xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / Documentation / vm / hmm.txt
blob4d3aac9f4a5dcbe86df5d81e41dcc70b82a819a4
1 Heterogeneous Memory Management (HMM)
3 Transparently allow any component of a program to use any memory region of said
4 program with a device without using device specific memory allocator. This is
5 becoming a requirement to simplify the use of advance heterogeneous computing
6 where GPU, DSP or FPGA are use to perform various computations.
8 This document is divided as follow, in the first section i expose the problems
9 related to the use of a device specific allocator. The second section i expose
10 the hardware limitations that are inherent to many platforms. The third section
11 gives an overview of HMM designs. The fourth section explains how CPU page-
12 table mirroring works and what is HMM purpose in this context. Fifth section
13 deals with how device memory is represented inside the kernel. Finaly the last
14 section present the new migration helper that allow to leverage the device DMA
15 engine.
18 1) Problems of using device specific memory allocator:
19 2) System bus, device memory characteristics
20 3) Share address space and migration
21 4) Address space mirroring implementation and API
22 5) Represent and manage device memory from core kernel point of view
23 6) Migrate to and from device memory
24 7) Memory cgroup (memcg) and rss accounting
27 -------------------------------------------------------------------------------
29 1) Problems of using device specific memory allocator:
31 Device with large amount of on board memory (several giga bytes) like GPU have
32 historically manage their memory through dedicated driver specific API. This
33 creates a disconnect between memory allocated and managed by device driver and
34 regular application memory (private anonymous, share memory or regular file
35 back memory). From here on i will refer to this aspect as split address space.
36 I use share address space to refer to the opposite situation ie one in which
37 any memory region can be use by device transparently.
39 Split address space because device can only access memory allocated through the
40 device specific API. This imply that all memory object in a program are not
41 equal from device point of view which complicate large program that rely on a
42 wide set of libraries.
44 Concretly this means that code that wants to leverage device like GPU need to
45 copy object between genericly allocated memory (malloc, mmap private/share/)
46 and memory allocated through the device driver API (this still end up with an
47 mmap but of the device file).
49 For flat dataset (array, grid, image, ...) this isn't too hard to achieve but
50 complex data-set (list, tree, ...) are hard to get right. Duplicating a complex
51 data-set need to re-map all the pointer relations between each of its elements.
52 This is error prone and program gets harder to debug because of the duplicate
53 data-set.
55 Split address space also means that library can not transparently use data they
56 are getting from core program or other library and thus each library might have
57 to duplicate its input data-set using specific memory allocator. Large project
58 suffer from this and waste resources because of the various memory copy.
60 Duplicating each library API to accept as input or output memory allocted by
61 each device specific allocator is not a viable option. It would lead to a
62 combinatorial explosions in the library entry points.
64 Finaly with the advance of high level language constructs (in C++ but in other
65 language too) it is now possible for compiler to leverage GPU or other devices
66 without even the programmer knowledge. Some of compiler identified patterns are
67 only do-able with a share address. It is as well more reasonable to use a share
68 address space for all the other patterns.
71 -------------------------------------------------------------------------------
73 2) System bus, device memory characteristics
75 System bus cripple share address due to few limitations. Most system bus only
76 allow basic memory access from device to main memory, even cache coherency is
77 often optional. Access to device memory from CPU is even more limited, most
78 often than not it is not cache coherent.
80 If we only consider the PCIE bus than device can access main memory (often
81 through an IOMMU) and be cache coherent with the CPUs. However it only allows
82 a limited set of atomic operation from device on main memory. This is worse
83 in the other direction the CPUs can only access a limited range of the device
84 memory and can not perform atomic operations on it. Thus device memory can not
85 be consider like regular memory from kernel point of view.
87 Another crippling factor is the limited bandwidth (~32GBytes/s with PCIE 4.0
88 and 16 lanes). This is 33 times less that fastest GPU memory (1 TBytes/s).
89 The final limitation is latency, access to main memory from the device has an
90 order of magnitude higher latency than when the device access its own memory.
92 Some platform are developing new system bus or additions/modifications to PCIE
93 to address some of those limitations (OpenCAPI, CCIX). They mainly allow two
94 way cache coherency between CPU and device and allow all atomic operations the
95 architecture supports. Saddly not all platform are following this trends and
96 some major architecture are left without hardware solutions to those problems.
98 So for share address space to make sense not only we must allow device to
99 access any memory memory but we must also permit any memory to be migrated to
100 device memory while device is using it (blocking CPU access while it happens).
103 -------------------------------------------------------------------------------
105 3) Share address space and migration
107 HMM intends to provide two main features. First one is to share the address
108 space by duplication the CPU page table into the device page table so same
109 address point to same memory and this for any valid main memory address in
110 the process address space.
