just assciated
406 switch (smps) {
407 case WLAN_HT_SMPS_CONTROL_DISABLED:
408 sta->known_smps_mode = IEEE80211_SMPS_OFF;
409 break;
410 case WLAN_HT_SMPS_CONTROL_STATIC:
411 sta->known_smps_mode = IEEE80211_SMPS_STATIC;
412 break;
413 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
414 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
415 break;
416 default:
417 WARN_ON(1);
421 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
423 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD;
424 sta->cparams.target = MS2TIME(20);
425 sta->cparams.interval = MS2TIME(100);
426 sta->cparams.ecn = true;
428 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
430 return sta;
432 free_txq:
433 if (sta->sta.txq[0])
434 kfree(to_txq_info(sta->sta.txq[0]));
435 free:
436 #ifdef CONFIG_MAC80211_MESH
437 kfree(sta->mesh);
438 #endif
439 kfree(sta);
440 return NULL;
443 static int sta_info_insert_check(struct sta_info *sta)
445 struct ieee80211_sub_if_data *sdata = sta->sdata;
448 * Can't be a WARN_ON because it can be triggered through a race:
449 * something inserts a STA (on one CPU) without holding the RTNL
450 * and another CPU turns off the net device.
452 if (unlikely(!ieee80211_sdata_running(sdata)))
453 return -ENETDOWN;
455 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
456 is_multicast_ether_addr(sta->sta.addr)))
457 return -EINVAL;
459 /* The RCU read lock is required by rhashtable due to
460 * asynchronous resize/rehash. We also require the mutex
461 * for correctness.
463 rcu_read_lock();
464 lockdep_assert_held(&sdata->local->sta_mtx);
465 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
466 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
467 rcu_read_unlock();
468 return -ENOTUNIQ;
470 rcu_read_unlock();
472 return 0;
475 static int sta_info_insert_drv_state(struct ieee80211_local *local,
476 struct ieee80211_sub_if_data *sdata,
477 struct sta_info *sta)
479 enum ieee80211_sta_state state;
480 int err = 0;
482 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
483 err = drv_sta_state(local, sdata, sta, state, state + 1);
484 if (err)
485 break;
488 if (!err) {
490 * Drivers using legacy sta_add/sta_remove callbacks only
491 * get uploaded set to true after sta_add is called.
493 if (!local->ops->sta_add)
494 sta->uploaded = true;
495 return 0;
498 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
499 sdata_info(sdata,
500 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
501 sta->sta.addr, state + 1, err);
502 err = 0;
505 /* unwind on error */
506 for (; state > IEEE80211_STA_NOTEXIST; state--)
507 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
509 return err;
512 static void
513 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
515 struct ieee80211_local *local = sdata->local;
516 bool allow_p2p_go_ps = sdata->vif.p2p;
517 struct sta_info *sta;
519 rcu_read_lock();
520 list_for_each_entry_rcu(sta, &local->sta_list, list) {
521 if (sdata != sta->sdata ||
522 !test_sta_flag(sta, WLAN_STA_ASSOC))
523 continue;
524 if (!sta->sta.support_p2p_ps) {
525 allow_p2p_go_ps = false;
526 break;
529 rcu_read_unlock();
531 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
532 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
533 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
538 * should be called with sta_mtx locked
539 * this function replaces the mutex lock
540 * with a RCU lock
542 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
544 struct ieee80211_local *local = sta->local;
545 struct ieee80211_sub_if_data *sdata = sta->sdata;
546 struct station_info *sinfo = NULL;
547 int err = 0;
549 lockdep_assert_held(&local->sta_mtx);
551 /* check if STA exists already */
552 if (sta_info_get_bss(sdata, sta->sta.addr)) {
553 err = -EEXIST;
554 goto out_err;
557 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
558 if (!sinfo) {
559 err = -ENOMEM;
560 goto out_err;
563 local->num_sta++;
564 local->sta_generation++;
565 smp_mb();
567 /* simplify things and don't accept BA sessions yet */
568 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
570 /* make the station visible */
571 err = sta_info_hash_add(local, sta);
572 if (err)
573 goto out_drop_sta;
575 list_add_tail_rcu(&sta->list, &local->sta_list);
577 /* notify driver */
578 err = sta_info_insert_drv_state(local, sdata, sta);
579 if (err)
580 goto out_remove;
582 set_sta_flag(sta, WLAN_STA_INSERTED);
584 if (sta->sta_state >= IEEE80211_STA_ASSOC) {
585 ieee80211_recalc_min_chandef(sta->sdata);
586 if (!sta->sta.support_p2p_ps)
587 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
590 /* accept BA sessions now */
591 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
593 ieee80211_sta_debugfs_add(sta);
594 rate_control_add_sta_debugfs(sta);
596 sinfo->generation = local->sta_generation;
597 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
598 kfree(sinfo);
600 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
602 /* move reference to rcu-protected */
603 rcu_read_lock();
604 mutex_unlock(&local->sta_mtx);
606 if (ieee80211_vif_is_mesh(&sdata->vif))
607 mesh_accept_plinks_update(sdata);
609 return 0;
610 out_remove:
611 sta_info_hash_del(local, sta);
612 list_del_rcu(&sta->list);
613 out_drop_sta:
614 local->num_sta--;
615 synchronize_net();
616 __cleanup_single_sta(sta);
617 out_err:
618 mutex_unlock(&local->sta_mtx);
619 kfree(sinfo);
620 rcu_read_lock();
621 return err;
624 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
626 struct ieee80211_local *local = sta->local;
627 int err;
629 might_sleep();
631 mutex_lock(&local->sta_mtx);
633 err = sta_info_insert_check(sta);
634 if (err) {
635 mutex_unlock(&local->sta_mtx);
636 rcu_read_lock();
637 goto out_free;
640 err = sta_info_insert_finish(sta);
641 if (err)
642 goto out_free;
644 return 0;
645 out_free:
646 sta_info_free(local, sta);
647 return err;
650 int sta_info_insert(struct sta_info *sta)
652 int err = sta_info_insert_rcu(sta);
654 rcu_read_unlock();
656 return err;
659 static inline void __bss_tim_set(u8 *tim, u16 id)
662 * This format has been mandated by the IEEE specifications,
663 * so this line may not be changed to use the __set_bit() format.
665 tim[id / 8] |= (1 << (id % 8));
668 static inline void __bss_tim_clear(u8 *tim, u16 id)
671 * This format has been mandated by the IEEE specifications,
672 * so this line may not be changed to use the __clear_bit() format.
