2 * net/sched/sch_tbf.c Token Bucket Filter queue.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
11 * original idea by Martin Devera
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/string.h>
19 #include <linux/errno.h>
20 #include <linux/skbuff.h>
21 #include <net/netlink.h>
22 #include <net/sch_generic.h>
23 #include <net/pkt_sched.h>
26 /* Simple Token Bucket Filter.
27 =======================================
37 A data flow obeys TBF with rate R and depth B, if for any
38 time interval t_i...t_f the number of transmitted bits
39 does not exceed B + R*(t_f-t_i).
41 Packetized version of this definition:
42 The sequence of packets of sizes s_i served at moments t_i
43 obeys TBF, if for any i<=k:
45 s_i+....+s_k <= B + R*(t_k - t_i)
50 Let N(t_i) be B/R initially and N(t) grow continuously with time as:
52 N(t+delta) = min{B/R, N(t) + delta}
54 If the first packet in queue has length S, it may be
55 transmitted only at the time t_* when S/R <= N(t_*),
56 and in this case N(t) jumps:
58 N(t_* + 0) = N(t_* - 0) - S/R.
62 Actually, QoS requires two TBF to be applied to a data stream.
63 One of them controls steady state burst size, another
64 one with rate P (peak rate) and depth M (equal to link MTU)
65 limits bursts at a smaller time scale.
67 It is easy to see that P>R, and B>M. If P is infinity, this double
68 TBF is equivalent to a single one.
70 When TBF works in reshaping mode, latency is estimated as:
72 lat = max ((L-B)/R, (L-M)/P)
78 If TBF throttles, it starts a watchdog timer, which will wake it up
79 when it is ready to transmit.
80 Note that the minimal timer resolution is 1/HZ.
81 If no new packets arrive during this period,
82 or if the device is not awaken by EOI for some previous packet,
83 TBF can stop its activity for 1/HZ.
86 This means, that with depth B, the maximal rate is
90 F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
92 Note that the peak rate TBF is much more tough: with MTU 1500
93 P_crit = 150Kbytes/sec. So, if you need greater peak
94 rates, use alpha with HZ=1000 :-)
96 With classful TBF, limit is just kept for backwards compatibility.
97 It is passed to the default bfifo qdisc - if the inner qdisc is
98 changed the limit is not effective anymore.
101 struct tbf_sched_data
{
103 u32 limit
; /* Maximal length of backlog: bytes */
105 s64 buffer
; /* Token bucket depth/rate: MUST BE >= MTU/B */
107 struct psched_ratecfg rate
;
108 struct psched_ratecfg peak
;
111 s64 tokens
; /* Current number of B tokens */
112 s64 ptokens
; /* Current number of P tokens */
113 s64 t_c
; /* Time check-point */
114 struct Qdisc
*qdisc
; /* Inner qdisc, default - bfifo queue */
115 struct qdisc_watchdog watchdog
; /* Watchdog timer */
119 /* Time to Length, convert time in ns to length in bytes
120 * to determinate how many bytes can be sent in given time.
122 static u64
psched_ns_t2l(const struct psched_ratecfg
*r
,
126 * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC
128 u64 len
= time_in_ns
* r
->rate_bytes_ps
;
130 do_div(len
, NSEC_PER_SEC
);
132 if (unlikely(r
->linklayer
== TC_LINKLAYER_ATM
