4 * Copyright (C) 2015,2016 ARM Ltd.
5 * Author: Andre Przywara <andre.przywara@arm.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 #include <linux/cpu.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/interrupt.h>
24 #include <linux/list.h>
25 #include <linux/uaccess.h>
26 #include <linux/list_sort.h>
28 #include <linux/irqchip/arm-gic-v3.h>
30 #include <asm/kvm_emulate.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_mmu.h>
35 #include "vgic-mmio.h"
37 static int vgic_its_save_tables_v0(struct vgic_its
*its
);
38 static int vgic_its_restore_tables_v0(struct vgic_its
*its
);
39 static int vgic_its_commit_v0(struct vgic_its
*its
);
40 static int update_lpi_config(struct kvm
*kvm
, struct vgic_irq
*irq
,
41 struct kvm_vcpu
*filter_vcpu
, bool needs_inv
);
44 * Creates a new (reference to a) struct vgic_irq for a given LPI.
45 * If this LPI is already mapped on another ITS, we increase its refcount
46 * and return a pointer to the existing structure.
47 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
48 * This function returns a pointer to the _unlocked_ structure.
50 static struct vgic_irq
*vgic_add_lpi(struct kvm
*kvm
, u32 intid
,
51 struct kvm_vcpu
*vcpu
)
53 struct vgic_dist
*dist
= &kvm
->arch
.vgic
;
54 struct vgic_irq
*irq
= vgic_get_irq(kvm
, NULL
, intid
), *oldirq
;
57 /* In this case there is no put, since we keep the reference. */
61 irq
= kzalloc(sizeof(struct vgic_irq
), GFP_KERNEL
);
63 return ERR_PTR(-ENOMEM
);
65 INIT_LIST_HEAD(&irq
->lpi_list
);
66 INIT_LIST_HEAD(&irq
->ap_list
);
67 spin_lock_init(&irq
->irq_lock
);
69 irq
->config
= VGIC_CONFIG_EDGE
;
70 kref_init(&irq
->refcount
);
72 irq
->target_vcpu
= vcpu
;
74 spin_lock(&dist
->lpi_list_lock
);
77 * There could be a race with another vgic_add_lpi(), so we need to
78 * check that we don't add a second list entry with the same LPI.
80 list_for_each_entry(oldirq
, &dist
->lpi_list_head
, lpi_list
) {
81 if (oldirq
->intid
!= intid
)
84 /* Someone was faster with adding this LPI, lets use that. */
89 * This increases the refcount, the caller is expected to
90 * call vgic_put_irq() on the returned pointer once it's
91 * finished with the IRQ.
93 vgic_get_irq_kref(irq
);
98 list_add_tail(&irq
->lpi_list
, &dist
->lpi_list_head
);
99 dist
->lpi_list_count
++;
102 spin_unlock(&dist
->lpi_list_lock
);
105 * We "cache" the configuration table entries in our struct vgic_irq's.
106 * However we only have those structs for mapped IRQs, so we read in
107 * the respective config data from memory here upon mapping the LPI.
109 ret
= update_lpi_config(kvm
, irq
, NULL
, false);
113 ret
= vgic_v3_lpi_sync_pending_status(kvm
, irq
);
121 struct list_head dev_list
;
123 /* the head for the list of ITTEs */
124 struct list_head itt_head
;
125 u32 num_eventid_bits
;
130 #define COLLECTION_NOT_MAPPED ((u32)~0)
132 struct its_collection
{
133 struct list_head coll_list
;
139 #define its_is_collection_mapped(coll) ((coll) && \
140 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
143 struct list_head ite_list
;
145 struct vgic_irq
*irq
;
146 struct its_collection
*collection
;
151 * struct vgic_its_abi - ITS abi ops and settings
152 * @cte_esz: collection table entry size
153 * @dte_esz: device table entry size
154 * @ite_esz: interrupt translation table entry size
155 * @save tables: save the ITS tables into guest RAM
156 * @restore_tables: restore the ITS internal structs from tables
157 * stored in guest RAM
158 * @commit: initialize the registers which expose the ABI settings,
159 * especially the entry sizes
161 struct vgic_its_abi
{
165 int (*save_tables
)(struct vgic_its
*its
);
166 int (*restore_tables
)(struct vgic_its
*its
);
167 int (*commit
)(struct vgic_its
*its
);
170 static const struct vgic_its_abi its_table_abi_versions
[] = {
171 [0] = {.cte_esz
= 8, .dte_esz
= 8, .ite_esz
= 8,
172 .save_tables
= vgic_its_save_tables_v0
,
173 .restore_tables
= vgic_its_restore_tables_v0
,
174 .commit
= vgic_its_commit_v0
,
178 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions)
180 inline const struct vgic_its_abi
*vgic_its_get_abi(struct vgic_its
*its
)
182 return &its_table_abi_versions
[its
->abi_rev
];
185 int vgic_its_set_abi(struct vgic_its
*its
, int rev
)
187 const struct vgic_its_abi
*abi
;
190 abi
= vgic_its_get_abi(its
);
191 return abi
->commit(its
);
195 * Find and returns a device in the device table for an ITS.
196 * Must be called with the its_lock mutex held.
198 static struct its_device
*find_its_device(struct vgic_its
*its
, u32 device_id
)
200 struct its_device
*device
;
202 list_for_each_entry(device
, &its
->device_list
, dev_list
)
203 if (device_id
== device
->device_id
)
210 * Find and returns an interrupt translation table entry (ITTE) for a given
211 * Device ID/Event ID pair on an ITS.
212 * Must be called with the its_lock mutex held.
214 static struct its_ite
*find_ite(struct vgic_its
*its
, u32 device_id
,
217 struct its_device
*device
;
220 device
= find_its_device(its
, device_id
);
224 list_for_each_entry(ite
, &device
->itt_head
, ite_list
)
225 if (ite
->event_id
== event_id
)
231 /* To be used as an iterator this macro misses the enclosing parentheses */
232 #define for_each_lpi_its(dev, ite, its) \
233 list_for_each_entry(dev, &(its)->device_list, dev_list) \
234 list_for_each_entry(ite, &(dev)->itt_head, ite_list)
237 * We only implement 48 bits of PA at the moment, although the ITS
238 * supports more. Let's be restrictive here.
240 #define BASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16))
241 #define CBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12))
243 #define GIC_LPI_OFFSET 8192
245 #define VITS_TYPER_IDBITS 16
246 #define VITS_TYPER_DEVBITS 16
247 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1)
248 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1)
251 * Finds and returns a collection in the ITS collection table.
252 * Must be called with the its_lock mutex held.
254 static struct its_collection
*find_collection(struct vgic_its
*its
, int coll_id
)
256 struct its_collection
*collection
;
258 list_for_each_entry(collection
, &its
->collection_list
, coll_list
) {
259 if (coll_id
== collection
->collection_id
)
266 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
267 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
270 * Reads the configuration data for a given LPI from guest memory and
271 * updates the fields in struct vgic_irq.
272 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
273 * VCPU. Unconditionally applies if filter_vcpu is NULL.
275 static int update_lpi_config(struct kvm
*kvm
, struct vgic_irq
*irq
,
276 struct kvm_vcpu
*filter_vcpu
, bool needs_inv
)
278 u64 propbase
= GICR_PROPBASER_ADDRESS(kvm
->arch
.vgic
.propbaser
);
283 ret
= kvm_read_guest(kvm
, propbase
+ irq
->intid
- GIC_LPI_OFFSET
,
289 spin_lock_irqsave(&irq
->irq_lock
, flags
);
291 if (!filter_vcpu
|| filter_vcpu
== irq
->target_vcpu
) {
292 irq
->priority
= LPI_PROP_PRIORITY(prop
);
293 irq
->enabled
= LPI_PROP_ENABLE_BIT(prop
);
296 vgic_queue_irq_unlock(kvm
, irq
, flags
);
301 spin_unlock_irqrestore(&irq
->irq_lock
, flags
);
304 return its_prop_update_vlpi(irq
->host_irq
, prop
, needs_inv
);
310 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
311 * enumerate those LPIs without holding any lock.
312 * Returns their number and puts the kmalloc'ed array into intid_ptr.
314 static int vgic_copy_lpi_list(struct kvm_vcpu
*vcpu
, u32
**intid_ptr
)
316 struct vgic_dist
*dist
= &vcpu
->kvm
->arch
.vgic
;
317 struct vgic_irq
*irq
;
319 int irq_count
= dist
->lpi_list_count
, i
= 0;
322 * We use the current value of the list length, which may change
323 * after the kmalloc. We don't care, because the guest shouldn't
324 * change anything while the command handling is still running,
325 * and in the worst case we would miss a new IRQ, which one wouldn't
326 * expect to be covered by this command anyway.
328 intids
= kmalloc_array(irq_count
, sizeof(intids
[0]), GFP_KERNEL
);
332 spin_lock(&dist
->lpi_list_lock
);
333 list_for_each_entry(irq
, &dist
->lpi_list_head
, lpi_list
) {
334 /* We don't need to "get" the IRQ, as we hold the list lock. */
335 if (irq
->target_vcpu
!= vcpu
)
337 intids
[i
++] = irq
->intid
;
339 spin_unlock(&dist
->lpi_list_lock
);
345 static int update_affinity(struct vgic_irq
*irq
, struct kvm_vcpu
*vcpu
)
349 spin_lock(&irq
->irq_lock
);
350 irq
->target_vcpu
= vcpu
;
351 spin_unlock(&irq
->irq_lock
);
354 struct its_vlpi_map map
;
356 ret
= its_get_vlpi(irq
->host_irq
, &map
);
360 map
.vpe
= &vcpu
->arch
.vgic_cpu
.vgic_v3
.its_vpe
;
362 ret
= its_map_vlpi(irq
->host_irq
, &map
);
369 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
370 * is targeting) to the VGIC's view, which deals with target VCPUs.
