1 /* Common capabilities, needed by capability.o.
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/lsm_hooks.h>
16 #include <linux/file.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/user_namespace.h>
31 #include <linux/binfmts.h>
32 #include <linux/personality.h>
35 * If a non-root user executes a setuid-root binary in
36 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
37 * However if fE is also set, then the intent is for only
38 * the file capabilities to be applied, and the setuid-root
39 * bit is left on either to change the uid (plausible) or
40 * to get full privilege on a kernel without file capabilities
41 * support. So in that case we do not raise capabilities.
43 * Warn if that happens, once per boot.
45 static void warn_setuid_and_fcaps_mixed(const char *fname
)
49 printk(KERN_INFO
"warning: `%s' has both setuid-root and"
50 " effective capabilities. Therefore not raising all"
51 " capabilities.\n", fname
);
57 * cap_capable - Determine whether a task has a particular effective capability
58 * @cred: The credentials to use
59 * @ns: The user namespace in which we need the capability
60 * @cap: The capability to check for
61 * @audit: Whether to write an audit message or not
63 * Determine whether the nominated task has the specified capability amongst
64 * its effective set, returning 0 if it does, -ve if it does not.
66 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
67 * and has_capability() functions. That is, it has the reverse semantics:
68 * cap_has_capability() returns 0 when a task has a capability, but the
69 * kernel's capable() and has_capability() returns 1 for this case.
71 int cap_capable(const struct cred
*cred
, struct user_namespace
*targ_ns
,
74 struct user_namespace
*ns
= targ_ns
;
76 /* See if cred has the capability in the target user namespace
77 * by examining the target user namespace and all of the target
78 * user namespace's parents.
81 /* Do we have the necessary capabilities? */
82 if (ns
== cred
->user_ns
)
83 return cap_raised(cred
->cap_effective
, cap
) ? 0 : -EPERM
;
86 * If we're already at a lower level than we're looking for,
87 * we're done searching.
89 if (ns
->level
<= cred
->user_ns
->level
)
93 * The owner of the user namespace in the parent of the
94 * user namespace has all caps.
96 if ((ns
->parent
== cred
->user_ns
) && uid_eq(ns
->owner
, cred
->euid
))
100 * If you have a capability in a parent user ns, then you have
101 * it over all children user namespaces as well.
106 /* We never get here */
110 * cap_settime - Determine whether the current process may set the system clock
111 * @ts: The time to set
112 * @tz: The timezone to set
114 * Determine whether the current process may set the system clock and timezone
115 * information, returning 0 if permission granted, -ve if denied.
117 int cap_settime(const struct timespec64
*ts
, const struct timezone
*tz
)
119 if (!capable(CAP_SYS_TIME
))
125 * cap_ptrace_access_check - Determine whether the current process may access
127 * @child: The process to be accessed
128 * @mode: The mode of attachment.
130 * If we are in the same or an ancestor user_ns and have all the target
131 * task's capabilities, then ptrace access is allowed.
132 * If we have the ptrace capability to the target user_ns, then ptrace
136 * Determine whether a process may access another, returning 0 if permission
137 * granted, -ve if denied.
139 int cap_ptrace_access_check(struct task_struct
*child
, unsigned int mode
)
142 const struct cred
*cred
, *child_cred
;
143 const kernel_cap_t
*caller_caps
;
146 cred
= current_cred();
147 child_cred
= __task_cred(child
);
148 if (mode
& PTRACE_MODE_FSCREDS
)
149 caller_caps
= &cred
->cap_effective
;
151 caller_caps
= &cred
->cap_permitted
;
152 if (cred
->user_ns
== child_cred
->user_ns
&&
153 cap_issubset(child_cred
->cap_permitted
, *caller_caps
))
155 if (ns_capable(child_cred
->user_ns
, CAP_SYS_PTRACE
))
164 * cap_ptrace_traceme - Determine whether another process may trace the current
165 * @parent: The task proposed to be the tracer
167 * If parent is in the same or an ancestor user_ns and has all current's
168 * capabilities, then ptrace access is allowed.
169 * If parent has the ptrace capability to current's user_ns, then ptrace
173 * Determine whether the nominated task is permitted to trace the current
174 * process, returning 0 if permission is granted, -ve if denied.
176 int cap_ptrace_traceme(struct task_struct
*parent
)
179 const struct cred
*cred
, *child_cred
;
182 cred
= __task_cred(parent
);
183 child_cred
= current_cred();
184 if (cred
->user_ns
== child_cred
->user_ns
&&
185 cap_issubset(child_cred
->cap_permitted
, cred
->cap_permitted
))
187 if (has_ns_capability(parent
, child_cred
->user_ns
, CAP_SYS_PTRACE
))
196 * cap_capget - Retrieve a task's capability sets
197 * @target: The task from which to retrieve the capability sets
198 * @effective: The place to record the effective set
199 * @inheritable: The place to record the inheritable set
200 * @permitted: The place to record the permitted set
202 * This function retrieves the capabilities of the nominated task and returns
203 * them to the caller.
205 int cap_capget(struct task_struct
*target
, kernel_cap_t
*effective
,
206 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
208 const struct cred
*cred
;
210 /* Derived from kernel/capability.c:sys_capget. */
212 cred
= __task_cred(target
);
213 *effective
= cred
->cap_effective
;
214 *inheritable
= cred
->cap_inheritable
;
215 *permitted
= cred
->cap_permitted
;
221 * Determine whether the inheritable capabilities are limited to the old
222 * permitted set. Returns 1 if they are limited, 0 if they are not.
