1 #ifndef __LINUX_COMPILER_H
2 #define __LINUX_COMPILER_H
7 # define __user __attribute__((noderef, address_space(1)))
8 # define __kernel __attribute__((address_space(0)))
9 # define __safe __attribute__((safe))
10 # define __force __attribute__((force))
11 # define __nocast __attribute__((nocast))
12 # define __iomem __attribute__((noderef, address_space(2)))
13 # define __must_hold(x) __attribute__((context(x,1,1)))
14 # define __acquires(x) __attribute__((context(x,0,1)))
15 # define __releases(x) __attribute__((context(x,1,0)))
16 # define __acquire(x) __context__(x,1)
17 # define __release(x) __context__(x,-1)
18 # define __cond_lock(x,c) ((c) ? ({ __acquire(x); 1; }) : 0)
19 # define __percpu __attribute__((noderef, address_space(3)))
20 # define __rcu __attribute__((noderef, address_space(4)))
21 # define __private __attribute__((noderef))
22 extern void __chk_user_ptr(const volatile void __user
*);
23 extern void __chk_io_ptr(const volatile void __iomem
*);
24 # define ACCESS_PRIVATE(p, member) (*((typeof((p)->member) __force *) &(p)->member))
25 #else /* __CHECKER__ */
26 # ifdef STRUCTLEAK_PLUGIN
27 # define __user __attribute__((user))
36 # define __chk_user_ptr(x) (void)0
37 # define __chk_io_ptr(x) (void)0
38 # define __builtin_warning(x, y...) (1)
39 # define __must_hold(x)
40 # define __acquires(x)
41 # define __releases(x)
42 # define __acquire(x) (void)0
43 # define __release(x) (void)0
44 # define __cond_lock(x,c) (c)
48 # define ACCESS_PRIVATE(p, member) ((p)->member)
49 #endif /* __CHECKER__ */
51 /* Indirect macros required for expanded argument pasting, eg. __LINE__. */
52 #define ___PASTE(a,b) a##b
53 #define __PASTE(a,b) ___PASTE(a,b)
58 #include <linux/compiler-gcc.h>
61 #if defined(CC_USING_HOTPATCH) && !defined(__CHECKER__)
62 #define notrace __attribute__((hotpatch(0,0)))
64 #define notrace __attribute__((no_instrument_function))
67 /* Intel compiler defines __GNUC__. So we will overwrite implementations
68 * coming from above header files here
70 #ifdef __INTEL_COMPILER
71 # include <linux/compiler-intel.h>
74 /* Clang compiler defines __GNUC__. So we will overwrite implementations
75 * coming from above header files here
78 #include <linux/compiler-clang.h>
82 * Generic compiler-dependent macros required for kernel
83 * build go below this comment. Actual compiler/compiler version
84 * specific implementations come from the above header files
87 struct ftrace_branch_data
{
93 unsigned long correct
;
94 unsigned long incorrect
;
100 unsigned long miss_hit
[2];
104 struct ftrace_likely_data
{
105 struct ftrace_branch_data data
;
106 unsigned long constant
;
110 * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
111 * to disable branch tracing on a per file basis.
113 #if defined(CONFIG_TRACE_BRANCH_PROFILING) \
114 && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
115 void ftrace_likely_update(struct ftrace_likely_data
*f
, int val
,
116 int expect
, int is_constant
);
118 #define likely_notrace(x) __builtin_expect(!!(x), 1)
119 #define unlikely_notrace(x) __builtin_expect(!!(x), 0)
121 #define __branch_check__(x, expect, is_constant) ({ \
123 static struct ftrace_likely_data \
124 __attribute__((__aligned__(4))) \
125 __attribute__((section("_ftrace_annotated_branch"))) \
127 .data.func = __func__, \
128 .data.file = __FILE__, \
129 .data.line = __LINE__, \
131 ______r = __builtin_expect(!!(x), expect); \
132 ftrace_likely_update(&______f, ______r, \
133 expect, is_constant); \
138 * Using __builtin_constant_p(x) to ignore cases where the return
139 * value is always the same. This idea is taken from a similar patch
140 * written by Daniel Walker.
