xtensa: support DMA buffers in high memory
[cris-mirror.git] / net / smc / smc_tx.c
blob72f004c9c9b13c2f9b4637af8e77aba3772d7bec
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared Memory Communications over RDMA (SMC-R) and RoCE
5 * Manage send buffer.
6 * Producer:
7 * Copy user space data into send buffer, if send buffer space available.
8 * Consumer:
9 * Trigger RDMA write into RMBE of peer and send CDC, if RMBE space available.
11 * Copyright IBM Corp. 2016
13 * Author(s): Ursula Braun <ubraun@linux.vnet.ibm.com>
16 #include <linux/net.h>
17 #include <linux/rcupdate.h>
18 #include <linux/workqueue.h>
19 #include <linux/sched/signal.h>
21 #include <net/sock.h>
23 #include "smc.h"
24 #include "smc_wr.h"
25 #include "smc_cdc.h"
26 #include "smc_tx.h"
28 #define SMC_TX_WORK_DELAY HZ
30 /***************************** sndbuf producer *******************************/
32 /* callback implementation for sk.sk_write_space()
33 * to wakeup sndbuf producers that blocked with smc_tx_wait_memory().
34 * called under sk_socket lock.
36 static void smc_tx_write_space(struct sock *sk)
38 struct socket *sock = sk->sk_socket;
39 struct smc_sock *smc = smc_sk(sk);
40 struct socket_wq *wq;
42 /* similar to sk_stream_write_space */
43 if (atomic_read(&smc->conn.sndbuf_space) && sock) {
44 clear_bit(SOCK_NOSPACE, &sock->flags);
45 rcu_read_lock();
46 wq = rcu_dereference(sk->sk_wq);
47 if (skwq_has_sleeper(wq))
48 wake_up_interruptible_poll(&wq->wait,
49 EPOLLOUT | EPOLLWRNORM |
50 EPOLLWRBAND);
51 if (wq && wq->fasync_list && !(sk->sk_shutdown & SEND_SHUTDOWN))
52 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
53 rcu_read_unlock();
57 /* Wakeup sndbuf producers that blocked with smc_tx_wait_memory().
58 * Cf. tcp_data_snd_check()=>tcp_check_space()=>tcp_new_space().
60 void smc_tx_sndbuf_nonfull(struct smc_sock *smc)
62 if (smc->sk.sk_socket &&
63 test_bit(SOCK_NOSPACE, &smc->sk.sk_socket->flags))
64 smc->sk.sk_write_space(&smc->sk);
67 /* blocks sndbuf producer until at least one byte of free space available */
68 static int smc_tx_wait_memory(struct smc_sock *smc, int flags)
70 DEFINE_WAIT_FUNC(wait, woken_wake_function);
71 struct smc_connection *conn = &smc->conn;
72 struct sock *sk = &smc->sk;
73 bool noblock;
74 long timeo;
75 int rc = 0;
77 /* similar to sk_stream_wait_memory */
78 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
79 noblock = timeo ? false : true;
80 add_wait_queue(sk_sleep(sk), &wait);
81 while (1) {
82 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
83 if (sk->sk_err ||
84 (sk->sk_shutdown & SEND_SHUTDOWN) ||
85 conn->local_tx_ctrl.conn_state_flags.peer_done_writing) {
86 rc = -EPIPE;
87 break;
89 if (smc_cdc_rxed_any_close(conn)) {
90 rc = -ECONNRESET;
91 break;
93 if (!timeo) {
94 if (noblock)
95 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
96 rc = -EAGAIN;
97 break;
99 if (signal_pending(current)) {
100 rc = sock_intr_errno(timeo);
101 break;
103 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
104 if (atomic_read(&conn->sndbuf_space))
105 break; /* at least 1 byte of free space available */
106 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
107 sk_wait_event(sk, &timeo,
108 sk->sk_err ||
109 (sk->sk_shutdown & SEND_SHUTDOWN) ||
110 smc_cdc_rxed_any_close(conn) ||
111 atomic_read(&conn->sndbuf_space),
112 &wait);
114 remove_wait_queue(sk_sleep(sk), &wait);
115 return rc;
118 /* sndbuf producer: main API called by socket layer.