224 static inline int cap_inh_is_capped(void)
227 /* they are so limited unless the current task has the CAP_SETPCAP
230 if (cap_capable(current_cred(), current_cred()->user_ns
,
231 CAP_SETPCAP
, SECURITY_CAP_AUDIT
) == 0)
237 * cap_capset - Validate and apply proposed changes to current's capabilities
238 * @new: The proposed new credentials; alterations should be made here
239 * @old: The current task's current credentials
240 * @effective: A pointer to the proposed new effective capabilities set
241 * @inheritable: A pointer to the proposed new inheritable capabilities set
242 * @permitted: A pointer to the proposed new permitted capabilities set
244 * This function validates and applies a proposed mass change to the current
245 * process's capability sets. The changes are made to the proposed new
246 * credentials, and assuming no error, will be committed by the caller of LSM.
248 int cap_capset(struct cred
*new,
249 const struct cred
*old
,
250 const kernel_cap_t
*effective
,
251 const kernel_cap_t
*inheritable
,
252 const kernel_cap_t
*permitted
)
254 if (cap_inh_is_capped() &&
255 !cap_issubset(*inheritable
,
256 cap_combine(old
->cap_inheritable
,
257 old
->cap_permitted
)))
258 /* incapable of using this inheritable set */
261 if (!cap_issubset(*inheritable
,
262 cap_combine(old
->cap_inheritable
,
264 /* no new pI capabilities outside bounding set */
267 /* verify restrictions on target's new Permitted set */
268 if (!cap_issubset(*permitted
, old
->cap_permitted
))
271 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
272 if (!cap_issubset(*effective
, *permitted
))
275 new->cap_effective
= *effective
;
276 new->cap_inheritable
= *inheritable
;
277 new->cap_permitted
= *permitted
;
280 * Mask off ambient bits that are no longer both permitted and
283 new->cap_ambient
= cap_intersect(new->cap_ambient
,
284 cap_intersect(*permitted
,
286 if (WARN_ON(!cap_ambient_invariant_ok(new)))
292 * cap_inode_need_killpriv - Determine if inode change affects privileges
293 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
295 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
296 * affects the security markings on that inode, and if it is, should
297 * inode_killpriv() be invoked or the change rejected.
299 * Returns 1 if security.capability has a value, meaning inode_killpriv()
300 * is required, 0 otherwise, meaning inode_killpriv() is not required.
302 int cap_inode_need_killpriv(struct dentry
*dentry
)
304 struct inode
*inode
= d_backing_inode(dentry
);
307 error
= __vfs_getxattr(dentry
, inode
, XATTR_NAME_CAPS
, NULL
, 0);
312 * cap_inode_killpriv - Erase the security markings on an inode
313 * @dentry: The inode/dentry to alter
315 * Erase the privilege-enhancing security markings on an inode.
317 * Returns 0 if successful, -ve on error.
319 int cap_inode_killpriv(struct dentry
*dentry
)
323 error
= __vfs_removexattr(dentry
, XATTR_NAME_CAPS
);
324 if (error
== -EOPNOTSUPP
)
329 static bool rootid_owns_currentns(kuid_t kroot
)
331 struct user_namespace
*ns
;
333 if (!uid_valid(kroot
))
336 for (ns
= current_user_ns(); ; ns
= ns
->parent
) {
337 if (from_kuid(ns
, kroot
) == 0)
339 if (ns
== &init_user_ns
)
346 static __u32
sansflags(__u32 m
)
348 return m
& ~VFS_CAP_FLAGS_EFFECTIVE
;
351 static bool is_v2header(size_t size
, const struct vfs_cap_data
*cap
)
353 if (size
!= XATTR_CAPS_SZ_2
)
355 return sansflags(le32_to_cpu(cap
->magic_etc
)) == VFS_CAP_REVISION_2
;
358 static bool is_v3header(size_t size
, const struct vfs_cap_data
*cap
)
360 if (size
!= XATTR_CAPS_SZ_3
)
362 return sansflags(le32_to_cpu(cap
->magic_etc
)) == VFS_CAP_REVISION_3
;
366 * getsecurity: We are called for security.* before any attempt to read the
367 * xattr from the inode itself.
