xtensa: support DMA buffers in high memory
[cris-mirror.git] / net / sctp / auth.c
blob00667c50efa7abdc45dc0635ec59cc8e70878e54
1 /* SCTP kernel implementation
2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
4 * This file is part of the SCTP kernel implementation
6 * This SCTP implementation is free software;
7 * you can redistribute it and/or modify it under the terms of
8 * the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
12 * This SCTP implementation is distributed in the hope that it
13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14 * ************************
15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16 * See the GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with GNU CC; see the file COPYING. If not, see
20 * <http://www.gnu.org/licenses/>.
22 * Please send any bug reports or fixes you make to the
23 * email address(es):
24 * lksctp developers <linux-sctp@vger.kernel.org>
26 * Written or modified by:
27 * Vlad Yasevich <vladislav.yasevich@hp.com>
30 #include <crypto/hash.h>
31 #include <linux/slab.h>
32 #include <linux/types.h>
33 #include <linux/scatterlist.h>
34 #include <net/sctp/sctp.h>
35 #include <net/sctp/auth.h>
37 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
39 /* id 0 is reserved. as all 0 */
40 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
43 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
44 .hmac_name = "hmac(sha1)",
45 .hmac_len = SCTP_SHA1_SIG_SIZE,
48 /* id 2 is reserved as well */
49 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
51 #if IS_ENABLED(CONFIG_CRYPTO_SHA256)
53 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
54 .hmac_name = "hmac(sha256)",
55 .hmac_len = SCTP_SHA256_SIG_SIZE,
57 #endif
61 void sctp_auth_key_put(struct sctp_auth_bytes *key)
63 if (!key)
64 return;
66 if (refcount_dec_and_test(&key->refcnt)) {
67 kzfree(key);
68 SCTP_DBG_OBJCNT_DEC(keys);
72 /* Create a new key structure of a given length */
73 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
75 struct sctp_auth_bytes *key;
77 /* Verify that we are not going to overflow INT_MAX */
78 if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
79 return NULL;
81 /* Allocate the shared key */
82 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
83 if (!key)
84 return NULL;
86 key->len = key_len;
87 refcount_set(&key->refcnt, 1);
88 SCTP_DBG_OBJCNT_INC(keys);
90 return key;
93 /* Create a new shared key container with a give key id */
94 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
96 struct sctp_shared_key *new;
98 /* Allocate the shared key container */
99 new = kzalloc(sizeof(struct sctp_shared_key), gfp);
100 if (!new)
101 return NULL;
103 INIT_LIST_HEAD(&new->key_list);
104 new->key_id = key_id;
106 return new;
109 /* Free the shared key structure */
110 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
112 BUG_ON(!list_empty(&sh_key->key_list));
113 sctp_auth_key_put(sh_key->key);
114 sh_key->key = NULL;
115 kfree(sh_key);
118 /* Destroy the entire key list. This is done during the
119 * associon and endpoint free process.
121 void sctp_auth_destroy_keys(struct list_head *keys)
123 struct sctp_shared_key *ep_key;
124 struct sctp_shared_key *tmp;
126 if (list_empty(keys))
127 return;
129 key_for_each_safe(ep_key, tmp, keys) {
130 list_del_init(&ep_key->key_list);
131 sctp_auth_shkey_free(ep_key);
135 /* Compare two byte vectors as numbers. Return values
136 * are:
137 * 0 - vectors are equal
138 * < 0 - vector 1 is smaller than vector2
139 * > 0 - vector 1 is greater than vector2
141 * Algorithm is:
142 * This is performed by selecting the numerically smaller key vector...
143 * If the key vectors are equal as numbers but differ in length ...
144 * the shorter vector is considered smaller
146 * Examples (with small values):
147 * 000123456789 > 123456789 (first number is longer)
148 * 000123456789 < 234567891 (second number is larger numerically)
149 * 123456789 > 2345678 (first number is both larger & longer)
151 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
152 struct sctp_auth_bytes *vector2)
154 int diff;
155 int i;
156 const __u8 *longer;
158 diff = vector1->len - vector2->len;
159 if (diff) {
160 longer = (diff > 0) ? vector1->data : vector2->data;
162 /* Check to see if the longer number is
163 * lead-zero padded. If it is not, it
164 * is automatically larger numerically.