674 tim[id / 8] &= ~(1 << (id % 8));
677 static inline bool __bss_tim_get(u8 *tim, u16 id)
680 * This format has been mandated by the IEEE specifications,
681 * so this line may not be changed to use the test_bit() format.
683 return tim[id / 8] & (1 << (id % 8));
686 static unsigned long ieee80211_tids_for_ac(int ac)
688 /* If we ever support TIDs > 7, this obviously needs to be adjusted */
689 switch (ac) {
690 case IEEE80211_AC_VO:
691 return BIT(6) | BIT(7);
692 case IEEE80211_AC_VI:
693 return BIT(4) | BIT(5);
694 case IEEE80211_AC_BE:
695 return BIT(0) | BIT(3);
696 case IEEE80211_AC_BK:
697 return BIT(1) | BIT(2);
698 default:
699 WARN_ON(1);
700 return 0;
704 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
706 struct ieee80211_local *local = sta->local;
707 struct ps_data *ps;
708 bool indicate_tim = false;
709 u8 ignore_for_tim = sta->sta.uapsd_queues;
710 int ac;
711 u16 id = sta->sta.aid;
713 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
714 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
715 if (WARN_ON_ONCE(!sta->sdata->bss))
716 return;
718 ps = &sta->sdata->bss->ps;
719 #ifdef CONFIG_MAC80211_MESH
720 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
721 ps = &sta->sdata->u.mesh.ps;
722 #endif
723 } else {
724 return;
727 /* No need to do anything if the driver does all */
728 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim)
729 return;
731 if (sta->dead)
732 goto done;
735 * If all ACs are delivery-enabled then we should build
736 * the TIM bit for all ACs anyway; if only some are then
737 * we ignore those and build the TIM bit using only the
738 * non-enabled ones.
740 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
741 ignore_for_tim = 0;
743 if (ignore_pending)
744 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
746 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
747 unsigned long tids;
749 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
750 continue;
752 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
753 !skb_queue_empty(&sta->ps_tx_buf[ac]);
754 if (indicate_tim)
755 break;
757 tids = ieee80211_tids_for_ac(ac);
759 indicate_tim |=
760 sta->driver_buffered_tids & tids;
761 indicate_tim |=
762 sta->txq_buffered_tids & tids;
765 done:
766 spin_lock_bh(&local->tim_lock);
768 if (indicate_tim == __bss_tim_get(ps->tim, id))
769 goto out_unlock;
771 if (indicate_tim)
772 __bss_tim_set(ps->tim, id);
773 else
774 __bss_tim_clear(ps->tim, id);
776 if (local->ops->set_tim && !WARN_ON(sta->dead)) {
777 local->tim_in_locked_section = true;
778 drv_set_tim(local, &sta->sta, indicate_tim);
779 local->tim_in_locked_section = false;
782 out_unlock:
783 spin_unlock_bh(&local->tim_lock);
786 void sta_info_recalc_tim(struct sta_info *sta)
788 __sta_info_recalc_tim(sta, false);
791 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
793 struct ieee80211_tx_info *info;
794 int timeout;
796 if (!skb)
797 return false;
799 info = IEEE80211_SKB_CB(skb);
801 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
802 timeout = (sta->listen_interval *
803 sta->sdata->vif.bss_conf.beacon_int *
804 32 / 15625) * HZ;
805 if (timeout < STA_TX_BUFFER_EXPIRE)
806 timeout = STA_TX_BUFFER_EXPIRE;
807 return time_after(jiffies, info->control.jiffies + timeout);
811 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
812 struct sta_info *sta, int ac)
814 unsigned long flags;
815 struct sk_buff *skb;
818 * First check for frames that should expire on the filtered
819 * queue. Frames here were rejected by the driver and are on
820 * a separate queue to avoid reordering with normal PS-buffered
821 * frames. They also aren't accounted for right now in the
822 * total_ps_buffered counter.
824 for (;;) {
825 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
826 skb = skb_peek(&sta->tx_filtered[ac]);
827 if (sta_info_buffer_expired(sta, skb))
828 skb = __skb_dequeue(&sta->tx_filtered[ac]);
829 else
830 skb = NULL;
831 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
834 * Frames are queued in order, so if this one
835 * hasn't expired yet we can stop testing. If
836 * we actually reached the end of the queue we
837 * also need to stop, of course.
839 if (!skb)
840 break;
841 ieee80211_free_txskb(&local->hw, skb);
845 * Now also check the normal PS-buffered queue, this will
846 * only find something if the filtered queue was emptied
847 * since the filtered frames are all before the normal PS
848 * buffered frames.
850 for (;;) {
851 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
852 skb = skb_peek(&sta->ps_tx_buf[ac]);
853 if (sta_info_buffer_expired(sta, skb))
854 skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
855 else
856 skb = NULL;
857 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
860 * frames are queued in order, so if this one
861 * hasn't expired yet (or we reached the end of
862 * the queue) we can stop testing
864 if (!skb)
865 break;
867 local->total_ps_buffered--;
868 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
869 sta->sta.addr);
870 ieee80211_free_txskb(&local->hw, skb);
874 * Finally, recalculate the TIM bit for this station -- it might
875 * now be clear because the station was too slow to retrieve its
876 * frames.
878 sta_info_recalc_tim(sta);
881 * Return whether there are any frames still buffered, this is
882 * used to check whether the cleanup timer still needs to run,
883 * if there are no frames we don't need to rearm the timer.
885 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
886 skb_queue_empty(&sta->tx_filtered[ac]));
889 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
890 struct sta_info *sta)
892 bool have_buffered = false;
893 int ac;
895 /* This is only necessary for stations on BSS/MBSS interfaces */
896 if (!sta->sdata->bss &&
897 !ieee80211_vif_is_mesh(&sta->sdata->vif))
898 return false;
900 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
901 have_buffered |=
902 sta_info_cleanup_expire_buffered_ac(local, sta, ac);
904 return have_buffered;
907 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
909 struct ieee80211_local *local;
910 struct ieee80211_sub_if_data *sdata;
911 int ret;
913 might_sleep();
915 if (!sta)
916 return -ENOENT;
918 local = sta->local;
919 sdata = sta->sdata;
921 lockdep_assert_held(&local->sta_mtx);
924 * Before removing the station from the driver and
925 * rate control, it might still start new aggregation
926 * sessions -- block that to make sure the tear-down
927 * will be sufficient.
