xtensa: support DMA buffers in high memory
[cris-mirror.git] / net / sched / sch_fq.c
bloba366e4c9413ab4fe4dfb16f0255cb7632ade7f1c
1 /*
2 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
4 * Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 * Meant to be mostly used for locally generated traffic :
12 * Fast classification depends on skb->sk being set before reaching us.
13 * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14 * All packets belonging to a socket are considered as a 'flow'.
16 * Flows are dynamically allocated and stored in a hash table of RB trees
17 * They are also part of one Round Robin 'queues' (new or old flows)
19 * Burst avoidance (aka pacing) capability :
21 * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22 * bunch of packets, and this packet scheduler adds delay between
23 * packets to respect rate limitation.
25 * enqueue() :
26 * - lookup one RB tree (out of 1024 or more) to find the flow.
27 * If non existent flow, create it, add it to the tree.
28 * Add skb to the per flow list of skb (fifo).
29 * - Use a special fifo for high prio packets
31 * dequeue() : serves flows in Round Robin
32 * Note : When a flow becomes empty, we do not immediately remove it from
33 * rb trees, for performance reasons (its expected to send additional packets,
34 * or SLAB cache will reuse socket for another flow)
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlink.h>
52 #include <net/pkt_sched.h>
53 #include <net/sock.h>
54 #include <net/tcp_states.h>
55 #include <net/tcp.h>
58 * Per flow structure, dynamically allocated
60 struct fq_flow {
61 struct sk_buff *head; /* list of skbs for this flow : first skb */
62 union {
63 struct sk_buff *tail; /* last skb in the list */
64 unsigned long age; /* jiffies when flow was emptied, for gc */
66 struct rb_node fq_node; /* anchor in fq_root[] trees */
67 struct sock *sk;
68 int qlen; /* number of packets in flow queue */
69 int credit;
70 u32 socket_hash; /* sk_hash */
71 struct fq_flow *next; /* next pointer in RR lists, or &detached */
73 struct rb_node rate_node; /* anchor in q->delayed tree */
74 u64 time_next_packet;
77 struct fq_flow_head {
78 struct fq_flow *first;
79 struct fq_flow *last;
82 struct fq_sched_data {
83 struct fq_flow_head new_flows;
85 struct fq_flow_head old_flows;
87 struct rb_root delayed; /* for rate limited flows */
88 u64 time_next_delayed_flow;
89 unsigned long unthrottle_latency_ns;
91 struct fq_flow internal; /* for non classified or high prio packets */
92 u32 quantum;
93 u32 initial_quantum;
94 u32 flow_refill_delay;
95 u32 flow_max_rate; /* optional max rate per flow */
96 u32 flow_plimit; /* max packets per flow */
97 u32 orphan_mask; /* mask for orphaned skb */
98 u32 low_rate_threshold;
99 struct rb_root *fq_root;
100 u8 rate_enable;
101 u8 fq_trees_log;
103 u32 flows;
104 u32 inactive_flows;
105 u32 throttled_flows;
107 u64 stat_gc_flows;
108 u64 stat_internal_packets;
109 u64 stat_tcp_retrans;
110 u64 stat_throttled;
111 u64 stat_flows_plimit;
112 u64 stat_pkts_too_long;
113 u64 stat_allocation_errors;
114 struct qdisc_watchdog watchdog;
117 /* special value to mark a detached flow (not on old/new list) */
118 static struct fq_flow detached, throttled;
120 static void fq_flow_set_detached(struct fq_flow *f)
122 f->next = &detached;
123 f->age = jiffies;
126 static bool fq_flow_is_detached(const struct fq_flow *f)
128 return f->next == &detached;
131 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
133 struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
135 while (*p) {
136 struct fq_flow *aux;
138 parent = *p;
139 aux = rb_entry(parent, struct fq_flow, rate_node);
140 if (f->time_next_packet >= aux->time_next_packet)
141 p = &parent->rb_right;
142 else
143 p = &parent->rb_left;
145 rb_link_node(&f->rate_node, parent, p);
146 rb_insert_color(&f->rate_node, &q->delayed);
147 q->throttled_flows++;
148 q->stat_throttled++;
150 f->next = &throttled;
151 if (q->time_next_delayed_flow > f->time_next_packet)
152 q->time_next_delayed_flow = f->time_next_packet;
