2 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
4 * Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 * Meant to be mostly used for locally generated traffic :
12 * Fast classification depends on skb->sk being set before reaching us.
13 * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14 * All packets belonging to a socket are considered as a 'flow'.
16 * Flows are dynamically allocated and stored in a hash table of RB trees
17 * They are also part of one Round Robin 'queues' (new or old flows)
19 * Burst avoidance (aka pacing) capability :
21 * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22 * bunch of packets, and this packet scheduler adds delay between
23 * packets to respect rate limitation.
26 * - lookup one RB tree (out of 1024 or more) to find the flow.
27 * If non existent flow, create it, add it to the tree.
28 * Add skb to the per flow list of skb (fifo).
29 * - Use a special fifo for high prio packets
31 * dequeue() : serves flows in Round Robin
32 * Note : When a flow becomes empty, we do not immediately remove it from
33 * rb trees, for performance reasons (its expected to send additional packets,
34 * or SLAB cache will reuse socket for another flow)
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlink.h>
52 #include <net/pkt_sched.h>
54 #include <net/tcp_states.h>
58 * Per flow structure, dynamically allocated
61 struct sk_buff
*head
; /* list of skbs for this flow : first skb */
63 struct sk_buff
*tail
; /* last skb in the list */
64 unsigned long age
; /* jiffies when flow was emptied, for gc */
66 struct rb_node fq_node
; /* anchor in fq_root[] trees */
68 int qlen
; /* number of packets in flow queue */
70 u32 socket_hash
; /* sk_hash */
71 struct fq_flow
*next
; /* next pointer in RR lists, or &detached */
73 struct rb_node rate_node
; /* anchor in q->delayed tree */
78 struct fq_flow
*first
;
82 struct fq_sched_data
{
83 struct fq_flow_head new_flows
;
85 struct fq_flow_head old_flows
;
87 struct rb_root delayed
; /* for rate limited flows */
88 u64 time_next_delayed_flow
;
89 unsigned long unthrottle_latency_ns
;
91 struct fq_flow internal
; /* for non classified or high prio packets */
94 u32 flow_refill_delay
;
95 u32 flow_max_rate
; /* optional max rate per flow */
96 u32 flow_plimit
; /* max packets per flow */
97 u32 orphan_mask
; /* mask for orphaned skb */
98 u32 low_rate_threshold
;
99 struct rb_root
*fq_root
;
108 u64 stat_internal_packets
;
109 u64 stat_tcp_retrans
;
111 u64 stat_flows_plimit
;
112 u64 stat_pkts_too_long
;
113 u64 stat_allocation_errors
;
114 struct qdisc_watchdog watchdog
;
117 /* special value to mark a detached flow (not on old/new list) */
118 static struct fq_flow detached
, throttled
;
120 static void fq_flow_set_detached(struct fq_flow
*f
)
126 static bool fq_flow_is_detached(const struct fq_flow
*f
)
128 return f
->next
== &detached
;
131 static void fq_flow_set_throttled(struct fq_sched_data
*q
, struct fq_flow
*f
)
133 struct rb_node
**p
= &q
->delayed
.rb_node
, *parent
= NULL
;
139 aux
= rb_entry(parent
, struct fq_flow
, rate_node
);
140 if (f
->time_next_packet
>= aux
->time_next_packet
)
141 p
= &parent
->rb_right
;
143 p
= &parent
->rb_left
;
145 rb_link_node(&f
->rate_node
, parent
, p
);
146 rb_insert_color(&f
->rate_node
, &q
->delayed
);
147 q
->throttled_flows
++;
150 f
->next
= &throttled
;
151 if (q
->time_next_delayed_flow
> f