112 To achieve this, HMM offer a set of helpers to populate the device page table
113 while keeping track of CPU page table updates. Device page table updates are
114 not as easy as CPU page table updates. To update the device page table you must
115 allow a buffer (or use a pool of pre-allocated buffer) and write GPU specifics
116 commands in it to perform the update (unmap, cache invalidations and flush,
117 ...). This can not be done through common code for all device. Hence why HMM
118 provides helpers to factor out everything that can be while leaving the gory
119 details to the device driver.
121 The second mechanism HMM provide is a new kind of ZONE_DEVICE memory that does
122 allow to allocate a struct page for each page of the device memory. Those page
123 are special because the CPU can not map them. They however allow to migrate
124 main memory to device memory using exhisting migration mechanism and everything
125 looks like if page was swap out to disk from CPU point of view. Using a struct
126 page gives the easiest and cleanest integration with existing mm mechanisms.
127 Again here HMM only provide helpers, first to hotplug new ZONE_DEVICE memory
128 for the device memory and second to perform migration. Policy decision of what
129 and when to migrate things is left to the device driver.
131 Note that any CPU access to a device page trigger a page fault and a migration
132 back to main memory ie when a page backing an given address A is migrated from
133 a main memory page to a device page then any CPU access to address A trigger a
134 page fault and initiate a migration back to main memory.
137 With this two features, HMM not only allow a device to mirror a process address
138 space and keeps both CPU and device page table synchronize, but also allow to
139 leverage device memory by migrating part of data-set that is actively use by a
140 device.
143 -------------------------------------------------------------------------------
145 4) Address space mirroring implementation and API
147 Address space mirroring main objective is to allow to duplicate range of CPU
148 page table into a device page table and HMM helps keeping both synchronize. A
149 device driver that want to mirror a process address space must start with the
150 registration of an hmm_mirror struct:
152  int hmm_mirror_register(struct hmm_mirror *mirror,
153                          struct mm_struct *mm);
154  int hmm_mirror_register_locked(struct hmm_mirror *mirror,
155                                 struct mm_struct *mm);
157 The locked variant is to be use when the driver is already holding the mmap_sem
158 of the mm in write mode. The mirror struct has a set of callback that are use
159 to propagate CPU page table:
161  struct hmm_mirror_ops {
162      /* sync_cpu_device_pagetables() - synchronize page tables
163       *
164       * @mirror: pointer to struct hmm_mirror
165       * @update_type: type of update that occurred to the CPU page table
166       * @start: virtual start address of the range to update
167       * @end: virtual end address of the range to update
168       *
169       * This callback ultimately originates from mmu_notifiers when the CPU
170       * page table is updated. The device driver must update its page table
171       * in response to this callback. The update argument tells what action
172       * to perform.
173       *
174       * The device driver must not return from this callback until the device
175       * page tables are completely updated (TLBs flushed, etc); this is a
176       * synchronous call.
177       */
178       void (*update)(struct hmm_mirror *mirror,
179                      enum hmm_update action,
180                      unsigned long start,
181                      unsigned long end);
182  };
184 Device driver must perform update to the range following action (turn range
185 read only, or fully unmap, ...). Once driver callback returns the device must
186 be done with the update.
189 When device driver wants to populate a range of virtual address it can use
190 either:
191  int hmm_vma_get_pfns(struct vm_area_struct *vma,
192                       struct hmm_range *range,
193                       unsigned long start,
194                       unsigned long end,
195                       hmm_pfn_t *pfns);
196  int hmm_vma_fault(struct vm_area_struct *vma,
197                    struct hmm_range *range,
198                    unsigned long start,
199                    unsigned long end,
200                    hmm_pfn_t *pfns,
201                    bool write,
202                    bool block);
204 First one (hmm_vma_get_pfns()) will only fetch present CPU page table entry and
205 will not trigger a page fault on missing or non present entry. The second one
206 do trigger page fault on missing or read only entry if write parameter is true.
207 Page fault use the generic mm page fault code path just like a CPU page fault.
209 Both function copy CPU page table into their pfns array argument. Each entry in
210 that array correspond to an address in the virtual range. HMM provide a set of
211 flags to help driver identify special CPU page table entries.
213 Locking with the update() callback is the most important aspect the driver must
214 respect in order to keep things properly synchronize. The usage pattern is :
216  int driver_populate_range(...)
218       struct hmm_range range;
219       ...
220  again:
221       ret = hmm_vma_get_pfns(vma, &range, start, end, pfns);
222       if (ret)
223           return ret;
224       take_lock(driver->update);
225       if (!hmm_vma_range_done(vma, &range)) {
226           release_lock(driver->update);
227           goto again;
228       }
230       // Use pfns array content to update device page table
232       release_lock(driver->update);
233       return 0;
236 The driver->update lock is the same lock that driver takes inside its update()
237 callback. That lock must be call before hmm_vma_range_done() to avoid any race
238 with a concurrent CPU page table update.