371 * Needs to be called whenever either the collection for a LPIs has
372 * changed or the collection itself got retargeted.
374 static void update_affinity_ite(struct kvm
*kvm
, struct its_ite
*ite
)
376 struct kvm_vcpu
*vcpu
;
378 if (!its_is_collection_mapped(ite
->collection
))
381 vcpu
= kvm_get_vcpu(kvm
, ite
->collection
->target_addr
);
382 update_affinity(ite
->irq
, vcpu
);
386 * Updates the target VCPU for every LPI targeting this collection.
387 * Must be called with the its_lock mutex held.
389 static void update_affinity_collection(struct kvm
*kvm
, struct vgic_its
*its
,
390 struct its_collection
*coll
)
392 struct its_device
*device
;
395 for_each_lpi_its(device
, ite
, its
) {
396 if (!ite
->collection
|| coll
!= ite
->collection
)
399 update_affinity_ite(kvm
, ite
);
403 static u32
max_lpis_propbaser(u64 propbaser
)
405 int nr_idbits
= (propbaser
& 0x1f) + 1;
407 return 1U << min(nr_idbits
, INTERRUPT_ID_BITS_ITS
);
411 * Sync the pending table pending bit of LPIs targeting @vcpu
412 * with our own data structures. This relies on the LPI being
415 static int its_sync_lpi_pending_table(struct kvm_vcpu
*vcpu
)
417 gpa_t pendbase
= GICR_PENDBASER_ADDRESS(vcpu
->arch
.vgic_cpu
.pendbaser
);
418 struct vgic_irq
*irq
;
419 int last_byte_offset
= -1;
426 nr_irqs
= vgic_copy_lpi_list(vcpu
, &intids
);
430 for (i
= 0; i
< nr_irqs
; i
++) {
431 int byte_offset
, bit_nr
;
433 byte_offset
= intids
[i
] / BITS_PER_BYTE
;
434 bit_nr
= intids
[i
] % BITS_PER_BYTE
;
437 * For contiguously allocated LPIs chances are we just read
438 * this very same byte in the last iteration. Reuse that.
440 if (byte_offset
!= last_byte_offset
) {
441 ret
= kvm_read_guest(vcpu
->kvm
, pendbase
+ byte_offset
,
447 last_byte_offset
= byte_offset
;
450 irq
= vgic_get_irq(vcpu
->kvm
, NULL
, intids
[i
]);
451 spin_lock_irqsave(&irq
->irq_lock
, flags
);
452 irq
->pending_latch
= pendmask
& (1U << bit_nr
);
453 vgic_queue_irq_unlock(vcpu
->kvm
, irq
, flags
);
454 vgic_put_irq(vcpu
->kvm
, irq
);
462 static unsigned long vgic_mmio_read_its_typer(struct kvm
*kvm
,
463 struct vgic_its
*its
,
464 gpa_t addr
, unsigned int len
)
466 const struct vgic_its_abi
*abi
= vgic_its_get_abi(its
);
467 u64 reg
= GITS_TYPER_PLPIS
;
470 * We use linear CPU numbers for redistributor addressing,
471 * so GITS_TYPER.PTA is 0.
472 * Also we force all PROPBASER registers to be the same, so
473 * CommonLPIAff is 0 as well.
474 * To avoid memory waste in the guest, we keep the number of IDBits and
475 * DevBits low - as least for the time being.
477 reg
|= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS
, 5) << GITS_TYPER_DEVBITS_SHIFT
;
478 reg
|= GIC_ENCODE_SZ(VITS_TYPER_IDBITS
, 5) << GITS_TYPER_IDBITS_SHIFT
;
479 reg
|= GIC_ENCODE_SZ(abi
->ite_esz
, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT
;
481 return extract_bytes(reg
, addr
& 7, len
);
484 static unsigned long vgic_mmio_read_its_iidr(struct kvm
*kvm
,
485 struct vgic_its
*its
,
486 gpa_t addr
, unsigned int len
)
490 val
= (its
->abi_rev
<< GITS_IIDR_REV_SHIFT
) & GITS_IIDR_REV_MASK
;
491 val
|= (PRODUCT_ID_KVM
<< GITS_IIDR_PRODUCTID_SHIFT
) | IMPLEMENTER_ARM
;
495 static int vgic_mmio_uaccess_write_its_iidr(struct kvm
*kvm
,
496 struct vgic_its
*its
,
497 gpa_t addr
, unsigned int len
,
500 u32 rev
= GITS_IIDR_REV(val
);
502 if (rev
>= NR_ITS_ABIS
)
504 return vgic_its_set_abi(its
, rev
);
507 static unsigned long vgic_mmio_read_its_idregs(struct kvm
*kvm
,
508 struct vgic_its
*its
,
509 gpa_t addr
, unsigned int len
)
511 switch (addr
& 0xffff) {
513 return 0x92; /* part number, bits[7:0] */
515 return 0xb4; /* part number, bits[11:8] */
517 return GIC_PIDR2_ARCH_GICv3
| 0x0b;
519 return 0x40; /* This is a 64K software visible page */
520 /* The following are the ID registers for (any) GIC. */
534 int vgic_its_resolve_lpi(struct kvm
*kvm
, struct vgic_its
*its
,
535 u32 devid
, u32 eventid
, struct vgic_irq
**irq
)
537 struct kvm_vcpu
*vcpu
;
543 ite
= find_ite(its
, devid
, eventid
);
544 if (!ite
|| !its_is_collection_mapped(ite
->collection
))
545 return E_ITS_INT_UNMAPPED_INTERRUPT
;
547 vcpu
= kvm_get_vcpu(kvm
, ite
->collection
->target_addr
);
549 return E_ITS_INT_UNMAPPED_INTERRUPT
;
551 if (!vcpu
->arch
.vgic_cpu
.lpis_enabled
)
558 struct vgic_its
*vgic_msi_to_its(struct kvm
*kvm
, struct kvm_msi
*msi
)
561 struct kvm_io_device
*kvm_io_dev
;
562 struct vgic_io_device
*iodev
;
564 if (!vgic_has_its(kvm
))
565 return ERR_PTR(-ENODEV
);
567 if (!(msi
->flags
& KVM_MSI_VALID_DEVID
))
568 return ERR_PTR(-EINVAL
);
570 address
= (u64
)msi
->address_hi
<< 32 | msi
->address_lo
;
572 kvm_io_dev
= kvm_io_bus_get_dev(kvm
, KVM_MMIO_BUS
, address
);
574 return ERR_PTR(-EINVAL
);
576 if (kvm_io_dev
->ops
!= &kvm_io_gic_ops
)
577 return ERR_PTR(-EINVAL
);
579 iodev
= container_of(kvm_io_dev
, struct vgic_io_device
, dev
);
580 if (iodev
->iodev_type
!= IODEV_ITS
)
581 return ERR_PTR(-EINVAL
);
587 * Find the target VCPU and the LPI number for a given devid/eventid pair
588 * and make this IRQ pending, possibly injecting it.
589 * Must be called with the its_lock mutex held.
590 * Returns 0 on success, a positive error value for any ITS mapping
591 * related errors and negative error values for generic errors.
593 static int vgic_its_trigger_msi(struct kvm
*kvm
, struct vgic_its
*its
,
594 u32 devid
, u32 eventid
)
596 struct vgic_irq
*irq
= NULL
;
600 err
= vgic_its_resolve_lpi(kvm
, its
, devid
, eventid
, &irq
);
605 return irq_set_irqchip_state(irq
->host_irq
,
606 IRQCHIP_STATE_PENDING
, true);
608 spin_lock_irqsave(&irq
->irq_lock
, flags
);
609 irq
->pending_latch
= true;
610 vgic_queue_irq_unlock(kvm
, irq
, flags
);
616 * Queries the KVM IO bus framework to get the ITS pointer from the given
618 * We then call vgic_its_trigger_msi() with the decoded data.
619 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
621 int vgic_its_inject_msi(struct kvm
*kvm
, struct kvm_msi
*msi
)
623 struct vgic_its
*its
;
626 its
= vgic_msi_to_its(kvm
, msi
);
630 mutex_lock(&its
->its_lock
);
631 ret
= vgic_its_trigger_msi(kvm
, its
, msi
->devid
, msi
->data
);
632 mutex_unlock(&its
->its_lock
);
638 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
639 * if the guest has blocked the MSI. So we map any LPI mapping
640 * related error to that.
648 /* Requires the its_lock to be held. */
649 static void its_free_ite(struct kvm
*kvm
, struct its_ite
*ite
)
651 list_del(&ite
->ite_list
);
653 /* This put matches the get in vgic_add_lpi. */
656 WARN_ON(its_unmap_vlpi(ite
->irq
->host_irq
));
658 vgic_put_irq(kvm
, ite
->irq
);
664 static u64
its_cmd_mask_field(u64
*its_cmd
, int word
, int shift
, int size
)
666 return (le64_to_cpu(its_cmd
[word
]) >> shift
) & (BIT_ULL(size
) - 1);
669 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
670 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
671 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1)
672 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
673 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
674 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
675 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8)
676 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
677 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
680 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
681 * Must be called with the its_lock mutex held.
683 static int vgic_its_cmd_handle_discard(struct kvm
*kvm
, struct vgic_its
*its
,
686 u32 device_id
= its_cmd_get_deviceid(its_cmd
);
687 u32 event_id
= its_cmd_get_id(its_cmd
);
691 ite
= find_ite(its
, device_id
, event_id
);
692 if (ite
&& ite
->collection
) {
694 * Though the spec talks about removing the pending state, we
695 * don't bother here since we clear the ITTE anyway and the
696 * pending state is a property of the ITTE struct.
