xtensa: support DMA buffers in high memory
[cris-mirror.git] / net / sched / sch_qfq.c
blobbb1a9c11fc549a170172e3d7deaf9693b18e7332
1 /*
2 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5 * Copyright (c) 2012 Paolo Valente.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 as published by the Free Software Foundation.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/bitops.h>
15 #include <linux/errno.h>
16 #include <linux/netdevice.h>
17 #include <linux/pkt_sched.h>
18 #include <net/sch_generic.h>
19 #include <net/pkt_sched.h>
20 #include <net/pkt_cls.h>
23 /* Quick Fair Queueing Plus
24 ========================
26 Sources:
28 [1] Paolo Valente,
29 "Reducing the Execution Time of Fair-Queueing Schedulers."
30 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
32 Sources for QFQ:
34 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
35 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
37 See also:
38 http://retis.sssup.it/~fabio/linux/qfq/
43 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
44 classes. Each aggregate is timestamped with a virtual start time S
45 and a virtual finish time F, and scheduled according to its
46 timestamps. S and F are computed as a function of a system virtual
47 time function V. The classes within each aggregate are instead
48 scheduled with DRR.
50 To speed up operations, QFQ+ divides also aggregates into a limited
51 number of groups. Which group a class belongs to depends on the
52 ratio between the maximum packet length for the class and the weight
53 of the class. Groups have their own S and F. In the end, QFQ+
54 schedules groups, then aggregates within groups, then classes within
55 aggregates. See [1] and [2] for a full description.
57 Virtual time computations.
59 S, F and V are all computed in fixed point arithmetic with
60 FRAC_BITS decimal bits.
62 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
63 one bit per index.
64 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
66 The layout of the bits is as below:
68 [ MTU_SHIFT ][ FRAC_BITS ]
69 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
70 ^.__grp->index = 0
71 *.__grp->slot_shift
73 where MIN_SLOT_SHIFT is derived by difference from the others.
75 The max group index corresponds to Lmax/w_min, where
76 Lmax=1<<MTU_SHIFT, w_min = 1 .
77 From this, and knowing how many groups (MAX_INDEX) we want,
78 we can derive the shift corresponding to each group.
80 Because we often need to compute
81 F = S + len/w_i and V = V + len/wsum
82 instead of storing w_i store the value
83 inv_w = (1<<FRAC_BITS)/w_i
84 so we can do F = S + len * inv_w * wsum.
85 We use W_TOT in the formulas so we can easily move between
86 static and adaptive weight sum.
88 The per-scheduler-instance data contain all the data structures
89 for the scheduler: bitmaps and bucket lists.
94 * Maximum number of consecutive slots occupied by backlogged classes
95 * inside a group.
97 #define QFQ_MAX_SLOTS 32
100 * Shifts used for aggregate<->group mapping. We allow class weights that are
101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
102 * group with the smallest index that can support the L_i / r_i configured
103 * for the classes in the aggregate.
105 * grp->index is the index of the group; and grp->slot_shift
106 * is the shift for the corresponding (scaled) sigma_i.
108 #define QFQ_MAX_INDEX 24
109 #define QFQ_MAX_WSHIFT 10
111 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
112 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
114 #define FRAC_BITS 30 /* fixed point arithmetic */
115 #define ONE_FP (1UL << FRAC_BITS)
117 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
118 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
120 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
123 * Possible group states. These values are used as indexes for the bitmaps
124 * array of struct qfq_queue.
126 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
128 struct qfq_group;
130 struct qfq_aggregate;
132 struct qfq_class {
133 struct Qdisc_class_common common;
135 unsigned int filter_cnt;
137 struct gnet_stats_basic_packed bstats;
138 struct gnet_stats_queue qstats;
139 struct net_rate_estimator __rcu *rate_est;
140 struct Qdisc *qdisc;
141 struct list_head alist; /* Link for active-classes list. */
142 struct qfq_aggregate *agg; /* Parent aggregate. */
143 int deficit; /* DRR deficit counter. */
146 struct qfq_aggregate {
147 struct hlist_node next; /* Link for the slot list. */
148 u64 S, F; /* flow timestamps (exact) */
150 /* group we belong to. In principle we would need the index,
151 * which is log_2(lmax/weight), but we never reference it
152 * directly, only the group.
154 struct qfq_group *grp;
156 /* these are copied from the flowset. */
157 u32 class_weight; /* Weight of each class in this aggregate. */
158 /* Max pkt size for the classes in this aggregate, DRR quantum. */
159 int lmax;
161 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */
162 u32 budgetmax; /* Max budget for this aggregate. */
163 u32 initial_budget, budget; /* Initial and current budget. */
165 int num_classes; /* Number of classes in this aggr. */
166 struct list_head active; /* DRR queue of active classes. */
168 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
171 struct qfq_group {
172 u64 S, F; /* group timestamps (approx). */
173 unsigned int slot_shift; /* Slot shift. */
174 unsigned int index; /* Group index. */
175 unsigned int front; /* Index of the front slot. */
176 unsigned long full_slots; /* non-empty slots */
178 /* Array of RR lists of active aggregates. */
179 struct hlist_head slots[QFQ_MAX_SLOTS];
182 struct qfq_sched {
183 struct tcf_proto __rcu *filter_list;
184 struct tcf_block *block;
185 struct Qdisc_class_hash clhash;
187 u64 oldV, V; /* Precise virtual times. */
188 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
189 u32 wsum; /* weight sum */
190 u32 iwsum; /* inverse weight sum */
192 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
193 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
194 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
196 u32 max_agg_classes; /* Max number of classes per aggr. */
197 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
201 * Possible reasons why the timestamps of an aggregate are updated
202 * enqueue: the aggregate switches from idle to active and must scheduled
203 * for service
204 * requeue: the aggregate finishes its budget, so it stops being served and
205 * must be rescheduled for service
207 enum update_reason {enqueue, requeue};
209 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
211 struct qfq_sched *q = qdisc_priv(sch);
212 struct Qdisc_class_common *clc;
214 clc = qdisc_class_find(&q->clhash, classid);
215 if (clc == NULL)
216 return NULL;
217 return container_of(clc, struct qfq_class, common);
220 static void qfq_purge_queue(struct qfq_class *cl)
222 unsigned int len = cl->qdisc->q.qlen;
223 unsigned int backlog = cl->qdisc->qstats.backlog;
225 qdisc_reset(cl->qdisc);
226 qdisc_tree_reduce_backlog(cl->qdisc, len, backlog);
229 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
230 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
231 [TCA_QFQ_LMAX] = { .type = NLA_U32 },
235 * Calculate a flow index, given its weight and maximum packet length.