166 for (i = 0; i < abs(diff); i++) {
167 if (longer[i] != 0)
168 return diff;
172 /* lengths are the same, compare numbers */
173 return memcmp(vector1->data, vector2->data, vector1->len);
177 * Create a key vector as described in SCTP-AUTH, Section 6.1
178 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
179 * parameter sent by each endpoint are concatenated as byte vectors.
180 * These parameters include the parameter type, parameter length, and
181 * the parameter value, but padding is omitted; all padding MUST be
182 * removed from this concatenation before proceeding with further
183 * computation of keys. Parameters which were not sent are simply
184 * omitted from the concatenation process. The resulting two vectors
185 * are called the two key vectors.
187 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
188 struct sctp_random_param *random,
189 struct sctp_chunks_param *chunks,
190 struct sctp_hmac_algo_param *hmacs,
191 gfp_t gfp)
193 struct sctp_auth_bytes *new;
194 __u32 len;
195 __u32 offset = 0;
196 __u16 random_len, hmacs_len, chunks_len = 0;
198 random_len = ntohs(random->param_hdr.length);
199 hmacs_len = ntohs(hmacs->param_hdr.length);
200 if (chunks)
201 chunks_len = ntohs(chunks->param_hdr.length);
203 len = random_len + hmacs_len + chunks_len;
205 new = sctp_auth_create_key(len, gfp);
206 if (!new)
207 return NULL;
209 memcpy(new->data, random, random_len);
210 offset += random_len;
212 if (chunks) {
213 memcpy(new->data + offset, chunks, chunks_len);
214 offset += chunks_len;
217 memcpy(new->data + offset, hmacs, hmacs_len);
219 return new;
223 /* Make a key vector based on our local parameters */
224 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
225 const struct sctp_association *asoc,
226 gfp_t gfp)
228 return sctp_auth_make_key_vector(
229 (struct sctp_random_param *)asoc->c.auth_random,
230 (struct sctp_chunks_param *)asoc->c.auth_chunks,
231 (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs, gfp);
234 /* Make a key vector based on peer's parameters */
235 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
236 const struct sctp_association *asoc,
237 gfp_t gfp)
239 return sctp_auth_make_key_vector(asoc->peer.peer_random,
240 asoc->peer.peer_chunks,
241 asoc->peer.peer_hmacs,
242 gfp);
246 /* Set the value of the association shared key base on the parameters
247 * given. The algorithm is:
248 * From the endpoint pair shared keys and the key vectors the
249 * association shared keys are computed. This is performed by selecting
250 * the numerically smaller key vector and concatenating it to the
251 * endpoint pair shared key, and then concatenating the numerically
252 * larger key vector to that. The result of the concatenation is the
253 * association shared key.
255 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
256 struct sctp_shared_key *ep_key,
257 struct sctp_auth_bytes *first_vector,
258 struct sctp_auth_bytes *last_vector,
259 gfp_t gfp)
261 struct sctp_auth_bytes *secret;
262 __u32 offset = 0;
263 __u32 auth_len;
265 auth_len = first_vector->len + last_vector->len;
266 if (ep_key->key)
267 auth_len += ep_key->key->len;
269 secret = sctp_auth_create_key(auth_len, gfp);
270 if (!secret)
271 return NULL;
273 if (ep_key->key) {
274 memcpy(secret->data, ep_key->key->data, ep_key->key->len);
275 offset += ep_key->key->len;
278 memcpy(secret->data + offset, first_vector->data, first_vector->len);
279 offset += first_vector->len;
281 memcpy(secret->data + offset, last_vector->data, last_vector->len);
283 return secret;
286 /* Create an association shared key. Follow the algorithm
287 * described in SCTP-AUTH, Section 6.1
289 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
290 const struct sctp_association *asoc,
291 struct sctp_shared_key *ep_key,
292 gfp_t gfp)
294 struct sctp_auth_bytes *local_key_vector;
295 struct sctp_auth_bytes *peer_key_vector;
296 struct sctp_auth_bytes *first_vector,
297 *last_vector;
298 struct sctp_auth_bytes *secret = NULL;
299 int cmp;
302 /* Now we need to build the key vectors
303 * SCTP-AUTH , Section 6.1
304 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
305 * parameter sent by each endpoint are concatenated as byte vectors.