929 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
930 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
933 * Before removing the station from the driver there might be pending
934 * rx frames on RSS queues sent prior to the disassociation - wait for
935 * all such frames to be processed.
937 drv_sync_rx_queues(local, sta);
939 ret = sta_info_hash_del(local, sta);
940 if (WARN_ON(ret))
941 return ret;
944 * for TDLS peers, make sure to return to the base channel before
945 * removal.
947 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
948 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
949 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
952 list_del_rcu(&sta->list);
953 sta->removed = true;
955 drv_sta_pre_rcu_remove(local, sta->sdata, sta);
957 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
958 rcu_access_pointer(sdata->u.vlan.sta) == sta)
959 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
961 return 0;
964 static void __sta_info_destroy_part2(struct sta_info *sta)
966 struct ieee80211_local *local = sta->local;
967 struct ieee80211_sub_if_data *sdata = sta->sdata;
968 struct station_info *sinfo;
969 int ret;
972 * NOTE: This assumes at least synchronize_net() was done
973 * after _part1 and before _part2!
976 might_sleep();
977 lockdep_assert_held(&local->sta_mtx);
979 /* now keys can no longer be reached */
980 ieee80211_free_sta_keys(local, sta);
982 /* disable TIM bit - last chance to tell driver */
983 __sta_info_recalc_tim(sta, true);
985 sta->dead = true;
987 local->num_sta--;
988 local->sta_generation++;
990 while (sta->sta_state > IEEE80211_STA_NONE) {
991 ret = sta_info_move_state(sta, sta->sta_state - 1);
992 if (ret) {
993 WARN_ON_ONCE(1);
994 break;
998 if (sta->uploaded) {
999 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
1000 IEEE80211_STA_NOTEXIST);
1001 WARN_ON_ONCE(ret != 0);
1004 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
1006 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
1007 if (sinfo)
1008 sta_set_sinfo(sta, sinfo);
1009 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
1010 kfree(sinfo);
1012 rate_control_remove_sta_debugfs(sta);
1013 ieee80211_sta_debugfs_remove(sta);
1015 cleanup_single_sta(sta);
1018 int __must_check __sta_info_destroy(struct sta_info *sta)
1020 int err = __sta_info_destroy_part1(sta);
1022 if (err)
1023 return err;
1025 synchronize_net();
1027 __sta_info_destroy_part2(sta);
1029 return 0;
1032 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
1034 struct sta_info *sta;
1035 int ret;
1037 mutex_lock(&sdata->local->sta_mtx);
1038 sta = sta_info_get(sdata, addr);
1039 ret = __sta_info_destroy(sta);
1040 mutex_unlock(&sdata->local->sta_mtx);
1042 return ret;
1045 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1046 const u8 *addr)
1048 struct sta_info *sta;
1049 int ret;
1051 mutex_lock(&sdata->local->sta_mtx);
1052 sta = sta_info_get_bss(sdata, addr);
1053 ret = __sta_info_destroy(sta);
1054 mutex_unlock(&sdata->local->sta_mtx);
1056 return ret;
1059 static void sta_info_cleanup(struct timer_list *t)
1061 struct ieee80211_local *local = from_timer(local, t, sta_cleanup);
1062 struct sta_info *sta;
1063 bool timer_needed = false;
1065 rcu_read_lock();
1066 list_for_each_entry_rcu(sta, &local->sta_list, list)
1067 if (sta_info_cleanup_expire_buffered(local, sta))
1068 timer_needed = true;
1069 rcu_read_unlock();
1071 if (local->quiescing)
1072 return;
1074 if (!timer_needed)
1075 return;
1077 mod_timer(&local->sta_cleanup,
1078 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1081 int sta_info_init(struct ieee80211_local *local)
1083 int err;
1085 err = rhltable_init(&local->sta_hash, &sta_rht_params);
1086 if (err)
1087 return err;
1089 spin_lock_init(&local->tim_lock);
1090 mutex_init(&local->sta_mtx);
1091 INIT_LIST_HEAD(&local->sta_list);
1093 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0);
1094 return 0;
1097 void sta_info_stop(struct ieee80211_local *local)
1099 del_timer_sync(&local->sta_cleanup);
1100 rhltable_destroy(&local->sta_hash);
1104 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1106 struct ieee80211_local *local = sdata->local;
1107 struct sta_info *sta, *tmp;
1108 LIST_HEAD(free_list);
1109 int ret = 0;
1111 might_sleep();
1113 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1114 WARN_ON(vlans && !sdata->bss);
1116 mutex_lock(&local->sta_mtx);
1117 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1118 if (sdata == sta->sdata ||
1119 (vlans && sdata->bss == sta->sdata->bss)) {
1120 if (!WARN_ON(__sta_info_destroy_part1(sta)))
1121 list_add(&sta->free_list, &free_list);
1122 ret++;
1126 if (!list_empty(&free_list)) {
1127 synchronize_net();
1128 list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1129 __sta_info_destroy_part2(sta);
1131 mutex_unlock(&local->sta_mtx);
1133 return ret;
1136 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1137 unsigned long exp_time)
1139 struct ieee80211_local *local = sdata->local;
1140 struct sta_info *sta, *tmp;
1142 mutex_lock(&local->sta_mtx);
1144 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1145 unsigned long last_active = ieee80211_sta_last_active(sta);
1147 if (sdata != sta->sdata)
1148 continue;
1150 if (time_is_before_jiffies(last_active + exp_time)) {
1151 sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1152 sta->sta.addr);
1154 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1155 test_sta_flag(sta, WLAN_STA_PS_STA))
1156 atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1158 WARN_ON(__sta_info_destroy(sta));
1162 mutex_unlock(&local->sta_mtx);
1165 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1166 const u8 *addr,
1167 const u8 *localaddr)
1169 struct ieee80211_local *local = hw_to_local(hw);
1170 struct rhlist_head *tmp;
1171 struct sta_info *sta;
1174 * Just return a random station if localaddr is NULL
1175 * ... first in list.