698 its_free_ite(kvm
, ite
);
702 return E_ITS_DISCARD_UNMAPPED_INTERRUPT
;
706 * The MOVI command moves an ITTE to a different collection.
707 * Must be called with the its_lock mutex held.
709 static int vgic_its_cmd_handle_movi(struct kvm
*kvm
, struct vgic_its
*its
,
712 u32 device_id
= its_cmd_get_deviceid(its_cmd
);
713 u32 event_id
= its_cmd_get_id(its_cmd
);
714 u32 coll_id
= its_cmd_get_collection(its_cmd
);
715 struct kvm_vcpu
*vcpu
;
717 struct its_collection
*collection
;
719 ite
= find_ite(its
, device_id
, event_id
);
721 return E_ITS_MOVI_UNMAPPED_INTERRUPT
;
723 if (!its_is_collection_mapped(ite
->collection
))
724 return E_ITS_MOVI_UNMAPPED_COLLECTION
;
726 collection
= find_collection(its
, coll_id
);
727 if (!its_is_collection_mapped(collection
))
728 return E_ITS_MOVI_UNMAPPED_COLLECTION
;
730 ite
->collection
= collection
;
731 vcpu
= kvm_get_vcpu(kvm
, collection
->target_addr
);
733 return update_affinity(ite
->irq
, vcpu
);
737 * Check whether an ID can be stored into the corresponding guest table.
738 * For a direct table this is pretty easy, but gets a bit nasty for
739 * indirect tables. We check whether the resulting guest physical address
740 * is actually valid (covered by a memslot and guest accessible).
741 * For this we have to read the respective first level entry.
743 static bool vgic_its_check_id(struct vgic_its
*its
, u64 baser
, u32 id
,
746 int l1_tbl_size
= GITS_BASER_NR_PAGES(baser
) * SZ_64K
;
747 u64 indirect_ptr
, type
= GITS_BASER_TYPE(baser
);
748 int esz
= GITS_BASER_ENTRY_SIZE(baser
);
753 case GITS_BASER_TYPE_DEVICE
:
754 if (id
>= BIT_ULL(VITS_TYPER_DEVBITS
))
757 case GITS_BASER_TYPE_COLLECTION
:
758 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
759 if (id
>= BIT_ULL(16))
766 if (!(baser
& GITS_BASER_INDIRECT
)) {
769 if (id
>= (l1_tbl_size
/ esz
))
772 addr
= BASER_ADDRESS(baser
) + id
* esz
;
773 gfn
= addr
>> PAGE_SHIFT
;
777 return kvm_is_visible_gfn(its
->dev
->kvm
, gfn
);
780 /* calculate and check the index into the 1st level */
781 index
= id
/ (SZ_64K
/ esz
);
782 if (index
>= (l1_tbl_size
/ sizeof(u64
)))
785 /* Each 1st level entry is represented by a 64-bit value. */
786 if (kvm_read_guest(its
->dev
->kvm
,
787 BASER_ADDRESS(baser
) + index
* sizeof(indirect_ptr
),
788 &indirect_ptr
, sizeof(indirect_ptr
)))
791 indirect_ptr
= le64_to_cpu(indirect_ptr
);
793 /* check the valid bit of the first level entry */
794 if (!(indirect_ptr
& BIT_ULL(63)))
798 * Mask the guest physical address and calculate the frame number.
799 * Any address beyond our supported 48 bits of PA will be caught
800 * by the actual check in the final step.
802 indirect_ptr
&= GENMASK_ULL(51, 16);
804 /* Find the address of the actual entry */
805 index
= id
% (SZ_64K
/ esz
);
806 indirect_ptr
+= index
* esz
;
807 gfn
= indirect_ptr
>> PAGE_SHIFT
;
810 *eaddr
= indirect_ptr
;
811 return kvm_is_visible_gfn(its
->dev
->kvm
, gfn
);
814 static int vgic_its_alloc_collection(struct vgic_its
*its
,
815 struct its_collection
**colp
,
818 struct its_collection
*collection
;
820 if (!vgic_its_check_id(its
, its
->baser_coll_table
, coll_id
, NULL
))
821 return E_ITS_MAPC_COLLECTION_OOR
;
823 collection
= kzalloc(sizeof(*collection
), GFP_KERNEL
);
827 collection
->collection_id
= coll_id
;
828 collection
->target_addr
= COLLECTION_NOT_MAPPED
;
830 list_add_tail(&collection
->coll_list
, &its
->collection_list
);
836 static void vgic_its_free_collection(struct vgic_its
*its
, u32 coll_id
)
838 struct its_collection
*collection
;
839 struct its_device
*device
;
843 * Clearing the mapping for that collection ID removes the
844 * entry from the list. If there wasn't any before, we can
847 collection
= find_collection(its
, coll_id
);
851 for_each_lpi_its(device
, ite
, its
)
852 if (ite
->collection
&&
853 ite
->collection
->collection_id
== coll_id
)
854 ite
->collection
= NULL
;
856 list_del(&collection
->coll_list
);
860 /* Must be called with its_lock mutex held */
861 static struct its_ite
*vgic_its_alloc_ite(struct its_device
*device
,
862 struct its_collection
*collection
,
867 ite
= kzalloc(sizeof(*ite
), GFP_KERNEL
);
869 return ERR_PTR(-ENOMEM
);
871 ite
->event_id
= event_id
;
872 ite
->collection
= collection
;
874 list_add_tail(&ite
->ite_list
, &device
->itt_head
);
879 * The MAPTI and MAPI commands map LPIs to ITTEs.
880 * Must be called with its_lock mutex held.
882 static int vgic_its_cmd_handle_mapi(struct kvm
*kvm
, struct vgic_its
*its
,
885 u32 device_id
= its_cmd_get_deviceid(its_cmd
);
886 u32 event_id
= its_cmd_get_id(its_cmd
);
887 u32 coll_id
= its_cmd_get_collection(its_cmd
);
889 struct kvm_vcpu
*vcpu
= NULL
;
890 struct its_device
*device
;
891 struct its_collection
*collection
, *new_coll
= NULL
;
892 struct vgic_irq
*irq
;
895 device
= find_its_device(its
, device_id
);
897 return E_ITS_MAPTI_UNMAPPED_DEVICE
;
899 if (event_id
>= BIT_ULL(device
->num_eventid_bits
))
900 return E_ITS_MAPTI_ID_OOR
;
902 if (its_cmd_get_command(its_cmd
) == GITS_CMD_MAPTI
)
903 lpi_nr
= its_cmd_get_physical_id(its_cmd
);
906 if (lpi_nr
< GIC_LPI_OFFSET
||
907 lpi_nr
>= max_lpis_propbaser(kvm
->arch
.vgic
.propbaser
))
908 return E_ITS_MAPTI_PHYSICALID_OOR
;
910 /* If there is an existing mapping, behavior is UNPREDICTABLE. */
911 if (find_ite(its
, device_id
, event_id
))
914 collection
= find_collection(its
, coll_id
);
916 int ret
= vgic_its_alloc_collection(its
, &collection
, coll_id
);
919 new_coll
= collection
;
922 ite
= vgic_its_alloc_ite(device
, collection
, event_id
);
925 vgic_its_free_collection(its
, coll_id
);
929 if (its_is_collection_mapped(collection
))
930 vcpu
= kvm_get_vcpu(kvm
, collection
->target_addr
);
932 irq
= vgic_add_lpi(kvm
, lpi_nr
, vcpu
);
935 vgic_its_free_collection(its
, coll_id
);
936 its_free_ite(kvm
, ite
);
944 /* Requires the its_lock to be held. */
945 static void vgic_its_free_device(struct kvm
*kvm
, struct its_device
*device
)
947 struct its_ite
*ite
, *temp
;
950 * The spec says that unmapping a device with still valid
951 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
952 * since we cannot leave the memory unreferenced.
954 list_for_each_entry_safe(ite
, temp
, &device
->itt_head
, ite_list
)
955 its_free_ite(kvm
, ite
);
957 list_del(&device
->dev_list
);
961 /* its lock must be held */
962 static void vgic_its_free_device_list(struct kvm
*kvm
, struct vgic_its
*its
)
964 struct its_device
*cur
, *temp
;
966 list_for_each_entry_safe(cur
, temp
, &its
->device_list
, dev_list
)
967 vgic_its_free_device(kvm
, cur
);
970 /* its lock must be held */
971 static void vgic_its_free_collection_list(struct kvm
*kvm
, struct vgic_its
*its
)
973 struct its_collection
*cur
, *temp
;
975 list_for_each_entry_safe(cur
, temp
, &its
->collection_list
, coll_list
)
976 vgic_its_free_collection(its
, cur
->collection_id
);
979 /* Must be called with its_lock mutex held */
980 static struct its_device
*vgic_its_alloc_device(struct vgic_its
*its
,
981 u32 device_id
, gpa_t itt_addr
,
984 struct its_device
*device
;
986 device
= kzalloc(sizeof(*device
), GFP_KERNEL
);
988 return ERR_PTR(-ENOMEM
);
990 device
->device_id
= device_id
;
991 device
->itt_addr
= itt_addr
;
992 device
->num_eventid_bits
= num_eventid_bits
;
993 INIT_LIST_HEAD(&device
->itt_head
);
995 list_add_tail(&device
->dev_list
, &its
->device_list
);
1000 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1001 * Must be called with the its_lock mutex held.