306 * These parameters include the parameter type, parameter length, and
307 * the parameter value, but padding is omitted; all padding MUST be
308 * removed from this concatenation before proceeding with further
309 * computation of keys. Parameters which were not sent are simply
310 * omitted from the concatenation process. The resulting two vectors
311 * are called the two key vectors.
314 local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
315 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
317 if (!peer_key_vector || !local_key_vector)
318 goto out;
320 /* Figure out the order in which the key_vectors will be
321 * added to the endpoint shared key.
322 * SCTP-AUTH, Section 6.1:
323 * This is performed by selecting the numerically smaller key
324 * vector and concatenating it to the endpoint pair shared
325 * key, and then concatenating the numerically larger key
326 * vector to that. If the key vectors are equal as numbers
327 * but differ in length, then the concatenation order is the
328 * endpoint shared key, followed by the shorter key vector,
329 * followed by the longer key vector. Otherwise, the key
330 * vectors are identical, and may be concatenated to the
331 * endpoint pair key in any order.
333 cmp = sctp_auth_compare_vectors(local_key_vector,
334 peer_key_vector);
335 if (cmp < 0) {
336 first_vector = local_key_vector;
337 last_vector = peer_key_vector;
338 } else {
339 first_vector = peer_key_vector;
340 last_vector = local_key_vector;
343 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
344 gfp);
345 out:
346 sctp_auth_key_put(local_key_vector);
347 sctp_auth_key_put(peer_key_vector);
349 return secret;
353 * Populate the association overlay list with the list
354 * from the endpoint.
356 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
357 struct sctp_association *asoc,
358 gfp_t gfp)
360 struct sctp_shared_key *sh_key;
361 struct sctp_shared_key *new;
363 BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
365 key_for_each(sh_key, &ep->endpoint_shared_keys) {
366 new = sctp_auth_shkey_create(sh_key->key_id, gfp);
367 if (!new)
368 goto nomem;
370 new->key = sh_key->key;
371 sctp_auth_key_hold(new->key);
372 list_add(&new->key_list, &asoc->endpoint_shared_keys);
375 return 0;
377 nomem:
378 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
379 return -ENOMEM;
383 /* Public interface to create the association shared key.
384 * See code above for the algorithm.
386 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
388 struct sctp_auth_bytes *secret;
389 struct sctp_shared_key *ep_key;
390 struct sctp_chunk *chunk;
392 /* If we don't support AUTH, or peer is not capable
393 * we don't need to do anything.
395 if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
396 return 0;
398 /* If the key_id is non-zero and we couldn't find an
399 * endpoint pair shared key, we can't compute the
400 * secret.
401 * For key_id 0, endpoint pair shared key is a NULL key.
403 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
404 BUG_ON(!ep_key);
406 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
407 if (!secret)
408 return -ENOMEM;
410 sctp_auth_key_put(asoc->asoc_shared_key);
411 asoc->asoc_shared_key = secret;
413 /* Update send queue in case any chunk already in there now
414 * needs authenticating
416 list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
417 if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc))
418 chunk->auth = 1;
421 return 0;
425 /* Find the endpoint pair shared key based on the key_id */
426 struct sctp_shared_key *sctp_auth_get_shkey(
427 const struct sctp_association *asoc,
428 __u16 key_id)
430 struct sctp_shared_key *key;
432 /* First search associations set of endpoint pair shared keys */
433 key_for_each(key, &asoc->endpoint_shared_keys) {
434 if (key->key_id == key_id)
435 return key;
438 return NULL;
442 * Initialize all the possible digest transforms that we can use. Right now
443 * now, the supported digests are SHA1 and SHA256. We do this here once
444 * because of the restrictiong that transforms may only be allocated in
445 * user context. This forces us to pre-allocated all possible transforms
446 * at the endpoint init time.