1177 for_each_sta_info(local, addr, sta, tmp) {
1178 if (localaddr &&
1179 !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1180 continue;
1181 if (!sta->uploaded)
1182 return NULL;
1183 return &sta->sta;
1186 return NULL;
1188 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1190 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1191 const u8 *addr)
1193 struct sta_info *sta;
1195 if (!vif)
1196 return NULL;
1198 sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1199 if (!sta)
1200 return NULL;
1202 if (!sta->uploaded)
1203 return NULL;
1205 return &sta->sta;
1207 EXPORT_SYMBOL(ieee80211_find_sta);
1209 /* powersave support code */
1210 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1212 struct ieee80211_sub_if_data *sdata = sta->sdata;
1213 struct ieee80211_local *local = sdata->local;
1214 struct sk_buff_head pending;
1215 int filtered = 0, buffered = 0, ac, i;
1216 unsigned long flags;
1217 struct ps_data *ps;
1219 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1220 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1221 u.ap);
1223 if (sdata->vif.type == NL80211_IFTYPE_AP)
1224 ps = &sdata->bss->ps;
1225 else if (ieee80211_vif_is_mesh(&sdata->vif))
1226 ps = &sdata->u.mesh.ps;
1227 else
1228 return;
1230 clear_sta_flag(sta, WLAN_STA_SP);
1232 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1233 sta->driver_buffered_tids = 0;
1234 sta->txq_buffered_tids = 0;
1236 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1237 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1239 if (sta->sta.txq[0]) {
1240 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1241 if (!txq_has_queue(sta->sta.txq[i]))
1242 continue;
1244 drv_wake_tx_queue(local, to_txq_info(sta->sta.txq[i]));
1248 skb_queue_head_init(&pending);
1250 /* sync with ieee80211_tx_h_unicast_ps_buf */
1251 spin_lock(&sta->ps_lock);
1252 /* Send all buffered frames to the station */
1253 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1254 int count = skb_queue_len(&pending), tmp;
1256 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1257 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1258 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1259 tmp = skb_queue_len(&pending);
1260 filtered += tmp - count;
1261 count = tmp;
1263 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1264 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1265 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1266 tmp = skb_queue_len(&pending);
1267 buffered += tmp - count;
1270 ieee80211_add_pending_skbs(local, &pending);
1272 /* now we're no longer in the deliver code */
1273 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1275 /* The station might have polled and then woken up before we responded,
1276 * so clear these flags now to avoid them sticking around.
1278 clear_sta_flag(sta, WLAN_STA_PSPOLL);
1279 clear_sta_flag(sta, WLAN_STA_UAPSD);
1280 spin_unlock(&sta->ps_lock);
1282 atomic_dec(&ps->num_sta_ps);
1284 /* This station just woke up and isn't aware of our SMPS state */
1285 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1286 !ieee80211_smps_is_restrictive(sta->known_smps_mode,
1287 sdata->smps_mode) &&
1288 sta->known_smps_mode != sdata->bss->req_smps &&
1289 sta_info_tx_streams(sta) != 1) {
1290 ht_dbg(sdata,
1291 "%pM just woke up and MIMO capable - update SMPS\n",
1292 sta->sta.addr);
1293 ieee80211_send_smps_action(sdata, sdata->bss->req_smps,
1294 sta->sta.addr,
1295 sdata->vif.bss_conf.bssid);
1298 local->total_ps_buffered -= buffered;
1300 sta_info_recalc_tim(sta);
1302 ps_dbg(sdata,
1303 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n",
1304 sta->sta.addr, sta->sta.aid, filtered, buffered);
1306 ieee80211_check_fast_xmit(sta);
1309 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1310 enum ieee80211_frame_release_type reason,
1311 bool call_driver, bool more_data)
1313 struct ieee80211_sub_if_data *sdata = sta->sdata;
1314 struct ieee80211_local *local = sdata->local;
1315 struct ieee80211_qos_hdr *nullfunc;
1316 struct sk_buff *skb;
1317 int size = sizeof(*nullfunc);
1318 __le16 fc;
1319 bool qos = sta->sta.wme;
1320 struct ieee80211_tx_info *info;
1321 struct ieee80211_chanctx_conf *chanctx_conf;
1323 if (qos) {
1324 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1325 IEEE80211_STYPE_QOS_NULLFUNC |
1326 IEEE80211_FCTL_FROMDS);
1327 } else {
1328 size -= 2;
1329 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1330 IEEE80211_STYPE_NULLFUNC |
1331 IEEE80211_FCTL_FROMDS);
1334 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1335 if (!skb)
1336 return;
1338 skb_reserve(skb, local->hw.extra_tx_headroom);
1340 nullfunc = skb_put(skb, size);
1341 nullfunc->frame_control = fc;
1342 nullfunc->duration_id = 0;
1343 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1344 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1345 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1346 nullfunc->seq_ctrl = 0;
1348 skb->priority = tid;
1349 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1350 if (qos) {
1351 nullfunc->qos_ctrl = cpu_to_le16(tid);
1353 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1354 nullfunc->qos_ctrl |=
1355 cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1356 if (more_data)
1357 nullfunc->frame_control |=
1358 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1362 info = IEEE80211_SKB_CB(skb);
1365 * Tell TX path to send this frame even though the
1366 * STA may still remain is PS mode after this frame
1367 * exchange. Also set EOSP to indicate this packet
1368 * ends the poll/service period.
1370 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1371 IEEE80211_TX_STATUS_EOSP |
1372 IEEE80211_TX_CTL_REQ_TX_STATUS;
1374 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1376 if (call_driver)
1377 drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1378 reason, false);
1380 skb->dev = sdata->dev;
1382 rcu_read_lock();
1383 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1384 if (WARN_ON(!chanctx_conf)) {
1385 rcu_read_unlock();
1386 kfree_skb(skb);
1387 return;
1390 info->band = chanctx_conf->def.chan->band;
1391 ieee80211_xmit(sdata, sta, skb);
1392 rcu_read_unlock();
1395 static int find_highest_prio_tid(unsigned long tids)
1397 /* lower 3 TIDs aren't ordered perfectly */
1398 if (tids & 0xF8)
1399 return fls(tids) - 1;
1400 /* TID 0 is BE just like TID 3 */
1401 if (tids & BIT(0))
1402 return 0;
1403 return fls(tids) - 1;
1406 /* Indicates if the MORE_DATA bit should be set in the last
1407 * frame obtained by ieee80211_sta_ps_get_frames.
1408 * Note that driver_release_tids is relevant only if
1409 * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1411 static bool
1412 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1413 enum ieee80211_frame_release_type reason,
1414 unsigned long driver_release_tids)
1416 int ac;
1418 /* If the driver has data on more than one TID then
1419 * certainly there's more data if we release just a
1420 * single frame now (from a single TID). This will
1421 * only happen for PS-Poll.