143 # define likely(x) (__branch_check__(x, 1, __builtin_constant_p(x)))
146 # define unlikely(x) (__branch_check__(x, 0, __builtin_constant_p(x)))
149 #ifdef CONFIG_PROFILE_ALL_BRANCHES
151 * "Define 'is'", Bill Clinton
152 * "Define 'if'", Steven Rostedt
154 #define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) )
155 #define __trace_if(cond) \
156 if (__builtin_constant_p(!!(cond)) ? !!(cond) : \
159 static struct ftrace_branch_data \
160 __attribute__((__aligned__(4))) \
161 __attribute__((section("_ftrace_branch"))) \
167 ______r = !!(cond); \
168 ______f.miss_hit[______r]++; \
171 #endif /* CONFIG_PROFILE_ALL_BRANCHES */
174 # define likely(x) __builtin_expect(!!(x), 1)
175 # define unlikely(x) __builtin_expect(!!(x), 0)
178 /* Optimization barrier */
180 # define barrier() __memory_barrier()
184 # define barrier_data(ptr) barrier()
187 /* Unreachable code */
189 # define unreachable() do { } while (1)
193 * KENTRY - kernel entry point
194 * This can be used to annotate symbols (functions or data) that are used
195 * without their linker symbol being referenced explicitly. For example,
196 * interrupt vector handlers, or functions in the kernel image that are found
199 * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
200 * are handled in their own way (with KEEP() in linker scripts).
202 * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
203 * linker script. For example an architecture could KEEP() its entire
204 * boot/exception vector code rather than annotate each function and data.
207 # define KENTRY(sym) \
208 extern typeof(sym) sym; \
209 static const unsigned long __kentry_##sym \
211 __attribute__((section("___kentry" "+" #sym ), used)) \
212 = (unsigned long)&sym;
216 # define RELOC_HIDE(ptr, off) \
217 ({ unsigned long __ptr; \
218 __ptr = (unsigned long) (ptr); \
219 (typeof(ptr)) (__ptr + (off)); })
222 #ifndef OPTIMIZER_HIDE_VAR
223 #define OPTIMIZER_HIDE_VAR(var) barrier()
226 /* Not-quite-unique ID. */
228 # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
231 #include <uapi/linux/types.h>
233 #define __READ_ONCE_SIZE \
236 case 1: *(__u8 *)res = *(volatile __u8 *)p; break; \
237 case 2: *(__u16 *)res = *(volatile __u16 *)p; break; \
238 case 4: *(__u32 *)res = *(volatile __u32 *)p; break; \
239 case 8: *(__u64 *)res = *(volatile __u64 *)p; break; \
242 __builtin_memcpy((void *)res, (const void *)p, size); \
247 static __always_inline
248 void __read_once_size(const volatile void *p
, void *res
, int size
)
255 * This function is not 'inline' because __no_sanitize_address confilcts
256 * with inlining. Attempt to inline it may cause a build failure.
257 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368
258 * '__maybe_unused' allows us to avoid defined-but-not-used warnings.
260 static __no_sanitize_address __maybe_unused
261 void __read_once_size_nocheck(const volatile void *p
, void *res
, int size
)
266 static __always_inline
267 void __read_once_size_nocheck(const volatile void *p
, void *res
, int size
)
273 static __always_inline
void __write_once_size(volatile void *p
, void *res
, int size
)
276 case 1: *(volatile __u8
*)p
= *(__u8
*)res
; break;
277 case 2: *(volatile __u16
*)p
= *(__u16
*)res
; break;
278 case 4: *(volatile __u32
*)p
= *(__u32
*)res
; break;
279 case 8: *(volatile __u64
*)p
= *(__u64
*)res
; break;
282 __builtin_memcpy((void *)p
, (const void *)res
, size
);
288 * Prevent the compiler from merging or refetching reads or writes. The
289 * compiler is also forbidden from reordering successive instances of
290 * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
291 * compiler is aware of some particular ordering. One way to make the
292 * compiler aware of ordering is to put the two invocations of READ_ONCE,
293 * WRITE_ONCE or ACCESS_ONCE() in different C statements.