369 * This gives us a chance to read the on-disk value and convert it. If we
370 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
372 * Note we are not called by vfs_getxattr_alloc(), but that is only called
373 * by the integrity subsystem, which really wants the unconverted values -
376 int cap_inode_getsecurity(struct inode
*inode
, const char *name
, void **buffer
,
381 uid_t root
, mappedroot
;
383 struct vfs_cap_data
*cap
;
384 struct vfs_ns_cap_data
*nscap
;
385 struct dentry
*dentry
;
386 struct user_namespace
*fs_ns
;
388 if (strcmp(name
, "capability") != 0)
391 dentry
= d_find_alias(inode
);
395 size
= sizeof(struct vfs_ns_cap_data
);
396 ret
= (int) vfs_getxattr_alloc(dentry
, XATTR_NAME_CAPS
,
397 &tmpbuf
, size
, GFP_NOFS
);
403 fs_ns
= inode
->i_sb
->s_user_ns
;
404 cap
= (struct vfs_cap_data
*) tmpbuf
;
405 if (is_v2header((size_t) ret
, cap
)) {
406 /* If this is sizeof(vfs_cap_data) then we're ok with the
407 * on-disk value, so return that. */
413 } else if (!is_v3header((size_t) ret
, cap
)) {
418 nscap
= (struct vfs_ns_cap_data
*) tmpbuf
;
419 root
= le32_to_cpu(nscap
->rootid
);
420 kroot
= make_kuid(fs_ns
, root
);
422 /* If the root kuid maps to a valid uid in current ns, then return
423 * this as a nscap. */
424 mappedroot
= from_kuid(current_user_ns(), kroot
);
425 if (mappedroot
!= (uid_t
)-1 && mappedroot
!= (uid_t
)0) {
428 nscap
->rootid
= cpu_to_le32(mappedroot
);
434 if (!rootid_owns_currentns(kroot
)) {
439 /* This comes from a parent namespace. Return as a v2 capability */
440 size
= sizeof(struct vfs_cap_data
);
442 *buffer
= kmalloc(size
, GFP_ATOMIC
);
444 struct vfs_cap_data
*cap
= *buffer
;
445 __le32 nsmagic
, magic
;
446 magic
= VFS_CAP_REVISION_2
;
447 nsmagic
= le32_to_cpu(nscap
->magic_etc
);
448 if (nsmagic
& VFS_CAP_FLAGS_EFFECTIVE
)
449 magic
|= VFS_CAP_FLAGS_EFFECTIVE
;
450 memcpy(&cap
->data
, &nscap
->data
, sizeof(__le32
) * 2 * VFS_CAP_U32
);
451 cap
->magic_etc
= cpu_to_le32(magic
);
458 static kuid_t
rootid_from_xattr(const void *value
, size_t size
,
459 struct user_namespace
*task_ns
)
461 const struct vfs_ns_cap_data
*nscap
= value
;
464 if (size
== XATTR_CAPS_SZ_3
)
465 rootid
= le32_to_cpu(nscap
->rootid
);
467 return make_kuid(task_ns
, rootid
);
470 static bool validheader(size_t size
, const struct vfs_cap_data
*cap
)
472 return is_v2header(size
, cap
) || is_v3header(size
, cap
);
476 * User requested a write of security.capability. If needed, update the
477 * xattr to change from v2 to v3, or to fixup the v3 rootid.
479 * If all is ok, we return the new size, on error return < 0.
481 int cap_convert_nscap(struct dentry
*dentry
, void **ivalue
, size_t size
)
483 struct vfs_ns_cap_data
*nscap
;
485 const struct vfs_cap_data
*cap
= *ivalue
;
486 __u32 magic
, nsmagic
;
487 struct inode
*inode
= d_backing_inode(dentry
);
488 struct user_namespace
*task_ns
= current_user_ns(),
489 *fs_ns
= inode
->i_sb
->s_user_ns
;
495 if (!validheader(size
, cap
))
497 if (!capable_wrt_inode_uidgid(inode
, CAP_SETFCAP
))
499 if (size
== XATTR_CAPS_SZ_2
)
500 if (ns_capable(inode
->i_sb
->s_user_ns
, CAP_SETFCAP
))
501 /* user is privileged, just write the v2 */
504 rootid
= rootid_from_xattr(*ivalue
, size
, task_ns
);
505 if (!uid_valid(rootid
))
508 nsrootid
= from_kuid(fs_ns
, rootid
);
512 newsize
= sizeof(struct vfs_ns_cap_data
);
513 nscap
= kmalloc(newsize
, GFP_ATOMIC
);
516 nscap
->rootid
= cpu_to_le32(nsrootid
);
517 nsmagic
= VFS_CAP_REVISION_3
;
518 magic
= le32_to_cpu(cap
->magic_etc
);
519 if (magic
& VFS_CAP_FLAGS_EFFECTIVE
)
520 nsmagic
|= VFS_CAP_FLAGS_EFFECTIVE
;
521 nscap
->magic_etc
= cpu_to_le32(nsmagic
);
522 memcpy(&nscap
->data
, &cap
->data
, sizeof(__le32
) * 2 * VFS_CAP_U32
);
530 * Calculate the new process capability sets from the capability sets attached
533 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data
*caps
,
534 struct linux_binprm
*bprm
,
538 struct cred
*new = bprm
->cred
;
542 if (caps
->magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
)
545 if (caps
->magic_etc
& VFS_CAP_REVISION_MASK
)
548 CAP_FOR_EACH_U32(i
) {
549 __u32 permitted
= caps
->permitted
.cap
[i
];
550 __u32 inheritable
= caps
->inheritable
.cap
[i
];
553 * pP' = (X & fP) | (pI & fI)
554 * The addition of pA' is handled later.
556 new->cap_permitted
.cap
[i
] =
557 (new->cap_bset
.cap
[i
] & permitted
) |
558 (new->cap_inheritable
.cap
[i
] & inheritable
);
560 if (permitted
& ~new->cap_permitted
.cap
[i
])
561 /* insufficient to execute correctly */
566 * For legacy apps, with no internal support for recognizing they
567 * do not have enough capabilities, we return an error if they are
568 * missing some "forced" (aka file-permitted) capabilities.