1423 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1424 hweight16(driver_release_tids) > 1)
1425 return true;
1427 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1428 if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1429 continue;
1431 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1432 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1433 return true;
1436 return false;
1439 static void
1440 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1441 enum ieee80211_frame_release_type reason,
1442 struct sk_buff_head *frames,
1443 unsigned long *driver_release_tids)
1445 struct ieee80211_sub_if_data *sdata = sta->sdata;
1446 struct ieee80211_local *local = sdata->local;
1447 int ac;
1449 /* Get response frame(s) and more data bit for the last one. */
1450 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1451 unsigned long tids;
1453 if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1454 continue;
1456 tids = ieee80211_tids_for_ac(ac);
1458 /* if we already have frames from software, then we can't also
1459 * release from hardware queues
1461 if (skb_queue_empty(frames)) {
1462 *driver_release_tids |=
1463 sta->driver_buffered_tids & tids;
1464 *driver_release_tids |= sta->txq_buffered_tids & tids;
1467 if (!*driver_release_tids) {
1468 struct sk_buff *skb;
1470 while (n_frames > 0) {
1471 skb = skb_dequeue(&sta->tx_filtered[ac]);
1472 if (!skb) {
1473 skb = skb_dequeue(
1474 &sta->ps_tx_buf[ac]);
1475 if (skb)
1476 local->total_ps_buffered--;
1478 if (!skb)
1479 break;
1480 n_frames--;
1481 __skb_queue_tail(frames, skb);
1485 /* If we have more frames buffered on this AC, then abort the
1486 * loop since we can't send more data from other ACs before
1487 * the buffered frames from this.
1489 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1490 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1491 break;
1495 static void
1496 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1497 int n_frames, u8 ignored_acs,
1498 enum ieee80211_frame_release_type reason)
1500 struct ieee80211_sub_if_data *sdata = sta->sdata;
1501 struct ieee80211_local *local = sdata->local;
1502 unsigned long driver_release_tids = 0;
1503 struct sk_buff_head frames;
1504 bool more_data;
1506 /* Service or PS-Poll period starts */
1507 set_sta_flag(sta, WLAN_STA_SP);
1509 __skb_queue_head_init(&frames);
1511 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1512 &frames, &driver_release_tids);
1514 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1516 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1517 driver_release_tids =
1518 BIT(find_highest_prio_tid(driver_release_tids));
1520 if (skb_queue_empty(&frames) && !driver_release_tids) {
1521 int tid, ac;
1524 * For PS-Poll, this can only happen due to a race condition
1525 * when we set the TIM bit and the station notices it, but
1526 * before it can poll for the frame we expire it.
1528 * For uAPSD, this is said in the standard (11.2.1.5 h):
1529 * At each unscheduled SP for a non-AP STA, the AP shall
1530 * attempt to transmit at least one MSDU or MMPDU, but no
1531 * more than the value specified in the Max SP Length field
1532 * in the QoS Capability element from delivery-enabled ACs,
1533 * that are destined for the non-AP STA.
1535 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1538 /* This will evaluate to 1, 3, 5 or 7. */
1539 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1540 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac]))
1541 break;
1542 tid = 7 - 2 * ac;
1544 ieee80211_send_null_response(sta, tid, reason, true, false);
1545 } else if (!driver_release_tids) {
1546 struct sk_buff_head pending;
1547 struct sk_buff *skb;
1548 int num = 0;
1549 u16 tids = 0;
1550 bool need_null = false;
1552 skb_queue_head_init(&pending);
1554 while ((skb = __skb_dequeue(&frames))) {
1555 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1556 struct ieee80211_hdr *hdr = (void *) skb->data;
1557 u8 *qoshdr = NULL;
1559 num++;
1562 * Tell TX path to send this frame even though the
1563 * STA may still remain is PS mode after this frame
1564 * exchange.
1566 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1567 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1570 * Use MoreData flag to indicate whether there are
1571 * more buffered frames for this STA
1573 if (more_data || !skb_queue_empty(&frames))
1574 hdr->frame_control |=
1575 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1576 else
1577 hdr->frame_control &=
1578 cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1580 if (ieee80211_is_data_qos(hdr->frame_control) ||
1581 ieee80211_is_qos_nullfunc(hdr->frame_control))
1582 qoshdr = ieee80211_get_qos_ctl(hdr);
1584 tids |= BIT(skb->priority);
1586 __skb_queue_tail(&pending, skb);
1588 /* end service period after last frame or add one */
1589 if (!skb_queue_empty(&frames))
1590 continue;
1592 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1593 /* for PS-Poll, there's only one frame */
1594 info->flags |= IEEE80211_TX_STATUS_EOSP |
1595 IEEE80211_TX_CTL_REQ_TX_STATUS;
1596 break;
1599 /* For uAPSD, things are a bit more complicated. If the
1600 * last frame has a QoS header (i.e. is a QoS-data or
1601 * QoS-nulldata frame) then just set the EOSP bit there
1602 * and be done.
1603 * If the frame doesn't have a QoS header (which means
1604 * it should be a bufferable MMPDU) then we can't set
1605 * the EOSP bit in the QoS header; add a QoS-nulldata
1606 * frame to the list to send it after the MMPDU.
1608 * Note that this code is only in the mac80211-release
1609 * code path, we assume that the driver will not buffer
1610 * anything but QoS-data frames, or if it does, will
1611 * create the QoS-nulldata frame by itself if needed.
1613 * Cf. 802.11-2012 10.2.1.10 (c).
1615 if (qoshdr) {
1616 *qoshdr |= IEEE80211_QOS_CTL_EOSP;
1618 info->flags |= IEEE80211_TX_STATUS_EOSP |
1619 IEEE80211_TX_CTL_REQ_TX_STATUS;
1620 } else {
1621 /* The standard isn't completely clear on this
1622 * as it says the more-data bit should be set
1623 * if there are more BUs. The QoS-Null frame
1624 * we're about to send isn't buffered yet, we
1625 * only create it below, but let's pretend it
1626 * was buffered just in case some clients only
1627 * expect more-data=0 when eosp=1.
1629 hdr->frame_control |=
1630 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1631 need_null = true;
1632 num++;
1634 break;
1637 drv_allow_buffered_frames(local, sta, tids, num,
1638 reason, more_data);
1640 ieee80211_add_pending_skbs(local, &pending);
1642 if (need_null)
1643 ieee80211_send_null_response(
1644 sta, find_highest_prio_tid(tids),
1645 reason, false, false);
1647 sta_info_recalc_tim(sta);
1648 } else {
1649 int tid;
1652 * We need to release a frame that is buffered somewhere in the
1653 * driver ... it'll have to handle that.