295 * In contrast to ACCESS_ONCE these two macros will also work on aggregate
296 * data types like structs or unions. If the size of the accessed data
297 * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
298 * READ_ONCE() and WRITE_ONCE() will fall back to memcpy(). There's at
299 * least two memcpy()s: one for the __builtin_memcpy() and then one for
300 * the macro doing the copy of variable - '__u' allocated on the stack.
302 * Their two major use cases are: (1) Mediating communication between
303 * process-level code and irq/NMI handlers, all running on the same CPU,
304 * and (2) Ensuring that the compiler does not fold, spindle, or otherwise
305 * mutilate accesses that either do not require ordering or that interact
306 * with an explicit memory barrier or atomic instruction that provides the
310 #define __READ_ONCE(x, check) \
312 union { typeof(x) __val; char __c[1]; } __u; \
314 __read_once_size(&(x), __u.__c, sizeof(x)); \
316 __read_once_size_nocheck(&(x), __u.__c, sizeof(x)); \
319 #define READ_ONCE(x) __READ_ONCE(x, 1)
322 * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need
323 * to hide memory access from KASAN.
325 #define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0)
327 #define WRITE_ONCE(x, val) \
329 union { typeof(x) __val; char __c[1]; } __u = \
330 { .__val = (__force typeof(x)) (val) }; \
331 __write_once_size(&(x), __u.__c, sizeof(x)); \
335 #endif /* __KERNEL__ */
337 #endif /* __ASSEMBLY__ */
341 * Allow us to mark functions as 'deprecated' and have gcc emit a nice
342 * warning for each use, in hopes of speeding the functions removal.
344 * int __deprecated foo(void)
347 # define __deprecated /* unimplemented */
351 #define __deprecated_for_modules __deprecated
353 #define __deprecated_for_modules
360 #ifndef CONFIG_ENABLE_MUST_CHECK
364 #ifndef CONFIG_ENABLE_WARN_DEPRECATED
366 #undef __deprecated_for_modules
368 #define __deprecated_for_modules
376 * Allow us to avoid 'defined but not used' warnings on functions and data,
377 * as well as force them to be emitted to the assembly file.
379 * As of gcc 3.4, static functions that are not marked with attribute((used))
380 * may be elided from the assembly file. As of gcc 3.4, static data not so
381 * marked will not be elided, but this may change in a future gcc version.
383 * NOTE: Because distributions shipped with a backported unit-at-a-time
384 * compiler in gcc 3.3, we must define __used to be __attribute__((used))
385 * for gcc >=3.3 instead of 3.4.
387 * In prior versions of gcc, such functions and data would be emitted, but
388 * would be warned about except with attribute((unused)).
390 * Mark functions that are referenced only in inline assembly as __used so
391 * the code is emitted even though it appears to be unreferenced.
394 # define __used /* unimplemented */
397 #ifndef __maybe_unused
398 # define __maybe_unused /* unimplemented */
401 #ifndef __always_unused
402 # define __always_unused /* unimplemented */
410 * Rather then using noinline to prevent stack consumption, use
411 * noinline_for_stack instead. For documentation reasons.
413 #define noinline_for_stack noinline
415 #ifndef __always_inline
416 #define __always_inline inline
419 #endif /* __KERNEL__ */
422 * From the GCC manual:
424 * Many functions do not examine any values except their arguments,
425 * and have no effects except the return value. Basically this is
426 * just slightly more strict class than the `pure' attribute above,
427 * since function is not allowed to read global memory.
429 * Note that a function that has pointer arguments and examines the
430 * data pointed to must _not_ be declared `const'. Likewise, a
431 * function that calls a non-`const' function usually must not be
432 * `const'. It does not make sense for a `const' function to return
435 #ifndef __attribute_const__
436 # define __attribute_const__ /* unimplemented */
439 #ifndef __designated_init
440 # define __designated_init
443 #ifndef __latent_entropy
444 # define __latent_entropy
447 #ifndef __randomize_layout
448 # define __randomize_layout __designated_init
451 #ifndef __no_randomize_layout
452 # define __no_randomize_layout
456 * Tell gcc if a function is cold. The compiler will assume any path
457 * directly leading to the call is unlikely.
464 /* Simple shorthand for a section definition */
466 # define __section(S) __attribute__ ((__section__(#S)))
474 * Assume alignment of return value.