119 * called under sock lock.
121 int smc_tx_sendmsg(struct smc_sock *smc, struct msghdr *msg, size_t len)
123 size_t copylen, send_done = 0, send_remaining = len;
124 size_t chunk_len, chunk_off, chunk_len_sum;
125 struct smc_connection *conn = &smc->conn;
126 union smc_host_cursor prep;
127 struct sock *sk = &smc->sk;
128 char *sndbuf_base;
129 int tx_cnt_prep;
130 int writespace;
131 int rc, chunk;
133 /* This should be in poll */
134 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
136 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
137 rc = -EPIPE;
138 goto out_err;
141 while (msg_data_left(msg)) {
142 if (sk->sk_state == SMC_INIT)
143 return -ENOTCONN;
144 if (smc->sk.sk_shutdown & SEND_SHUTDOWN ||
145 (smc->sk.sk_err == ECONNABORTED) ||
146 conn->local_tx_ctrl.conn_state_flags.peer_conn_abort)
147 return -EPIPE;
148 if (smc_cdc_rxed_any_close(conn))
149 return send_done ?: -ECONNRESET;
151 if (!atomic_read(&conn->sndbuf_space)) {
152 rc = smc_tx_wait_memory(smc, msg->msg_flags);
153 if (rc) {
154 if (send_done)
155 return send_done;
156 goto out_err;
158 continue;
161 /* initialize variables for 1st iteration of subsequent loop */
162 /* could be just 1 byte, even after smc_tx_wait_memory above */
163 writespace = atomic_read(&conn->sndbuf_space);
164 /* not more than what user space asked for */
165 copylen = min_t(size_t, send_remaining, writespace);
166 /* determine start of sndbuf */
167 sndbuf_base = conn->sndbuf_desc->cpu_addr;
168 smc_curs_write(&prep,
169 smc_curs_read(&conn->tx_curs_prep, conn),
170 conn);
171 tx_cnt_prep = prep.count;
172 /* determine chunks where to write into sndbuf */
173 /* either unwrapped case, or 1st chunk of wrapped case */
174 chunk_len = min_t(size_t,
175 copylen, conn->sndbuf_size - tx_cnt_prep);
176 chunk_len_sum = chunk_len;
177 chunk_off = tx_cnt_prep;
178 smc_sndbuf_sync_sg_for_cpu(conn);
179 for (chunk = 0; chunk < 2; chunk++) {
180 rc = memcpy_from_msg(sndbuf_base + chunk_off,
181 msg, chunk_len);
182 if (rc) {
183 smc_sndbuf_sync_sg_for_device(conn);
184 if (send_done)
185 return send_done;
186 goto out_err;
188 send_done += chunk_len;
189 send_remaining -= chunk_len;
191 if (chunk_len_sum == copylen)
192 break; /* either on 1st or 2nd iteration */
193 /* prepare next (== 2nd) iteration */
194 chunk_len = copylen - chunk_len; /* remainder */
195 chunk_len_sum += chunk_len;
196 chunk_off = 0; /* modulo offset in send ring buffer */
198 smc_sndbuf_sync_sg_for_device(conn);
199 /* update cursors */
200 smc_curs_add(conn->sndbuf_size, &prep, copylen);
201 smc_curs_write(&conn->tx_curs_prep,
202 smc_curs_read(&prep, conn),
203 conn);
204 /* increased in send tasklet smc_cdc_tx_handler() */
205 smp_mb__before_atomic();
206 atomic_sub(copylen, &conn->sndbuf_space);
207 /* guarantee 0 <= sndbuf_space <= sndbuf_size */
208 smp_mb__after_atomic();
209 /* since we just produced more new data into sndbuf,
210 * trigger sndbuf consumer: RDMA write into peer RMBE and CDC
212 smc_tx_sndbuf_nonempty(conn);
213 } /* while (msg_data_left(msg)) */