)) {
137 if (len
> r
->overhead
)
145 /* GSO packet is too big, segment it so that tbf can transmit
146 * each segment in time
148 static int tbf_segment(struct sk_buff
*skb
, struct Qdisc
*sch
,
149 struct sk_buff
**to_free
)
151 struct tbf_sched_data
*q
= qdisc_priv(sch
);
152 struct sk_buff
*segs
, *nskb
;
153 netdev_features_t features
= netif_skb_features(skb
);
154 unsigned int len
= 0, prev_len
= qdisc_pkt_len(skb
);
157 segs
= skb_gso_segment(skb
, features
& ~NETIF_F_GSO_MASK
);
159 if (IS_ERR_OR_NULL(segs
))
160 return qdisc_drop(skb
, sch
, to_free
);
166 qdisc_skb_cb(segs
)->pkt_len
= segs
->len
;
168 ret
= qdisc_enqueue(segs
, q
->qdisc
, to_free
);
169 if (ret
!= NET_XMIT_SUCCESS
) {
170 if (net_xmit_drop_count(ret
))
171 qdisc_qstats_drop(sch
);
179 qdisc_tree_reduce_backlog(sch
, 1 - nb
, prev_len
- len
);
181 return nb
> 0 ? NET_XMIT_SUCCESS
: NET_XMIT_DROP
;
184 static int tbf_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
,
185 struct sk_buff
**to_free
)
187 struct tbf_sched_data
*q
= qdisc_priv(sch
);
190 if (qdisc_pkt_len(skb
) > q
->max_size
) {
191 if (skb_is_gso(skb
) && skb_gso_mac_seglen(skb
) <= q
->max_size
)
192 return tbf_segment(skb
, sch
, to_free
);
193 return qdisc_drop(skb
, sch
, to_free
);
195 ret
= qdisc_enqueue(skb
, q
->qdisc
, to_free
);
196 if (ret
!= NET_XMIT_SUCCESS
) {
197 if (net_xmit_drop_count(ret
))
198 qdisc_qstats_drop(sch
);
202 qdisc_qstats_backlog_inc(sch
, skb
);
204 return NET_XMIT_SUCCESS
;
207 static bool tbf_peak_present(const struct tbf_sched_data
*q
)
209 return q
->peak
.rate_bytes_ps
;
212 static struct sk_buff
*tbf_dequeue(struct Qdisc
*sch
)
214 struct tbf_sched_data
*q
= qdisc_priv(sch
);
217 skb
= q
->qdisc
->ops
->peek(q
->qdisc
);
223 unsigned int len
= qdisc_pkt_len(skb
);
225 now
= ktime_get_ns();
226 toks
= min_t(s64
, now
- q
->t_c
, q
->buffer
);
228 if (tbf_peak_present(q
)) {
229 ptoks
= toks
+ q
->ptokens
;
232 ptoks
-= (s64
) psched_l2t_ns(&q
->peak
, len
);
235 if (toks
> q
->buffer
)
237 toks
-= (s64
) psched_l2t_ns(&q
->rate
, len
);
239 if ((toks
|ptoks
) >= 0) {
240 skb
= qdisc_dequeue_peeked(q
->qdisc
);
247 qdisc_qstats_backlog_dec(sch
, skb
);
249 qdisc_bstats_update(sch
, skb
);
253 qdisc_watchdog_schedule_ns(&q
->watchdog
,
254 now
+ max_t(long, -toks
, -ptoks
));
256 /* Maybe we have a shorter packet in the queue,
257 which can be sent now. It sounds cool,
258 but, however, this is wrong in principle.
259 We MUST NOT reorder packets under these circumstances.
261 Really, if we split the flow into independent
262 subflows, it would be a very good solution.
263 This is the main idea of all FQ algorithms
264 (cf. CSZ, HPFQ, HFSC)
267 qdisc_qstats_overlimit(sch
);
272 static void tbf_reset(struct Qdisc
*sch
)
274 struct tbf_sched_data
*q
= qdisc_priv(sch
);
276 qdisc_reset(q
->qdisc
);
277 sch
->qstats
.backlog
= 0;
279 q
->t_c
= ktime_get_ns();
280 q
->tokens
= q
->buffer
;
282 qdisc_watchdog_cancel(&q
->watchdog
);
285 static const struct nla_policy tbf_policy
[TCA_TBF_MAX
+ 1] = {
286 [TCA_TBF_PARMS
] = { .len
= sizeof(struct tc_tbf_qopt
) },