236 * index = log_2(maxlen/weight) but we need to apply the scaling.
237 * This is used only once at flow creation.
239 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
241 u64 slot_size = (u64)maxlen * inv_w;
242 unsigned long size_map;
243 int index = 0;
245 size_map = slot_size >> min_slot_shift;
246 if (!size_map)
247 goto out;
249 index = __fls(size_map) + 1; /* basically a log_2 */
250 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
252 if (index < 0)
253 index = 0;
254 out:
255 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
256 (unsigned long) ONE_FP/inv_w, maxlen, index);
258 return index;
261 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
262 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
263 enum update_reason);
265 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
266 u32 lmax, u32 weight)
268 INIT_LIST_HEAD(&agg->active);
269 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
271 agg->lmax = lmax;
272 agg->class_weight = weight;
275 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
276 u32 lmax, u32 weight)
278 struct qfq_aggregate *agg;
280 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
281 if (agg->lmax == lmax && agg->class_weight == weight)
282 return agg;
284 return NULL;
288 /* Update aggregate as a function of the new number of classes. */
289 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
290 int new_num_classes)
292 u32 new_agg_weight;
294 if (new_num_classes == q->max_agg_classes)
295 hlist_del_init(&agg->nonfull_next);
297 if (agg->num_classes > new_num_classes &&
298 new_num_classes == q->max_agg_classes - 1) /* agg no more full */
299 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
301 /* The next assignment may let
302 * agg->initial_budget > agg->budgetmax
303 * hold, we will take it into account in charge_actual_service().
305 agg->budgetmax = new_num_classes * agg->lmax;
306 new_agg_weight = agg->class_weight * new_num_classes;
307 agg->inv_w = ONE_FP/new_agg_weight;
309 if (agg->grp == NULL) {
310 int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
311 q->min_slot_shift);
312 agg->grp = &q->groups[i];
315 q->wsum +=
316 (int) agg->class_weight * (new_num_classes - agg->num_classes);
317 q->iwsum = ONE_FP / q->wsum;
319 agg->num_classes = new_num_classes;
322 /* Add class to aggregate. */
323 static void qfq_add_to_agg(struct qfq_sched *q,
324 struct qfq_aggregate *agg,
325 struct qfq_class *cl)
327 cl->agg = agg;
329 qfq_update_agg(q, agg, agg->num_classes+1);
330 if (cl->qdisc->q.qlen > 0) { /* adding an active class */
331 list_add_tail(&cl->alist, &agg->active);
332 if (list_first_entry(&agg->active, struct qfq_class, alist) ==
333 cl && q->in_serv_agg != agg) /* agg was inactive */
334 qfq_activate_agg(q, agg, enqueue); /* schedule agg */
338 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
340 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
342 hlist_del_init(&agg->nonfull_next);
343 q->wsum -= agg->class_weight;
344 if (q->wsum != 0)
345 q->iwsum = ONE_FP / q->wsum;
347 if (q->in_serv_agg == agg)
348 q->in_serv_agg = qfq_choose_next_agg(q);
349 kfree(agg);
352 /* Deschedule class from within its parent aggregate. */
353 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
355 struct qfq_aggregate *agg = cl->agg;
358 list_del(&cl->alist); /* remove from RR queue of the aggregate */
359 if (list_empty(&agg->active)) /* agg is now inactive */
360 qfq_deactivate_agg(q, agg);
363 /* Remove class from its parent aggregate. */
364 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
366 struct qfq_aggregate *agg = cl->agg;
368 cl->agg = NULL;
369 if (agg->num_classes == 1) { /* agg being emptied, destroy it */
370 qfq_destroy_agg(q, agg);
371 return;
373 qfq_update_agg(q, agg, agg->num_classes-1);
376 /* Deschedule class and remove it from its parent aggregate. */
377 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
379 if (cl->qdisc->q.qlen > 0) /* class is active */
380 qfq_deactivate_class(q, cl);
382 qfq_rm_from_agg(q, cl);
385 /* Move class to a new aggregate, matching the new class weight and/or lmax */
386 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
387 u32 lmax)
389 struct qfq_sched *q = qdisc_priv(sch);
390 struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
392 if (new_agg == NULL) { /* create new aggregate */
393 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
394 if (new_agg == NULL)
395 return -ENOBUFS;
396 qfq_init_agg(q, new_agg, lmax, weight);
398 qfq_deact_rm_from_agg(q, cl);
399 qfq_add_to_agg(q, new_agg, cl);
401 return 0;
404 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
405 struct nlattr **tca, unsigned long *arg,
406 struct netlink_ext_ack *extack)
408 struct qfq_sched *q = qdisc_priv(sch);
409 struct qfq_class *cl = (struct qfq_class *)*arg;
410 bool existing = false;
411 struct nlattr *tb[TCA_QFQ_MAX + 1];
412 struct qfq_aggregate *new_agg = NULL;
413 u32 weight, lmax, inv_w;
414 int err;
415 int delta_w;
417 if (tca[TCA_OPTIONS] == NULL) {
