xtensa: support DMA buffers in high memory
[cris-mirror.git] / net / rxrpc / peer_event.c
blob7f749505e699a0ac5d8e04f832f21629643a55d0
1 /* Peer event handling, typically ICMP messages.
3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #include <linux/module.h>
13 #include <linux/net.h>
14 #include <linux/skbuff.h>
15 #include <linux/errqueue.h>
16 #include <linux/udp.h>
17 #include <linux/in.h>
18 #include <linux/in6.h>
19 #include <linux/icmp.h>
20 #include <net/sock.h>
21 #include <net/af_rxrpc.h>
22 #include <net/ip.h>
23 #include "ar-internal.h"
25 static void rxrpc_store_error(struct rxrpc_peer *, struct sock_exterr_skb *);
28 * Find the peer associated with an ICMP packet.
30 static struct rxrpc_peer *rxrpc_lookup_peer_icmp_rcu(struct rxrpc_local *local,
31 const struct sk_buff *skb)
33 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
34 struct sockaddr_rxrpc srx;
36 _enter("");
38 memset(&srx, 0, sizeof(srx));
39 srx.transport_type = local->srx.transport_type;
40 srx.transport_len = local->srx.transport_len;
41 srx.transport.family = local->srx.transport.family;
43 /* Can we see an ICMP4 packet on an ICMP6 listening socket? and vice
44 * versa?
46 switch (srx.transport.family) {
47 case AF_INET:
48 srx.transport.sin.sin_port = serr->port;
49 switch (serr->ee.ee_origin) {
50 case SO_EE_ORIGIN_ICMP:
51 _net("Rx ICMP");
52 memcpy(&srx.transport.sin.sin_addr,
53 skb_network_header(skb) + serr->addr_offset,
54 sizeof(struct in_addr));
55 break;
56 case SO_EE_ORIGIN_ICMP6:
57 _net("Rx ICMP6 on v4 sock");
58 memcpy(&srx.transport.sin.sin_addr,
59 skb_network_header(skb) + serr->addr_offset + 12,
60 sizeof(struct in_addr));
61 break;
62 default:
63 memcpy(&srx.transport.sin.sin_addr, &ip_hdr(skb)->saddr,
64 sizeof(struct in_addr));
65 break;
67 break;
69 #ifdef CONFIG_AF_RXRPC_IPV6
70 case AF_INET6:
71 srx.transport.sin6.sin6_port = serr->port;
72 switch (serr->ee.ee_origin) {
73 case SO_EE_ORIGIN_ICMP6:
74 _net("Rx ICMP6");
75 memcpy(&srx.transport.sin6.sin6_addr,
76 skb_network_header(skb) + serr->addr_offset,
77 sizeof(struct in6_addr));
78 break;
79 case SO_EE_ORIGIN_ICMP:
80 _net("Rx ICMP on v6 sock");
81 srx.transport.sin6.sin6_addr.s6_addr32[0] = 0;
82 srx.transport.sin6.sin6_addr.s6_addr32[1] = 0;
83 srx.transport.sin6.sin6_addr.s6_addr32[2] = htonl(0xffff);
84 memcpy(srx.transport.sin6.sin6_addr.s6_addr + 12,
85 skb_network_header(skb) + serr->addr_offset,
86 sizeof(struct in_addr));
87 break;
88 default:
89 memcpy(&srx.transport.sin6.sin6_addr,
90 &ipv6_hdr(skb)->saddr,
91 sizeof(struct in6_addr));
92 break;
94 break;
95 #endif
97 default:
98 BUG();
101 return rxrpc_lookup_peer_rcu(local, &srx);
105 * Handle an MTU/fragmentation problem.