156 static struct kmem_cache *fq_flow_cachep __read_mostly;
158 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
160 if (head->first)
161 head->last->next = flow;
162 else
163 head->first = flow;
164 head->last = flow;
165 flow->next = NULL;
168 /* limit number of collected flows per round */
169 #define FQ_GC_MAX 8
170 #define FQ_GC_AGE (3*HZ)
172 static bool fq_gc_candidate(const struct fq_flow *f)
174 return fq_flow_is_detached(f) &&
175 time_after(jiffies, f->age + FQ_GC_AGE);
178 static void fq_gc(struct fq_sched_data *q,
179 struct rb_root *root,
180 struct sock *sk)
182 struct fq_flow *f, *tofree[FQ_GC_MAX];
183 struct rb_node **p, *parent;
184 int fcnt = 0;
186 p = &root->rb_node;
187 parent = NULL;
188 while (*p) {
189 parent = *p;
191 f = rb_entry(parent, struct fq_flow, fq_node);
192 if (f->sk == sk)
193 break;
195 if (fq_gc_candidate(f)) {
196 tofree[fcnt++] = f;
197 if (fcnt == FQ_GC_MAX)
198 break;
201 if (f->sk > sk)
202 p = &parent->rb_right;
203 else
204 p = &parent->rb_left;
207 q->flows -= fcnt;
208 q->inactive_flows -= fcnt;
209 q->stat_gc_flows += fcnt;
210 while (fcnt) {
211 struct fq_flow *f = tofree[--fcnt];
213 rb_erase(&f->fq_node, root);
214 kmem_cache_free(fq_flow_cachep, f);
218 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
220 struct rb_node **p, *parent;
221 struct sock *sk = skb->sk;
222 struct rb_root *root;
223 struct fq_flow *f;
225 /* warning: no starvation prevention... */
226 if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
227 return &q->internal;
229 /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
230 * or a listener (SYNCOOKIE mode)
231 * 1) request sockets are not full blown,
232 * they do not contain sk_pacing_rate
233 * 2) They are not part of a 'flow' yet
234 * 3) We do not want to rate limit them (eg SYNFLOOD attack),
235 * especially if the listener set SO_MAX_PACING_RATE
236 * 4) We pretend they are orphaned
238 if (!sk || sk_listener(sk)) {
239 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
241 /* By forcing low order bit to 1, we make sure to not
242 * collide with a local flow (socket pointers are word aligned)
244 sk = (struct sock *)((hash << 1) | 1UL);
245 skb_orphan(skb);
248 root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
250 if (q->flows >= (2U << q->fq_trees_log) &&
251 q->inactive_flows > q->flows/2)
252 fq_gc(q, root, sk);
254 p = &root->rb_node;
255 parent = NULL;
256 while (*p) {
257 parent = *p;
259 f = rb_entry(parent, struct fq_flow, fq_node);
260 if (f->sk == sk) {
261 /* socket might have been reallocated, so check
262 * if its sk_hash is the same.
263 * It not, we need to refill credit with
264 * initial quantum
266 if (unlikely(skb->sk &&
267 f->socket_hash != sk->sk_hash)) {
268 f->credit = q->initial_quantum;
269 f->socket_hash = sk->sk_hash;
270 f->time_next_packet = 0ULL;
272 return f;
274 if (f->sk > sk)
275 p = &parent->rb_right;
276 else
277 p = &parent->rb_left;
280 f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
281 if (unlikely(!f)) {
282 q->stat_allocation_errors++;
283 return &q->internal;
285 fq_flow_set_detached(f);
286 f->sk = sk;
287 if (skb->sk)
288 f->socket_hash = sk->sk_hash;
289 f->credit = q->initial_quantum;
291 rb_link_node(&f->fq_node, parent, p);
292 rb_insert_color(&f->fq_node, root);
294 q->flows++;
295 q->inactive_flows++;
296 return f;
300 /* remove one skb from head of flow queue */
301 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
303 struct sk_buff *skb = flow->head;
305 if (skb) {
306 flow->head = skb->next;
307 skb->next = NULL;
308 flow->qlen--;
309 qdisc_qstats_backlog_dec(sch, skb);
310 sch->q.qlen--;
312 return skb;
315 /* We might add in the future detection of retransmits
316 * For the time being, just return false
318 static bool skb_is_retransmit(struct sk_buff *skb)
320 return false;
323 /* add skb to flow queue
324 * flow queue is a linked list, kind of FIFO, except for TCP retransmits
325 * We special case tcp retransmits to be transmitted before other packets.