448 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
450 struct crypto_shash *tfm = NULL;
451 __u16 id;
453 /* If AUTH extension is disabled, we are done */
454 if (!ep->auth_enable) {
455 ep->auth_hmacs = NULL;
456 return 0;
459 /* If the transforms are already allocated, we are done */
460 if (ep->auth_hmacs)
461 return 0;
463 /* Allocated the array of pointers to transorms */
464 ep->auth_hmacs = kzalloc(sizeof(struct crypto_shash *) *
465 SCTP_AUTH_NUM_HMACS, gfp);
466 if (!ep->auth_hmacs)
467 return -ENOMEM;
469 for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
471 /* See is we support the id. Supported IDs have name and
472 * length fields set, so that we can allocated and use
473 * them. We can safely just check for name, for without the
474 * name, we can't allocate the TFM.
476 if (!sctp_hmac_list[id].hmac_name)
477 continue;
479 /* If this TFM has been allocated, we are all set */
480 if (ep->auth_hmacs[id])
481 continue;
483 /* Allocate the ID */
484 tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0);
485 if (IS_ERR(tfm))
486 goto out_err;
488 ep->auth_hmacs[id] = tfm;
491 return 0;
493 out_err:
494 /* Clean up any successful allocations */
495 sctp_auth_destroy_hmacs(ep->auth_hmacs);
496 return -ENOMEM;
499 /* Destroy the hmac tfm array */
500 void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[])
502 int i;
504 if (!auth_hmacs)
505 return;
507 for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
508 crypto_free_shash(auth_hmacs[i]);
510 kfree(auth_hmacs);
514 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
516 return &sctp_hmac_list[hmac_id];
519 /* Get an hmac description information that we can use to build
520 * the AUTH chunk
522 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
524 struct sctp_hmac_algo_param *hmacs;
525 __u16 n_elt;
526 __u16 id = 0;
527 int i;
529 /* If we have a default entry, use it */
530 if (asoc->default_hmac_id)
531 return &sctp_hmac_list[asoc->default_hmac_id];
533 /* Since we do not have a default entry, find the first entry
534 * we support and return that. Do not cache that id.
536 hmacs = asoc->peer.peer_hmacs;
537 if (!hmacs)
538 return NULL;
540 n_elt = (ntohs(hmacs->param_hdr.length) -
541 sizeof(struct sctp_paramhdr)) >> 1;
542 for (i = 0; i < n_elt; i++) {
543 id = ntohs(hmacs->hmac_ids[i]);
545 /* Check the id is in the supported range. And
546 * see if we support the id. Supported IDs have name and
547 * length fields set, so that we can allocate and use
548 * them. We can safely just check for name, for without the
549 * name, we can't allocate the TFM.
551 if (id > SCTP_AUTH_HMAC_ID_MAX ||
552 !sctp_hmac_list[id].hmac_name) {
553 id = 0;
554 continue;
557 break;
560 if (id == 0)
561 return NULL;
563 return &sctp_hmac_list[id];
566 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
568 int found = 0;
569 int i;
571 for (i = 0; i < n_elts; i++) {
572 if (hmac_id == hmacs[i]) {
573 found = 1;
574 break;
578 return found;
581 /* See if the HMAC_ID is one that we claim as supported */
582 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
583 __be16 hmac_id)
585 struct sctp_hmac_algo_param *hmacs;
586 __u16 n_elt;
588 if (!asoc)
589 return 0;
591 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
592 n_elt = (ntohs(hmacs->param_hdr.length) -
593 sizeof(struct sctp_paramhdr)) >> 1;
595 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
599 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
600 * Section 6.1:
601 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
602 * algorithm it supports.