418 pr_notice("qfq: no options\n");
419 return -EINVAL;
422 err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy,
423 NULL);
424 if (err < 0)
425 return err;
427 if (tb[TCA_QFQ_WEIGHT]) {
428 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
429 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
430 pr_notice("qfq: invalid weight %u\n", weight);
431 return -EINVAL;
433 } else
434 weight = 1;
436 if (tb[TCA_QFQ_LMAX]) {
437 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
438 if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
439 pr_notice("qfq: invalid max length %u\n", lmax);
440 return -EINVAL;
442 } else
443 lmax = psched_mtu(qdisc_dev(sch));
445 inv_w = ONE_FP / weight;
446 weight = ONE_FP / inv_w;
448 if (cl != NULL &&
449 lmax == cl->agg->lmax &&
450 weight == cl->agg->class_weight)
451 return 0; /* nothing to change */
453 delta_w = weight - (cl ? cl->agg->class_weight : 0);
455 if (q->wsum + delta_w > QFQ_MAX_WSUM) {
456 pr_notice("qfq: total weight out of range (%d + %u)\n",
457 delta_w, q->wsum);
458 return -EINVAL;
461 if (cl != NULL) { /* modify existing class */
462 if (tca[TCA_RATE]) {
463 err = gen_replace_estimator(&cl->bstats, NULL,
464 &cl->rate_est,
465 NULL,
466 qdisc_root_sleeping_running(sch),
467 tca[TCA_RATE]);
468 if (err)
469 return err;
471 existing = true;
472 goto set_change_agg;
475 /* create and init new class */
476 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
477 if (cl == NULL)
478 return -ENOBUFS;
480 cl->common.classid = classid;
481 cl->deficit = lmax;
483 cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
484 classid, NULL);
485 if (cl->qdisc == NULL)
486 cl->qdisc = &noop_qdisc;
488 if (tca[TCA_RATE]) {
489 err = gen_new_estimator(&cl->bstats, NULL,
490 &cl->rate_est,
491 NULL,
492 qdisc_root_sleeping_running(sch),
493 tca[TCA_RATE]);
494 if (err)
495 goto destroy_class;
498 if (cl->qdisc != &noop_qdisc)
499 qdisc_hash_add(cl->qdisc, true);
500 sch_tree_lock(sch);
501 qdisc_class_hash_insert(&q->clhash, &cl->common);
502 sch_tree_unlock(sch);
504 qdisc_class_hash_grow(sch, &q->clhash);
506 set_change_agg:
507 sch_tree_lock(sch);
508 new_agg = qfq_find_agg(q, lmax, weight);
509 if (new_agg == NULL) { /* create new aggregate */
510 sch_tree_unlock(sch);
511 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
512 if (new_agg == NULL) {
513 err = -ENOBUFS;
514 gen_kill_estimator(&cl->rate_est);
515 goto destroy_class;
517 sch_tree_lock(sch);
518 qfq_init_agg(q, new_agg, lmax, weight);
520 if (existing)
521 qfq_deact_rm_from_agg(q, cl);
522 qfq_add_to_agg(q, new_agg, cl);
523 sch_tree_unlock(sch);
525 *arg = (unsigned long)cl;
526 return 0;
528 destroy_class:
529 qdisc_destroy(cl->qdisc);
530 kfree(cl);
531 return err;
534 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
536 struct qfq_sched *q = qdisc_priv(sch);
538 qfq_rm_from_agg(q, cl);
539 gen_kill_estimator(&cl->rate_est);
540 qdisc_destroy(cl->qdisc);
541 kfree(cl);
544 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
546 struct qfq_sched *q = qdisc_priv(sch);
547 struct qfq_class *cl = (struct qfq_class *)arg;
549 if (cl->filter_cnt > 0)
550 return -EBUSY;
552 sch_tree_lock(sch);
554 qfq_purge_queue(cl);
555 qdisc_class_hash_remove(&q->clhash, &cl->common);
557 sch_tree_unlock(sch);
559 qfq_destroy_class(sch, cl);
560 return 0;
563 static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
565 return (unsigned long)qfq_find_class(sch, classid);
568 static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl,
569 struct netlink_ext_ack *extack)
571 struct qfq_sched *q = qdisc_priv(sch);
573 if (cl)
574 return NULL;
576 return q->block;
579 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
580 u32 classid)
582 struct qfq_class *cl = qfq_find_class(sch, classid);
584 if (cl != NULL)
585 cl->filter_cnt++;
587 return (unsigned long)cl;
590 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
592 struct qfq_class *cl = (struct qfq_class *)arg;
594 cl->filter_cnt--;
597 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
598 struct Qdisc *new, struct Qdisc **old,
599 struct netlink_ext_ack *extack)
601 struct qfq_class *cl = (struct qfq_class *)arg;
603 if (new == NULL) {
604 new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
605 cl->common.classid, NULL);
606 if (new == NULL)
607 new = &noop_qdisc;
610 *old = qdisc_replace(sch, new, &cl->qdisc);
611 return 0;
614 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
616 struct qfq_class *cl = (struct qfq_class *)arg;
618 return cl->qdisc;
621 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
622 struct sk_buff *skb, struct tcmsg *tcm)
624 struct qfq_class *cl = (struct qfq_class *)arg;
625 struct nlattr *nest;
627 tcm->tcm_parent = TC_H_ROOT;
628 tcm->tcm_handle = cl->common.classid;
629 tcm->tcm_info = cl->qdisc->handle;
631 nest = nla_nest_start(skb, TCA_OPTIONS);
632 if (nest == NULL)
633 goto nla_put_failure;
634 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
635 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