326 * We rely on fact that TCP retransmits are unlikely, so we do not waste
327 * a separate queue or a pointer.
328 * head-> [retrans pkt 1]
329 * [retrans pkt 2]
330 * [ normal pkt 1]
331 * [ normal pkt 2]
332 * [ normal pkt 3]
333 * tail-> [ normal pkt 4]
335 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
337 struct sk_buff *prev, *head = flow->head;
339 skb->next = NULL;
340 if (!head) {
341 flow->head = skb;
342 flow->tail = skb;
343 return;
345 if (likely(!skb_is_retransmit(skb))) {
346 flow->tail->next = skb;
347 flow->tail = skb;
348 return;
351 /* This skb is a tcp retransmit,
352 * find the last retrans packet in the queue
354 prev = NULL;
355 while (skb_is_retransmit(head)) {
356 prev = head;
357 head = head->next;
358 if (!head)
359 break;
361 if (!prev) { /* no rtx packet in queue, become the new head */
362 skb->next = flow->head;
363 flow->head = skb;
364 } else {
365 if (prev == flow->tail)
366 flow->tail = skb;
367 else
368 skb->next = prev->next;
369 prev->next = skb;
373 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
374 struct sk_buff **to_free)
376 struct fq_sched_data *q = qdisc_priv(sch);
377 struct fq_flow *f;
379 if (unlikely(sch->q.qlen >= sch->limit))
380 return qdisc_drop(skb, sch, to_free);
382 f = fq_classify(skb, q);
383 if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
384 q->stat_flows_plimit++;
385 return qdisc_drop(skb, sch, to_free);
388 f->qlen++;
389 if (skb_is_retransmit(skb))
390 q->stat_tcp_retrans++;
391 qdisc_qstats_backlog_inc(sch, skb);
392 if (fq_flow_is_detached(f)) {
393 struct sock *sk = skb->sk;
395 fq_flow_add_tail(&q->new_flows, f);
396 if (time_after(jiffies, f->age + q->flow_refill_delay))
397 f->credit = max_t(u32, f->credit, q->quantum);
398 if (sk && q->rate_enable) {
399 if (unlikely(smp_load_acquire(&sk->sk_pacing_status) !=
400 SK_PACING_FQ))
401 smp_store_release(&sk->sk_pacing_status,
402 SK_PACING_FQ);
404 q->inactive_flows--;
407 /* Note: this overwrites f->age */
408 flow_queue_add(f, skb);
410 if (unlikely(f == &q->internal)) {
411 q->stat_internal_packets++;
413 sch->q.qlen++;
415 return NET_XMIT_SUCCESS;
418 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
420 unsigned long sample;
421 struct rb_node *p;
423 if (q->time_next_delayed_flow > now)
424 return;
426 /* Update unthrottle latency EWMA.
427 * This is cheap and can help diagnosing timer/latency problems.