->time_next_packet
)
152 q
->time_next_delayed_flow
= f
->time_next_packet
;
156 static struct kmem_cache
*fq_flow_cachep __read_mostly
;
158 static void fq_flow_add_tail(struct fq_flow_head
*head
, struct fq_flow
*flow
)
161 head
->last
->next
= flow
;
168 /* limit number of collected flows per round */
170 #define FQ_GC_AGE (3*HZ)
172 static bool fq_gc_candidate(const struct fq_flow
*f
)
174 return fq_flow_is_detached(f
) &&
175 time_after(jiffies
, f
->age
+ FQ_GC_AGE
);
178 static void fq_gc(struct fq_sched_data
*q
,
179 struct rb_root
*root
,
182 struct fq_flow
*f
, *tofree
[FQ_GC_MAX
];
183 struct rb_node
**p
, *parent
;
191 f
= rb_entry(parent
, struct fq_flow
, fq_node
);
195 if (fq_gc_candidate(f
)) {
197 if (fcnt
== FQ_GC_MAX
)
202 p
= &parent
->rb_right
;
204 p
= &parent
->rb_left
;
208 q
->inactive_flows
-= fcnt
;
209 q
->stat_gc_flows
+= fcnt
;
211 struct fq_flow
*f
= tofree
[--fcnt
];
213 rb_erase(&f
->fq_node
, root
);
214 kmem_cache_free(fq_flow_cachep
, f
);
218 static struct fq_flow
*fq_classify(struct sk_buff
*skb
, struct fq_sched_data
*q
)
220 struct rb_node
**p
, *parent
;
221 struct sock
*sk
= skb
->sk
;
222 struct rb_root
*root
;
225 /* warning: no starvation prevention... */
226 if (unlikely((skb
->priority
& TC_PRIO_MAX
) == TC_PRIO_CONTROL
))
229 /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
230 * or a listener (SYNCOOKIE mode)
231 * 1) request sockets are not full blown,
232 * they do not contain sk_pacing_rate
233 * 2) They are not part of a 'flow' yet
234 * 3) We do not want to rate limit them (eg SYNFLOOD attack),
235 * especially if the listener set SO_MAX_PACING_RATE
236 * 4) We pretend they are orphaned
238 if (!sk
|| sk_listener(sk
)) {
239 unsigned long hash
= skb_get_hash(skb
) & q
->orphan_mask
;
241 /* By forcing low order bit to 1, we make sure to not
242 * collide with a local flow (socket pointers are word aligned)
244 sk
= (struct sock
*)((hash
<< 1) | 1UL);
248 root
= &q
->fq_root
[hash_ptr(sk
, q
->fq_trees_log
)];
250 if (q
->flows
>= (2U << q
->fq_trees_log
) &&
251 q
->inactive_flows
> q
->flows
/2)
259 f
= rb_entry(parent
, struct fq_flow
, fq_node
);
261 /* socket might have been reallocated, so check
262 * if its sk_hash is the same.
263 * It not, we need to refill credit with
266 if (unlikely(skb
->sk
&&
267 f
->socket_hash
!= sk
->sk_hash
)) {
268 f
->credit
= q
->initial_quantum
;
269 f
->socket_hash
= sk
->sk_hash
;
270 f
->time_next_packet
= 0ULL;
275 p
= &parent
->rb_right
;
277 p
= &parent
->rb_left
;
280 f
= kmem_cache_zalloc(fq_flow_cachep
, GFP_ATOMIC
| __GFP_NOWARN
);
282 q
->stat_allocation_errors
++;
285 fq_flow_set_detached(f
);
288 f
->socket_hash
= sk
->sk_hash
;
289 f
->credit
= q
->initial_quantum
;
291 rb_link_node(&f
->fq_node
, parent
, p
);
292 rb_insert_color(&f
->fq_node
, root
);
300 /* remove one skb from head of flow queue */
301 static struct sk_buff
*fq_dequeue_head(struct Qdisc
*sch
, struct fq_flow
*flow
)
303 struct sk_buff
*skb
= flow
->head
;
306 flow
->head
= skb
->next
;
309 qdisc_qstats_backlog_dec(sch
, skb
);
315 /* We might add in the future detection of retransmits
316 * For the time being, just return false
318 static bool skb_is_retransmit(struct sk_buff
*skb
)
323 /* add skb to flow queue
324 * flow queue is a linked list, kind of FIFO, except for TCP retransmits
325 * We special case tcp retransmits to be transmitted before other packets.
