xtensa: support DMA buffers in high memory
[cris-mirror.git] / virt / kvm / arm / vgic / vgic-mmio.c
blob83d82bd7dc4e714f61669e6aaf9e937b67f5eea1
1 /*
2 * VGIC MMIO handling functions
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
14 #include <linux/bitops.h>
15 #include <linux/bsearch.h>
16 #include <linux/kvm.h>
17 #include <linux/kvm_host.h>
18 #include <kvm/iodev.h>
19 #include <kvm/arm_arch_timer.h>
20 #include <kvm/arm_vgic.h>
22 #include "vgic.h"
23 #include "vgic-mmio.h"
25 unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
26 gpa_t addr, unsigned int len)
28 return 0;
31 unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
32 gpa_t addr, unsigned int len)
34 return -1UL;
37 void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
38 unsigned int len, unsigned long val)
40 /* Ignore */
44 * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
45 * of the enabled bit, so there is only one function for both here.
47 unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
48 gpa_t addr, unsigned int len)
50 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
51 u32 value = 0;
52 int i;
54 /* Loop over all IRQs affected by this read */
55 for (i = 0; i < len * 8; i++) {
56 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
58 if (irq->enabled)
59 value |= (1U << i);
61 vgic_put_irq(vcpu->kvm, irq);
64 return value;
67 void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
68 gpa_t addr, unsigned int len,
69 unsigned long val)
71 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
72 int i;
73 unsigned long flags;
75 for_each_set_bit(i, &val, len * 8) {
76 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
78 spin_lock_irqsave(&irq->irq_lock, flags);
79 irq->enabled = true;
80 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
82 vgic_put_irq(vcpu->kvm, irq);
86 void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
87 gpa_t addr, unsigned int len,
88 unsigned long val)
90 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
91 int i;
92 unsigned long flags;
94 for_each_set_bit(i, &val, len * 8) {
95 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
97 spin_lock_irqsave(&irq->irq_lock, flags);
99 irq->enabled = false;
101 spin_unlock_irqrestore(&irq->irq_lock, flags);
102 vgic_put_irq(vcpu->kvm, irq);
106 unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
107 gpa_t addr, unsigned int len)
109 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
110 u32 value = 0;
111 int i;
113 /* Loop over all IRQs affected by this read */
114 for (i = 0; i < len * 8; i++) {
115 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
117 if (irq_is_pending(irq))
118 value |= (1U << i);
120 vgic_put_irq(vcpu->kvm, irq);
123 return value;
127 * This function will return the VCPU that performed the MMIO access and
128 * trapped from within the VM, and will return NULL if this is a userspace
129 * access.
131 * We can disable preemption locally around accessing the per-CPU variable,
132 * and use the resolved vcpu pointer after enabling preemption again, because
133 * even if the current thread is migrated to another CPU, reading the per-CPU
134 * value later will give us the same value as we update the per-CPU variable
135 * in the preempt notifier handlers.
137 static struct kvm_vcpu *vgic_get_mmio_requester_vcpu(void)
139 struct kvm_vcpu *vcpu;
141 preempt_disable();
142 vcpu = kvm_arm_get_running_vcpu();
143 preempt_enable();
144 return vcpu;
147 /* Must be called with irq->irq_lock held */
148 static void vgic_hw_irq_spending(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
149 bool is_uaccess)
151 if (is_uaccess)
152 return;
154 irq->pending_latch = true;
155 vgic_irq_set_phys_active(irq, true);
158 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
159 gpa_t addr, unsigned int len,
160 unsigned long val)
162 bool is_uaccess = !vgic_get_mmio_requester_vcpu();
163 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
164 int i;
165 unsigned long flags;
167 for_each_set_bit(i, &val, len * 8) {
168 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
170 spin_lock_irqsave(&irq->irq_lock, flags);
171 if (irq->hw)
172 vgic_hw_irq_spending(vcpu, irq, is_uaccess);
173 else
174 irq->pending_latch = true;
175 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
176 vgic_put_irq(vcpu->kvm, irq);
180 /* Must be called with irq->irq_lock held */
181 static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
182 bool is_uaccess)
184 if (is_uaccess)
185 return;
187 irq->pending_latch = false;
190 * We don't want the guest to effectively mask the physical
191 * interrupt by doing a write to SPENDR followed by a write to
192 * CPENDR for HW interrupts, so we clear the active state on
193 * the physical side if the virtual interrupt is not active.