1003 static int vgic_its_cmd_handle_mapd(struct kvm
*kvm
, struct vgic_its
*its
,
1006 u32 device_id
= its_cmd_get_deviceid(its_cmd
);
1007 bool valid
= its_cmd_get_validbit(its_cmd
);
1008 u8 num_eventid_bits
= its_cmd_get_size(its_cmd
);
1009 gpa_t itt_addr
= its_cmd_get_ittaddr(its_cmd
);
1010 struct its_device
*device
;
1012 if (!vgic_its_check_id(its
, its
->baser_device_table
, device_id
, NULL
))
1013 return E_ITS_MAPD_DEVICE_OOR
;
1015 if (valid
&& num_eventid_bits
> VITS_TYPER_IDBITS
)
1016 return E_ITS_MAPD_ITTSIZE_OOR
;
1018 device
= find_its_device(its
, device_id
);
1021 * The spec says that calling MAPD on an already mapped device
1022 * invalidates all cached data for this device. We implement this
1023 * by removing the mapping and re-establishing it.
1026 vgic_its_free_device(kvm
, device
);
1029 * The spec does not say whether unmapping a not-mapped device
1030 * is an error, so we are done in any case.
1035 device
= vgic_its_alloc_device(its
, device_id
, itt_addr
,
1038 return PTR_ERR_OR_ZERO(device
);
1042 * The MAPC command maps collection IDs to redistributors.
1043 * Must be called with the its_lock mutex held.
1045 static int vgic_its_cmd_handle_mapc(struct kvm
*kvm
, struct vgic_its
*its
,
1050 struct its_collection
*collection
;
1053 valid
= its_cmd_get_validbit(its_cmd
);
1054 coll_id
= its_cmd_get_collection(its_cmd
);
1055 target_addr
= its_cmd_get_target_addr(its_cmd
);
1057 if (target_addr
>= atomic_read(&kvm
->online_vcpus
))
1058 return E_ITS_MAPC_PROCNUM_OOR
;
1061 vgic_its_free_collection(its
, coll_id
);
1063 collection
= find_collection(its
, coll_id
);
1068 ret
= vgic_its_alloc_collection(its
, &collection
,
1072 collection
->target_addr
= target_addr
;
1074 collection
->target_addr
= target_addr
;
1075 update_affinity_collection(kvm
, its
, collection
);
1083 * The CLEAR command removes the pending state for a particular LPI.
1084 * Must be called with the its_lock mutex held.
1086 static int vgic_its_cmd_handle_clear(struct kvm
*kvm
, struct vgic_its
*its
,
1089 u32 device_id
= its_cmd_get_deviceid(its_cmd
);
1090 u32 event_id
= its_cmd_get_id(its_cmd
);
1091 struct its_ite
*ite
;
1094 ite
= find_ite(its
, device_id
, event_id
);
1096 return E_ITS_CLEAR_UNMAPPED_INTERRUPT
;
1098 ite
->irq
->pending_latch
= false;
1101 return irq_set_irqchip_state(ite
->irq
->host_irq
,
1102 IRQCHIP_STATE_PENDING
, false);
1108 * The INV command syncs the configuration bits from the memory table.
1109 * Must be called with the its_lock mutex held.
1111 static int vgic_its_cmd_handle_inv(struct kvm
*kvm
, struct vgic_its
*its
,
1114 u32 device_id
= its_cmd_get_deviceid(its_cmd
);
1115 u32 event_id
= its_cmd_get_id(its_cmd
);
1116 struct its_ite
*ite
;
1119 ite
= find_ite(its
, device_id
, event_id
);
1121 return E_ITS_INV_UNMAPPED_INTERRUPT
;
1123 return update_lpi_config(kvm
, ite
->irq
, NULL
, true);
1127 * The INVALL command requests flushing of all IRQ data in this collection.
1128 * Find the VCPU mapped to that collection, then iterate over the VM's list
1129 * of mapped LPIs and update the configuration for each IRQ which targets
1130 * the specified vcpu. The configuration will be read from the in-memory
1131 * configuration table.
1132 * Must be called with the its_lock mutex held.
1134 static int vgic_its_cmd_handle_invall(struct kvm
*kvm
, struct vgic_its
*its
,
1137 u32 coll_id
= its_cmd_get_collection(its_cmd
);
1138 struct its_collection
*collection
;
1139 struct kvm_vcpu
*vcpu
;
1140 struct vgic_irq
*irq
;
1144 collection
= find_collection(its
, coll_id
);
1145 if (!its_is_collection_mapped(collection
))
1146 return E_ITS_INVALL_UNMAPPED_COLLECTION
;
1148 vcpu
= kvm_get_vcpu(kvm
, collection
->target_addr
);
1150 irq_count
= vgic_copy_lpi_list(vcpu
, &intids
);
1154 for (i
= 0; i
< irq_count
; i
++) {
1155 irq
= vgic_get_irq(kvm
, NULL
, intids
[i
]);
1158 update_lpi_config(kvm
, irq
, vcpu
, false);
1159 vgic_put_irq(kvm
, irq
);
1164 if (vcpu
->arch
.vgic_cpu
.vgic_v3
.its_vpe
.its_vm
)
1165 its_invall_vpe(&vcpu
->arch
.vgic_cpu
.vgic_v3
.its_vpe
);
1171 * The MOVALL command moves the pending state of all IRQs targeting one
1172 * redistributor to another. We don't hold the pending state in the VCPUs,
1173 * but in the IRQs instead, so there is really not much to do for us here.
1174 * However the spec says that no IRQ must target the old redistributor
1175 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1176 * This command affects all LPIs in the system that target that redistributor.
1178 static int vgic_its_cmd_handle_movall(struct kvm
*kvm
, struct vgic_its
*its
,
1181 u32 target1_addr
= its_cmd_get_target_addr(its_cmd
);
1182 u32 target2_addr
= its_cmd_mask_field(its_cmd
, 3, 16, 32);
1183 struct kvm_vcpu
*vcpu1
, *vcpu2
;
1184 struct vgic_irq
*irq
;
1188 if (target1_addr
>= atomic_read(&kvm
->online_vcpus
) ||
1189 target2_addr
>= atomic_read(&kvm
->online_vcpus
))
1190 return E_ITS_MOVALL_PROCNUM_OOR
;
1192 if (target1_addr
== target2_addr
)
1195 vcpu1
= kvm_get_vcpu(kvm
, target1_addr
);
1196 vcpu2
= kvm_get_vcpu(kvm
, target2_addr
);
1198 irq_count
= vgic_copy_lpi_list(vcpu1
, &intids
);
1202 for (i
= 0; i
< irq_count
; i
++) {
1203 irq
= vgic_get_irq(kvm
, NULL
, intids
[i
]);
1205 update_affinity(irq
, vcpu2
);
1207 vgic_put_irq(kvm
, irq
);
1215 * The INT command injects the LPI associated with that DevID/EvID pair.
1216 * Must be called with the its_lock mutex held.
1218 static int vgic_its_cmd_handle_int(struct kvm
*kvm
, struct vgic_its
*its
,
1221 u32 msi_data
= its_cmd_get_id(its_cmd
);
1222 u64 msi_devid
= its_cmd_get_deviceid(its_cmd
);
1224 return vgic_its_trigger_msi(kvm
, its
, msi_devid
, msi_data
);
1228 * This function is called with the its_cmd lock held, but the ITS data
1229 * structure lock dropped.
1231 static int vgic_its_handle_command(struct kvm
*kvm
, struct vgic_its
*its
,
1236 mutex_lock(&its
->its_lock
);
1237 switch (its_cmd_get_command(its_cmd
)) {
1239 ret
= vgic_its_cmd_handle_mapd(kvm
, its
, its_cmd
);
1242 ret
= vgic_its_cmd_handle_mapc(kvm
, its
, its_cmd
);
1245 ret
= vgic_its_cmd_handle_mapi(kvm
, its
, its_cmd
);
1247 case GITS_CMD_MAPTI
:
1248 ret
= vgic_its_cmd_handle_mapi(kvm
, its
, its_cmd
);
1251 ret
= vgic_its_cmd_handle_movi(kvm
, its
, its_cmd
);
1253 case GITS_CMD_DISCARD
:
1254 ret
= vgic_its_cmd_handle_discard(kvm
, its
, its_cmd
);
1256 case GITS_CMD_CLEAR
:
1257 ret
= vgic_its_cmd_handle_clear(kvm
, its
, its_cmd
);
1259 case GITS_CMD_MOVALL
:
1260 ret
= vgic_its_cmd_handle_movall(kvm
, its
, its_cmd
);
1263 ret
= vgic_its_cmd_handle_int(kvm
, its
, its_cmd
);
1266 ret
= vgic_its_cmd_handle_inv(kvm
, its
, its_cmd
);
1268 case GITS_CMD_INVALL
:
1269 ret
= vgic_its_cmd_handle_invall(kvm
, its
, its_cmd
);
1272 /* we ignore this command: we are in sync all of the time */
1276 mutex_unlock(&its
->its_lock
);
1281 static u64
vgic_sanitise_its_baser(u64 reg
)
1283 reg
= vgic_sanitise_field(reg
, GITS_BASER_SHAREABILITY_MASK
,
1284 GITS_BASER_SHAREABILITY_SHIFT
,
1285 vgic_sanitise_shareability
);
1286 reg
= vgic_sanitise_field(reg
, GITS_BASER_INNER_CACHEABILITY_MASK
,
1287 GITS_BASER_INNER_CACHEABILITY_SHIFT
,
1288 vgic_sanitise_inner_cacheability
);
1289 reg
= vgic_sanitise_field(reg
, GITS_BASER_OUTER_CACHEABILITY_MASK
,
1290 GITS_BASER_OUTER_CACHEABILITY_SHIFT
,
1291 vgic_sanitise_outer_cacheability
);
1293 /* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
1294 reg
&= ~GENMASK_ULL(15, 12);
1296 /* We support only one (ITS) page size: 64K */
1297 reg
= (reg
& ~GITS_BASER_PAGE_SIZE_MASK
) | GITS_BASER_PAGE_SIZE_64K
;
1302 static u64
vgic_sanitise_its_cbaser(u64 reg
)
1304 reg
= vgic_sanitise_field(reg
, GITS_CBASER_SHAREABILITY_MASK
,
1305 GITS_CBASER_SHAREABILITY_SHIFT
,
1306 vgic_sanitise_shareability
);
1307 reg
= vgic_sanitise_field(reg
, GITS_CBASER_INNER_CACHEABILITY_MASK
,
1308 GITS_CBASER_INNER_CACHEABILITY_SHIFT
,
1309 vgic_sanitise_inner_cacheability
);
1310 reg
= vgic_sanitise_field(reg
, GITS_CBASER_OUTER_CACHEABILITY_MASK
,
1311 GITS_CBASER_OUTER_CACHEABILITY_SHIFT
,
1312 vgic_sanitise_outer_cacheability
);
1315 * Sanitise the physical address to be 64k aligned.