326 * We rely on fact that TCP retransmits are unlikely, so we do not waste
327 * a separate queue or a pointer.
328 * head-> [retrans pkt 1]
333 * tail-> [ normal pkt 4]
335 static void flow_queue_add(struct fq_flow
*flow
, struct sk_buff
*skb
)
337 struct sk_buff
*prev
, *head
= flow
->head
;
345 if (likely(!skb_is_retransmit(skb
))) {
346 flow
->tail
->next
= skb
;
351 /* This skb is a tcp retransmit,
352 * find the last retrans packet in the queue
355 while (skb_is_retransmit(head
)) {
361 if (!prev
) { /* no rtx packet in queue, become the new head */
362 skb
->next
= flow
->head
;
365 if (prev
== flow
->tail
)
368 skb
->next
= prev
->next
;
373 static int fq_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
,
374 struct sk_buff
**to_free
)
376 struct fq_sched_data
*q
= qdisc_priv(sch
);
379 if (unlikely(sch
->q
.qlen
>= sch
->limit
))
380 return qdisc_drop(skb
, sch
, to_free
);
382 f
= fq_classify(skb
, q
);
383 if (unlikely(f
->qlen
>= q
->flow_plimit
&& f
!= &q
->internal
)) {
384 q
->stat_flows_plimit
++;
385 return qdisc_drop(skb
, sch
, to_free
);
389 if (skb_is_retransmit(skb
))
390 q
->stat_tcp_retrans
++;
391 qdisc_qstats_backlog_inc(sch
, skb
);
392 if (fq_flow_is_detached(f
)) {
393 struct sock
*sk
= skb
->sk
;
395 fq_flow_add_tail(&q
->new_flows
, f
);
396 if (time_after(jiffies
, f
->age
+ q
->flow_refill_delay
))
397 f
->credit
= max_t(u32
, f
->credit
, q
->quantum
);
398 if (sk
&& q
->rate_enable
) {
399 if (unlikely(smp_load_acquire(&sk
->sk_pacing_status
) !=
401 smp_store_release(&sk
->sk_pacing_status
,
407 /* Note: this overwrites f->age */
408 flow_queue_add(f
, skb
);
410 if (unlikely(f
== &q
->internal
)) {
411 q
->stat_internal_packets
++;
415 return NET_XMIT_SUCCESS
;
418 static void fq_check_throttled(struct fq_sched_data
*q
, u64 now
)
420 unsigned long sample
;
423 if (q
->time_next_delayed_flow
> now
)
426 /* Update unthrottle latency EWMA.
427 * This is cheap and can help diagnosing timer/latency problems.