636 goto nla_put_failure;
637 return nla_nest_end(skb, nest);
639 nla_put_failure:
640 nla_nest_cancel(skb, nest);
641 return -EMSGSIZE;
644 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
645 struct gnet_dump *d)
647 struct qfq_class *cl = (struct qfq_class *)arg;
648 struct tc_qfq_stats xstats;
650 memset(&xstats, 0, sizeof(xstats));
652 xstats.weight = cl->agg->class_weight;
653 xstats.lmax = cl->agg->lmax;
655 if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch),
656 d, NULL, &cl->bstats) < 0 ||
657 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
658 gnet_stats_copy_queue(d, NULL,
659 &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0)
660 return -1;
662 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
665 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
667 struct qfq_sched *q = qdisc_priv(sch);
668 struct qfq_class *cl;
669 unsigned int i;
671 if (arg->stop)
672 return;
674 for (i = 0; i < q->clhash.hashsize; i++) {
675 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
676 if (arg->count < arg->skip) {
677 arg->count++;
678 continue;
680 if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
681 arg->stop = 1;
682 return;
684 arg->count++;
689 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
690 int *qerr)
692 struct qfq_sched *q = qdisc_priv(sch);
693 struct qfq_class *cl;
694 struct tcf_result res;
695 struct tcf_proto *fl;
696 int result;
698 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
699 pr_debug("qfq_classify: found %d\n", skb->priority);
700 cl = qfq_find_class(sch, skb->priority);
701 if (cl != NULL)
702 return cl;
705 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
706 fl = rcu_dereference_bh(q->filter_list);
707 result = tcf_classify(skb, fl, &res, false);
708 if (result >= 0) {
709 #ifdef CONFIG_NET_CLS_ACT
710 switch (result) {
711 case TC_ACT_QUEUED:
712 case TC_ACT_STOLEN:
713 case TC_ACT_TRAP:
714 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
715 /* fall through */
716 case TC_ACT_SHOT:
717 return NULL;
719 #endif
720 cl = (struct qfq_class *)res.class;
721 if (cl == NULL)
722 cl = qfq_find_class(sch, res.classid);
723 return cl;
726 return NULL;
729 /* Generic comparison function, handling wraparound. */
730 static inline int qfq_gt(u64 a, u64 b)
732 return (s64)(a - b) > 0;
735 /* Round a precise timestamp to its slotted value. */
736 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
738 return ts & ~((1ULL << shift) - 1);
741 /* return the pointer to the group with lowest index in the bitmap */
742 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
743 unsigned long bitmap)
745 int index = __ffs(bitmap);
746 return &q->groups[index];
748 /* Calculate a mask to mimic what would be ffs_from(). */
749 static inline unsigned long mask_from(unsigned long bitmap, int from)
751 return bitmap & ~((1UL << from) - 1);
755 * The state computation relies on ER=0, IR=1, EB=2, IB=3
756 * First compute eligibility comparing grp->S, q->V,
757 * then check if someone is blocking us and possibly add EB
759 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
761 /* if S > V we are not eligible */
762 unsigned int state = qfq_gt(grp->S, q->V);
763 unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
764 struct qfq_group *next;
766 if (mask) {
767 next = qfq_ffs(q, mask);
768 if (qfq_gt(grp->F, next->F))
769 state |= EB;
772 return state;
777 * In principle
778 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
779 * q->bitmaps[src] &= ~mask;
780 * but we should make sure that src != dst
782 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
783 int src, int dst)
785 q->bitmaps[dst] |= q->bitmaps[src] & mask;
786 q->bitmaps[src] &= ~mask;
789 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
791 unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
792 struct qfq_group *next;
794 if (mask) {
795 next = qfq_ffs(q, mask);
796 if (!qfq_gt(next->F, old_F))
797 return;
800 mask = (1UL << index) - 1;
801 qfq_move_groups(q, mask, EB, ER);
802 qfq_move_groups(q, mask, IB, IR);
806 * perhaps
808 old_V ^= q->V;
809 old_V >>= q->min_slot_shift;
810 if (old_V) {
815 static void qfq_make_eligible(struct qfq_sched *q)
817 unsigned long vslot = q->V >> q->min_slot_shift;
818 unsigned long old_vslot = q->oldV >> q->min_slot_shift;
820 if (vslot != old_vslot) {
821 unsigned long mask;
822 int last_flip_pos = fls(vslot ^ old_vslot);
824 if (last_flip_pos > 31) /* higher than the number of groups */
825 mask = ~0UL; /* make all groups eligible */
826 else
827 mask = (1UL << last_flip_pos) - 1;
829 qfq_move_groups(q, mask, IR, ER);
830 qfq_move_groups(q, mask, IB, EB);
835 * The index of the slot in which the input aggregate agg is to be
836 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
837 * and not a '-1' because the start time of the group may be moved
838 * backward by one slot after the aggregate has been inserted, and
839 * this would cause non-empty slots to be right-shifted by one
840 * position.