1316 * Also limit the physical addresses to 48 bits.
1318 reg
&= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
1323 static unsigned long vgic_mmio_read_its_cbaser(struct kvm
*kvm
,
1324 struct vgic_its
*its
,
1325 gpa_t addr
, unsigned int len
)
1327 return extract_bytes(its
->cbaser
, addr
& 7, len
);
1330 static void vgic_mmio_write_its_cbaser(struct kvm
*kvm
, struct vgic_its
*its
,
1331 gpa_t addr
, unsigned int len
,
1334 /* When GITS_CTLR.Enable is 1, this register is RO. */
1338 mutex_lock(&its
->cmd_lock
);
1339 its
->cbaser
= update_64bit_reg(its
->cbaser
, addr
& 7, len
, val
);
1340 its
->cbaser
= vgic_sanitise_its_cbaser(its
->cbaser
);
1343 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1344 * it to CREADR to make sure we start with an empty command buffer.
1346 its
->cwriter
= its
->creadr
;
1347 mutex_unlock(&its
->cmd_lock
);
1350 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
1351 #define ITS_CMD_SIZE 32
1352 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
1354 /* Must be called with the cmd_lock held. */
1355 static void vgic_its_process_commands(struct kvm
*kvm
, struct vgic_its
*its
)
1360 /* Commands are only processed when the ITS is enabled. */
1364 cbaser
= CBASER_ADDRESS(its
->cbaser
);
1366 while (its
->cwriter
!= its
->creadr
) {
1367 int ret
= kvm_read_guest(kvm
, cbaser
+ its
->creadr
,
1368 cmd_buf
, ITS_CMD_SIZE
);
1370 * If kvm_read_guest() fails, this could be due to the guest
1371 * programming a bogus value in CBASER or something else going
1372 * wrong from which we cannot easily recover.
1373 * According to section 6.3.2 in the GICv3 spec we can just
1374 * ignore that command then.
1377 vgic_its_handle_command(kvm
, its
, cmd_buf
);
1379 its
->creadr
+= ITS_CMD_SIZE
;
1380 if (its
->creadr
== ITS_CMD_BUFFER_SIZE(its
->cbaser
))
1386 * By writing to CWRITER the guest announces new commands to be processed.
1387 * To avoid any races in the first place, we take the its_cmd lock, which
1388 * protects our ring buffer variables, so that there is only one user
1389 * per ITS handling commands at a given time.
1391 static void vgic_mmio_write_its_cwriter(struct kvm
*kvm
, struct vgic_its
*its
,
1392 gpa_t addr
, unsigned int len
,
1400 mutex_lock(&its
->cmd_lock
);
1402 reg
= update_64bit_reg(its
->cwriter
, addr
& 7, len
, val
);
1403 reg
= ITS_CMD_OFFSET(reg
);
1404 if (reg
>= ITS_CMD_BUFFER_SIZE(its
->cbaser
)) {
1405 mutex_unlock(&its
->cmd_lock
);
1410 vgic_its_process_commands(kvm
, its
);
1412 mutex_unlock(&its
->cmd_lock
);
1415 static unsigned long vgic_mmio_read_its_cwriter(struct kvm
*kvm
,
1416 struct vgic_its
*its
,
1417 gpa_t addr
, unsigned int len
)
1419 return extract_bytes(its
->cwriter
, addr
& 0x7, len
);
1422 static unsigned long vgic_mmio_read_its_creadr(struct kvm
*kvm
,
1423 struct vgic_its
*its
,
1424 gpa_t addr
, unsigned int len
)
1426 return extract_bytes(its
->creadr
, addr
& 0x7, len
);
1429 static int vgic_mmio_uaccess_write_its_creadr(struct kvm
*kvm
,
1430 struct vgic_its
*its
,
1431 gpa_t addr
, unsigned int len
,
1437 mutex_lock(&its
->cmd_lock
);
1444 cmd_offset
= ITS_CMD_OFFSET(val
);
1445 if (cmd_offset
>= ITS_CMD_BUFFER_SIZE(its
->cbaser
)) {
1450 its
->creadr
= cmd_offset
;
1452 mutex_unlock(&its
->cmd_lock
);
1456 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1457 static unsigned long vgic_mmio_read_its_baser(struct kvm
*kvm
,
1458 struct vgic_its
*its
,
1459 gpa_t addr
, unsigned int len
)
1463 switch (BASER_INDEX(addr
)) {
1465 reg
= its
->baser_device_table
;
1468 reg
= its
->baser_coll_table
;
1475 return extract_bytes(reg
, addr
& 7, len
);
1478 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1479 static void vgic_mmio_write_its_baser(struct kvm
*kvm
,
1480 struct vgic_its
*its
,
1481 gpa_t addr
, unsigned int len
,
1484 const struct vgic_its_abi
*abi
= vgic_its_get_abi(its
);
1485 u64 entry_size
, table_type
;
1486 u64 reg
, *regptr
, clearbits
= 0;
1488 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1492 switch (BASER_INDEX(addr
)) {
1494 regptr
= &its
->baser_device_table
;
1495 entry_size
= abi
->dte_esz
;
1496 table_type
= GITS_BASER_TYPE_DEVICE
;
1499 regptr
= &its
->baser_coll_table
;
1500 entry_size
= abi
->cte_esz
;
1501 table_type
= GITS_BASER_TYPE_COLLECTION
;
1502 clearbits
= GITS_BASER_INDIRECT
;
1508 reg
= update_64bit_reg(*regptr
, addr
& 7, len
, val
);
1509 reg
&= ~GITS_BASER_RO_MASK
;
1512 reg
|= (entry_size
- 1) << GITS_BASER_ENTRY_SIZE_SHIFT
;
1513 reg
|= table_type
<< GITS_BASER_TYPE_SHIFT
;
1514 reg
= vgic_sanitise_its_baser(reg
);
1518 if (!(reg
& GITS_BASER_VALID
)) {
1519 /* Take the its_lock to prevent a race with a save/restore */
1520 mutex_lock(&its
->its_lock
);
1521 switch (table_type
) {
1522 case GITS_BASER_TYPE_DEVICE
:
1523 vgic_its_free_device_list(kvm
, its
);
1525 case GITS_BASER_TYPE_COLLECTION
:
1526 vgic_its_free_collection_list(kvm
, its
);
1529 mutex_unlock(&its
->its_lock
);
1533 static unsigned long vgic_mmio_read_its_ctlr(struct kvm
*vcpu
,
1534 struct vgic_its
*its
,
1535 gpa_t addr
, unsigned int len
)
1539 mutex_lock(&its
->cmd_lock
);
1540 if (its
->creadr
== its
->cwriter
)
1541 reg
|= GITS_CTLR_QUIESCENT
;
1543 reg
|= GITS_CTLR_ENABLE
;
1544 mutex_unlock(&its
->cmd_lock
);
1549 static void vgic_mmio_write_its_ctlr(struct kvm
*kvm
, struct vgic_its
*its
,
1550 gpa_t addr
, unsigned int len
,
1553 mutex_lock(&its
->cmd_lock
);
1556 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1557 * device/collection BASER are invalid
1559 if (!its
->enabled
&& (val
& GITS_CTLR_ENABLE
) &&
1560 (!(its
->baser_device_table
& GITS_BASER_VALID
) ||
1561 !(its
->baser_coll_table
& GITS_BASER_VALID
) ||
1562 !(its
->cbaser
& GITS_CBASER_VALID
)))
1565 its
->enabled
= !!(val
& GITS_CTLR_ENABLE
);
1568 * Try to process any pending commands. This function bails out early
1569 * if the ITS is disabled or no commands have been queued.