194 * This may lead to taking an additional interrupt on the
195 * host, but that should not be a problem as the worst that
196 * can happen is an additional vgic injection. We also clear
197 * the pending state to maintain proper semantics for edge HW
198 * interrupts.
200 vgic_irq_set_phys_pending(irq, false);
201 if (!irq->active)
202 vgic_irq_set_phys_active(irq, false);
205 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
206 gpa_t addr, unsigned int len,
207 unsigned long val)
209 bool is_uaccess = !vgic_get_mmio_requester_vcpu();
210 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
211 int i;
212 unsigned long flags;
214 for_each_set_bit(i, &val, len * 8) {
215 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
217 spin_lock_irqsave(&irq->irq_lock, flags);
219 if (irq->hw)
220 vgic_hw_irq_cpending(vcpu, irq, is_uaccess);
221 else
222 irq->pending_latch = false;
224 spin_unlock_irqrestore(&irq->irq_lock, flags);
225 vgic_put_irq(vcpu->kvm, irq);
229 unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
230 gpa_t addr, unsigned int len)
232 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
233 u32 value = 0;
234 int i;
236 /* Loop over all IRQs affected by this read */
237 for (i = 0; i < len * 8; i++) {
238 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
240 if (irq->active)
241 value |= (1U << i);
243 vgic_put_irq(vcpu->kvm, irq);
246 return value;
249 /* Must be called with irq->irq_lock held */
250 static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
251 bool active, bool is_uaccess)
253 if (is_uaccess)
254 return;
256 irq->active = active;
257 vgic_irq_set_phys_active(irq, active);
260 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
261 bool active)
263 unsigned long flags;
264 struct kvm_vcpu *requester_vcpu = vgic_get_mmio_requester_vcpu();
266 spin_lock_irqsave(&irq->irq_lock, flags);
269 * If this virtual IRQ was written into a list register, we
270 * have to make sure the CPU that runs the VCPU thread has
271 * synced back the LR state to the struct vgic_irq.
273 * As long as the conditions below are true, we know the VCPU thread
274 * may be on its way back from the guest (we kicked the VCPU thread in
275 * vgic_change_active_prepare) and still has to sync back this IRQ,
276 * so we release and re-acquire the spin_lock to let the other thread
277 * sync back the IRQ.
279 * When accessing VGIC state from user space, requester_vcpu is
280 * NULL, which is fine, because we guarantee that no VCPUs are running
281 * when accessing VGIC state from user space so irq->vcpu->cpu is
282 * always -1.
284 while (irq->vcpu && /* IRQ may have state in an LR somewhere */
285 irq->vcpu != requester_vcpu && /* Current thread is not the VCPU thread */
286 irq->vcpu->cpu != -1) /* VCPU thread is running */
287 cond_resched_lock(&irq->irq_lock);
289 if (irq->hw)
290 vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
291 else
292 irq->active = active;
294 if (irq->active)
295 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
296 else
297 spin_unlock_irqrestore(&irq->irq_lock, flags);
301 * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
302 * is not queued on some running VCPU's LRs, because then the change to the
303 * active state can be overwritten when the VCPU's state is synced coming back
304 * from the guest.
306 * For shared interrupts, we have to stop all the VCPUs because interrupts can
307 * be migrated while we don't hold the IRQ locks and we don't want to be
308 * chasing moving targets.
310 * For private interrupts we don't have to do anything because userspace
311 * accesses to the VGIC state already require all VCPUs to be stopped, and
312 * only the VCPU itself can modify its private interrupts active state, which
313 * guarantees that the VCPU is not running.