604 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
605 struct sctp_hmac_algo_param *hmacs)
607 struct sctp_endpoint *ep;
608 __u16 id;
609 int i;
610 int n_params;
612 /* if the default id is already set, use it */
613 if (asoc->default_hmac_id)
614 return;
616 n_params = (ntohs(hmacs->param_hdr.length) -
617 sizeof(struct sctp_paramhdr)) >> 1;
618 ep = asoc->ep;
619 for (i = 0; i < n_params; i++) {
620 id = ntohs(hmacs->hmac_ids[i]);
622 /* Check the id is in the supported range */
623 if (id > SCTP_AUTH_HMAC_ID_MAX)
624 continue;
626 /* If this TFM has been allocated, use this id */
627 if (ep->auth_hmacs[id]) {
628 asoc->default_hmac_id = id;
629 break;
635 /* Check to see if the given chunk is supposed to be authenticated */
636 static int __sctp_auth_cid(enum sctp_cid chunk, struct sctp_chunks_param *param)
638 unsigned short len;
639 int found = 0;
640 int i;
642 if (!param || param->param_hdr.length == 0)
643 return 0;
645 len = ntohs(param->param_hdr.length) - sizeof(struct sctp_paramhdr);
647 /* SCTP-AUTH, Section 3.2
648 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
649 * chunks MUST NOT be listed in the CHUNKS parameter. However, if
650 * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
651 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
653 for (i = 0; !found && i < len; i++) {
654 switch (param->chunks[i]) {
655 case SCTP_CID_INIT:
656 case SCTP_CID_INIT_ACK:
657 case SCTP_CID_SHUTDOWN_COMPLETE:
658 case SCTP_CID_AUTH:
659 break;
661 default:
662 if (param->chunks[i] == chunk)
663 found = 1;
664 break;
668 return found;
671 /* Check if peer requested that this chunk is authenticated */
672 int sctp_auth_send_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
674 if (!asoc)
675 return 0;
677 if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
678 return 0;
680 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
683 /* Check if we requested that peer authenticate this chunk. */
684 int sctp_auth_recv_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
686 if (!asoc)
687 return 0;
689 if (!asoc->ep->auth_enable)
690 return 0;
692 return __sctp_auth_cid(chunk,
693 (struct sctp_chunks_param *)asoc->c.auth_chunks);
696 /* SCTP-AUTH: Section 6.2:
697 * The sender MUST calculate the MAC as described in RFC2104 [2] using
698 * the hash function H as described by the MAC Identifier and the shared
699 * association key K based on the endpoint pair shared key described by
700 * the shared key identifier. The 'data' used for the computation of
701 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
702 * zero (as shown in Figure 6) followed by all chunks that are placed
703 * after the AUTH chunk in the SCTP packet.
705 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
706 struct sk_buff *skb,
707 struct sctp_auth_chunk *auth,
708 gfp_t gfp)
710 struct crypto_shash *tfm;
711 struct sctp_auth_bytes *asoc_key;
712 __u16 key_id, hmac_id;
713 __u8 *digest;
714 unsigned char *end;
715 int free_key = 0;
717 /* Extract the info we need:
718 * - hmac id
719 * - key id
721 key_id = ntohs(auth->auth_hdr.shkey_id);
722 hmac_id = ntohs(auth->auth_hdr.hmac_id);
724 if (key_id == asoc->active_key_id)
725 asoc_key = asoc->asoc_shared_key;
726 else {
727 struct sctp_shared_key *ep_key;
729 ep_key = sctp_auth_get_shkey(asoc, key_id);
730 if (!ep_key)
731 return;
733 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
734 if (!asoc_key)
735 return;
737 free_key = 1;
740 /* set up scatter list */
741 end = skb_tail_pointer(skb);
743 tfm = asoc->ep->auth_hmacs[hmac_id];
745 digest = auth->auth_hdr.hmac;
746 if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len))
747 goto free;
750 SHASH_DESC_ON_STACK(desc, tfm);
752 desc->tfm = tfm;
753 desc->flags = 0;
754 crypto_shash_digest(desc, (u8 *)auth,
755 end - (unsigned char *)auth, digest);
756 shash_desc_zero(desc);
759 free:
760 if (free_key)
761 sctp_auth_key_put(asoc_key);
764 /* API Helpers */
766 /* Add a chunk to the endpoint authenticated chunk list */
767 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
769 struct sctp_chunks_param *p = ep->auth_chunk_list;
770 __u16 nchunks;
771 __u16 param_len;
773 /* If this chunk is already specified, we are done */
774 if (__sctp_auth_cid(chunk_id, p))
775 return 0;
777 /* Check if we can add this chunk to the array */
778 param_len = ntohs(p->param_hdr.length);
779 nchunks = param_len - sizeof(struct sctp_paramhdr);
780 if (nchunks == SCTP_NUM_CHUNK_TYPES)
781 return -EINVAL;
783 p->chunks[nchunks] = chunk_id;
784 p->param_hdr.length = htons(param_len + 1);
785 return 0;
788 /* Add hmac identifires to the endpoint list of supported hmac ids */
789 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
790 struct sctp_hmacalgo *hmacs)
792 int has_sha1 = 0;
793 __u16 id;
794 int i;
796 /* Scan the list looking for unsupported id. Also make sure that
797 * SHA1 is specified.