429 sample = (unsigned long)(now - q->time_next_delayed_flow);
430 q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
431 q->unthrottle_latency_ns += sample >> 3;
433 q->time_next_delayed_flow = ~0ULL;
434 while ((p = rb_first(&q->delayed)) != NULL) {
435 struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
437 if (f->time_next_packet > now) {
438 q->time_next_delayed_flow = f->time_next_packet;
439 break;
441 rb_erase(p, &q->delayed);
442 q->throttled_flows--;
443 fq_flow_add_tail(&q->old_flows, f);
447 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
449 struct fq_sched_data *q = qdisc_priv(sch);
450 u64 now = ktime_get_ns();
451 struct fq_flow_head *head;
452 struct sk_buff *skb;
453 struct fq_flow *f;
454 u32 rate, plen;
456 skb = fq_dequeue_head(sch, &q->internal);
457 if (skb)
458 goto out;
459 fq_check_throttled(q, now);
460 begin:
461 head = &q->new_flows;
462 if (!head->first) {
463 head = &q->old_flows;
464 if (!head->first) {
465 if (q->time_next_delayed_flow != ~0ULL)
466 qdisc_watchdog_schedule_ns(&q->watchdog,
467 q->time_next_delayed_flow);
468 return NULL;
471 f = head->first;
473 if (f->credit <= 0) {
474 f->credit += q->quantum;
475 head->first = f->next;
476 fq_flow_add_tail(&q->old_flows, f);
477 goto begin;
480 skb = f->head;
481 if (unlikely(skb && now < f->time_next_packet &&
482 !skb_is_tcp_pure_ack(skb))) {
483 head->first = f->next;
484 fq_flow_set_throttled(q, f);
485 goto begin;
488 skb = fq_dequeue_head(sch, f);
489 if (!skb) {
490 head->first = f->next;
491 /* force a pass through old_flows to prevent starvation */
492 if ((head == &q->new_flows) && q->old_flows.first) {
493 fq_flow_add_tail(&q->old_flows, f);
494 } else {
495 fq_flow_set_detached(f);
496 q->inactive_flows++;
498 goto begin;
500 prefetch(&skb->end);
501 f->credit -= qdisc_pkt_len(skb);
503 if (!q->rate_enable)
504 goto out;
506 /* Do not pace locally generated ack packets */
507 if (skb_is_tcp_pure_ack(skb))
508 goto out;
510 rate = q->flow_max_rate;
511 if (skb->sk)
512 rate = min(skb->sk->sk_pacing_rate, rate);
514 if (rate <= q->low_rate_threshold) {
515 f->credit = 0;
516 plen = qdisc_pkt_len(skb);
517 } else {
518 plen = max(qdisc_pkt_len(skb), q->quantum);
519 if (f->credit > 0)
520 goto out;
522 if (rate != ~0U) {
523 u64 len = (u64)plen * NSEC_PER_SEC;
525 if (likely(rate))
526 do_div(len, rate);
527 /* Since socket rate can change later,
528 * clamp the delay to 1 second.
529 * Really, providers of too big packets should be fixed !
531 if (unlikely(len > NSEC_PER_SEC)) {
532 len = NSEC_PER_SEC;
533 q->stat_pkts_too_long++;
535 /* Account for schedule/timers drifts.
536 * f->time_next_packet was set when prior packet was sent,
537 * and current time (@now) can be too late by tens of us.
539 if (f->time_next_packet)
540 len -= min(len/2, now - f->time_next_packet);
541 f->time_next_packet = now + len;
543 out:
544 qdisc_bstats_update(sch, skb);
545 return skb;
548 static void fq_flow_purge(struct fq_flow *flow)
550 rtnl_kfree_skbs(flow->head, flow->tail);
551 flow->head = NULL;
552 flow->qlen = 0;
555 static void fq_reset(struct Qdisc *sch)
557 struct fq_sched_data *q = qdisc_priv(sch);
558 struct rb_root *root;
559 struct rb_node *p;
560 struct fq_flow *f;
561 unsigned int idx;
563 sch->q.qlen = 0;
564 sch->qstats.backlog = 0;
566 fq_flow_purge(&q->internal);
568 if (!q->fq_root)
569 return;
571 for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
572 root = &q->fq_root[idx];
573 while ((p = rb_first(root)) != NULL) {
574 f = rb_entry(p, struct fq_flow, fq_node);
575 rb_erase(p, root);
577 fq_flow_purge(f);
579 kmem_cache_free(fq_flow_cachep, f);
582 q->new_flows.first = NULL;
583 q->old_flows.first = NULL;
584 q->delayed = RB_ROOT;
585 q->flows = 0;
586 q->inactive_flows = 0;
587 q->throttled_flows = 0;
590 static void fq_rehash(struct fq_sched_data *q,
591 struct rb_root *old_array, u32 old_log,
592 struct rb_root *new_array, u32 new_log)
594 struct rb_node *op, **np, *parent;
595 struct rb_root *oroot, *nroot;
596 struct fq_flow *of, *nf;
597 int fcnt = 0;
598 u32 idx;
600 for (idx = 0; idx < (1U << old_log); idx++) {
601 oroot = &old_array[idx];