429 sample
= (unsigned long)(now
- q
->time_next_delayed_flow
);
430 q
->unthrottle_latency_ns
-= q
->unthrottle_latency_ns
>> 3;
431 q
->unthrottle_latency_ns
+= sample
>> 3;
433 q
->time_next_delayed_flow
= ~0ULL;
434 while ((p
= rb_first(&q
->delayed
)) != NULL
) {
435 struct fq_flow
*f
= rb_entry(p
, struct fq_flow
, rate_node
);
437 if (f
->time_next_packet
> now
) {
438 q
->time_next_delayed_flow
= f
->time_next_packet
;
441 rb_erase(p
, &q
->delayed
);
442 q
->throttled_flows
--;
443 fq_flow_add_tail(&q
->old_flows
, f
);
447 static struct sk_buff
*fq_dequeue(struct Qdisc
*sch
)
449 struct fq_sched_data
*q
= qdisc_priv(sch
);
450 u64 now
= ktime_get_ns();
451 struct fq_flow_head
*head
;
456 skb
= fq_dequeue_head(sch
, &q
->internal
);
459 fq_check_throttled(q
, now
);
461 head
= &q
->new_flows
;
463 head
= &q
->old_flows
;
465 if (q
->time_next_delayed_flow
!= ~0ULL)
466 qdisc_watchdog_schedule_ns(&q
->watchdog
,
467 q
->time_next_delayed_flow
);
473 if (f
->credit
<= 0) {
474 f
->credit
+= q
->quantum
;
475 head
->first
= f
->next
;
476 fq_flow_add_tail(&q
->old_flows
, f
);
481 if (unlikely(skb
&& now
< f
->time_next_packet
&&
482 !skb_is_tcp_pure_ack(skb
))) {
483 head
->first
= f
->next
;
484 fq_flow_set_throttled(q
, f
);
488 skb
= fq_dequeue_head(sch
, f
);
490 head
->first
= f
->next
;
491 /* force a pass through old_flows to prevent starvation */
492 if ((head
== &q
->new_flows
) && q
->old_flows
.first
) {
493 fq_flow_add_tail(&q
->old_flows
, f
);
495 fq_flow_set_detached(f
);
501 f
->credit
-= qdisc_pkt_len(skb
);
506 /* Do not pace locally generated ack packets */
507 if (skb_is_tcp_pure_ack(skb
))
510 rate
= q
->flow_max_rate
;
512 rate
= min(skb
->sk
->sk_pacing_rate
, rate
);
514 if (rate
<= q
->low_rate_threshold
) {
516 plen
= qdisc_pkt_len(skb
);
518 plen
= max(qdisc_pkt_len(skb
), q
->quantum
);
523 u64 len
= (u64
)plen
* NSEC_PER_SEC
;
527 /* Since socket rate can change later,
528 * clamp the delay to 1 second.
529 * Really, providers of too big packets should be fixed !
531 if (unlikely(len
> NSEC_PER_SEC
)) {
533 q
->stat_pkts_too_long
++;
535 /* Account for schedule/timers drifts.
536 * f->time_next_packet was set when prior packet was sent,
537 * and current time (@now) can be too late by tens of us.
539 if (f
->time_next_packet
)
540 len
-= min(len
/2, now
- f
->time_next_packet
);
541 f
->time_next_packet
= now
+ len
;
544 qdisc_bstats_update(sch
, skb
);
548 static void fq_flow_purge(struct fq_flow
*flow
)
550 rtnl_kfree_skbs(flow
->head
, flow
->tail
);
555 static void fq_reset(struct Qdisc
*sch
)
557 struct fq_sched_data
*q
= qdisc_priv(sch
);
558 struct rb_root
*root
;
564 sch
->qstats