842 * QFQ+ fully satisfies this bound to the slot index if the parameters
843 * of the classes are not changed dynamically, and if QFQ+ never
844 * happens to postpone the service of agg unjustly, i.e., it never
845 * happens that the aggregate becomes backlogged and eligible, or just
846 * eligible, while an aggregate with a higher approximated finish time
847 * is being served. In particular, in this case QFQ+ guarantees that
848 * the timestamps of agg are low enough that the slot index is never
849 * higher than 2. Unfortunately, QFQ+ cannot provide the same
850 * guarantee if it happens to unjustly postpone the service of agg, or
851 * if the parameters of some class are changed.
853 * As for the first event, i.e., an out-of-order service, the
854 * upper bound to the slot index guaranteed by QFQ+ grows to
855 * 2 +
856 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
857 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
859 * The following function deals with this problem by backward-shifting
860 * the timestamps of agg, if needed, so as to guarantee that the slot
861 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
862 * cause the service of other aggregates to be postponed, yet the
863 * worst-case guarantees of these aggregates are not violated. In
864 * fact, in case of no out-of-order service, the timestamps of agg
865 * would have been even lower than they are after the backward shift,
866 * because QFQ+ would have guaranteed a maximum value equal to 2 for
867 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
868 * service is postponed because of the backward-shift would have
869 * however waited for the service of agg before being served.
871 * The other event that may cause the slot index to be higher than 2
872 * for agg is a recent change of the parameters of some class. If the
873 * weight of a class is increased or the lmax (max_pkt_size) of the
874 * class is decreased, then a new aggregate with smaller slot size
875 * than the original parent aggregate of the class may happen to be
876 * activated. The activation of this aggregate should be properly
877 * delayed to when the service of the class has finished in the ideal
878 * system tracked by QFQ+. If the activation of the aggregate is not
879 * delayed to this reference time instant, then this aggregate may be
880 * unjustly served before other aggregates waiting for service. This
881 * may cause the above bound to the slot index to be violated for some
882 * of these unlucky aggregates.
884 * Instead of delaying the activation of the new aggregate, which is
885 * quite complex, the above-discussed capping of the slot index is
886 * used to handle also the consequences of a change of the parameters
887 * of a class.
889 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
890 u64 roundedS)
892 u64 slot = (roundedS - grp->S) >> grp->slot_shift;
893 unsigned int i; /* slot index in the bucket list */
895 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
896 u64 deltaS = roundedS - grp->S -
897 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
898 agg->S -= deltaS;
899 agg->F -= deltaS;
900 slot = QFQ_MAX_SLOTS - 2;
903 i = (grp->front + slot) % QFQ_MAX_SLOTS;
905 hlist_add_head(&agg->next, &grp->slots[i]);
906 __set_bit(slot, &grp->full_slots);
909 /* Maybe introduce hlist_first_entry?? */
910 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
912 return hlist_entry(grp->slots[grp->front].first,
913 struct qfq_aggregate, next);
917 * remove the entry from the slot
919 static void qfq_front_slot_remove(struct qfq_group *grp)
921 struct qfq_aggregate *agg = qfq_slot_head(grp);
923 BUG_ON(!agg);
924 hlist_del(&agg->next);
925 if (hlist_empty(&grp->slots[grp->front]))
926 __clear_bit(0, &grp->full_slots);
930 * Returns the first aggregate in the first non-empty bucket of the
931 * group. As a side effect, adjusts the bucket list so the first
932 * non-empty bucket is at position 0 in full_slots.
934 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
936 unsigned int i;
938 pr_debug("qfq slot_scan: grp %u full %#lx\n",
939 grp->index, grp->full_slots);
941 if (grp->full_slots == 0)
942 return NULL;
944 i = __ffs(grp->full_slots); /* zero based */
945 if (i > 0) {
946 grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
947 grp->full_slots >>= i;
950 return qfq_slot_head(grp);
954 * adjust the bucket list. When the start time of a group decreases,
955 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
956 * move the objects. The mask of occupied slots must be shifted
957 * because we use ffs() to find the first non-empty slot.
958 * This covers decreases in the group's start time, but what about
959 * increases of the start time ?
960 * Here too we should make sure that i is less than 32
962 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
964 unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
966 grp->full_slots <<= i;
967 grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
970 static void qfq_update_eligible(struct qfq_sched *q)
972 struct qfq_group *grp;
973 unsigned long ineligible;
975 ineligible = q->bitmaps[IR] | q->bitmaps[IB];
976 if (ineligible) {
977 if (!q->bitmaps[ER]) {
978 grp = qfq_ffs(q, ineligible);
979 if (qfq_gt(grp->S, q->V))
980 q->V = grp->S;
982 qfq_make_eligible(q);
986 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
987 static void agg_dequeue(struct qfq_aggregate *agg,
988 struct qfq_class *cl, unsigned int len)
990 qdisc_dequeue_peeked(cl->qdisc);
992 cl->deficit -= (int) len;
994 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
995 list_del(&cl->alist);
996 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
997 cl->deficit += agg->lmax;
998 list_move_tail(&cl->alist, &agg->active);
1002 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1003 struct qfq_class **cl,
1004 unsigned int *len)
1006 struct sk_buff *skb;
1008 *cl = list_first_entry(&agg->active, struct qfq_class, alist);
1009 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1010 if (skb == NULL)
1011 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1012 else
1013 *len = qdisc_pkt_len(skb);
1015 return skb;
1018 /* Update F according to the actual service received by the aggregate. */
1019 static inline void charge_actual_service(struct qfq_aggregate *agg)
1021 /* Compute the service received by the aggregate, taking into
1022 * account that, after decreasing the number of classes in
1023 * agg, it may happen that
1024 * agg->initial_budget - agg->budget > agg->bugdetmax
1026 u32 service_received = min(agg->budgetmax,
1027 agg->initial_budget - agg->budget);
1029 agg->F = agg->S + (u64)service_received * agg->inv_w;
1032 /* Assign a reasonable start time for a new aggregate in group i.