570 return *effective
? ret
: 0;
574 * Extract the on-exec-apply capability sets for an executable file.
576 int get_vfs_caps_from_disk(const struct dentry
*dentry
, struct cpu_vfs_cap_data
*cpu_caps
)
578 struct inode
*inode
= d_backing_inode(dentry
);
582 struct vfs_ns_cap_data data
, *nscaps
= &data
;
583 struct vfs_cap_data
*caps
= (struct vfs_cap_data
*) &data
;
585 struct user_namespace
*fs_ns
;
587 memset(cpu_caps
, 0, sizeof(struct cpu_vfs_cap_data
));
592 fs_ns
= inode
->i_sb
->s_user_ns
;
593 size
= __vfs_getxattr((struct dentry
*)dentry
, inode
,
594 XATTR_NAME_CAPS
, &data
, XATTR_CAPS_SZ
);
595 if (size
== -ENODATA
|| size
== -EOPNOTSUPP
)
596 /* no data, that's ok */
602 if (size
< sizeof(magic_etc
))
605 cpu_caps
->magic_etc
= magic_etc
= le32_to_cpu(caps
->magic_etc
);
607 rootkuid
= make_kuid(fs_ns
, 0);
608 switch (magic_etc
& VFS_CAP_REVISION_MASK
) {
609 case VFS_CAP_REVISION_1
:
610 if (size
!= XATTR_CAPS_SZ_1
)
612 tocopy
= VFS_CAP_U32_1
;
614 case VFS_CAP_REVISION_2
:
615 if (size
!= XATTR_CAPS_SZ_2
)
617 tocopy
= VFS_CAP_U32_2
;
619 case VFS_CAP_REVISION_3
:
620 if (size
!= XATTR_CAPS_SZ_3
)
622 tocopy
= VFS_CAP_U32_3
;
623 rootkuid
= make_kuid(fs_ns
, le32_to_cpu(nscaps
->rootid
));
629 /* Limit the caps to the mounter of the filesystem
630 * or the more limited uid specified in the xattr.
632 if (!rootid_owns_currentns(rootkuid
))
635 CAP_FOR_EACH_U32(i
) {
638 cpu_caps
->permitted
.cap
[i
] = le32_to_cpu(caps
->data
[i
].permitted
);
639 cpu_caps
->inheritable
.cap
[i
] = le32_to_cpu(caps
->data
[i
].inheritable
);
642 cpu_caps
->permitted
.cap
[CAP_LAST_U32
] &= CAP_LAST_U32_VALID_MASK
;
643 cpu_caps
->inheritable
.cap
[CAP_LAST_U32
] &= CAP_LAST_U32_VALID_MASK
;
649 * Attempt to get the on-exec apply capability sets for an executable file from
650 * its xattrs and, if present, apply them to the proposed credentials being
651 * constructed by execve().
653 static int get_file_caps(struct linux_binprm
*bprm
, bool *effective
, bool *has_fcap
)
656 struct cpu_vfs_cap_data vcaps
;
658 cap_clear(bprm
->cred
->cap_permitted
);
660 if (!file_caps_enabled
)
663 if (!mnt_may_suid(bprm
->file
->f_path
.mnt
))
667 * This check is redundant with mnt_may_suid() but is kept to make
668 * explicit that capability bits are limited to s_user_ns and its
671 if (!current_in_userns(bprm
->file
->f_path
.mnt
->mnt_sb
->s_user_ns
))
674 rc
= get_vfs_caps_from_disk(bprm
->file
->f_path
.dentry
, &vcaps
);
677 printk(KERN_NOTICE
"Invalid argument reading file caps for %s\n",
679 else if (rc
== -ENODATA
)
684 rc
= bprm_caps_from_vfs_caps(&vcaps
, bprm
, effective
, has_fcap
);
686 printk(KERN_NOTICE
"%s: cap_from_disk returned %d for %s\n",
687 __func__
, rc
, bprm
->filename
);
691 cap_clear(bprm
->cred
->cap_permitted
);
696 static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT
); }
698 static inline bool __is_real(kuid_t uid
, struct cred
*cred
)
699 { return uid_eq(cred
->uid
, uid
); }
701 static inline bool __is_eff(kuid_t uid
, struct cred
*cred
)
702 { return uid_eq(cred
->euid
, uid
); }
704 static inline bool __is_suid(kuid_t uid
, struct cred
*cred
)
705 { return !__is_real(uid
, cred
) && __is_eff(uid
, cred
); }
708 * handle_privileged_root - Handle case of privileged root
709 * @bprm: The execution parameters, including the proposed creds
710 * @has_fcap: Are any file capabilities set?
711 * @effective: Do we have effective root privilege?
712 * @root_uid: This namespace' root UID WRT initial USER namespace
714 * Handle the case where root is privileged and hasn't been neutered by
715 * SECURE_NOROOT. If file capabilities are set, they won't be combined with
716 * set UID root and nothing is changed. If we are root, cap_permitted is
717 * updated. If we have become set UID root, the effective bit is set.