315 static void vgic_change_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
317 if (intid > VGIC_NR_PRIVATE_IRQS)
318 kvm_arm_halt_guest(vcpu->kvm);
321 /* See vgic_change_active_prepare */
322 static void vgic_change_active_finish(struct kvm_vcpu *vcpu, u32 intid)
324 if (intid > VGIC_NR_PRIVATE_IRQS)
325 kvm_arm_resume_guest(vcpu->kvm);
328 static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
329 gpa_t addr, unsigned int len,
330 unsigned long val)
332 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
333 int i;
335 for_each_set_bit(i, &val, len * 8) {
336 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
337 vgic_mmio_change_active(vcpu, irq, false);
338 vgic_put_irq(vcpu->kvm, irq);
342 void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
343 gpa_t addr, unsigned int len,
344 unsigned long val)
346 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
348 mutex_lock(&vcpu->kvm->lock);
349 vgic_change_active_prepare(vcpu, intid);
351 __vgic_mmio_write_cactive(vcpu, addr, len, val);
353 vgic_change_active_finish(vcpu, intid);
354 mutex_unlock(&vcpu->kvm->lock);
357 void vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
358 gpa_t addr, unsigned int len,
359 unsigned long val)
361 __vgic_mmio_write_cactive(vcpu, addr, len, val);
364 static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
365 gpa_t addr, unsigned int len,
366 unsigned long val)
368 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
369 int i;
371 for_each_set_bit(i, &val, len * 8) {
372 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
373 vgic_mmio_change_active(vcpu, irq, true);
374 vgic_put_irq(vcpu->kvm, irq);
378 void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
379 gpa_t addr, unsigned int len,
380 unsigned long val)
382 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
384 mutex_lock(&vcpu->kvm->lock);
385 vgic_change_active_prepare(vcpu, intid);
387 __vgic_mmio_write_sactive(vcpu, addr, len, val);
389 vgic_change_active_finish(vcpu, intid);
390 mutex_unlock(&vcpu->kvm->lock);
393 void vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
394 gpa_t addr, unsigned int len,
395 unsigned long val)
397 __vgic_mmio_write_sactive(vcpu, addr, len, val);
400 unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
401 gpa_t addr, unsigned int len)
403 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
404 int i;
405 u64 val = 0;
407 for (i = 0; i < len; i++) {
408 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
410 val |= (u64)irq->priority << (i * 8);
412 vgic_put_irq(vcpu->kvm, irq);
415 return val;
419 * We currently don't handle changing the priority of an interrupt that
420 * is already pending on a VCPU. If there is a need for this, we would
421 * need to make this VCPU exit and re-evaluate the priorities, potentially
422 * leading to this interrupt getting presented now to the guest (if it has
423 * been masked by the priority mask before).
425 void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
426 gpa_t addr, unsigned int len,
427 unsigned long val)
429 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
430 int i;
431 unsigned long flags;
433 for (i = 0; i < len; i++) {
434 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
436 spin_lock_irqsave(&irq->irq_lock, flags);
437 /* Narrow the priority range to what we actually support */
438 irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
439 spin_unlock_irqrestore(&irq->irq_lock, flags);
441 vgic_put_irq(vcpu->kvm, irq);
445 unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
446 gpa_t addr, unsigned int len)
448 u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
449 u32 value = 0;
450 int i;
452 for (i = 0; i < len * 4; i++) {
453 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
455 if (irq->config == VGIC_CONFIG_EDGE)
456 value |= (2U << (i * 2));
458 vgic_put_irq(vcpu->kvm, irq);
461 return value;
464 void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
465 gpa_t addr, unsigned int len,
466 unsigned long val)
468 u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
469 int i;
470 unsigned long flags;
472 for (i = 0; i < len * 4; i++) {
473 struct vgic_irq *irq;
476 * The configuration cannot be changed for SGIs in general,
477 * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
478 * code relies on PPIs being level triggered, so we also
479 * make them read-only here.