287 [TCA_TBF_RTAB
] = { .type
= NLA_BINARY
, .len
= TC_RTAB_SIZE
},
288 [TCA_TBF_PTAB
] = { .type
= NLA_BINARY
, .len
= TC_RTAB_SIZE
},
289 [TCA_TBF_RATE64
] = { .type
= NLA_U64
},
290 [TCA_TBF_PRATE64
] = { .type
= NLA_U64
},
291 [TCA_TBF_BURST
] = { .type
= NLA_U32
},
292 [TCA_TBF_PBURST
] = { .type
= NLA_U32
},
295 static int tbf_change(struct Qdisc
*sch
, struct nlattr
*opt
,
296 struct netlink_ext_ack
*extack
)
299 struct tbf_sched_data
*q
= qdisc_priv(sch
);
300 struct nlattr
*tb
[TCA_TBF_MAX
+ 1];
301 struct tc_tbf_qopt
*qopt
;
302 struct Qdisc
*child
= NULL
;
303 struct psched_ratecfg rate
;
304 struct psched_ratecfg peak
;
307 u64 rate64
= 0, prate64
= 0;
309 err
= nla_parse_nested(tb
, TCA_TBF_MAX
, opt
, tbf_policy
, NULL
);
314 if (tb
[TCA_TBF_PARMS
] == NULL
)
317 qopt
= nla_data(tb
[TCA_TBF_PARMS
]);
318 if (qopt
->rate
.linklayer
== TC_LINKLAYER_UNAWARE
)
319 qdisc_put_rtab(qdisc_get_rtab(&qopt
->rate
,
323 if (qopt
->peakrate
.linklayer
== TC_LINKLAYER_UNAWARE
)
324 qdisc_put_rtab(qdisc_get_rtab(&qopt
->peakrate
,
328 buffer
= min_t(u64
, PSCHED_TICKS2NS(qopt
->buffer
), ~0U);
329 mtu
= min_t(u64
, PSCHED_TICKS2NS(qopt
->mtu
), ~0U);
331 if (tb
[TCA_TBF_RATE64
])
332 rate64
= nla_get_u64(tb
[TCA_TBF_RATE64
]);
333 psched_ratecfg_precompute(&rate
, &qopt
->rate
, rate64
);
335 if (tb
[TCA_TBF_BURST
]) {
336 max_size
= nla_get_u32(tb
[TCA_TBF_BURST
]);
337 buffer
= psched_l2t_ns(&rate
, max_size
);
339 max_size
= min_t(u64
, psched_ns_t2l(&rate
, buffer
), ~0U);
342 if (qopt
->peakrate
.rate
) {
343 if (tb
[TCA_TBF_PRATE64
])
344 prate64
= nla_get_u64(tb
[TCA_TBF_PRATE64
]);
345 psched_ratecfg_precompute(&peak
, &qopt
->peakrate
, prate64
);
346 if (peak
.rate_bytes_ps
<= rate
.rate_bytes_ps
) {
347 pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n",
348 peak
.rate_bytes_ps
, rate
.rate_bytes_ps
);
353 if (tb
[TCA_TBF_PBURST
]) {
354 u32 pburst
= nla_get_u32(tb
[TCA_TBF_PBURST
]);
355 max_size
= min_t(u32
, max_size
, pburst
);
356 mtu
= psched_l2t_ns(&peak
, pburst
);
358 max_size
= min_t(u64
, max_size
, psched_ns_t2l(&peak
, mtu
));
361 memset(&peak
, 0, sizeof(peak
));
364 if (max_size
< psched_mtu(qdisc_dev(sch
)))
365 pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n",
366 max_size
, qdisc_dev(sch
)->name
,
367 psched_mtu(qdisc_dev(sch
)));
374 if (q
->qdisc
!= &noop_qdisc
) {
375 err
= fifo_set_limit(q
->qdisc
, qopt
->limit
);
378 } else if (qopt
->limit
> 0) {
379 child
= fifo_create_dflt(sch
, &bfifo_qdisc_ops
, qopt
->limit
,
382 err
= PTR_ERR(child
);
389 qdisc_tree_reduce_backlog(q
->qdisc
, q
->qdisc
->q
.qlen
,
390 q
->qdisc
->qstats
.backlog
);
391 qdisc_destroy(q
->qdisc
);
393 if (child
!= &noop_qdisc
)
394 qdisc_hash_add(child
, true);
396 q
->limit
= qopt
->limit
;
397 if (tb
[TCA_TBF_PBURST
])
400 q
->mtu
= PSCHED_TICKS2NS(qopt
->mtu
);
401 q
->max_size
= max_size
;
402 if (tb
[TCA_TBF_BURST
])
405 q
->buffer
= PSCHED_TICKS2NS(qopt
->buffer
);
406 q
->tokens
= q
->buffer
;
409 memcpy(&q
->rate
, &rate
, sizeof(struct psched_ratecfg
));
410 memcpy(&q
->peak
, &peak
, sizeof(struct psched_ratecfg