799 for (i = 0; i < hmacs->shmac_num_idents; i++) {
800 id = hmacs->shmac_idents[i];
802 if (id > SCTP_AUTH_HMAC_ID_MAX)
803 return -EOPNOTSUPP;
805 if (SCTP_AUTH_HMAC_ID_SHA1 == id)
806 has_sha1 = 1;
808 if (!sctp_hmac_list[id].hmac_name)
809 return -EOPNOTSUPP;
812 if (!has_sha1)
813 return -EINVAL;
815 for (i = 0; i < hmacs->shmac_num_idents; i++)
816 ep->auth_hmacs_list->hmac_ids[i] =
817 htons(hmacs->shmac_idents[i]);
818 ep->auth_hmacs_list->param_hdr.length =
819 htons(sizeof(struct sctp_paramhdr) +
820 hmacs->shmac_num_idents * sizeof(__u16));
821 return 0;
824 /* Set a new shared key on either endpoint or association. If the
825 * the key with a same ID already exists, replace the key (remove the
826 * old key and add a new one).
828 int sctp_auth_set_key(struct sctp_endpoint *ep,
829 struct sctp_association *asoc,
830 struct sctp_authkey *auth_key)
832 struct sctp_shared_key *cur_key = NULL;
833 struct sctp_auth_bytes *key;
834 struct list_head *sh_keys;
835 int replace = 0;
837 /* Try to find the given key id to see if
838 * we are doing a replace, or adding a new key
840 if (asoc)
841 sh_keys = &asoc->endpoint_shared_keys;
842 else
843 sh_keys = &ep->endpoint_shared_keys;
845 key_for_each(cur_key, sh_keys) {
846 if (cur_key->key_id == auth_key->sca_keynumber) {
847 replace = 1;
848 break;
852 /* If we are not replacing a key id, we need to allocate
853 * a shared key.
855 if (!replace) {
856 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
857 GFP_KERNEL);
858 if (!cur_key)
859 return -ENOMEM;
862 /* Create a new key data based on the info passed in */
863 key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
864 if (!key)
865 goto nomem;
867 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
869 /* If we are replacing, remove the old keys data from the
870 * key id. If we are adding new key id, add it to the
871 * list.
873 if (replace)
874 sctp_auth_key_put(cur_key->key);
875 else
876 list_add(&cur_key->key_list, sh_keys);
878 cur_key->key = key;
879 return 0;
880 nomem:
881 if (!replace)
882 sctp_auth_shkey_free(cur_key);
884 return -ENOMEM;
887 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
888 struct sctp_association *asoc,
889 __u16 key_id)
891 struct sctp_shared_key *key;
892 struct list_head *sh_keys;
893 int found = 0;
895 /* The key identifier MUST correst to an existing key */
896 if (asoc)
897 sh_keys = &asoc->endpoint_shared_keys;
898 else
899 sh_keys = &ep->endpoint_shared_keys;
901 key_for_each(key, sh_keys) {
902 if (key->key_id == key_id) {
903 found = 1;
904 break;
908 if (!found)
909 return -EINVAL;
911 if (asoc) {
912 asoc->active_key_id = key_id;
913 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
914 } else
915 ep->active_key_id = key_id;
917 return 0;
920 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
921 struct sctp_association *asoc,
922 __u16 key_id)
924 struct sctp_shared_key *key;
925 struct list_head *sh_keys;
926 int found = 0;
928 /* The key identifier MUST NOT be the current active key
929 * The key identifier MUST correst to an existing key
931 if (asoc) {
932 if (asoc->active_key_id == key_id)
933 return -EINVAL;
935 sh_keys = &asoc->endpoint_shared_keys;
936 } else {
937 if (ep->active_key_id == key_id)
938 return -EINVAL;
940 sh_keys = &ep->endpoint_shared_keys;
943 key_for_each(key, sh_keys) {
944 if (key->key_id == key_id) {
945 found = 1;
946 break;
950 if (!found)
951 return -EINVAL;
953 /* Delete the shared key */
954 list_del_init(&key->key_list);
955 sctp_auth_shkey_free(key);
957 return 0;