1654 * Note that the driver also has to check the number of frames
1655 * on the TIDs we're releasing from - if there are more than
1656 * n_frames it has to set the more-data bit (if we didn't ask
1657 * it to set it anyway due to other buffered frames); if there
1658 * are fewer than n_frames it has to make sure to adjust that
1659 * to allow the service period to end properly.
1661 drv_release_buffered_frames(local, sta, driver_release_tids,
1662 n_frames, reason, more_data);
1665 * Note that we don't recalculate the TIM bit here as it would
1666 * most likely have no effect at all unless the driver told us
1667 * that the TID(s) became empty before returning here from the
1668 * release function.
1669 * Either way, however, when the driver tells us that the TID(s)
1670 * became empty or we find that a txq became empty, we'll do the
1671 * TIM recalculation.
1674 if (!sta->sta.txq[0])
1675 return;
1677 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1678 if (!(driver_release_tids & BIT(tid)) ||
1679 txq_has_queue(sta->sta.txq[tid]))
1680 continue;
1682 sta_info_recalc_tim(sta);
1683 break;
1688 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1690 u8 ignore_for_response = sta->sta.uapsd_queues;
1693 * If all ACs are delivery-enabled then we should reply
1694 * from any of them, if only some are enabled we reply
1695 * only from the non-enabled ones.
1697 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1698 ignore_for_response = 0;
1700 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1701 IEEE80211_FRAME_RELEASE_PSPOLL);
1704 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1706 int n_frames = sta->sta.max_sp;
1707 u8 delivery_enabled = sta->sta.uapsd_queues;
1710 * If we ever grow support for TSPEC this might happen if
1711 * the TSPEC update from hostapd comes in between a trigger
1712 * frame setting WLAN_STA_UAPSD in the RX path and this
1713 * actually getting called.
1715 if (!delivery_enabled)
1716 return;
1718 switch (sta->sta.max_sp) {
1719 case 1:
1720 n_frames = 2;
1721 break;
1722 case 2:
1723 n_frames = 4;
1724 break;
1725 case 3:
1726 n_frames = 6;
1727 break;
1728 case 0:
1729 /* XXX: what is a good value? */
1730 n_frames = 128;
1731 break;
1734 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1735 IEEE80211_FRAME_RELEASE_UAPSD);
1738 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1739 struct ieee80211_sta *pubsta, bool block)
1741 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1743 trace_api_sta_block_awake(sta->local, pubsta, block);
1745 if (block) {
1746 set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1747 ieee80211_clear_fast_xmit(sta);
1748 return;
1751 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1752 return;
1754 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1755 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1756 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1757 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1758 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1759 test_sta_flag(sta, WLAN_STA_UAPSD)) {
1760 /* must be asleep in this case */
1761 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1762 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1763 } else {
1764 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1765 ieee80211_check_fast_xmit(sta);
1768 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1770 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1772 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1773 struct ieee80211_local *local = sta->local;
1775 trace_api_eosp(local, pubsta);
1777 clear_sta_flag(sta, WLAN_STA_SP);
1779 EXPORT_SYMBOL(ieee80211_sta_eosp);
1781 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1783 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1784 enum ieee80211_frame_release_type reason;
1785 bool more_data;
1787 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1789 reason = IEEE80211_FRAME_RELEASE_UAPSD;
1790 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1791 reason, 0);
1793 ieee80211_send_null_response(sta, tid, reason, false, more_data);
1795 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1797 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1798 u8 tid, bool buffered)
1800 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1802 if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1803 return;
1805 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1807 if (buffered)
1808 set_bit(tid, &sta->driver_buffered_tids);
1809 else
1810 clear_bit(tid, &sta->driver_buffered_tids);
1812 sta_info_recalc_tim(sta);
1814 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1816 int sta_info_move_state(struct sta_info *sta,
1817 enum ieee80211_sta_state new_state)
1819 might_sleep();
1821 if (sta->sta_state == new_state)
1822 return 0;
1824 /* check allowed transitions first */
1826 switch (new_state) {
1827 case IEEE80211_STA_NONE:
1828 if (sta->sta_state != IEEE80211_STA_AUTH)
1829 return -EINVAL;
1830 break;
1831 case IEEE80211_STA_AUTH:
1832 if (sta->sta_state != IEEE80211_STA_NONE &&
1833 sta->sta_state != IEEE80211_STA_ASSOC)
1834 return -EINVAL;
1835 break;
1836 case IEEE80211_STA_ASSOC:
1837 if (sta->sta_state != IEEE80211_STA_AUTH &&
1838 sta->sta_state != IEEE80211_STA_AUTHORIZED)
1839 return -EINVAL;
1840 break;
1841 case IEEE80211_STA_AUTHORIZED:
1842 if (sta->sta_state != IEEE80211_STA_ASSOC)
1843 return -EINVAL;
1844 break;
1845 default:
1846 WARN(1, "invalid state %d", new_state);
1847 return -EINVAL;
1850 sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1851 sta->sta.addr, new_state);
1854 * notify the driver before the actual changes so it can
1855 * fail the transition
1857 if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1858 int err = drv_sta_state(sta->local, sta->sdata, sta,
1859 sta->sta_state, new_state);
1860 if (err)
1861 return err;
1864 /* reflect the change in all state variables */
1866 switch (new_state) {
1867 case IEEE80211_STA_NONE:
1868 if (sta->sta_state == IEEE80211_STA_AUTH)
1869 clear_bit(WLAN_STA_AUTH, &sta->_flags);
1870 break;
1871 case IEEE80211_STA_AUTH:
1872 if (sta->sta_state == IEEE80211_STA_NONE) {
1873 set_bit(WLAN_STA_AUTH, &sta->_flags);
1874 } else if (sta->sta_state == IEEE80211_STA_ASSOC) {
1875 clear_bit(WLAN_STA_ASSOC, &sta->_flags);
1876 ieee80211_recalc_min_chandef(sta->sdata);
1877 if (!sta->sta.support_p2p_ps)
1878 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
1880 break;
1881 case IEEE80211_STA_ASSOC:
1882 if (sta->sta_state == IEEE80211_STA_AUTH) {
1883 set_bit(WLAN_STA_ASSOC, &sta->_flags);
1884 ieee80211_recalc_min_chandef(sta->sdata);
1885 if (!sta->sta.support_p2p_ps)
1886 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
1887 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1888 ieee80211_vif_dec_num_mcast(sta->sdata);
1889 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1890 ieee80211_clear_fast_xmit(sta);
1891 ieee80211_clear_fast_rx(sta);
1893 break;
1894 case IEEE80211_STA_AUTHORIZED:
1895 if (sta->sta_state == IEEE80211_STA_ASSOC) {
1896 ieee80211_vif_inc_num_mcast(sta->sdata);
1897 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1898 ieee80211_check_fast_xmit(sta);
1899 ieee80211_check_fast_rx(sta);
1901 break;
1902 default:
1903 break;
1906 sta->sta_state = new_state;
1908 return 0;
1911 u8 sta_info_tx_streams(struct sta_info *sta)
1913 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
1914 u8 rx_streams;
1916 if (!sta->sta.ht_cap.ht_supported)
1917 return 1;
1919 if (sta->sta.vht_cap.vht_supported) {
1920 int i;
1921 u16 tx_mcs_map =
1922 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
1924 for (i = 7; i >= 0; i--)
1925 if ((tx_mcs_map & (0x3 << (i * 2))) !=
1926 IEEE80211_VHT_MCS_NOT_SUPPORTED)
1927 return i + 1;
1930 if (ht_cap->mcs.rx_mask[3])
1931 rx_streams = 4;
1932 else if (ht_cap->mcs.rx_mask[2])
1933 rx_streams = 3;
1934 else if (ht_cap->mcs.rx_mask[1])
1935 rx_streams = 2;
1936 else
1937 rx_streams = 1;
1939 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
1940 return rx_streams;
1942 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
1943 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
1946 static struct ieee80211_sta_rx_stats *
1947 sta_get_last_rx_stats(struct sta_info *sta)
1949 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
1950 struct ieee80211_local *local = sta->local;
1951 int cpu;
1953 if (!ieee80211_hw_check(&local->hw, USES_RSS))
1954 return stats;
1956 for_each_possible_cpu(cpu) {
1957 struct ieee80211_sta_rx_stats *cpustats;
1959 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
1961 if (time_after(cpustats->last_rx, stats->last_rx))
1962 stats = cpustats;
1965 return stats;
1968 static void sta_stats_decode_rate(struct ieee80211_local *local, u16 rate,
1969 struct rate_info *rinfo)
1971 rinfo->bw = STA_STATS_GET(BW, rate);
1973 switch (STA_STATS_GET(TYPE, rate)) {
1974 case STA_STATS_RATE_TYPE_VHT:
1975 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
1976 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate);
1977 rinfo->nss = STA_STATS_GET(VHT_NSS, rate);
1978 if (STA_STATS_GET(SGI, rate))
1979 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
1980 break;
1981 case STA_STATS_RATE_TYPE_HT:
1982 rinfo->flags = RATE_INFO_FLAGS_MCS;
1983 rinfo->mcs = STA_STATS_GET(HT_MCS, rate);
1984 if (STA_STATS_GET(SGI, rate))
1985 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
1986 break;
1987 case STA_STATS_RATE_TYPE_LEGACY: {
1988 struct ieee80211_supported_band *sband;
1989 u16 brate;
1990 unsigned int shift;
1991 int band = STA_STATS_GET(LEGACY_BAND, rate);
1992 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate);
1994 rinfo->flags = 0;
1995 sband = local->hw.wiphy->bands[band];
1996 brate = sband->bitrates[rate_idx].bitrate;
1997 if (rinfo->bw == RATE_INFO_BW_5)
1998 shift = 2;
1999 else if (rinfo->bw == RATE_INFO_BW_10)
2000 shift = 1;
2001 else
2002 shift = 0;
2003 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
2004 break;
2009 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2011 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2013 if (rate == STA_STATS_RATE_INVALID)
2014 return -EINVAL;
2016 sta_stats_decode_rate(sta->local, rate, rinfo);
2017 return 0;
2020 static void sta_set_tidstats(struct sta_info *sta,
2021 struct cfg80211_tid_stats *tidstats,
2022 int tid)
2024 struct ieee80211_local *local = sta->local;
2026 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2027 unsigned int start;
2029 do {
2030 start = u64_stats_fetch_begin(&sta->rx_stats.syncp);
2031 tidstats->rx_msdu = sta->rx_stats.msdu[tid];
2032 } while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start));
2034 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2037 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2038 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2039 tidstats->tx_msdu = sta->tx_stats.msdu[tid];
2042 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2043 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2044 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2045 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
2048 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2049 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2050 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2051 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
2055 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2057 unsigned int start;
2058 u64 value;
2060 do {
2061 start = u64_stats_fetch_begin(&rxstats->syncp);
2062 value = rxstats->bytes;
2063 } while (u64_stats_fetch_retry(&rxstats->syncp, start));
2065 return value;
2068 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo)
2070 struct ieee80211_sub_if_data *sdata = sta->sdata;
2071 struct ieee80211_local *local = sdata->local;
2072 u32 thr = 0;
2073 int i, ac, cpu;
2074 struct ieee80211_sta_rx_stats *last_rxstats;
2076 last_rxstats = sta_get_last_rx_stats(sta);
2078 sinfo->generation = sdata->local->sta_generation;
2080 /* do before driver, so beacon filtering drivers have a
2081 * chance to e.g. just add the number of filtered beacons
2082 * (or just modify the value entirely, of course)
2084 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2085 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2087 drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2089 sinfo->filled |= BIT(NL80211_STA_INFO_INACTIVE_TIME) |
2090 BIT(NL80211_STA_INFO_STA_FLAGS) |
2091 BIT(NL80211_STA_INFO_BSS_PARAM) |
2092 BIT(NL80211_STA_INFO_CONNECTED_TIME) |
2093 BIT(NL80211_STA_INFO_RX_DROP_MISC);
2095 if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2096 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2097 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_LOSS);
2100 sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2101 sinfo->inactive_time =
2102 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2104 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_TX_BYTES64) |
2105 BIT(NL80211_STA_INFO_TX_BYTES)))) {
2106 sinfo->tx_bytes = 0;
2107 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2108 sinfo->tx_bytes += sta->tx_stats.bytes[ac];
2109 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES64);
2112 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_PACKETS))) {
2113 sinfo->tx_packets = 0;
2114 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2115 sinfo->tx_packets += sta->tx_stats.packets[ac];
2116 sinfo->filled |= BIT(NL80211_STA_INFO_TX_PACKETS);
2119 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_RX_BYTES64) |
2120 BIT(NL80211_STA_INFO_RX_BYTES)))) {
2121 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
2123 if (sta->pcpu_rx_stats) {
2124 for_each_possible_cpu(cpu) {
2125 struct ieee80211_sta_rx_stats *cpurxs;
2127 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2128 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2132 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BYTES64);
2135 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_PACKETS))) {
2136 sinfo->rx_packets = sta->rx_stats.packets;