481 if (intid + i < VGIC_NR_PRIVATE_IRQS)
482 continue;
484 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
485 spin_lock_irqsave(&irq->irq_lock, flags);
487 if (test_bit(i * 2 + 1, &val))
488 irq->config = VGIC_CONFIG_EDGE;
489 else
490 irq->config = VGIC_CONFIG_LEVEL;
492 spin_unlock_irqrestore(&irq->irq_lock, flags);
493 vgic_put_irq(vcpu->kvm, irq);
497 u64 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
499 int i;
500 u64 val = 0;
501 int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
503 for (i = 0; i < 32; i++) {
504 struct vgic_irq *irq;
506 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
507 continue;
509 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
510 if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
511 val |= (1U << i);
513 vgic_put_irq(vcpu->kvm, irq);
516 return val;
519 void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
520 const u64 val)
522 int i;
523 int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
524 unsigned long flags;
526 for (i = 0; i < 32; i++) {
527 struct vgic_irq *irq;
528 bool new_level;
530 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
531 continue;
533 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
536 * Line level is set irrespective of irq type
537 * (level or edge) to avoid dependency that VM should
538 * restore irq config before line level.
540 new_level = !!(val & (1U << i));
541 spin_lock_irqsave(&irq->irq_lock, flags);
542 irq->line_level = new_level;
543 if (new_level)
544 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
545 else
546 spin_unlock_irqrestore(&irq->irq_lock, flags);
548 vgic_put_irq(vcpu->kvm, irq);
552 static int match_region(const void *key, const void *elt)
554 const unsigned int offset = (unsigned long)key;
555 const struct vgic_register_region *region = elt;
557 if (offset < region->reg_offset)
558 return -1;
560 if (offset >= region->reg_offset + region->len)
561 return 1;
563 return 0;
566 const struct vgic_register_region *
567 vgic_find_mmio_region(const struct vgic_register_region *regions,
568 int nr_regions, unsigned int offset)
570 return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
571 sizeof(regions[0]), match_region);
574 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
576 if (kvm_vgic_global_state.type == VGIC_V2)
577 vgic_v2_set_vmcr(vcpu, vmcr);
578 else
579 vgic_v3_set_vmcr(vcpu, vmcr);
582 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
584 if (kvm_vgic_global_state.type == VGIC_V2)
585 vgic_v2_get_vmcr(vcpu, vmcr);
586 else
587 vgic_v3_get_vmcr(vcpu, vmcr);
591 * kvm_mmio_read_buf() returns a value in a format where it can be converted
592 * to a byte array and be directly observed as the guest wanted it to appear
593 * in memory if it had done the store itself, which is LE for the GIC, as the
594 * guest knows the GIC is always LE.
596 * We convert this value to the CPUs native format to deal with it as a data
597 * value.
599 unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
601 unsigned long data = kvm_mmio_read_buf(val, len);
603 switch (len) {
604 case 1:
605 return data;
606 case 2:
607 return le16_to_cpu(data);
608 case 4:
609 return le32_to_cpu(data);
610 default:
611 return le64_to_cpu(data);
616 * kvm_mmio_write_buf() expects a value in a format such that if converted to
617 * a byte array it is observed as the guest would see it if it could perform
618 * the load directly. Since the GIC is LE, and the guest knows this, the
619 * guest expects a value in little endian format.
621 * We convert the data value from the CPUs native format to LE so that the
622 * value is returned in the proper format.