602 while ((op = rb_first(oroot)) != NULL) {
603 rb_erase(op, oroot);
604 of = rb_entry(op, struct fq_flow, fq_node);
605 if (fq_gc_candidate(of)) {
606 fcnt++;
607 kmem_cache_free(fq_flow_cachep, of);
608 continue;
610 nroot = &new_array[hash_ptr(of->sk, new_log)];
612 np = &nroot->rb_node;
613 parent = NULL;
614 while (*np) {
615 parent = *np;
617 nf = rb_entry(parent, struct fq_flow, fq_node);
618 BUG_ON(nf->sk == of->sk);
620 if (nf->sk > of->sk)
621 np = &parent->rb_right;
622 else
623 np = &parent->rb_left;
626 rb_link_node(&of->fq_node, parent, np);
627 rb_insert_color(&of->fq_node, nroot);
630 q->flows -= fcnt;
631 q->inactive_flows -= fcnt;
632 q->stat_gc_flows += fcnt;
635 static void fq_free(void *addr)
637 kvfree(addr);
640 static int fq_resize(struct Qdisc *sch, u32 log)
642 struct fq_sched_data *q = qdisc_priv(sch);
643 struct rb_root *array;
644 void *old_fq_root;
645 u32 idx;
647 if (q->fq_root && log == q->fq_trees_log)
648 return 0;
650 /* If XPS was setup, we can allocate memory on right NUMA node */
651 array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
652 netdev_queue_numa_node_read(sch->dev_queue));
653 if (!array)
654 return -ENOMEM;
656 for (idx = 0; idx < (1U << log); idx++)
657 array[idx] = RB_ROOT;
659 sch_tree_lock(sch);
661 old_fq_root = q->fq_root;
662 if (old_fq_root)
663 fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
665 q->fq_root = array;
666 q->fq_trees_log = log;
668 sch_tree_unlock(sch);
670 fq_free(old_fq_root);
672 return 0;
675 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
676 [TCA_FQ_PLIMIT] = { .type = NLA_U32 },
677 [TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 },
678 [TCA_FQ_QUANTUM] = { .type = NLA_U32 },
679 [TCA_FQ_INITIAL_QUANTUM] = { .type = NLA_U32 },
680 [TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 },
681 [TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 },
682 [TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 },
683 [TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 },
684 [TCA_FQ_FLOW_REFILL_DELAY] = { .type = NLA_U32 },
685 [TCA_FQ_LOW_RATE_THRESHOLD] = { .type = NLA_U32 },
688 static int fq_change(struct Qdisc *sch, struct nlattr *opt,
689 struct netlink_ext_ack *extack)
691 struct fq_sched_data *q = qdisc_priv(sch);
692 struct nlattr *tb[TCA_FQ_MAX + 1];
693 int err, drop_count = 0;
694 unsigned drop_len = 0;
695 u32 fq_log;
697 if (!opt)
698 return -EINVAL;
700 err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy, NULL);
701 if (err < 0)
702 return err;
704 sch_tree_lock(sch);
706 fq_log = q->fq_trees_log;
708 if (tb[TCA_FQ_BUCKETS_LOG]) {
709 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
711 if (nval >= 1 && nval <= ilog2(256*1024))
712 fq_log = nval;
713 else
714 err = -EINVAL;
716 if (tb[TCA_FQ_PLIMIT])
717 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
719 if (tb[TCA_FQ_FLOW_PLIMIT])
720 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
722 if (tb[TCA_FQ_QUANTUM]) {
723 u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
725 if (quantum > 0)
726 q->quantum = quantum;
727 else
728 err = -EINVAL;
731 if (tb[TCA_FQ_INITIAL_QUANTUM])
732 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
734 if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
735 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
736 nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
738 if (tb[TCA_FQ_FLOW_MAX_RATE])
739 q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
741 if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
742 q->low_rate_threshold =
743 nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
745 if (tb[TCA_FQ_RATE_ENABLE]) {
746 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
748 if (enable <= 1)
749 q->rate_enable = enable;
750 else
751 err = -EINVAL;
754 if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
755 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
757 q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
760 if (tb[TCA_FQ_ORPHAN_MASK])
761 q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
763 if (!err) {
764 sch_tree_unlock(sch);
765 err = fq_resize(sch, fq_log);