2137 if (sta->pcpu_rx_stats) {
2138 for_each_possible_cpu(cpu) {
2139 struct ieee80211_sta_rx_stats *cpurxs;
2141 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2142 sinfo->rx_packets += cpurxs->packets;
2145 sinfo->filled |= BIT(NL80211_STA_INFO_RX_PACKETS);
2148 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_RETRIES))) {
2149 sinfo->tx_retries = sta->status_stats.retry_count;
2150 sinfo->filled |= BIT(NL80211_STA_INFO_TX_RETRIES);
2153 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_FAILED))) {
2154 sinfo->tx_failed = sta->status_stats.retry_failed;
2155 sinfo->filled |= BIT(NL80211_STA_INFO_TX_FAILED);
2158 sinfo->rx_dropped_misc = sta->rx_stats.dropped;
2159 if (sta->pcpu_rx_stats) {
2160 for_each_possible_cpu(cpu) {
2161 struct ieee80211_sta_rx_stats *cpurxs;
2163 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2164 sinfo->rx_dropped_misc += cpurxs->dropped;
2168 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2169 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2170 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_RX) |
2171 BIT(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2172 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2175 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2176 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2177 if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL))) {
2178 sinfo->signal = (s8)last_rxstats->last_signal;
2179 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL);
2182 if (!sta->pcpu_rx_stats &&
2183 !(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL_AVG))) {
2184 sinfo->signal_avg =
2185 -ewma_signal_read(&sta->rx_stats_avg.signal);
2186 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL_AVG);
2190 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2191 * the sta->rx_stats struct, so the check here is fine with and without
2192 * pcpu statistics
2194 if (last_rxstats->chains &&
2195 !(sinfo->filled & (BIT(NL80211_STA_INFO_CHAIN_SIGNAL) |
2196 BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2197 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL);
2198 if (!sta->pcpu_rx_stats)
2199 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2201 sinfo->chains = last_rxstats->chains;
2203 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2204 sinfo->chain_signal[i] =
2205 last_rxstats->chain_signal_last[i];
2206 sinfo->chain_signal_avg[i] =
2207 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
2211 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_BITRATE))) {
2212 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
2213 &sinfo->txrate);
2214 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE);
2217 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_BITRATE))) {
2218 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2219 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BITRATE);
2222 sinfo->filled |= BIT(NL80211_STA_INFO_TID_STATS);
2223 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) {
2224 struct cfg80211_tid_stats *tidstats = &sinfo->pertid[i];
2226 sta_set_tidstats(sta, tidstats, i);
2229 if (ieee80211_vif_is_mesh(&sdata->vif)) {
2230 #ifdef CONFIG_MAC80211_MESH
2231 sinfo->filled |= BIT(NL80211_STA_INFO_LLID) |
2232 BIT(NL80211_STA_INFO_PLID) |
2233 BIT(NL80211_STA_INFO_PLINK_STATE) |
2234 BIT(NL80211_STA_INFO_LOCAL_PM) |
2235 BIT(NL80211_STA_INFO_PEER_PM) |
2236 BIT(NL80211_STA_INFO_NONPEER_PM);
2238 sinfo->llid = sta->mesh->llid;
2239 sinfo->plid = sta->mesh->plid;
2240 sinfo->plink_state = sta->mesh->plink_state;
2241 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2242 sinfo->filled |= BIT(NL80211_STA_INFO_T_OFFSET);
2243 sinfo->t_offset = sta->mesh->t_offset;
2245 sinfo->local_pm = sta->mesh->local_pm;
2246 sinfo->peer_pm = sta->mesh->peer_pm;
2247 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2248 #endif
2251 sinfo->bss_param.flags = 0;
2252 if (sdata->vif.bss_conf.use_cts_prot)
2253 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2254 if (sdata->vif.bss_conf.use_short_preamble)
2255 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2256 if (sdata->vif.bss_conf.use_short_slot)
2257 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2258 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2259 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2261 sinfo->sta_flags.set = 0;
2262 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2263 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2264 BIT(NL80211_STA_FLAG_WME) |
2265 BIT(NL80211_STA_FLAG_MFP) |
2266 BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2267 BIT(NL80211_STA_FLAG_ASSOCIATED) |
2268 BIT(NL80211_STA_FLAG_TDLS_PEER);
2269 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2270 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2271 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2272 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2273 if (sta->sta.wme)
2274 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2275 if (test_sta_flag(sta, WLAN_STA_MFP))
2276 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2277 if (test_sta_flag(sta, WLAN_STA_AUTH))
2278 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2279 if (test_sta_flag(sta, WLAN_STA_ASSOC))
2280 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2281 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2282 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2284 thr = sta_get_expected_throughput(sta);
2286 if (thr != 0) {
2287 sinfo->filled |= BIT(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2288 sinfo->expected_throughput = thr;
2292 u32 sta_get_expected_throughput(struct sta_info *sta)
2294 struct ieee80211_sub_if_data *sdata = sta->sdata;
2295 struct ieee80211_local *local = sdata->local;
2296 struct rate_control_ref *ref = NULL;
2297 u32 thr = 0;
2299 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2300 ref = local->rate_ctrl;
2302 /* check if the driver has a SW RC implementation */
2303 if (ref && ref->ops->get_expected_throughput)
2304 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2305 else
2306 thr = drv_get_expected_throughput(local, sta);
2308 return thr;
2311 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2313 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2315 if (time_after(stats->last_rx, sta->status_stats.last_ack))
2316 return stats->last_rx;
2317 return sta->status_stats.last_ack;
2320 static void sta_update_codel_params(struct sta_info *sta, u32 thr)
2322 if (!sta->sdata->local->ops->wake_tx_queue)
2323 return;
2325 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) {
2326 sta->cparams.target = MS2TIME(50);
2327 sta->cparams.interval = MS2TIME(300);
2328 sta->cparams.ecn = false;
2329 } else {
2330 sta->cparams.target = MS2TIME(20);
2331 sta->cparams.interval = MS2TIME(100);
2332 sta->cparams.ecn = true;
2336 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta,
2337 u32 thr)
2339 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2341 sta_update_codel_params(sta, thr);