215 return send_done;
217 out_err:
218 rc = sk_stream_error(sk, msg->msg_flags, rc);
219 /* make sure we wake any epoll edge trigger waiter */
220 if (unlikely(rc == -EAGAIN))
221 sk->sk_write_space(sk);
222 return rc;
225 /***************************** sndbuf consumer *******************************/
227 /* sndbuf consumer: actual data transfer of one target chunk with RDMA write */
228 static int smc_tx_rdma_write(struct smc_connection *conn, int peer_rmbe_offset,
229 int num_sges, struct ib_sge sges[])
231 struct smc_link_group *lgr = conn->lgr;
232 struct ib_send_wr *failed_wr = NULL;
233 struct ib_rdma_wr rdma_wr;
234 struct smc_link *link;
235 int rc;
237 memset(&rdma_wr, 0, sizeof(rdma_wr));
238 link = &lgr->lnk[SMC_SINGLE_LINK];
239 rdma_wr.wr.wr_id = smc_wr_tx_get_next_wr_id(link);
240 rdma_wr.wr.sg_list = sges;
241 rdma_wr.wr.num_sge = num_sges;
242 rdma_wr.wr.opcode = IB_WR_RDMA_WRITE;
243 rdma_wr.remote_addr =
244 lgr->rtokens[conn->rtoken_idx][SMC_SINGLE_LINK].dma_addr +
245 /* RMBE within RMB */
246 ((conn->peer_conn_idx - 1) * conn->peer_rmbe_size) +
247 /* offset within RMBE */
248 peer_rmbe_offset;
249 rdma_wr.rkey = lgr->rtokens[conn->rtoken_idx][SMC_SINGLE_LINK].rkey;
250 rc = ib_post_send(link->roce_qp, &rdma_wr.wr, &failed_wr);
251 if (rc) {
252 conn->local_tx_ctrl.conn_state_flags.peer_conn_abort = 1;
253 smc_lgr_terminate(lgr);
255 return rc;
258 /* sndbuf consumer */
259 static inline void smc_tx_advance_cursors(struct smc_connection *conn,
260 union smc_host_cursor *prod,
261 union smc_host_cursor *sent,
262 size_t len)
264 smc_curs_add(conn->peer_rmbe_size, prod, len);
265 /* increased in recv tasklet smc_cdc_msg_rcv() */
266 smp_mb__before_atomic();
267 /* data in flight reduces usable snd_wnd */
268 atomic_sub(len, &conn->peer_rmbe_space);
269 /* guarantee 0 <= peer_rmbe_space <= peer_rmbe_size */
270 smp_mb__after_atomic();
271 smc_curs_add(conn->sndbuf_size, sent, len);
274 /* sndbuf consumer: prepare all necessary (src&dst) chunks of data transmit;
275 * usable snd_wnd as max transmit
277 static int smc_tx_rdma_writes(struct smc_connection *conn)
279 size_t src_off, src_len, dst_off, dst_len; /* current chunk values */
280 size_t len, dst_len_sum, src_len_sum, dstchunk, srcchunk;
281 union smc_host_cursor sent, prep, prod, cons;
282 struct ib_sge sges[SMC_IB_MAX_SEND_SGE];
283 struct smc_link_group *lgr = conn->lgr;
284 int to_send, rmbespace;
285 struct smc_link *link;
286 dma_addr_t dma_addr;
287 int num_sges;
288 int rc;
290 /* source: sndbuf */
291 smc_curs_write(&sent, smc_curs_read(&conn->tx_curs_sent, conn), conn);
292 smc_curs_write(&prep, smc_curs_read(&conn->tx_curs_prep, conn), conn);
293 /* cf. wmem_alloc - (snd_max - snd_una) */
294 to_send = smc_curs_diff(conn->sndbuf_size, &sent, &prep);
295 if (to_send <= 0)
296 return 0;
298 /* destination: RMBE */
299 /* cf. snd_wnd */
300 rmbespace = atomic_read(&conn->peer_rmbe_space);
301 if (rmbespace <= 0)
302 return 0;
303 smc_curs_write(&prod,