107 static void rxrpc_adjust_mtu(struct rxrpc_peer *peer, struct sock_exterr_skb *serr)
109 u32 mtu = serr->ee.ee_info;
111 _net("Rx ICMP Fragmentation Needed (%d)", mtu);
113 /* wind down the local interface MTU */
114 if (mtu > 0 && peer->if_mtu == 65535 && mtu < peer->if_mtu) {
115 peer->if_mtu = mtu;
116 _net("I/F MTU %u", mtu);
119 if (mtu == 0) {
120 /* they didn't give us a size, estimate one */
121 mtu = peer->if_mtu;
122 if (mtu > 1500) {
123 mtu >>= 1;
124 if (mtu < 1500)
125 mtu = 1500;
126 } else {
127 mtu -= 100;
128 if (mtu < peer->hdrsize)
129 mtu = peer->hdrsize + 4;
133 if (mtu < peer->mtu) {
134 spin_lock_bh(&peer->lock);
135 peer->mtu = mtu;
136 peer->maxdata = peer->mtu - peer->hdrsize;
137 spin_unlock_bh(&peer->lock);
138 _net("Net MTU %u (maxdata %u)",
139 peer->mtu, peer->maxdata);
144 * Handle an error received on the local endpoint.
146 void rxrpc_error_report(struct sock *sk)
148 struct sock_exterr_skb *serr;
149 struct rxrpc_local *local = sk->sk_user_data;
150 struct rxrpc_peer *peer;
151 struct sk_buff *skb;
153 _enter("%p{%d}", sk, local->debug_id);
155 skb = sock_dequeue_err_skb(sk);
156 if (!skb) {
157 _leave("UDP socket errqueue empty");
158 return;
160 rxrpc_new_skb(skb, rxrpc_skb_rx_received);
161 serr = SKB_EXT_ERR(skb);
162 if (!skb->len && serr->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) {
163 _leave("UDP empty message");
164 rxrpc_free_skb(skb, rxrpc_skb_rx_freed);
165 return;
168 rcu_read_lock();
169 peer = rxrpc_lookup_peer_icmp_rcu(local, skb);
170 if (peer && !rxrpc_get_peer_maybe(peer))
171 peer = NULL;
172 if (!peer) {
173 rcu_read_unlock();
174 rxrpc_free_skb(skb, rxrpc_skb_rx_freed);
175 _leave(" [no peer]");
176 return;
179 if ((serr->ee.ee_origin == SO_EE_ORIGIN_ICMP &&
180 serr->ee.ee_type == ICMP_DEST_UNREACH &&
181 serr->ee.ee_code == ICMP_FRAG_NEEDED)) {
182 rxrpc_adjust_mtu(peer, serr);
183 rcu_read_unlock();
184 rxrpc_free_skb(skb, rxrpc_skb_rx_freed);
185 rxrpc_put_peer(peer);
186 _leave(" [MTU update]");
187 return;
190 rxrpc_store_error(peer, serr);
191 rcu_read_unlock();
192 rxrpc_free_skb(skb, rxrpc_skb_rx_freed);
194 /* The ref we obtained is passed off to the work item */
195 rxrpc_queue_work(&peer->error_distributor);
196 _leave("");
200 * Map an error report to error codes on the peer record.