1033 * Admissible values for \hat(F) are multiples of \sigma_i
1034 * no greater than V+\sigma_i . Larger values mean that
1035 * we had a wraparound so we consider the timestamp to be stale.
1037 * If F is not stale and F >= V then we set S = F.
1038 * Otherwise we should assign S = V, but this may violate
1039 * the ordering in EB (see [2]). So, if we have groups in ER,
1040 * set S to the F_j of the first group j which would be blocking us.
1041 * We are guaranteed not to move S backward because
1042 * otherwise our group i would still be blocked.
1044 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1046 unsigned long mask;
1047 u64 limit, roundedF;
1048 int slot_shift = agg->grp->slot_shift;
1050 roundedF = qfq_round_down(agg->F, slot_shift);
1051 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1053 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1054 /* timestamp was stale */
1055 mask = mask_from(q->bitmaps[ER], agg->grp->index);
1056 if (mask) {
1057 struct qfq_group *next = qfq_ffs(q, mask);
1058 if (qfq_gt(roundedF, next->F)) {
1059 if (qfq_gt(limit, next->F))
1060 agg->S = next->F;
1061 else /* preserve timestamp correctness */
1062 agg->S = limit;
1063 return;
1066 agg->S = q->V;
1067 } else /* timestamp is not stale */
1068 agg->S = agg->F;
1071 /* Update the timestamps of agg before scheduling/rescheduling it for
1072 * service. In particular, assign to agg->F its maximum possible
1073 * value, i.e., the virtual finish time with which the aggregate
1074 * should be labeled if it used all its budget once in service.
1076 static inline void
1077 qfq_update_agg_ts(struct qfq_sched *q,
1078 struct qfq_aggregate *agg, enum update_reason reason)
1080 if (reason != requeue)
1081 qfq_update_start(q, agg);
1082 else /* just charge agg for the service received */
1083 agg->S = agg->F;
1085 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1088 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1090 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1092 struct qfq_sched *q = qdisc_priv(sch);
1093 struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1094 struct qfq_class *cl;
1095 struct sk_buff *skb = NULL;
1096 /* next-packet len, 0 means no more active classes in in-service agg */
1097 unsigned int len = 0;
1099 if (in_serv_agg == NULL)
1100 return NULL;
1102 if (!list_empty(&in_serv_agg->active))
1103 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1106 * If there are no active classes in the in-service aggregate,
1107 * or if the aggregate has not enough budget to serve its next
1108 * class, then choose the next aggregate to serve.
1110 if (len == 0 || in_serv_agg->budget < len) {
1111 charge_actual_service(in_serv_agg);
1113 /* recharge the budget of the aggregate */
1114 in_serv_agg->initial_budget = in_serv_agg->budget =
1115 in_serv_agg->budgetmax;
1117 if (!list_empty(&in_serv_agg->active)) {
1119 * Still active: reschedule for
1120 * service. Possible optimization: if no other
1121 * aggregate is active, then there is no point
1122 * in rescheduling this aggregate, and we can
1123 * just keep it as the in-service one. This
1124 * should be however a corner case, and to
1125 * handle it, we would need to maintain an
1126 * extra num_active_aggs field.
1128 qfq_update_agg_ts(q, in_serv_agg, requeue);
1129 qfq_schedule_agg(q, in_serv_agg);
1130 } else if (sch->q.qlen == 0) { /* no aggregate to serve */
1131 q->in_serv_agg = NULL;
1132 return NULL;
1136 * If we get here, there are other aggregates queued:
1137 * choose the new aggregate to serve.
1139 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1140 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1142 if (!skb)
1143 return NULL;
1145 qdisc_qstats_backlog_dec(sch, skb);
1146 sch->q.qlen--;
1147 qdisc_bstats_update(sch, skb);
1149 agg_dequeue(in_serv_agg, cl, len);
1150 /* If lmax is lowered, through qfq_change_class, for a class
1151 * owning pending packets with larger size than the new value
1152 * of lmax, then the following condition may hold.