719 static void handle_privileged_root(struct linux_binprm
*bprm
, bool has_fcap
,
720 bool *effective
, kuid_t root_uid
)
722 const struct cred
*old
= current_cred();
723 struct cred
*new = bprm
->cred
;
725 if (!root_privileged())
728 * If the legacy file capability is set, then don't set privs
729 * for a setuid root binary run by a non-root user. Do set it
730 * for a root user just to cause least surprise to an admin.
732 if (has_fcap
&& __is_suid(root_uid
, new)) {
733 warn_setuid_and_fcaps_mixed(bprm
->filename
);
737 * To support inheritance of root-permissions and suid-root
738 * executables under compatibility mode, we override the
739 * capability sets for the file.
741 if (__is_eff(root_uid
, new) || __is_real(root_uid
, new)) {
742 /* pP' = (cap_bset & ~0) | (pI & ~0) */
743 new->cap_permitted
= cap_combine(old
->cap_bset
,
744 old
->cap_inheritable
);
747 * If only the real uid is 0, we do not set the effective bit.
749 if (__is_eff(root_uid
, new))
753 #define __cap_gained(field, target, source) \
754 !cap_issubset(target->cap_##field, source->cap_##field)
755 #define __cap_grew(target, source, cred) \
756 !cap_issubset(cred->cap_##target, cred->cap_##source)
757 #define __cap_full(field, cred) \
758 cap_issubset(CAP_FULL_SET, cred->cap_##field)
760 static inline bool __is_setuid(struct cred
*new, const struct cred
*old
)
761 { return !uid_eq(new->euid
, old
->uid
); }
763 static inline bool __is_setgid(struct cred
*new, const struct cred
*old
)
764 { return !gid_eq(new->egid
, old
->gid
); }
767 * 1) Audit candidate if current->cap_effective is set
769 * We do not bother to audit if 3 things are true:
770 * 1) cap_effective has all caps
771 * 2) we became root *OR* are were already root
772 * 3) root is supposed to have all caps (SECURE_NOROOT)
773 * Since this is just a normal root execing a process.
775 * Number 1 above might fail if you don't have a full bset, but I think
776 * that is interesting information to audit.
778 * A number of other conditions require logging:
779 * 2) something prevented setuid root getting all caps
780 * 3) non-setuid root gets fcaps
781 * 4) non-setuid root gets ambient
783 static inline bool nonroot_raised_pE(struct cred
*new, const struct cred
*old
,
784 kuid_t root
, bool has_fcap
)
788 if ((__cap_grew(effective
, ambient
, new) &&
789 !(__cap_full(effective
, new) &&
790 (__is_eff(root
, new) || __is_real(root
, new)) &&
791 root_privileged())) ||
792 (root_privileged() &&
793 __is_suid(root
, new) &&
794 !__cap_full(effective
, new)) ||
795 (!__is_setuid(new, old
) &&
797 __cap_gained(permitted
, new, old
)) ||
798 __cap_gained(ambient
, new, old
))))
806 * cap_bprm_set_creds - Set up the proposed credentials for execve().
807 * @bprm: The execution parameters, including the proposed creds
809 * Set up the proposed credentials for a new execution context being
810 * constructed by execve(). The proposed creds in @bprm->cred is altered,
811 * which won't take effect immediately. Returns 0 if successful, -ve on error.
813 int cap_bprm_set_creds(struct linux_binprm
*bprm
)
815 const struct cred
*old
= current_cred();
816 struct cred
*new = bprm
->cred
;
817 bool effective
= false, has_fcap
= false, is_setid
;
821 if (WARN_ON(!cap_ambient_invariant_ok(old
)))
824 ret
= get_file_caps(bprm
, &effective
, &has_fcap
);
828 root_uid
= make_kuid(new->user_ns
, 0);
830 handle_privileged_root(bprm
, has_fcap
, &effective
, root_uid
);
832 /* if we have fs caps, clear dangerous personality flags */
833 if (__cap_gained(permitted
, new, old
))
834 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
836 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
837 * credentials unless they have the appropriate permit.
839 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
841 is_setid
= __is_setuid(new, old
) || __is_setgid(new, old
);
843 if ((is_setid
|| __cap_gained(permitted
, new, old
)) &&
844 ((bprm
->unsafe
& ~LSM_UNSAFE_PTRACE
) ||
845 !ptracer_capable(current
, new->user_ns
))) {
846 /* downgrade; they get no more than they had, and maybe less */
847 if (!ns_capable(new->user_ns
, CAP_SETUID
) ||
848 (bprm
->unsafe
& LSM_UNSAFE_NO_NEW_PRIVS
)) {
849 new->euid
= new->uid
;
850 new->egid
= new->gid
;
852 new->cap_permitted
= cap_intersect(new->cap_permitted
,
856 new->suid
= new->fsuid
= new->euid
;
857 new->sgid
= new->fsgid
= new->egid
;
859 /* File caps or setid cancels ambient. */
860 if (has_fcap
|| is_setid
)
861 cap_clear(new->cap_ambient
);
864 * Now that we've computed pA', update pP' to give:
865 * pP' = (X & fP) | (pI & fI) | pA'
867 new->cap_permitted
= cap_combine(new->cap_permitted
, new->cap_ambient
);
870 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
871 * this is the same as pE' = (fE ? pP' : 0) | pA'.