));
412 sch_tree_unlock(sch
);
418 static int tbf_init(struct Qdisc
*sch
, struct nlattr
*opt
,
419 struct netlink_ext_ack
*extack
)
421 struct tbf_sched_data
*q
= qdisc_priv(sch
);
423 qdisc_watchdog_init(&q
->watchdog
, sch
);
424 q
->qdisc
= &noop_qdisc
;
429 q
->t_c
= ktime_get_ns();
431 return tbf_change(sch
, opt
, extack
);
434 static void tbf_destroy(struct Qdisc
*sch
)
436 struct tbf_sched_data
*q
= qdisc_priv(sch
);
438 qdisc_watchdog_cancel(&q
->watchdog
);
439 qdisc_destroy(q
->qdisc
);
442 static int tbf_dump(struct Qdisc
*sch
, struct sk_buff
*skb
)
444 struct tbf_sched_data
*q
= qdisc_priv(sch
);
446 struct tc_tbf_qopt opt
;
448 sch
->qstats
.backlog
= q
->qdisc
->qstats
.backlog
;
449 nest
= nla_nest_start(skb
, TCA_OPTIONS
);
451 goto nla_put_failure
;
453 opt
.limit
= q
->limit
;
454 psched_ratecfg_getrate(&opt
.rate
, &q
->rate
);
455 if (tbf_peak_present(q
))
456 psched_ratecfg_getrate(&opt
.peakrate
, &q
->peak
);
458 memset(&opt
.peakrate
, 0, sizeof(opt
.peakrate
));
459 opt
.mtu
= PSCHED_NS2TICKS(q
->mtu
);
460 opt
.buffer
= PSCHED_NS2TICKS(q
->buffer
);
461 if (nla_put(skb
, TCA_TBF_PARMS
, sizeof(opt
), &opt
))
462 goto nla_put_failure
;
463 if (q
->rate
.rate_bytes_ps
>= (1ULL << 32) &&
464 nla_put_u64_64bit(skb
, TCA_TBF_RATE64
, q
->rate
.rate_bytes_ps
,
466 goto nla_put_failure
;
467 if (tbf_peak_present(q
) &&
468 q
->peak
.rate_bytes_ps
>= (1ULL << 32) &&
469 nla_put_u64_64bit(skb
, TCA_TBF_PRATE64
, q
->peak
.rate_bytes_ps
,
471 goto nla_put_failure
;
473 return nla_nest_end(skb
, nest
);
476 nla_nest_cancel(skb
, nest
);
480 static int tbf_dump_class(struct Qdisc
*sch
, unsigned long cl
,
481 struct sk_buff
*skb
, struct tcmsg
*tcm
)
483 struct tbf_sched_data
*q
= qdisc_priv(sch
);
485 tcm
->tcm_handle
|= TC_H_MIN(1);
486 tcm
->tcm_info
= q
->qdisc
->handle
;
491 static int tbf_graft(struct Qdisc
*sch
, unsigned long arg
, struct Qdisc
*new,
492 struct Qdisc
**old
, struct netlink_ext_ack
*extack
)
494 struct tbf_sched_data
*q
= qdisc_priv(sch
);
499 *old
= qdisc_replace(sch
, new, &q
->qdisc
);
503 static struct Qdisc
*tbf_leaf(struct Qdisc
*sch
, unsigned long arg
)
505 struct tbf_sched_data
*q
= qdisc_priv(sch
);
509 static unsigned long tbf_find(struct Qdisc
*sch
, u32 classid
)
514 static void tbf_walk(struct Qdisc
*sch
, struct qdisc_walker
*walker
)
517 if (walker
->count
>= walker
->skip
)
518 if (walker
->fn(sch
, 1, walker
) < 0) {
526 static const struct Qdisc_class_ops tbf_class_ops
= {
531 .dump
= tbf_dump_class
,
534 static struct Qdisc_ops tbf_qdisc_ops __read_mostly
= {
536 .cl_ops
= &tbf_class_ops
,
538 .priv_size
= sizeof(struct tbf_sched_data
),
539 .enqueue
= tbf_enqueue
,
540 .dequeue
= tbf_dequeue
,
541 .peek
= qdisc_peek_dequeued
,
544 .destroy
= tbf_destroy
,
545 .change
= tbf_change
,
547 .owner
= THIS_MODULE
,
550 static int __init
tbf_module_init(void)
552 return register_qdisc(&tbf_qdisc_ops
);
555 static void __exit
tbf_module_exit(void)
557 unregister_qdisc(&tbf_qdisc_ops
);
559 module_init(tbf_module_init
)
560 module_exit(tbf_module_exit
)
561 MODULE_LICENSE("GPL");