1154 if (unlikely(in_serv_agg->budget < len))
1155 in_serv_agg->budget = 0;
1156 else
1157 in_serv_agg->budget -= len;
1159 q->V += (u64)len * q->iwsum;
1160 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1161 len, (unsigned long long) in_serv_agg->F,
1162 (unsigned long long) q->V);
1164 return skb;
1167 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1169 struct qfq_group *grp;
1170 struct qfq_aggregate *agg, *new_front_agg;
1171 u64 old_F;
1173 qfq_update_eligible(q);
1174 q->oldV = q->V;
1176 if (!q->bitmaps[ER])
1177 return NULL;
1179 grp = qfq_ffs(q, q->bitmaps[ER]);
1180 old_F = grp->F;
1182 agg = qfq_slot_head(grp);
1184 /* agg starts to be served, remove it from schedule */
1185 qfq_front_slot_remove(grp);
1187 new_front_agg = qfq_slot_scan(grp);
1189 if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1190 __clear_bit(grp->index, &q->bitmaps[ER]);
1191 else {
1192 u64 roundedS = qfq_round_down(new_front_agg->S,
1193 grp->slot_shift);
1194 unsigned int s;
1196 if (grp->S == roundedS)
1197 return agg;
1198 grp->S = roundedS;
1199 grp->F = roundedS + (2ULL << grp->slot_shift);
1200 __clear_bit(grp->index, &q->bitmaps[ER]);
1201 s = qfq_calc_state(q, grp);
1202 __set_bit(grp->index, &q->bitmaps[s]);
1205 qfq_unblock_groups(q, grp->index, old_F);
1207 return agg;
1210 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1211 struct sk_buff **to_free)
1213 struct qfq_sched *q = qdisc_priv(sch);
1214 struct qfq_class *cl;
1215 struct qfq_aggregate *agg;
1216 int err = 0;
1218 cl = qfq_classify(skb, sch, &err);
1219 if (cl == NULL) {
1220 if (err & __NET_XMIT_BYPASS)
1221 qdisc_qstats_drop(sch);
1222 __qdisc_drop(skb, to_free);
1223 return err;
1225 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1227 if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
1228 pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1229 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1230 err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1231 qdisc_pkt_len(skb));
1232 if (err) {
1233 cl->qstats.drops++;
1234 return qdisc_drop(skb, sch, to_free);
1238 err = qdisc_enqueue(skb, cl->qdisc, to_free);
1239 if (unlikely(err != NET_XMIT_SUCCESS)) {
1240 pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1241 if (net_xmit_drop_count(err)) {
1242 cl->qstats.drops++;
1243 qdisc_qstats_drop(sch);
1245 return err;
1248 bstats_update(&cl->bstats, skb);
1249 qdisc_qstats_backlog_inc(sch, skb);
1250 ++sch->q.qlen;
1252 agg = cl->agg;
1253 /* if the queue was not empty, then done here */
1254 if (cl->qdisc->q.qlen != 1) {
1255 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1256 list_first_entry(&agg->active, struct qfq_class, alist)
1257 == cl && cl->deficit < qdisc_pkt_len(skb))
1258 list_move_tail(&cl->alist, &agg->active);
1260 return err;
1263 /* schedule class for service within the aggregate */
1264 cl->deficit = agg->lmax;
1265 list_add_tail(&cl->alist, &agg->active);
1267 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1268 q->in_serv_agg == agg)
1269 return err; /* non-empty or in service, nothing else to do */
1271 qfq_activate_agg(q, agg, enqueue);
1273 return err;
1277 * Schedule aggregate according to its timestamps.
1279 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1281 struct qfq_group *grp = agg->grp;
1282 u64 roundedS;
1283 int s;
1285 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1288 * Insert agg in the correct bucket.
1289 * If agg->S >= grp->S we don't need to adjust the
1290 * bucket list and simply go to the insertion phase.
1291 * Otherwise grp->S is decreasing, we must make room
1292 * in the bucket list, and also recompute the group state.
1293 * Finally, if there were no flows in this group and nobody
1294 * was in ER make sure to adjust V.
1296 if (grp->full_slots) {
1297 if (!qfq_gt(grp->S, agg->S))
1298 goto skip_update;
1300 /* create a slot for this agg->S */
1301 qfq_slot_rotate(grp, roundedS);
1302 /* group was surely ineligible, remove */
1303 __clear_bit(grp->index, &q->bitmaps[IR]);
1304 __clear_bit(grp->index, &q->bitmaps[IB]);
1305 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1306 q->in_serv_agg == NULL)
1307 q->V = roundedS;
1309 grp->S = roundedS;
1310 grp->F = roundedS + (2ULL << grp->slot_shift);
1311 s = qfq_calc_state(q, grp);
1312 __set_bit(grp->index, &q->bitmaps[s]);
1314 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1315 s, q->bitmaps[s],
1316 (unsigned long long) agg->S,
1317 (unsigned long long) agg->F,
1318 (unsigned long long) q->V);
1320 skip_update:
1321 qfq_slot_insert(grp, agg, roundedS);
1325 /* Update agg ts and schedule agg for service */
1326 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1327 enum update_reason reason)
1329 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1331 qfq_update_agg_ts(q, agg, reason);
1332 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1333 q->in_serv_agg = agg; /* start serving this aggregate */
1334 /* update V: to be in service, agg must be eligible */
1335 q->oldV = q->V = agg->S;
1336 } else if (agg != q->in_serv_agg)
1337 qfq_schedule_agg(q, agg);
1340 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1341 struct qfq_aggregate *agg)
1343 unsigned int i, offset;
1344 u64 roundedS;
1346 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1347 offset = (roundedS - grp->S) >> grp->slot_shift;
1349 i = (grp->front + offset) % QFQ_MAX_SLOTS;
1351 hlist_del(&agg->next);
1352 if (hlist_empty(&grp->slots[i]))
1353 __clear_bit(offset, &grp->full_slots);
1357 * Called to forcibly deschedule an aggregate. If the aggregate is
1358 * not in the front bucket, or if the latter has other aggregates in
1359 * the front bucket, we can simply remove the aggregate with no other
1360 * side effects.
1361 * Otherwise we must propagate the event up.