.backlog
= 0;
566 fq_flow_purge(&q
->internal
);
571 for (idx
= 0; idx
< (1U << q
->fq_trees_log
); idx
++) {
572 root
= &q
->fq_root
[idx
];
573 while ((p
= rb_first(root
)) != NULL
) {
574 f
= rb_entry(p
, struct fq_flow
, fq_node
);
579 kmem_cache_free(fq_flow_cachep
, f
);
582 q
->new_flows
.first
= NULL
;
583 q
->old_flows
.first
= NULL
;
584 q
->delayed
= RB_ROOT
;
586 q
->inactive_flows
= 0;
587 q
->throttled_flows
= 0;
590 static void fq_rehash(struct fq_sched_data
*q
,
591 struct rb_root
*old_array
, u32 old_log
,
592 struct rb_root
*new_array
, u32 new_log
)
594 struct rb_node
*op
, **np
, *parent
;
595 struct rb_root
*oroot
, *nroot
;
596 struct fq_flow
*of
, *nf
;
600 for (idx
= 0; idx
< (1U << old_log
); idx
++) {
601 oroot
= &old_array
[idx
];
602 while ((op
= rb_first(oroot
)) != NULL
) {
604 of
= rb_entry(op
, struct fq_flow
, fq_node
);
605 if (fq_gc_candidate(of
)) {
607 kmem_cache_free(fq_flow_cachep
, of
);
610 nroot
= &new_array
[hash_ptr(of
->sk
, new_log
)];
612 np
= &nroot
->rb_node
;
617 nf
= rb_entry(parent
, struct fq_flow
, fq_node
);
618 BUG_ON(nf
->sk
== of
->sk
);
621 np
= &parent
->rb_right
;
623 np
= &parent
->rb_left
;
626 rb_link_node(&of
->fq_node
, parent
, np
);
627 rb_insert_color(&of
->fq_node
, nroot
);
631 q
->inactive_flows
-= fcnt
;
632 q
->stat_gc_flows
+= fcnt
;
635 static void fq_free(void *addr
)
640 static int fq_resize(struct Qdisc
*sch
, u32 log
)
642 struct fq_sched_data
*q
= qdisc_priv(sch
);
643 struct rb_root
*array
;
647 if (q
->fq_root
&& log
== q
->fq_trees_log
)
650 /* If XPS was setup, we can allocate memory on right NUMA node */
651 array
= kvmalloc_node(sizeof(struct rb_root
) << log
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
,
652 netdev_queue_numa_node_read(sch
->dev_queue
));
656 for (idx
= 0; idx
< (1U << log
); idx
++)
657 array
[idx
] = RB_ROOT
;
661 old_fq_root
= q
->fq_root
;
663 fq_rehash(q
, old_fq_root
, q
->fq_trees_log
, array
, log
);
666 q
->fq_trees_log
= log
;
668 sch_tree_unlock(sch
);
670 fq_free(old_fq_root
);
675 static const struct nla_policy fq_policy
[TCA_FQ_MAX
+ 1] = {
676 [TCA_FQ_PLIMIT
] = { .type
= NLA_U32
},
677 [TCA_FQ_FLOW_PLIMIT
] = { .type
= NLA_U32
},
678 [TCA_FQ_QUANTUM
] = { .type
= NLA_U32
},
679 [TCA_FQ_INITIAL_QUANTUM
] = { .type
= NLA_U32
},
680 [TCA_FQ_RATE_ENABLE
] = { .type
= NLA_U32
},
681 [TCA_FQ_FLOW_DEFAULT_RATE
] = { .type
= NLA_U32
},
682 [TCA_FQ_FLOW_MAX_RATE
] = { .type
= NLA_U32
},
683 [TCA_FQ_BUCKETS_LOG
] = { .type
= NLA_U32
},
684 [TCA_FQ_FLOW_REFILL_DELAY
] = { .type
= NLA_U32
},
685 [TCA_FQ_LOW_RATE_THRESHOLD
] = { .type
= NLA_U32
},
688 static int fq_change(struct Qdisc
*sch
, struct nlattr
*opt