766 sch_tree_lock(sch);
768 while (sch->q.qlen > sch->limit) {
769 struct sk_buff *skb = fq_dequeue(sch);
771 if (!skb)
772 break;
773 drop_len += qdisc_pkt_len(skb);
774 rtnl_kfree_skbs(skb, skb);
775 drop_count++;
777 qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
779 sch_tree_unlock(sch);
780 return err;
783 static void fq_destroy(struct Qdisc *sch)
785 struct fq_sched_data *q = qdisc_priv(sch);
787 fq_reset(sch);
788 fq_free(q->fq_root);
789 qdisc_watchdog_cancel(&q->watchdog);
792 static int fq_init(struct Qdisc *sch, struct nlattr *opt,
793 struct netlink_ext_ack *extack)
795 struct fq_sched_data *q = qdisc_priv(sch);
796 int err;
798 sch->limit = 10000;
799 q->flow_plimit = 100;
800 q->quantum = 2 * psched_mtu(qdisc_dev(sch));
801 q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch));
802 q->flow_refill_delay = msecs_to_jiffies(40);
803 q->flow_max_rate = ~0U;
804 q->time_next_delayed_flow = ~0ULL;
805 q->rate_enable = 1;
806 q->new_flows.first = NULL;
807 q->old_flows.first = NULL;
808 q->delayed = RB_ROOT;
809 q->fq_root = NULL;
810 q->fq_trees_log = ilog2(1024);
811 q->orphan_mask = 1024 - 1;
812 q->low_rate_threshold = 550000 / 8;
813 qdisc_watchdog_init(&q->watchdog, sch);
815 if (opt)
816 err = fq_change(sch, opt, extack);
817 else
818 err = fq_resize(sch, q->fq_trees_log);
820 return err;
823 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
825 struct fq_sched_data *q = qdisc_priv(sch);
826 struct nlattr *opts;
828 opts = nla_nest_start(skb, TCA_OPTIONS);
829 if (opts == NULL)
830 goto nla_put_failure;
832 /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
834 if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
835 nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
836 nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
837 nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
838 nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
839 nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
840 nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
841 jiffies_to_usecs(q->flow_refill_delay)) ||
842 nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
843 nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
844 q->low_rate_threshold) ||
845 nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
846 goto nla_put_failure;
848 return nla_nest_end(skb, opts);
850 nla_put_failure:
851 return -1;
854 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
856 struct fq_sched_data *q = qdisc_priv(sch);
857 struct tc_fq_qd_stats st;
859 sch_tree_lock(sch);
861 st.gc_flows = q->stat_gc_flows;
862 st.highprio_packets = q->stat_internal_packets;
863 st.tcp_retrans = q->stat_tcp_retrans;
864 st.throttled = q->stat_throttled;
865 st.flows_plimit = q->stat_flows_plimit;
866 st.pkts_too_long = q->stat_pkts_too_long;
867 st.allocation_errors = q->stat_allocation_errors;
868 st.time_next_delayed_flow = q->time_next_delayed_flow - ktime_get_ns();
869 st.flows = q->flows;
870 st.inactive_flows = q->inactive_flows;
871 st.throttled_flows = q->throttled_flows;
872 st.unthrottle_latency_ns = min_t(unsigned long,
873 q->unthrottle_latency_ns, ~0U);
874 sch_tree_unlock(sch);
876 return gnet_stats_copy_app(d, &st, sizeof(st));
879 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
880 .id = "fq",
881 .priv_size = sizeof(struct fq_sched_data),
883 .enqueue = fq_enqueue,
884 .dequeue = fq_dequeue,
885 .peek = qdisc_peek_dequeued,
886 .init = fq_init,
887 .reset = fq_reset,
888 .destroy = fq_destroy,
889 .change = fq_change,
890 .dump = fq_dump,
891 .dump_stats = fq_dump_stats,
892 .owner = THIS_MODULE,
895 static int __init fq_module_init(void)
897 int ret;
899 fq_flow_cachep = kmem_cache_create("fq_flow_cache",
900 sizeof(struct fq_flow),
901 0, 0, NULL);
902 if (!fq_flow_cachep)
903 return -ENOMEM;
905 ret = register_qdisc(&fq_qdisc_ops);
906 if (ret)
907 kmem_cache_destroy(fq_flow_cachep);
908 return ret;
911 static void __exit fq_module_exit(void)
913 unregister_qdisc(&fq_qdisc_ops);
914 kmem_cache_destroy(fq_flow_cachep);
917 module_init(fq_module_init)
918 module_exit(fq_module_exit)
919 MODULE_AUTHOR("Eric Dumazet");
920 MODULE_LICENSE("GPL");