624 void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
625 unsigned long data)
627 switch (len) {
628 case 1:
629 break;
630 case 2:
631 data = cpu_to_le16(data);
632 break;
633 case 4:
634 data = cpu_to_le32(data);
635 break;
636 default:
637 data = cpu_to_le64(data);
640 kvm_mmio_write_buf(buf, len, data);
643 static
644 struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
646 return container_of(dev, struct vgic_io_device, dev);
649 static bool check_region(const struct kvm *kvm,
650 const struct vgic_register_region *region,
651 gpa_t addr, int len)
653 int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
655 switch (len) {
656 case sizeof(u8):
657 flags = VGIC_ACCESS_8bit;
658 break;
659 case sizeof(u32):
660 flags = VGIC_ACCESS_32bit;
661 break;
662 case sizeof(u64):
663 flags = VGIC_ACCESS_64bit;
664 break;
665 default:
666 return false;
669 if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
670 if (!region->bits_per_irq)
671 return true;
673 /* Do we access a non-allocated IRQ? */
674 return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
677 return false;
680 const struct vgic_register_region *
681 vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
682 gpa_t addr, int len)
684 const struct vgic_register_region *region;
686 region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
687 addr - iodev->base_addr);
688 if (!region || !check_region(vcpu->kvm, region, addr, len))
689 return NULL;
691 return region;
694 static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
695 gpa_t addr, u32 *val)
697 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
698 const struct vgic_register_region *region;
699 struct kvm_vcpu *r_vcpu;
701 region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
702 if (!region) {
703 *val = 0;
704 return 0;
707 r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
708 if (region->uaccess_read)
709 *val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
710 else
711 *val = region->read(r_vcpu, addr, sizeof(u32));
713 return 0;
716 static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
717 gpa_t addr, const u32 *val)
719 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
720 const struct vgic_register_region *region;
721 struct kvm_vcpu *r_vcpu;
723 region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
724 if (!region)
725 return 0;
727 r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
728 if (region->uaccess_write)
729 region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
730 else
731 region->write(r_vcpu, addr, sizeof(u32), *val);
733 return 0;
737 * Userland access to VGIC registers.
739 int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
740 bool is_write, int offset, u32 *val)
742 if (is_write)
743 return vgic_uaccess_write(vcpu, &dev->dev, offset, val);
744 else
745 return vgic_uaccess_read(vcpu, &dev->dev, offset, val);
748 static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
749 gpa_t addr, int len, void *val)
751 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
752 const struct vgic_register_region *region;
753 unsigned long data = 0;
755 region = vgic_get_mmio_region(vcpu, iodev, addr, len);
756 if (!region) {
757 memset(val, 0, len);
758 return 0;
761 switch (iodev->iodev_type) {
762 case IODEV_CPUIF:
763 data = region->read(vcpu, addr, len);
764 break;
765 case IODEV_DIST:
766 data = region->read(vcpu, addr, len);
767 break;
768 case IODEV_REDIST:
769 data = region->read(iodev->redist_vcpu, addr, len);
770 break;
771 case IODEV_ITS:
772 data = region->its_read(vcpu->kvm, iodev->its, addr, len);
773 break;
776 vgic_data_host_to_mmio_bus(val, len, data);
777 return 0;
780 static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
781 gpa_t addr, int len, const void *val)
783 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
784 const struct vgic_register_region *region;
785 unsigned long data = vgic_data_mmio_bus_to_host(val, len);
787 region = vgic_get_mmio_region(vcpu, iodev, addr, len);
788 if (!region)
789 return 0;
791 switch (iodev->iodev_type) {
792 case IODEV_CPUIF:
793 region->write(vcpu, addr, len, data);
794 break;
795 case IODEV_DIST:
796 region->write(vcpu, addr, len, data);
797 break;
798 case IODEV_REDIST:
799 region->write(iodev->redist_vcpu, addr, len, data);
800 break;
801 case IODEV_ITS:
802 region->its_write(vcpu->kvm, iodev->its, addr, len, data);
803 break;
806 return 0;
809 struct kvm_io_device_ops kvm_io_gic_ops = {
810 .read = dispatch_mmio_read,
811 .write = dispatch_mmio_write,
814 int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
815 enum vgic_type type)
817 struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
818 int ret = 0;
819 unsigned int len;
821 switch (type) {
822 case VGIC_V2:
823 len = vgic_v2_init_dist_iodev(io_device);
824 break;
825 case VGIC_V3:
826 len = vgic_v3_init_dist_iodev(io_device);
827 break;
828 default:
829 BUG_ON(1);
832 io_device->base_addr = dist_base_address;
833 io_device->iodev_type = IODEV_DIST;
834 io_device->redist_vcpu = NULL;
836 mutex_lock(&kvm->slots_lock);
837 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
838 len, &io_device->dev);
839 mutex_unlock(&kvm->slots_lock);
841 return ret;