202 static void rxrpc_store_error(struct rxrpc_peer *peer,
203 struct sock_exterr_skb *serr)
205 struct sock_extended_err *ee;
206 int err;
208 _enter("");
210 ee = &serr->ee;
212 _net("Rx Error o=%d t=%d c=%d e=%d",
213 ee->ee_origin, ee->ee_type, ee->ee_code, ee->ee_errno);
215 err = ee->ee_errno;
217 switch (ee->ee_origin) {
218 case SO_EE_ORIGIN_ICMP:
219 switch (ee->ee_type) {
220 case ICMP_DEST_UNREACH:
221 switch (ee->ee_code) {
222 case ICMP_NET_UNREACH:
223 _net("Rx Received ICMP Network Unreachable");
224 break;
225 case ICMP_HOST_UNREACH:
226 _net("Rx Received ICMP Host Unreachable");
227 break;
228 case ICMP_PORT_UNREACH:
229 _net("Rx Received ICMP Port Unreachable");
230 break;
231 case ICMP_NET_UNKNOWN:
232 _net("Rx Received ICMP Unknown Network");
233 break;
234 case ICMP_HOST_UNKNOWN:
235 _net("Rx Received ICMP Unknown Host");
236 break;
237 default:
238 _net("Rx Received ICMP DestUnreach code=%u",
239 ee->ee_code);
240 break;
242 break;
244 case ICMP_TIME_EXCEEDED:
245 _net("Rx Received ICMP TTL Exceeded");
246 break;
248 default:
249 _proto("Rx Received ICMP error { type=%u code=%u }",
250 ee->ee_type, ee->ee_code);
251 break;
253 break;
255 case SO_EE_ORIGIN_NONE:
256 case SO_EE_ORIGIN_LOCAL:
257 _proto("Rx Received local error { error=%d }", err);
258 err += RXRPC_LOCAL_ERROR_OFFSET;
259 break;
261 case SO_EE_ORIGIN_ICMP6:
262 default:
263 _proto("Rx Received error report { orig=%u }", ee->ee_origin);
264 break;
267 peer->error_report = err;
271 * Distribute an error that occurred on a peer
273 void rxrpc_peer_error_distributor(struct work_struct *work)
275 struct rxrpc_peer *peer =
276 container_of(work, struct rxrpc_peer, error_distributor);
277 struct rxrpc_call *call;
278 enum rxrpc_call_completion compl;
279 int error;
281 _enter("");
283 error = READ_ONCE(peer->error_report);
284 if (error < RXRPC_LOCAL_ERROR_OFFSET) {
285 compl = RXRPC_CALL_NETWORK_ERROR;
286 } else {
287 compl = RXRPC_CALL_LOCAL_ERROR;
288 error -= RXRPC_LOCAL_ERROR_OFFSET;
291 _debug("ISSUE ERROR %s %d", rxrpc_call_completions[compl], error);
293 spin_lock_bh(&peer->lock);
295 while (!hlist_empty(&peer->error_targets)) {
296 call = hlist_entry(peer->error_targets.first,
297 struct rxrpc_call, error_link);
298 hlist_del_init(&call->error_link);
299 rxrpc_see_call(call);
301 if (rxrpc_set_call_completion(call, compl, 0, -error))
302 rxrpc_notify_socket(call);
305 spin_unlock_bh(&peer->lock);
307 rxrpc_put_peer(peer);
308 _leave("");
312 * Add RTT information to cache. This is called in softirq mode and has
313 * exclusive access to the peer RTT data.
315 void rxrpc_peer_add_rtt(struct rxrpc_call *call, enum rxrpc_rtt_rx_trace why,
316 rxrpc_serial_t send_serial, rxrpc_serial_t resp_serial,
317 ktime_t send_time, ktime_t resp_time)
319 struct rxrpc_peer *peer = call->peer;
320 s64 rtt;
321 u64 sum = peer->rtt_sum, avg;
322 u8 cursor = peer->rtt_cursor, usage = peer->rtt_usage;
324 rtt = ktime_to_ns(ktime_sub(resp_time, send_time));
325 if (rtt < 0)
326 return;
328 /* Replace the oldest datum in the RTT buffer */
329 sum -= peer->rtt_cache[cursor];
330 sum += rtt;
331 peer->rtt_cache[cursor] = rtt;
332 peer->rtt_cursor = (cursor + 1) & (RXRPC_RTT_CACHE_SIZE - 1);
333 peer->rtt_sum = sum;
334 if (usage < RXRPC_RTT_CACHE_SIZE) {
335 usage++;
336 peer->rtt_usage = usage;
339 /* Now recalculate the average */
340 if (usage == RXRPC_RTT_CACHE_SIZE) {
341 avg = sum / RXRPC_RTT_CACHE_SIZE;
342 } else {
343 avg = sum;
344 do_div(avg, usage);
347 peer->rtt = avg;
348 trace_rxrpc_rtt_rx(call, why, send_serial, resp_serial, rtt,
349 usage, avg);