1571 vgic_its_process_commands(kvm
, its
);
1574 mutex_unlock(&its
->cmd_lock
);
1577 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
1579 .reg_offset = off, \
1581 .access_flags = acc, \
1586 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1588 .reg_offset = off, \
1590 .access_flags = acc, \
1593 .uaccess_its_write = uwr, \
1596 static void its_mmio_write_wi(struct kvm
*kvm
, struct vgic_its
*its
,
1597 gpa_t addr
, unsigned int len
, unsigned long val
)
1602 static struct vgic_register_region its_registers
[] = {
1603 REGISTER_ITS_DESC(GITS_CTLR
,
1604 vgic_mmio_read_its_ctlr
, vgic_mmio_write_its_ctlr
, 4,
1606 REGISTER_ITS_DESC_UACCESS(GITS_IIDR
,
1607 vgic_mmio_read_its_iidr
, its_mmio_write_wi
,
1608 vgic_mmio_uaccess_write_its_iidr
, 4,
1610 REGISTER_ITS_DESC(GITS_TYPER
,
1611 vgic_mmio_read_its_typer
, its_mmio_write_wi
, 8,
1612 VGIC_ACCESS_64bit
| VGIC_ACCESS_32bit
),
1613 REGISTER_ITS_DESC(GITS_CBASER
,
1614 vgic_mmio_read_its_cbaser
, vgic_mmio_write_its_cbaser
, 8,
1615 VGIC_ACCESS_64bit
| VGIC_ACCESS_32bit
),
1616 REGISTER_ITS_DESC(GITS_CWRITER
,
1617 vgic_mmio_read_its_cwriter
, vgic_mmio_write_its_cwriter
, 8,
1618 VGIC_ACCESS_64bit
| VGIC_ACCESS_32bit
),
1619 REGISTER_ITS_DESC_UACCESS(GITS_CREADR
,
1620 vgic_mmio_read_its_creadr
, its_mmio_write_wi
,
1621 vgic_mmio_uaccess_write_its_creadr
, 8,
1622 VGIC_ACCESS_64bit
| VGIC_ACCESS_32bit
),
1623 REGISTER_ITS_DESC(GITS_BASER
,
1624 vgic_mmio_read_its_baser
, vgic_mmio_write_its_baser
, 0x40,
1625 VGIC_ACCESS_64bit
| VGIC_ACCESS_32bit
),
1626 REGISTER_ITS_DESC(GITS_IDREGS_BASE
,
1627 vgic_mmio_read_its_idregs
, its_mmio_write_wi
, 0x30,
1631 /* This is called on setting the LPI enable bit in the redistributor. */
1632 void vgic_enable_lpis(struct kvm_vcpu
*vcpu
)
1634 if (!(vcpu
->arch
.vgic_cpu
.pendbaser
& GICR_PENDBASER_PTZ
))
1635 its_sync_lpi_pending_table(vcpu
);
1638 static int vgic_register_its_iodev(struct kvm
*kvm
, struct vgic_its
*its
,
1641 struct vgic_io_device
*iodev
= &its
->iodev
;
1644 mutex_lock(&kvm
->slots_lock
);
1645 if (!IS_VGIC_ADDR_UNDEF(its
->vgic_its_base
)) {
1650 its
->vgic_its_base
= addr
;
1651 iodev
->regions
= its_registers
;
1652 iodev
->nr_regions
= ARRAY_SIZE(its_registers
);
1653 kvm_iodevice_init(&iodev
->dev
, &kvm_io_gic_ops
);
1655 iodev
->base_addr
= its
->vgic_its_base
;
1656 iodev
->iodev_type
= IODEV_ITS
;
1658 ret
= kvm_io_bus_register_dev(kvm
, KVM_MMIO_BUS
, iodev
->base_addr
,
1659 KVM_VGIC_V3_ITS_SIZE
, &iodev
->dev
);
1661 mutex_unlock(&kvm
->slots_lock
);
1666 #define INITIAL_BASER_VALUE \
1667 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
1668 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
1669 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
1670 GITS_BASER_PAGE_SIZE_64K)
1672 #define INITIAL_PROPBASER_VALUE \
1673 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
1674 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
1675 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1677 static int vgic_its_create(struct kvm_device
*dev
, u32 type
)
1679 struct vgic_its
*its
;
1681 if (type
!= KVM_DEV_TYPE_ARM_VGIC_ITS
)
1684 its
= kzalloc(sizeof(struct vgic_its
), GFP_KERNEL
);
1688 if (vgic_initialized(dev
->kvm
)) {
1689 int ret
= vgic_v4_init(dev
->kvm
);
1696 mutex_init(&its
->its_lock
);
1697 mutex_init(&its
->cmd_lock
);
1699 its
->vgic_its_base
= VGIC_ADDR_UNDEF
;
1701 INIT_LIST_HEAD(&its
->device_list
);
1702 INIT_LIST_HEAD(&its
->collection_list
);
1704 dev
->kvm
->arch
.vgic
.msis_require_devid
= true;
1705 dev
->kvm
->arch
.vgic
.has_its
= true;
1706 its
->enabled
= false;
1709 its
->baser_device_table
= INITIAL_BASER_VALUE
|
1710 ((u64
)GITS_BASER_TYPE_DEVICE
<< GITS_BASER_TYPE_SHIFT
);
1711 its
->baser_coll_table
= INITIAL_BASER_VALUE
|
1712 ((u64
)GITS_BASER_TYPE_COLLECTION
<< GITS_BASER_TYPE_SHIFT
);
1713 dev
->kvm
->arch
.vgic
.propbaser
= INITIAL_PROPBASER_VALUE
;
1717 return vgic_its_set_abi(its
, NR_ITS_ABIS
- 1);
1720 static void vgic_its_destroy(struct kvm_device
*kvm_dev
)
1722 struct kvm
*kvm
= kvm_dev
->kvm
;
1723 struct vgic_its
*its
= kvm_dev
->private;
1725 mutex_lock(&its
->its_lock
);
1727 vgic_its_free_device_list(kvm
, its
);
1728 vgic_its_free_collection_list(kvm
, its
);
1730 mutex_unlock(&its
->its_lock
);
1734 int vgic_its_has_attr_regs(struct kvm_device
*dev
,
1735 struct kvm_device_attr
*attr
)
1737 const struct vgic_register_region
*region
;
1738 gpa_t offset
= attr
->attr
;
1741 align
= (offset
< GITS_TYPER
) || (offset
>= GITS_PIDR4
) ? 0x3 : 0x7;
1746 region
= vgic_find_mmio_region(its_registers
,
1747 ARRAY_SIZE(its_registers
),
1755 int vgic_its_attr_regs_access(struct kvm_device
*dev
,
1756 struct kvm_device_attr
*attr
,
1757 u64
*reg
, bool is_write
)
1759 const struct vgic_register_region
*region
;
1760 struct vgic_its
*its
;
1766 offset
= attr
->attr
;
1769 * Although the spec supports upper/lower 32-bit accesses to
1770 * 64-bit ITS registers, the userspace ABI requires 64-bit
1771 * accesses to all 64-bit wide registers. We therefore only
1772 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1775 if ((offset
< GITS_TYPER
) || (offset
>= GITS_PIDR4
))
1783 mutex_lock(&dev
->kvm
->lock
);
1785 if (IS_VGIC_ADDR_UNDEF(its
->vgic_its_base
)) {
1790 region
= vgic_find_mmio_region(its_registers
,
1791 ARRAY_SIZE(its_registers
),
1798 if (!lock_all_vcpus(dev
->kvm
)) {
1803 addr
= its
->vgic_its_base
+ offset
;
1805 len
= region
->access_flags
& VGIC_ACCESS_64bit
? 8 : 4;
1808 if (region
->uaccess_its_write
)
1809 ret
= region
->uaccess_its_write(dev
->kvm
, its
, addr
,
1812 region
->its_write(dev
->kvm
, its
, addr
, len
, *reg
);
1814 *reg
= region
->its_read(dev
->kvm
, its
, addr
, len
);
1816 unlock_all_vcpus(dev
->kvm
);
1818 mutex_unlock(&dev
->kvm
->lock
);
1822 static u32
compute_next_devid_offset(struct list_head
*h
,
1823 struct its_device
*dev
)
1825 struct its_device
*next
;
1828 if (list_is_last(&dev
->dev_list
, h
))
1830 next
= list_next_entry(dev
, dev_list
);
1831 next_offset
= next
->device_id
- dev
->device_id
;
1833 return min_t(u32
, next_offset
, VITS_DTE_MAX_DEVID_OFFSET
);
1836 static u32
compute_next_eventid_offset(struct list_head
*h
, struct its_ite
*ite
)
1838 struct its_ite
*next
;
1841 if (list_is_last(&ite
->ite_list
, h
))
1843 next
= list_next_entry(ite
, ite_list
);
1844 next_offset
= next
->event_id
- ite
->event_id
;
1846 return min_t(u32
, next_offset
, VITS_ITE_MAX_EVENTID_OFFSET
);
1850 * entry_fn_t - Callback called on a table entry restore path
1852 * @id: id of the entry
1853 * @entry: pointer to the entry
1854 * @opaque: pointer to an opaque data
1856 * Return: < 0 on error, 0 if last element was identified, id offset to next
1859 typedef int (*entry_fn_t
)(struct vgic_its
*its
, u32 id
, void *entry
,
1863 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
1867 * @base: base gpa of the table
1868 * @size: size of the table in bytes
1869 * @esz: entry size in bytes
1870 * @start_id: the ID of the first entry in the table
1871 * (non zero for 2d level tables)
1872 * @fn: function to apply on each entry
1874 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
1875 * (the last element may not be found on second level tables)
1877 static int scan_its_table(struct vgic_its
*its
, gpa_t base
, int size
, int esz
,
1878 int start_id
, entry_fn_t fn
, void *opaque
)
1880 struct kvm
*kvm
= its
->dev
->kvm
;
1881 unsigned long len
= size
;
1887 memset(entry
, 0, esz
);
1893 ret
= kvm_read_guest(kvm
, gpa
, entry
, esz
);
1897 next_offset
= fn(its
, id
, entry
, opaque
);
1898 if (next_offset
<= 0)
1901 byte_offset
= next_offset
* esz
;
1910 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
1912 static int vgic_its_save_ite(struct vgic_its
*its
, struct its_device
*dev
,
1913 struct its_ite
*ite
, gpa_t gpa
, int ite_esz
)
1915 struct kvm
*kvm
= its
->dev
->kvm
;
1919 next_offset
= compute_next_eventid_offset(&dev
->itt_head
, ite
);
1920 val
= ((u64
)next_offset
<< KVM_ITS_ITE_NEXT_SHIFT
) |
1921 ((u64
)ite
->irq
->intid
<< KVM_ITS_ITE_PINTID_SHIFT
) |
1922 ite
->collection
->collection_id
;
1923 val
= cpu_to_le64(val
);
1924 return kvm_write_guest(kvm
, gpa
, &val
, ite_esz
);
1928 * vgic_its_restore_ite - restore an interrupt translation entry
1929 * @event_id: id used for indexing
1930 * @ptr: pointer to the ITE entry
1931 * @opaque: pointer to the its_device
1933 static int vgic_its_restore_ite(struct vgic_its
*its
, u32 event_id
,
1934 void *ptr
, void *opaque
)
1936 struct its_device
*dev
= (struct its_device
*)opaque
;
1937 struct its_collection
*collection
;
1938 struct kvm
*kvm
= its
->dev
->kvm
;
1939 struct kvm_vcpu
*vcpu
= NULL
;
1941 u64
*p
= (u64
*)ptr
;
1942 struct vgic_irq
*irq
;
1943 u32 coll_id
, lpi_id
;
1944 struct its_ite
*ite
;
1949 val
= le64_to_cpu(val
);
1951 coll_id
= val
& KVM_ITS_ITE_ICID_MASK
;
1952 lpi_id
= (val
& KVM_ITS_ITE_PINTID_MASK
) >> KVM_ITS_ITE_PINTID_SHIFT
;
1955 return 1; /* invalid entry, no choice but to scan next entry */
1957 if (lpi_id
< VGIC_MIN_LPI
)
1960 offset
= val
>> KVM_ITS_ITE_NEXT_SHIFT
;
1961 if (event_id
+ offset
>= BIT_ULL(dev
->num_eventid_bits
))
1964 collection
= find_collection(its
, coll_id
);
1968 ite
= vgic_its_alloc_ite(dev
, collection
, event_id
);
1970 return PTR_ERR(ite
);
1972 if (its_is_collection_mapped(collection
))
1973 vcpu
= kvm_get_vcpu(kvm
, collection
->target_addr
);
1975 irq
= vgic_add_lpi(kvm
, lpi_id
, vcpu
);
1977 return PTR_ERR(irq
);
1983 static int vgic_its_ite_cmp(void *priv
, struct list_head
*a
,
1984 struct list_head
*b
)
1986 struct its_ite
*itea
= container_of(a
, struct its_ite
, ite_list
);
1987 struct its_ite
*iteb
= container_of(b
, struct its_ite
, ite_list
);
1989 if (itea
->event_id
< iteb
->event_id
)
1995 static int vgic_its_save_itt(struct vgic_its
*its
, struct its_device
*device
)
1997 const struct vgic_its_abi
*abi
= vgic_its_get_abi(its
);
1998 gpa_t base
= device
->itt_addr
;
1999 struct its_ite
*ite
;
2001 int ite_esz
= abi
->ite_esz
;
2003 list_sort(NULL
, &device
->itt_head
, vgic_its_ite_cmp
);
2005 list_for_each_entry(ite
, &device
->itt_head
, ite_list
) {
2006 gpa_t gpa
= base
+ ite
->event_id
* ite_esz
;
2009 * If an LPI carries the HW bit, this means that this
2010 * interrupt is controlled by GICv4, and we do not
2011 * have direct access to that state. Let's simply fail
2012 * the save operation...