304 smc_curs_read(&conn->local_tx_ctrl.prod, conn),
305 conn);
306 smc_curs_write(&cons,
307 smc_curs_read(&conn->local_rx_ctrl.cons, conn),
308 conn);
310 /* if usable snd_wnd closes ask peer to advertise once it opens again */
311 conn->local_tx_ctrl.prod_flags.write_blocked = (to_send >= rmbespace);
312 /* cf. usable snd_wnd */
313 len = min(to_send, rmbespace);
315 /* initialize variables for first iteration of subsequent nested loop */
316 link = &lgr->lnk[SMC_SINGLE_LINK];
317 dst_off = prod.count;
318 if (prod.wrap == cons.wrap) {
319 /* the filled destination area is unwrapped,
320 * hence the available free destination space is wrapped
321 * and we need 2 destination chunks of sum len; start with 1st
322 * which is limited by what's available in sndbuf
324 dst_len = min_t(size_t,
325 conn->peer_rmbe_size - prod.count, len);
326 } else {
327 /* the filled destination area is wrapped,
328 * hence the available free destination space is unwrapped
329 * and we need a single destination chunk of entire len
331 dst_len = len;
333 dst_len_sum = dst_len;
334 src_off = sent.count;
335 /* dst_len determines the maximum src_len */
336 if (sent.count + dst_len <= conn->sndbuf_size) {
337 /* unwrapped src case: single chunk of entire dst_len */
338 src_len = dst_len;
339 } else {
340 /* wrapped src case: 2 chunks of sum dst_len; start with 1st: */
341 src_len = conn->sndbuf_size - sent.count;
343 src_len_sum = src_len;
344 dma_addr = sg_dma_address(conn->sndbuf_desc->sgt[SMC_SINGLE_LINK].sgl);
345 for (dstchunk = 0; dstchunk < 2; dstchunk++) {
346 num_sges = 0;
347 for (srcchunk = 0; srcchunk < 2; srcchunk++) {
348 sges[srcchunk].addr = dma_addr + src_off;
349 sges[srcchunk].length = src_len;
350 sges[srcchunk].lkey = link->roce_pd->local_dma_lkey;
351 num_sges++;
352 src_off += src_len;
353 if (src_off >= conn->sndbuf_size)
354 src_off -= conn->sndbuf_size;
355 /* modulo in send ring */
356 if (src_len_sum == dst_len)
357 break; /* either on 1st or 2nd iteration */
358 /* prepare next (== 2nd) iteration */
359 src_len = dst_len - src_len; /* remainder */
360 src_len_sum += src_len;
362 rc = smc_tx_rdma_write(conn, dst_off, num_sges, sges);
363 if (rc)
364 return rc;
365 if (dst_len_sum == len)
366 break; /* either on 1st or 2nd iteration */
367 /* prepare next (== 2nd) iteration */
368 dst_off = 0; /* modulo offset in RMBE ring buffer */
369 dst_len = len - dst_len; /* remainder */
370 dst_len_sum += dst_len;
371 src_len = min_t(int,
372 dst_len, conn->sndbuf_size - sent.count);
373 src_len_sum = src_len;
376 smc_tx_advance_cursors(conn, &prod, &sent, len);
377 /* update connection's cursors with advanced local cursors */
378 smc_curs_write(&conn->local_tx_ctrl.prod,
379 smc_curs_read(&prod, conn),
380 conn);
381 /* dst: peer RMBE */
382 smc_curs_write(&conn->tx_curs_sent,
383 smc_curs_read(&sent, conn),
384 conn);
385 /* src: local sndbuf */
387 return 0;
390 /* Wakeup sndbuf consumers from any context (IRQ or process)
391 * since there is more data to transmit; usable snd_wnd as max transmit