,
689 struct netlink_ext_ack
*extack
)
691 struct fq_sched_data
*q
= qdisc_priv(sch
);
692 struct nlattr
*tb
[TCA_FQ_MAX
+ 1];
693 int err
, drop_count
= 0;
694 unsigned drop_len
= 0;
700 err
= nla_parse_nested(tb
, TCA_FQ_MAX
, opt
, fq_policy
, NULL
);
706 fq_log
= q
->fq_trees_log
;
708 if (tb
[TCA_FQ_BUCKETS_LOG
]) {
709 u32 nval
= nla_get_u32(tb
[TCA_FQ_BUCKETS_LOG
]);
711 if (nval
>= 1 && nval
<= ilog2(256*1024))
716 if (tb
[TCA_FQ_PLIMIT
])
717 sch
->limit
= nla_get_u32(tb
[TCA_FQ_PLIMIT
]);
719 if (tb
[TCA_FQ_FLOW_PLIMIT
])
720 q
->flow_plimit
= nla_get_u32(tb
[TCA_FQ_FLOW_PLIMIT
]);
722 if (tb
[TCA_FQ_QUANTUM
]) {
723 u32 quantum
= nla_get_u32(tb
[TCA_FQ_QUANTUM
]);
726 q
->quantum
= quantum
;
731 if (tb
[TCA_FQ_INITIAL_QUANTUM
])
732 q
->initial_quantum
= nla_get_u32(tb
[TCA_FQ_INITIAL_QUANTUM
]);
734 if (tb
[TCA_FQ_FLOW_DEFAULT_RATE
])
735 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
736 nla_get_u32(tb
[TCA_FQ_FLOW_DEFAULT_RATE
]));
738 if (tb
[TCA_FQ_FLOW_MAX_RATE
])
739 q
->flow_max_rate
= nla_get_u32(tb
[TCA_FQ_FLOW_MAX_RATE
]);
741 if (tb
[TCA_FQ_LOW_RATE_THRESHOLD
])
742 q
->low_rate_threshold
=
743 nla_get_u32(tb
[TCA_FQ_LOW_RATE_THRESHOLD
]);
745 if (tb
[TCA_FQ_RATE_ENABLE
]) {
746 u32 enable
= nla_get_u32(tb
[TCA_FQ_RATE_ENABLE
]);
749 q
->rate_enable
= enable
;
754 if (tb
[TCA_FQ_FLOW_REFILL_DELAY
]) {
755 u32 usecs_delay
= nla_get_u32(tb
[TCA_FQ_FLOW_REFILL_DELAY
]) ;
757 q
->flow_refill_delay
= usecs_to_jiffies(usecs_delay
);
760 if (tb
[TCA_FQ_ORPHAN_MASK
])
761 q
->orphan_mask
= nla_get_u32(tb
[TCA_FQ_ORPHAN_MASK
]);
764 sch_tree_unlock(sch
);
765 err
= fq_resize(sch
, fq_log
);
768 while (sch
->q
.qlen
> sch
->limit
) {
769 struct sk_buff
*skb
= fq_dequeue(sch
);
773 drop_len
+= qdisc_pkt_len(skb
);
774 rtnl_kfree_skbs(skb
, skb
);
777 qdisc_tree_reduce_backlog(sch
, drop_count
, drop_len
);
779 sch_tree_unlock(sch
);
783 static void fq_destroy(struct Qdisc
*sch
)
785 struct fq_sched_data
*q
= qdisc_priv(sch
);
789 qdisc_watchdog_cancel(&q
->watchdog
);
792 static int fq_init(struct Qdisc
*sch
, struct nlattr
*opt
,
793 struct netlink_ext_ack
*extack
)
795 struct fq_sched_data
*q
= qdisc_priv(sch
);
799 q
->flow_plimit
= 100;
800 q
->quantum
= 2 * psched_mtu(qdisc_dev(sch
));
801 q
->initial_quantum
= 10 * psched_mtu(qdisc_dev(sch
));
802 q
->flow_refill_delay
= msecs_to_jiffies(40);
803 q
->flow_max_rate
= ~0U;
804 q
->time_next_delayed_flow
= ~0ULL;
806 q
->new_flows
.first
= NULL
;
807 q
->old_flows
.first
= NULL
;
808 q
->delayed
= RB_ROOT
;
810 q
->fq_trees_log
= ilog2(1024);
811 q
->orphan_mask
= 1024 - 1;
812 q
->low_rate_threshold
= 550000 / 8;
813 qdisc_watchdog_init(&q
->watchdog