476 #ifndef __assume_aligned
477 #define __assume_aligned(a, ...)
481 /* Are two types/vars the same type (ignoring qualifiers)? */
483 # define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b))
486 /* Is this type a native word size -- useful for atomic operations */
487 #ifndef __native_word
488 # define __native_word(t) (sizeof(t) == sizeof(char) || sizeof(t) == sizeof(short) || sizeof(t) == sizeof(int) || sizeof(t) == sizeof(long))
491 /* Compile time object size, -1 for unknown */
492 #ifndef __compiletime_object_size
493 # define __compiletime_object_size(obj) -1
495 #ifndef __compiletime_warning
496 # define __compiletime_warning(message)
498 #ifndef __compiletime_error
499 # define __compiletime_error(message)
501 * Sparse complains of variable sized arrays due to the temporary variable in
502 * __compiletime_assert. Unfortunately we can't just expand it out to make
503 * sparse see a constant array size without breaking compiletime_assert on old
504 * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether.
507 # define __compiletime_error_fallback(condition) \
508 do { ((void)sizeof(char[1 - 2 * condition])); } while (0)
511 #ifndef __compiletime_error_fallback
512 # define __compiletime_error_fallback(condition) do { } while (0)
515 #define __compiletime_assert(condition, msg, prefix, suffix) \
517 bool __cond = !(condition); \
518 extern void prefix ## suffix(void) __compiletime_error(msg); \
520 prefix ## suffix(); \
521 __compiletime_error_fallback(__cond); \
524 #define _compiletime_assert(condition, msg, prefix, suffix) \
525 __compiletime_assert(condition, msg, prefix, suffix)
528 * compiletime_assert - break build and emit msg if condition is false
529 * @condition: a compile-time constant condition to check
530 * @msg: a message to emit if condition is false
532 * In tradition of POSIX assert, this macro will break the build if the
533 * supplied condition is *false*, emitting the supplied error message if the
534 * compiler has support to do so.
536 #define compiletime_assert(condition, msg) \
537 _compiletime_assert(condition, msg, __compiletime_assert_, __LINE__)
539 #define compiletime_assert_atomic_type(t) \
540 compiletime_assert(__native_word(t), \
541 "Need native word sized stores/loads for atomicity.")
544 * Prevent the compiler from merging or refetching accesses. The compiler
545 * is also forbidden from reordering successive instances of ACCESS_ONCE(),
546 * but only when the compiler is aware of some particular ordering. One way
547 * to make the compiler aware of ordering is to put the two invocations of
548 * ACCESS_ONCE() in different C statements.
550 * ACCESS_ONCE will only work on scalar types. For union types, ACCESS_ONCE
551 * on a union member will work as long as the size of the member matches the
552 * size of the union and the size is smaller than word size.
554 * The major use cases of ACCESS_ONCE used to be (1) Mediating communication
555 * between process-level code and irq/NMI handlers, all running on the same CPU,
556 * and (2) Ensuring that the compiler does not fold, spindle, or otherwise
557 * mutilate accesses that either do not require ordering or that interact
558 * with an explicit memory barrier or atomic instruction that provides the
561 * If possible use READ_ONCE()/WRITE_ONCE() instead.
563 #define __ACCESS_ONCE(x) ({ \
564 __maybe_unused typeof(x) __var = (__force typeof(x)) 0; \
565 (volatile typeof(x) *)&(x); })
566 #define ACCESS_ONCE(x) (*__ACCESS_ONCE(x))
569 * lockless_dereference() - safely load a pointer for later dereference
570 * @p: The pointer to load
572 * Similar to rcu_dereference(), but for situations where the pointed-to
573 * object's lifetime is managed by something other than RCU. That
574 * "something other" might be reference counting or simple immortality.
576 * The seemingly unused variable ___typecheck_p validates that @p is
577 * indeed a pointer type by using a pointer to typeof(*p) as the type.
578 * Taking a pointer to typeof(*p) again is needed in case p is void *.
580 #define lockless_dereference(p) \
582 typeof(p) _________p1 = READ_ONCE(p); \
583 typeof(*(p)) *___typecheck_p __maybe_unused; \
584 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
588 #endif /* __LINUX_COMPILER_H */