393 int smc_tx_sndbuf_nonempty(struct smc_connection *conn)
395 struct smc_cdc_tx_pend *pend;
396 struct smc_wr_buf *wr_buf;
397 int rc;
399 spin_lock_bh(&conn->send_lock);
400 rc = smc_cdc_get_free_slot(conn, &wr_buf, &pend);
401 if (rc < 0) {
402 if (rc == -EBUSY) {
403 struct smc_sock *smc =
404 container_of(conn, struct smc_sock, conn);
406 if (smc->sk.sk_err == ECONNABORTED) {
407 rc = sock_error(&smc->sk);
408 goto out_unlock;
410 rc = 0;
411 if (conn->alert_token_local) /* connection healthy */
412 schedule_delayed_work(&conn->tx_work,
413 SMC_TX_WORK_DELAY);
415 goto out_unlock;
418 rc = smc_tx_rdma_writes(conn);
419 if (rc) {
420 smc_wr_tx_put_slot(&conn->lgr->lnk[SMC_SINGLE_LINK],
421 (struct smc_wr_tx_pend_priv *)pend);
422 goto out_unlock;
425 rc = smc_cdc_msg_send(conn, wr_buf, pend);
427 out_unlock:
428 spin_unlock_bh(&conn->send_lock);
429 return rc;
432 /* Wakeup sndbuf consumers from process context
433 * since there is more data to transmit
435 static void smc_tx_work(struct work_struct *work)
437 struct smc_connection *conn = container_of(to_delayed_work(work),
438 struct smc_connection,
439 tx_work);
440 struct smc_sock *smc = container_of(conn, struct smc_sock, conn);
441 int rc;
443 lock_sock(&smc->sk);
444 if (smc->sk.sk_err ||
445 !conn->alert_token_local ||
446 conn->local_rx_ctrl.conn_state_flags.peer_conn_abort)
447 goto out;
449 rc = smc_tx_sndbuf_nonempty(conn);
450 if (!rc && conn->local_rx_ctrl.prod_flags.write_blocked &&
451 !atomic_read(&conn->bytes_to_rcv))
452 conn->local_rx_ctrl.prod_flags.write_blocked = 0;
454 out:
455 release_sock(&smc->sk);
458 void smc_tx_consumer_update(struct smc_connection *conn)
460 union smc_host_cursor cfed, cons;
461 int to_confirm;
463 smc_curs_write(&cons,
464 smc_curs_read(&conn->local_tx_ctrl.cons, conn),
465 conn);
466 smc_curs_write(&cfed,
467 smc_curs_read(&conn->rx_curs_confirmed, conn),
468 conn);
469 to_confirm = smc_curs_diff(conn->rmbe_size, &cfed, &cons);
471 if (conn->local_rx_ctrl.prod_flags.cons_curs_upd_req ||
472 ((to_confirm > conn->rmbe_update_limit) &&
473 ((to_confirm > (conn->rmbe_size / 2)) ||
474 conn->local_rx_ctrl.prod_flags.write_blocked))) {
475 if ((smc_cdc_get_slot_and_msg_send(conn) < 0) &&
476 conn->alert_token_local) { /* connection healthy */
477 schedule_delayed_work(&conn->tx_work,
478 SMC_TX_WORK_DELAY);
479 return;
481 smc_curs_write(&conn->rx_curs_confirmed,
482 smc_curs_read(&conn->local_tx_ctrl.cons, conn),
483 conn);
484 conn->local_rx_ctrl.prod_flags.cons_curs_upd_req = 0;
486 if (conn->local_rx_ctrl.prod_flags.write_blocked &&
487 !atomic_read(&conn->bytes_to_rcv))
488 conn->local_rx_ctrl.prod_flags.write_blocked = 0;
491 /***************************** send initialize *******************************/
493 /* Initialize send properties on connection establishment. NB: not __init! */
494 void smc_tx_init(struct smc_sock *smc)
496 smc->sk.sk_write_space = smc_tx_write_space;
497 INIT_DELAYED_WORK(&smc->conn.tx_work, smc_tx_work);
498 spin_lock_init(&smc->conn.send_lock);