, sch
);
816 err
= fq_change(sch
, opt
, extack
);
818 err
= fq_resize(sch
, q
->fq_trees_log
);
823 static int fq_dump(struct Qdisc
*sch
, struct sk_buff
*skb
)
825 struct fq_sched_data
*q
= qdisc_priv(sch
);
828 opts
= nla_nest_start(skb
, TCA_OPTIONS
);
830 goto nla_put_failure
;
832 /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
834 if (nla_put_u32(skb
, TCA_FQ_PLIMIT
, sch
->limit
) ||
835 nla_put_u32(skb
, TCA_FQ_FLOW_PLIMIT
, q
->flow_plimit
) ||
836 nla_put_u32(skb
, TCA_FQ_QUANTUM
, q
->quantum
) ||
837 nla_put_u32(skb
, TCA_FQ_INITIAL_QUANTUM
, q
->initial_quantum
) ||
838 nla_put_u32(skb
, TCA_FQ_RATE_ENABLE
, q
->rate_enable
) ||
839 nla_put_u32(skb
, TCA_FQ_FLOW_MAX_RATE
, q
->flow_max_rate
) ||
840 nla_put_u32(skb
, TCA_FQ_FLOW_REFILL_DELAY
,
841 jiffies_to_usecs(q
->flow_refill_delay
)) ||
842 nla_put_u32(skb
, TCA_FQ_ORPHAN_MASK
, q
->orphan_mask
) ||
843 nla_put_u32(skb
, TCA_FQ_LOW_RATE_THRESHOLD
,
844 q
->low_rate_threshold
) ||
845 nla_put_u32(skb
, TCA_FQ_BUCKETS_LOG
, q
->fq_trees_log
))
846 goto nla_put_failure
;
848 return nla_nest_end(skb
, opts
);
854 static int fq_dump_stats(struct Qdisc
*sch
, struct gnet_dump
*d
)
856 struct fq_sched_data
*q
= qdisc_priv(sch
);
857 struct tc_fq_qd_stats st
;
861 st
.gc_flows
= q
->stat_gc_flows
;
862 st
.highprio_packets
= q
->stat_internal_packets
;
863 st
.tcp_retrans
= q
->stat_tcp_retrans
;
864 st
.throttled
= q
->stat_throttled
;
865 st
.flows_plimit
= q
->stat_flows_plimit
;
866 st
.pkts_too_long
= q
->stat_pkts_too_long
;
867 st
.allocation_errors
= q
->stat_allocation_errors
;
868 st
.time_next_delayed_flow
= q
->time_next_delayed_flow
- ktime_get_ns();
870 st
.inactive_flows
= q
->inactive_flows
;
871 st
.throttled_flows
= q
->throttled_flows
;
872 st
.unthrottle_latency_ns
= min_t(unsigned long,
873 q
->unthrottle_latency_ns
, ~0U);
874 sch_tree_unlock(sch
);
876 return gnet_stats_copy_app(d
, &st
, sizeof(st
));
879 static struct Qdisc_ops fq_qdisc_ops __read_mostly
= {
881 .priv_size
= sizeof(struct fq_sched_data
),
883 .enqueue
= fq_enqueue
,
884 .dequeue
= fq_dequeue
,
885 .peek
= qdisc_peek_dequeued
,
888 .destroy
= fq_destroy
,
891 .dump_stats
= fq_dump_stats
,
892 .owner
= THIS_MODULE
,
895 static int __init
fq_module_init(void)
899 fq_flow_cachep
= kmem_cache_create("fq_flow_cache",
900 sizeof(struct fq_flow
),
905 ret
= register_qdisc(&fq_qdisc_ops
);
907 kmem_cache_destroy(fq_flow_cachep
);
911 static void __exit
fq_module_exit(void)
913 unregister_qdisc(&fq_qdisc_ops
);
914 kmem_cache_destroy(fq_flow_cachep
);
917 module_init(fq_module_init
)
918 module_exit(fq_module_exit
)
919 MODULE_AUTHOR("Eric Dumazet");
920 MODULE_LICENSE("GPL");