1363 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1365 struct qfq_group *grp = agg->grp;
1366 unsigned long mask;
1367 u64 roundedS;
1368 int s;
1370 if (agg == q->in_serv_agg) {
1371 charge_actual_service(agg);
1372 q->in_serv_agg = qfq_choose_next_agg(q);
1373 return;
1376 agg->F = agg->S;
1377 qfq_slot_remove(q, grp, agg);
1379 if (!grp->full_slots) {
1380 __clear_bit(grp->index, &q->bitmaps[IR]);
1381 __clear_bit(grp->index, &q->bitmaps[EB]);
1382 __clear_bit(grp->index, &q->bitmaps[IB]);
1384 if (test_bit(grp->index, &q->bitmaps[ER]) &&
1385 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1386 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1387 if (mask)
1388 mask = ~((1UL << __fls(mask)) - 1);
1389 else
1390 mask = ~0UL;
1391 qfq_move_groups(q, mask, EB, ER);
1392 qfq_move_groups(q, mask, IB, IR);
1394 __clear_bit(grp->index, &q->bitmaps[ER]);
1395 } else if (hlist_empty(&grp->slots[grp->front])) {
1396 agg = qfq_slot_scan(grp);
1397 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1398 if (grp->S != roundedS) {
1399 __clear_bit(grp->index, &q->bitmaps[ER]);
1400 __clear_bit(grp->index, &q->bitmaps[IR]);
1401 __clear_bit(grp->index, &q->bitmaps[EB]);
1402 __clear_bit(grp->index, &q->bitmaps[IB]);
1403 grp->S = roundedS;
1404 grp->F = roundedS + (2ULL << grp->slot_shift);
1405 s = qfq_calc_state(q, grp);
1406 __set_bit(grp->index, &q->bitmaps[s]);
1411 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1413 struct qfq_sched *q = qdisc_priv(sch);
1414 struct qfq_class *cl = (struct qfq_class *)arg;
1416 qfq_deactivate_class(q, cl);
1419 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
1420 struct netlink_ext_ack *extack)
1422 struct qfq_sched *q = qdisc_priv(sch);
1423 struct qfq_group *grp;
1424 int i, j, err;
1425 u32 max_cl_shift, maxbudg_shift, max_classes;
1427 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
1428 if (err)
1429 return err;
1431 err = qdisc_class_hash_init(&q->clhash);
1432 if (err < 0)
1433 return err;
1435 if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1436 max_classes = QFQ_MAX_AGG_CLASSES;
1437 else
1438 max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1439 /* max_cl_shift = floor(log_2(max_classes)) */
1440 max_cl_shift = __fls(max_classes);
1441 q->max_agg_classes = 1<<max_cl_shift;
1443 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1444 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1445 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1447 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1448 grp = &q->groups[i];
1449 grp->index = i;
1450 grp->slot_shift = q->min_slot_shift + i;
1451 for (j = 0; j < QFQ_MAX_SLOTS; j++)
1452 INIT_HLIST_HEAD(&grp->slots[j]);
1455 INIT_HLIST_HEAD(&q->nonfull_aggs);
1457 return 0;
1460 static void qfq_reset_qdisc(struct Qdisc *sch)
1462 struct qfq_sched *q = qdisc_priv(sch);
1463 struct qfq_class *cl;
1464 unsigned int i;
1466 for (i = 0; i < q->clhash.hashsize; i++) {
1467 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1468 if (cl->qdisc->q.qlen > 0)
1469 qfq_deactivate_class(q, cl);
1471 qdisc_reset(cl->qdisc);
1474 sch->qstats.backlog = 0;
1475 sch->q.qlen = 0;
1478 static void qfq_destroy_qdisc(struct Qdisc *sch)
1480 struct qfq_sched *q = qdisc_priv(sch);
1481 struct qfq_class *cl;
1482 struct hlist_node *next;
1483 unsigned int i;
1485 tcf_block_put(q->block);
1487 for (i = 0; i < q->clhash.hashsize; i++) {
1488 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1489 common.hnode) {
1490 qfq_destroy_class(sch, cl);
1493 qdisc_class_hash_destroy(&q->clhash);
1496 static const struct Qdisc_class_ops qfq_class_ops = {
1497 .change = qfq_change_class,
1498 .delete = qfq_delete_class,
1499 .find = qfq_search_class,
1500 .tcf_block = qfq_tcf_block,
1501 .bind_tcf = qfq_bind_tcf,
1502 .unbind_tcf = qfq_unbind_tcf,
1503 .graft = qfq_graft_class,
1504 .leaf = qfq_class_leaf,
1505 .qlen_notify = qfq_qlen_notify,
1506 .dump = qfq_dump_class,
1507 .dump_stats = qfq_dump_class_stats,
1508 .walk = qfq_walk,
1511 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1512 .cl_ops = &qfq_class_ops,
1513 .id = "qfq",
1514 .priv_size = sizeof(struct qfq_sched),
1515 .enqueue = qfq_enqueue,
1516 .dequeue = qfq_dequeue,
1517 .peek = qdisc_peek_dequeued,
1518 .init = qfq_init_qdisc,
1519 .reset = qfq_reset_qdisc,
1520 .destroy = qfq_destroy_qdisc,
1521 .owner = THIS_MODULE,
1524 static int __init qfq_init(void)
1526 return register_qdisc(&qfq_qdisc_ops);
1529 static void __exit qfq_exit(void)
1531 unregister_qdisc(&qfq_qdisc_ops);
1534 module_init(qfq_init);
1535 module_exit(qfq_exit);
1536 MODULE_LICENSE("GPL");