874 new->cap_effective
= new->cap_permitted
;
876 new->cap_effective
= new->cap_ambient
;
878 if (WARN_ON(!cap_ambient_invariant_ok(new)))
881 if (nonroot_raised_pE(new, old
, root_uid
, has_fcap
)) {
882 ret
= audit_log_bprm_fcaps(bprm
, new, old
);
887 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
889 if (WARN_ON(!cap_ambient_invariant_ok(new)))
892 /* Check for privilege-elevated exec. */
893 bprm
->cap_elevated
= 0;
895 (!__is_real(root_uid
, new) &&
897 __cap_grew(permitted
, ambient
, new))))
898 bprm
->cap_elevated
= 1;
904 * cap_inode_setxattr - Determine whether an xattr may be altered
905 * @dentry: The inode/dentry being altered
906 * @name: The name of the xattr to be changed
907 * @value: The value that the xattr will be changed to
908 * @size: The size of value
909 * @flags: The replacement flag
911 * Determine whether an xattr may be altered or set on an inode, returning 0 if
912 * permission is granted, -ve if denied.
914 * This is used to make sure security xattrs don't get updated or set by those
915 * who aren't privileged to do so.
917 int cap_inode_setxattr(struct dentry
*dentry
, const char *name
,
918 const void *value
, size_t size
, int flags
)
920 /* Ignore non-security xattrs */
921 if (strncmp(name
, XATTR_SECURITY_PREFIX
,
922 sizeof(XATTR_SECURITY_PREFIX
) - 1) != 0)
926 * For XATTR_NAME_CAPS the check will be done in
927 * cap_convert_nscap(), called by setxattr()
929 if (strcmp(name
, XATTR_NAME_CAPS
) == 0)
932 if (!capable(CAP_SYS_ADMIN
))
938 * cap_inode_removexattr - Determine whether an xattr may be removed
939 * @dentry: The inode/dentry being altered
940 * @name: The name of the xattr to be changed
942 * Determine whether an xattr may be removed from an inode, returning 0 if
943 * permission is granted, -ve if denied.
945 * This is used to make sure security xattrs don't get removed by those who
946 * aren't privileged to remove them.
948 int cap_inode_removexattr(struct dentry
*dentry
, const char *name
)
950 /* Ignore non-security xattrs */
951 if (strncmp(name
, XATTR_SECURITY_PREFIX
,
952 sizeof(XATTR_SECURITY_PREFIX
) - 1) != 0)
955 if (strcmp(name
, XATTR_NAME_CAPS
) == 0) {
956 /* security.capability gets namespaced */
957 struct inode
*inode
= d_backing_inode(dentry
);
960 if (!capable_wrt_inode_uidgid(inode
, CAP_SETFCAP
))
965 if (!capable(CAP_SYS_ADMIN
))
971 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
972 * a process after a call to setuid, setreuid, or setresuid.
974 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
975 * {r,e,s}uid != 0, the permitted and effective capabilities are
978 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
979 * capabilities of the process are cleared.
981 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
982 * capabilities are set to the permitted capabilities.
984 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
989 * cevans - New behaviour, Oct '99
990 * A process may, via prctl(), elect to keep its capabilities when it
991 * calls setuid() and switches away from uid==0. Both permitted and
992 * effective sets will be retained.
993 * Without this change, it was impossible for a daemon to drop only some
994 * of its privilege. The call to setuid(!=0) would drop all privileges!
995 * Keeping uid 0 is not an option because uid 0 owns too many vital
997 * Thanks to Olaf Kirch and Peter Benie for spotting this.
999 static inline void cap_emulate_setxuid(struct cred
*new, const struct cred
*old
)
1001 kuid_t root_uid
= make_kuid(old
->user_ns
, 0);
1003 if ((uid_eq(old
->uid
, root_uid
) ||
1004 uid_eq(old
->euid
, root_uid
) ||
1005 uid_eq(old
->suid
, root_uid
)) &&
1006 (!uid_eq(new->uid
, root_uid
) &&
1007 !uid_eq(new->euid
, root_uid
) &&
1008 !uid_eq(new->suid
, root_uid
))) {
1009 if (!issecure(SECURE_KEEP_CAPS
)) {
1010 cap_clear(new->cap_permitted
);
1011 cap_clear(new->cap_effective
);
1015 * Pre-ambient programs expect setresuid to nonroot followed
1016 * by exec to drop capabilities. We should make sure that
1017 * this remains the case.
1019 cap_clear(new->cap_ambient
);
1021 if (uid_eq(old
->euid
, root_uid
) && !uid_eq(new->euid
, root_uid
))
1022 cap_clear(new->cap_effective
);
1023 if (!uid_eq(old
->euid
, root_uid
) && uid_eq(new->euid
, root_uid
))
1024 new->cap_effective
= new->cap_permitted
;
1028 * cap_task_fix_setuid - Fix up the results of setuid() call
1029 * @new: The proposed credentials
1030 * @old: The current task's current credentials
1031 * @flags: Indications of what has changed
1033 * Fix up the results of setuid() call before the credential changes are
1034 * actually applied, returning 0 to grant the changes, -ve to deny them.
1036 int cap_task_fix_setuid(struct cred
*new, const struct cred
*old
, int flags
)
1042 /* juggle the capabilities to follow [RES]UID changes unless
1043 * otherwise suppressed */
1044 if (!issecure(SECURE_NO_SETUID_FIXUP
))
1045 cap_emulate_setxuid(new, old
);
1049 /* juggle the capabilties to follow FSUID changes, unless
1050 * otherwise suppressed
1052 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
1053 * if not, we might be a bit too harsh here.