2017 ret
= vgic_its_save_ite(its
, device
, ite
, gpa
, ite_esz
);
2025 * vgic_its_restore_itt - restore the ITT of a device
2028 * @dev: device handle
2030 * Return 0 on success, < 0 on error
2032 static int vgic_its_restore_itt(struct vgic_its
*its
, struct its_device
*dev
)
2034 const struct vgic_its_abi
*abi
= vgic_its_get_abi(its
);
2035 gpa_t base
= dev
->itt_addr
;
2037 int ite_esz
= abi
->ite_esz
;
2038 size_t max_size
= BIT_ULL(dev
->num_eventid_bits
) * ite_esz
;
2040 ret
= scan_its_table(its
, base
, max_size
, ite_esz
, 0,
2041 vgic_its_restore_ite
, dev
);
2043 /* scan_its_table returns +1 if all ITEs are invalid */
2051 * vgic_its_save_dte - Save a device table entry at a given GPA
2057 static int vgic_its_save_dte(struct vgic_its
*its
, struct its_device
*dev
,
2058 gpa_t ptr
, int dte_esz
)
2060 struct kvm
*kvm
= its
->dev
->kvm
;
2061 u64 val
, itt_addr_field
;
2064 itt_addr_field
= dev
->itt_addr
>> 8;
2065 next_offset
= compute_next_devid_offset(&its
->device_list
, dev
);
2066 val
= (1ULL << KVM_ITS_DTE_VALID_SHIFT
|
2067 ((u64
)next_offset
<< KVM_ITS_DTE_NEXT_SHIFT
) |
2068 (itt_addr_field
<< KVM_ITS_DTE_ITTADDR_SHIFT
) |
2069 (dev
->num_eventid_bits
- 1));
2070 val
= cpu_to_le64(val
);
2071 return kvm_write_guest(kvm
, ptr
, &val
, dte_esz
);
2075 * vgic_its_restore_dte - restore a device table entry
2078 * @id: device id the DTE corresponds to
2079 * @ptr: kernel VA where the 8 byte DTE is located
2082 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2083 * next dte otherwise
2085 static int vgic_its_restore_dte(struct vgic_its
*its
, u32 id
,
2086 void *ptr
, void *opaque
)
2088 struct its_device
*dev
;
2090 u8 num_eventid_bits
;
2091 u64 entry
= *(u64
*)ptr
;
2096 entry
= le64_to_cpu(entry
);
2098 valid
= entry
>> KVM_ITS_DTE_VALID_SHIFT
;
2099 num_eventid_bits
= (entry
& KVM_ITS_DTE_SIZE_MASK
) + 1;
2100 itt_addr
= ((entry
& KVM_ITS_DTE_ITTADDR_MASK
)
2101 >> KVM_ITS_DTE_ITTADDR_SHIFT
) << 8;
2106 /* dte entry is valid */
2107 offset
= (entry
& KVM_ITS_DTE_NEXT_MASK
) >> KVM_ITS_DTE_NEXT_SHIFT
;
2109 dev
= vgic_its_alloc_device(its
, id
, itt_addr
, num_eventid_bits
);
2111 return PTR_ERR(dev
);
2113 ret
= vgic_its_restore_itt(its
, dev
);
2115 vgic_its_free_device(its
->dev
->kvm
, dev
);
2122 static int vgic_its_device_cmp(void *priv
, struct list_head
*a
,
2123 struct list_head
*b
)
2125 struct its_device
*deva
= container_of(a
, struct its_device
, dev_list
);
2126 struct its_device
*devb
= container_of(b
, struct its_device
, dev_list
);
2128 if (deva
->device_id
< devb
->device_id
)
2135 * vgic_its_save_device_tables - Save the device table and all ITT
2138 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2139 * returns the GPA of the device entry
2141 static int vgic_its_save_device_tables(struct vgic_its
*its
)
2143 const struct vgic_its_abi
*abi
= vgic_its_get_abi(its
);
2144 u64 baser
= its
->baser_device_table
;
2145 struct its_device
*dev
;
2146 int dte_esz
= abi
->dte_esz
;
2148 if (!(baser
& GITS_BASER_VALID
))
2151 list_sort(NULL
, &its
->device_list
, vgic_its_device_cmp
);
2153 list_for_each_entry(dev
, &its
->device_list
, dev_list
) {
2157 if (!vgic_its_check_id(its
, baser
,
2158 dev
->device_id
, &eaddr
))
2161 ret
= vgic_its_save_itt(its
, dev
);
2165 ret
= vgic_its_save_dte(its
, dev
, eaddr
, dte_esz
);
2173 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2176 * @id: index of the entry in the L1 table
2180 * L1 table entries are scanned by steps of 1 entry
2181 * Return < 0 if error, 0 if last dte was found when scanning the L2
2182 * table, +1 otherwise (meaning next L1 entry must be scanned)
2184 static int handle_l1_dte(struct vgic_its
*its
, u32 id
, void *addr
,
2187 const struct vgic_its_abi
*abi
= vgic_its_get_abi(its
);
2188 int l2_start_id
= id
* (SZ_64K
/ abi
->dte_esz
);
2189 u64 entry
= *(u64
*)addr
;
2190 int dte_esz
= abi
->dte_esz
;
2194 entry
= le64_to_cpu(entry
);
2196 if (!(entry
& KVM_ITS_L1E_VALID_MASK
))
2199 gpa
= entry
& KVM_ITS_L1E_ADDR_MASK
;
2201 ret
= scan_its_table(its
, gpa
, SZ_64K
, dte_esz
,
2202 l2_start_id
, vgic_its_restore_dte
, NULL
);
2208 * vgic_its_restore_device_tables - Restore the device table and all ITT
2209 * from guest RAM to internal data structs
2211 static int vgic_its_restore_device_tables(struct vgic_its
*its
)
2213 const struct vgic_its_abi
*abi
= vgic_its_get_abi(its
);
2214 u64 baser
= its
->baser_device_table
;
2216 int l1_tbl_size
= GITS_BASER_NR_PAGES(baser
) * SZ_64K
;
2219 if (!(baser
& GITS_BASER_VALID
))
2222 l1_gpa
= BASER_ADDRESS(baser
);
2224 if (baser
& GITS_BASER_INDIRECT
) {
2225 l1_esz
= GITS_LVL1_ENTRY_SIZE
;
2226 ret
= scan_its_table(its
, l1_gpa
, l1_tbl_size
, l1_esz
, 0,
2227 handle_l1_dte
, NULL
);
2229 l1_esz
= abi
->dte_esz
;
2230 ret
= scan_its_table(its
, l1_gpa
, l1_tbl_size
, l1_esz
, 0,
2231 vgic_its_restore_dte
, NULL
);
2234 /* scan_its_table returns +1 if all entries are invalid */
2241 static int vgic_its_save_cte(struct vgic_its
*its
,
2242 struct its_collection
*collection
,
2247 val
= (1ULL << KVM_ITS_CTE_VALID_SHIFT
|
2248 ((u64
)collection
->target_addr
<< KVM_ITS_CTE_RDBASE_SHIFT
) |
2249 collection
->collection_id
);
2250 val
= cpu_to_le64(val
);
2251 return kvm_write_guest(its
->dev
->kvm
, gpa
, &val
, esz
);
2254 static int vgic_its_restore_cte(struct vgic_its
*its
, gpa_t gpa
, int esz
)
2256 struct its_collection
*collection
;
2257 struct kvm
*kvm
= its
->dev
->kvm
;
2258 u32 target_addr
, coll_id
;
2262 BUG_ON(esz
> sizeof(val
));
2263 ret
= kvm_read_guest(kvm
, gpa
, &val
, esz
);
2266 val
= le64_to_cpu(val
);
2267 if (!(val
& KVM_ITS_CTE_VALID_MASK
))
2270 target_addr
= (u32
)(val
>> KVM_ITS_CTE_RDBASE_SHIFT
);
2271 coll_id
= val
& KVM_ITS_CTE_ICID_MASK
;
2273 if (target_addr
>= atomic_read(&kvm
->online_vcpus
))
2276 collection
= find_collection(its
, coll_id
);
2279 ret
= vgic_its_alloc_collection(its
, &collection
, coll_id
);
2282 collection
->target_addr
= target_addr
;
2287 * vgic_its_save_collection_table - Save the collection table into
2290 static int vgic_its_save_collection_table(struct vgic_its
*its
)
2292 const struct vgic_its_abi
*abi
= vgic_its_get_abi(its
);
2293 u64 baser
= its
->baser_coll_table
;
2294 gpa_t gpa
= BASER_ADDRESS(baser
);
2295 struct its_collection
*collection
;
2297 size_t max_size
, filled
= 0;
2298 int ret
, cte_esz
= abi
->cte_esz
;
2300 if (!(baser
& GITS_BASER_VALID
))
2303 max_size
= GITS_BASER_NR_PAGES(baser
) * SZ_64K
;
2305 list_for_each_entry(collection
, &its
->collection_list
, coll_list
) {
2306 ret
= vgic_its_save_cte(its
, collection
, gpa
, cte_esz
);
2313 if (filled
== max_size
)
2317 * table is not fully filled, add a last dummy element
2318 * with valid bit unset
2321 BUG_ON(cte_esz
> sizeof(val
));
2322 ret
= kvm_write_guest(its
->dev
->kvm
, gpa
, &val
, cte_esz
);
2327 * vgic_its_restore_collection_table - reads the collection table
2328 * in guest memory and restores the ITS internal state. Requires the
2329 * BASER registers to be restored before.
2331 static int vgic_its_restore_collection_table(struct vgic_its
*its
)
2333 const struct vgic_its_abi
*abi
= vgic_its_get_abi(its
);
2334 u64 baser
= its
->baser_coll_table
;
2335 int cte_esz
= abi
->cte_esz
;
2336 size_t max_size
, read
= 0;
2340 if (!(baser
& GITS_BASER_VALID
))
2343 gpa
= BASER_ADDRESS(baser
);
2345 max_size
= GITS_BASER_NR_PAGES(baser
) * SZ_64K
;
2347 while (read
< max_size
) {
2348 ret
= vgic_its_restore_cte(its
, gpa
, cte_esz
);
2362 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2363 * according to v0 ABI
2365 static int vgic_its_save_tables_v0(struct vgic_its
*its
)
2369 ret
= vgic_its_save_device_tables(its
);
2373 return vgic_its_save_collection_table(its
);
2377 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2378 * to internal data structs according to V0 ABI
2381 static int vgic_its_restore_tables_v0(struct vgic_its
*its
)
2385 ret
= vgic_its_restore_collection_table(its
);
2389 return vgic_its_restore_device_tables(its
);
2392 static int vgic_its_commit_v0(struct vgic_its
*its
)
2394 const struct vgic_its_abi
*abi
;
2396 abi
= vgic_its_get_abi(its
);
2397 its
->baser_coll_table
&= ~GITS_BASER_ENTRY_SIZE_MASK
;
2398 its
->baser_device_table
&= ~GITS_BASER_ENTRY_SIZE_MASK
;
2400 its
->baser_coll_table
|= (GIC_ENCODE_SZ(abi
->cte_esz
, 5)
2401 << GITS_BASER_ENTRY_SIZE_SHIFT
);
2403 its
->baser_device_table
|= (GIC_ENCODE_SZ(abi
->dte_esz
, 5)
2404 << GITS_BASER_ENTRY_SIZE_SHIFT
);
2408 static void vgic_its_reset(struct kvm
*kvm
, struct vgic_its
*its
)
2410 /* We need to keep the ABI specific field values */
2411 its
->baser_coll_table
&= ~GITS_BASER_VALID
;
2412 its
->baser_device_table
&= ~GITS_BASER_VALID
;
2417 vgic_its_free_device_list(kvm
, its
);
2418 vgic_its_free_collection_list(kvm
, its
);
2421 static int vgic_its_has_attr(struct kvm_device
*dev
,
2422 struct kvm_device_attr
*attr
)
2424 switch (attr
->group
) {
2425 case KVM_DEV_ARM_VGIC_GRP_ADDR
:
2426 switch (attr
->attr
) {
2427 case KVM_VGIC_ITS_ADDR_TYPE
:
2431 case KVM_DEV_ARM_VGIC_GRP_CTRL
:
2432 switch (attr
->attr
) {
2433 case KVM_DEV_ARM_VGIC_CTRL_INIT
:
2435 case KVM_DEV_ARM_ITS_CTRL_RESET
:
2437 case KVM_DEV_ARM_ITS_SAVE_TABLES
:
2439 case KVM_DEV_ARM_ITS_RESTORE_TABLES
:
2443 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS
:
2444 return vgic_its_has_attr_regs(dev
, attr
);
2449 static int vgic_its_ctrl(struct kvm
*kvm
, struct vgic_its
*its
, u64 attr
)
2451 const struct vgic_its_abi
*abi
= vgic_its_get_abi(its
);
2454 if (attr
== KVM_DEV_ARM_VGIC_CTRL_INIT
) /* Nothing to do */
2457 mutex_lock(&kvm
->lock
);
2458 mutex_lock(&its
->its_lock
);
2460 if (!lock_all_vcpus(kvm
)) {
2461 mutex_unlock(&its
->its_lock
);
2462 mutex_unlock(&kvm
->lock
);
2467 case KVM_DEV_ARM_ITS_CTRL_RESET
:
2468 vgic_its_reset(kvm
, its
);
2470 case KVM_DEV_ARM_ITS_SAVE_TABLES
:
2471 ret
= abi
->save_tables(its
);
2473 case KVM_DEV_ARM_ITS_RESTORE_TABLES
:
2474 ret
= abi
->restore_tables(its
);
2478 unlock_all_vcpus(kvm
);
2479 mutex_unlock(&its
->its_lock
);
2480 mutex_unlock(&kvm
->lock
);
2484 static int vgic_its_set_attr(struct kvm_device
*dev
,
2485 struct kvm_device_attr
*attr
)
2487 struct vgic_its
*its
= dev
->private;
2490 switch (attr
->group
) {
2491 case KVM_DEV_ARM_VGIC_GRP_ADDR
: {
2492 u64 __user
*uaddr
= (u64 __user
*)(long)attr
->addr
;
2493 unsigned long type
= (unsigned long)attr
->attr
;
2496 if (type
!= KVM_VGIC_ITS_ADDR_TYPE
)
2499 if (copy_from_user(&addr
, uaddr
, sizeof(addr
)))
2502 ret
= vgic_check_ioaddr(dev
->kvm
, &its
->vgic_its_base
,
2507 return vgic_register_its_iodev(dev
->kvm
, its
, addr
);
2509 case KVM_DEV_ARM_VGIC_GRP_CTRL
:
2510 return vgic_its_ctrl(dev
->kvm
, its
, attr
->attr
);
2511 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS
: {
2512 u64 __user
*uaddr
= (u64 __user
*)(long)attr
->addr
;
2515 if (get_user(reg
, uaddr
))
2518 return vgic_its_attr_regs_access(dev
, attr
, ®
, true);
2524 static int vgic_its_get_attr(struct kvm_device
*dev
,
2525 struct kvm_device_attr
*attr
)
2527 switch (attr
->group
) {
2528 case KVM_DEV_ARM_VGIC_GRP_ADDR
: {
2529 struct vgic_its
*its
= dev
->private;
2530 u64 addr
= its
->vgic_its_base
;
2531 u64 __user
*uaddr
= (u64 __user
*)(long)attr
->addr
;
2532 unsigned long type
= (unsigned long)attr
->attr
;
2534 if (type
!= KVM_VGIC_ITS_ADDR_TYPE
)
2537 if (copy_to_user(uaddr
, &addr
, sizeof(addr
)))
2541 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS
: {
2542 u64 __user
*uaddr
= (u64 __user
*)(long)attr
->addr
;
2546 ret
= vgic_its_attr_regs_access(dev
, attr
, ®
, false);
2549 return put_user(reg
, uaddr
);
2558 static struct kvm_device_ops kvm_arm_vgic_its_ops
= {
2559 .name
= "kvm-arm-vgic-its",
2560 .create
= vgic_its_create
,
2561 .destroy
= vgic_its_destroy
,
2562 .set_attr
= vgic_its_set_attr
,
2563 .get_attr
= vgic_its_get_attr
,
2564 .has_attr
= vgic_its_has_attr
,
2567 int kvm_vgic_register_its_device(void)
2569 return kvm_register_device_ops(&kvm_arm_vgic_its_ops
,
2570 KVM_DEV_TYPE_ARM_VGIC_ITS
);