1055 if (!issecure(SECURE_NO_SETUID_FIXUP
)) {
1056 kuid_t root_uid
= make_kuid(old
->user_ns
, 0);
1057 if (uid_eq(old
->fsuid
, root_uid
) && !uid_eq(new->fsuid
, root_uid
))
1058 new->cap_effective
=
1059 cap_drop_fs_set(new->cap_effective
);
1061 if (!uid_eq(old
->fsuid
, root_uid
) && uid_eq(new->fsuid
, root_uid
))
1062 new->cap_effective
=
1063 cap_raise_fs_set(new->cap_effective
,
1064 new->cap_permitted
);
1076 * Rationale: code calling task_setscheduler, task_setioprio, and
1077 * task_setnice, assumes that
1078 * . if capable(cap_sys_nice), then those actions should be allowed
1079 * . if not capable(cap_sys_nice), but acting on your own processes,
1080 * then those actions should be allowed
1081 * This is insufficient now since you can call code without suid, but
1082 * yet with increased caps.
1083 * So we check for increased caps on the target process.
1085 static int cap_safe_nice(struct task_struct
*p
)
1087 int is_subset
, ret
= 0;
1090 is_subset
= cap_issubset(__task_cred(p
)->cap_permitted
,
1091 current_cred()->cap_permitted
);
1092 if (!is_subset
&& !ns_capable(__task_cred(p
)->user_ns
, CAP_SYS_NICE
))
1100 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
1101 * @p: The task to affect
1103 * Detemine if the requested scheduler policy change is permitted for the
1104 * specified task, returning 0 if permission is granted, -ve if denied.
1106 int cap_task_setscheduler(struct task_struct
*p
)
1108 return cap_safe_nice(p
);
1112 * cap_task_ioprio - Detemine if I/O priority change is permitted
1113 * @p: The task to affect
1114 * @ioprio: The I/O priority to set
1116 * Detemine if the requested I/O priority change is permitted for the specified
1117 * task, returning 0 if permission is granted, -ve if denied.
1119 int cap_task_setioprio(struct task_struct
*p
, int ioprio
)
1121 return cap_safe_nice(p
);
1125 * cap_task_ioprio - Detemine if task priority change is permitted
1126 * @p: The task to affect
1127 * @nice: The nice value to set
1129 * Detemine if the requested task priority change is permitted for the
1130 * specified task, returning 0 if permission is granted, -ve if denied.
1132 int cap_task_setnice(struct task_struct
*p
, int nice
)
1134 return cap_safe_nice(p
);
1138 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
1139 * the current task's bounding set. Returns 0 on success, -ve on error.
1141 static int cap_prctl_drop(unsigned long cap
)
1145 if (!ns_capable(current_user_ns(), CAP_SETPCAP
))
1147 if (!cap_valid(cap
))
1150 new = prepare_creds();
1153 cap_lower(new->cap_bset
, cap
);
1154 return commit_creds(new);
1158 * cap_task_prctl - Implement process control functions for this security module
1159 * @option: The process control function requested
1160 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
1162 * Allow process control functions (sys_prctl()) to alter capabilities; may
1163 * also deny access to other functions not otherwise implemented here.
1165 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
1166 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
1167 * modules will consider performing the function.
1169 int cap_task_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
1170 unsigned long arg4
, unsigned long arg5
)
1172 const struct cred
*old
= current_cred();
1176 case PR_CAPBSET_READ
:
1177 if (!cap_valid(arg2
))
1179 return !!cap_raised(old
->cap_bset
, arg2
);
1181 case PR_CAPBSET_DROP
:
1182 return cap_prctl_drop(arg2
);
1185 * The next four prctl's remain to assist with transitioning a
1186 * system from legacy UID=0 based privilege (when filesystem
1187 * capabilities are not in use) to a system using filesystem
1188 * capabilities only - as the POSIX.1e draft intended.
1192 * PR_SET_SECUREBITS =
1193 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1194 * | issecure_mask(SECURE_NOROOT)
1195 * | issecure_mask(SECURE_NOROOT_LOCKED)
1196 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
1197 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1199 * will ensure that the current process and all of its
1200 * children will be locked into a pure
1201 * capability-based-privilege environment.
1203 case PR_SET_SECUREBITS
:
1204 if ((((old
->securebits
& SECURE_ALL_LOCKS
) >> 1)
1205 & (old
->securebits
^ arg2
)) /*[1]*/
1206 || ((old
->securebits
& SECURE_ALL_LOCKS
& ~arg2
)) /*[2]*/
1207 || (arg2
& ~(SECURE_ALL_LOCKS
| SECURE_ALL_BITS
)) /*[3]*/
1208 || (cap_capable(current_cred(),
1209 current_cred()->user_ns
, CAP_SETPCAP
,
1210 SECURITY_CAP_AUDIT
) != 0) /*[4]*/
1212 * [1] no changing of bits that are locked
1213 * [2] no unlocking of locks
1214 * [3] no setting of unsupported bits
1215 * [4] doing anything requires privilege (go read about
1216 * the "sendmail capabilities bug")
1219 /* cannot change a locked bit */
1222 new = prepare_creds();
1225 new->securebits
= arg2
;
1226 return commit_creds(new);
1228 case PR_GET_SECUREBITS
:
1229 return old
->securebits
;
1231 case PR_GET_KEEPCAPS
:
1232 return !!issecure(SECURE_KEEP_CAPS
);
1234 case PR_SET_KEEPCAPS
:
1235 if (arg2
> 1) /* Note, we rely on arg2 being unsigned here */
1237 if (issecure(SECURE_KEEP_CAPS_LOCKED
))
1240 new = prepare_creds();
1244 new->securebits
|= issecure_mask(SECURE_KEEP_CAPS
);
1246 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
1247 return commit_creds(new);
1249 case PR_CAP_AMBIENT
:
1250 if (arg2
== PR_CAP_AMBIENT_CLEAR_ALL
) {
1251 if (arg3
| arg4
| arg5
)
1254 new = prepare_creds();
1257 cap_clear(new->cap_ambient
);
1258 return commit_creds(new);
1261 if (((!cap_valid(arg3
)) | arg4
| arg5
))
1264 if (arg2
== PR_CAP_AMBIENT_IS_SET
) {
1265 return !!cap_raised(current_cred()->cap_ambient
, arg3
);
1266 } else if (arg2
!= PR_CAP_AMBIENT_RAISE
&&
1267 arg2
!= PR_CAP_AMBIENT_LOWER
) {
1270 if (arg2
== PR_CAP_AMBIENT_RAISE
&&
1271 (!cap_raised(current_cred()->cap_permitted
, arg3
) ||
1272 !cap_raised(current_cred()->cap_inheritable
,
1274 issecure(SECURE_NO_CAP_AMBIENT_RAISE
)))
1277 new = prepare_creds();
1280 if (arg2
== PR_CAP_AMBIENT_RAISE
)
1281 cap_raise(new->cap_ambient
, arg3
);
1283 cap_lower(new->cap_ambient
, arg3
);
1284 return commit_creds(new);
1288 /* No functionality available - continue with default */
1294 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1295 * @mm: The VM space in which the new mapping is to be made
1296 * @pages: The size of the mapping
1298 * Determine whether the allocation of a new virtual mapping by the current
1299 * task is permitted, returning 1 if permission is granted, 0 if not.
1301 int cap_vm_enough_memory(struct mm_struct
*mm
, long pages
)
1303 int cap_sys_admin
= 0;
1305 if (cap_capable(current_cred(), &init_user_ns
, CAP_SYS_ADMIN
,
1306 SECURITY_CAP_NOAUDIT
) == 0)
1308 return cap_sys_admin
;
1312 * cap_mmap_addr - check if able to map given addr
1313 * @addr: address attempting to be mapped
1315 * If the process is attempting to map memory below dac_mmap_min_addr they need
1316 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
1317 * capability security module. Returns 0 if this mapping should be allowed
1320 int cap_mmap_addr(unsigned long addr
)
1324 if (addr
< dac_mmap_min_addr
) {
1325 ret
= cap_capable(current_cred(), &init_user_ns
, CAP_SYS_RAWIO
,
1326 SECURITY_CAP_AUDIT
);
1327 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1329 current
->flags
|= PF_SUPERPRIV
;
1334 int cap_mmap_file(struct file
*file
, unsigned long reqprot
,
1335 unsigned long prot
, unsigned long flags
)
1340 #ifdef CONFIG_SECURITY
1342 struct security_hook_list capability_hooks
[] __lsm_ro_after_init
= {
1343 LSM_HOOK_INIT(capable
, cap_capable
),
1344 LSM_HOOK_INIT(settime
, cap_settime
),
1345 LSM_HOOK_INIT(ptrace_access_check
, cap_ptrace_access_check
),
1346 LSM_HOOK_INIT(ptrace_traceme
, cap_ptrace_traceme
),
1347 LSM_HOOK_INIT(capget
, cap_capget
),
1348 LSM_HOOK_INIT(capset
, cap_capset
),
1349 LSM_HOOK_INIT(bprm_set_creds
, cap_bprm_set_creds
),
1350 LSM_HOOK_INIT(inode_need_killpriv
, cap_inode_need_killpriv
),
1351 LSM_HOOK_INIT(inode_killpriv
, cap_inode_killpriv
),
1352 LSM_HOOK_INIT(inode_getsecurity
, cap_inode_getsecurity
),
1353 LSM_HOOK_INIT(mmap_addr
, cap_mmap_addr
),
1354 LSM_HOOK_INIT(mmap_file
, cap_mmap_file
),
1355 LSM_HOOK_INIT(task_fix_setuid
, cap_task_fix_setuid
),
1356 LSM_HOOK_INIT(task_prctl
, cap_task_prctl
),
1357 LSM_HOOK_INIT(task_setscheduler
, cap_task_setscheduler
),
1358 LSM_HOOK_INIT(task_setioprio
, cap_task_setioprio
),
1359 LSM_HOOK_INIT(task_setnice
, cap_task_setnice
),
1360 LSM_HOOK_INIT(vm_enough_memory
, cap_vm_enough_memory
),
1363 void __init
capability_add_hooks(void)
1365 security_add_hooks(capability_hooks
, ARRAY_SIZE(capability_hooks
),
1369 #endif /* CONFIG_SECURITY */