240 HMM implements all this on top of the mmu_notifier API because we wanted to a
241 simpler API and also to be able to perform optimization latter own like doing
242 concurrent device update in multi-devices scenario.
244 HMM also serve as an impedence missmatch between how CPU page table update are
245 done (by CPU write to the page table and TLB flushes) from how device update
246 their own page table. Device update is a multi-step process, first appropriate
247 commands are write to a buffer, then this buffer is schedule for execution on
248 the device. It is only once the device has executed commands in the buffer that
249 the update is done. Creating and scheduling update command buffer can happen
250 concurrently for multiple devices. Waiting for each device to report commands
251 as executed is serialize (there is no point in doing this concurrently).
254 -------------------------------------------------------------------------------
256 5) Represent and manage device memory from core kernel point of view
258 Several differents design were try to support device memory. First one use
259 device specific data structure to keep information about migrated memory and
260 HMM hooked itself in various place of mm code to handle any access to address
261 that were back by device memory. It turns out that this ended up replicating
262 most of the fields of struct page and also needed many kernel code path to be
263 updated to understand this new kind of memory.
265 Thing is most kernel code path never try to access the memory behind a page
266 but only care about struct page contents. Because of this HMM switchted to
267 directly using struct page for device memory which left most kernel code path
268 un-aware of the difference. We only need to make sure that no one ever try to
269 map those page from the CPU side.
271 HMM provide a set of helpers to register and hotplug device memory as a new
272 region needing struct page. This is offer through a very simple API:
274  struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
275                                    struct device *device,
276                                    unsigned long size);
277  void hmm_devmem_remove(struct hmm_devmem *devmem);
279 The hmm_devmem_ops is where most of the important things are:
281  struct hmm_devmem_ops {
282      void (*free)(struct hmm_devmem *devmem, struct page *page);
283      int (*fault)(struct hmm_devmem *devmem,
284                   struct vm_area_struct *vma,
285                   unsigned long addr,
286                   struct page *page,
287                   unsigned flags,
288                   pmd_t *pmdp);
289  };
291 The first callback (free()) happens when the last reference on a device page is
292 drop. This means the device page is now free and no longer use by anyone. The
293 second callback happens whenever CPU try to access a device page which it can
294 not do. This second callback must trigger a migration back to system memory.
297 -------------------------------------------------------------------------------
299 6) Migrate to and from device memory
301 Because CPU can not access device memory, migration must use device DMA engine
302 to perform copy from and to device memory. For this we need a new migration
303 helper:
305  int migrate_vma(const struct migrate_vma_ops *ops,
306                  struct vm_area_struct *vma,
307                  unsigned long mentries,
308                  unsigned long start,
309                  unsigned long end,
310                  unsigned long *src,
311                  unsigned long *dst,
312                  void *private);
314 Unlike other migration function it works on a range of virtual address, there
315 is two reasons for that. First device DMA copy has a high setup overhead cost
316 and thus batching multiple pages is needed as otherwise the migration overhead
317 make the whole excersie pointless. The second reason is because driver trigger
318 such migration base on range of address the device is actively accessing.
320 The migrate_vma_ops struct define two callbacks. First one (alloc_and_copy())
321 control destination memory allocation and copy operation. Second one is there
322 to allow device driver to perform cleanup operation after migration.
324  struct migrate_vma_ops {
325      void (*alloc_and_copy)(struct vm_area_struct *vma,
326                             const unsigned long *src,
327                             unsigned long *dst,
328                             unsigned long start,
329                             unsigned long end,
330                             void *private);
331      void (*finalize_and_map)(struct vm_area_struct *vma,
332                               const unsigned long *src,
333                               const unsigned long *dst,
334                               unsigned long start,
335                               unsigned long end,
336                               void *private);
337  };
339 It is important to stress that this migration helpers allow for hole in the
340 virtual address range. Some pages in the range might not be migrated for all
341 the usual reasons (page is pin, page is lock, ...). This helper does not fail
342 but just skip over those pages.
344 The alloc_and_copy() might as well decide to not migrate all pages in the
345 range (for reasons under the callback control). For those the callback just
346 have to leave the corresponding dst entry empty.
348 Finaly the migration of the struct page might fails (for file back page) for
349 various reasons (failure to freeze reference, or update page cache, ...). If
350 that happens then the finalize_and_map() can catch any pages that was not
351 migrated. Note those page were still copied to new page and thus we wasted
352 bandwidth but this is considered as a rare event and a price that we are
353 willing to pay to keep all the code simpler.
356 -------------------------------------------------------------------------------
358 7) Memory cgroup (memcg) and rss accounting
360 For now device memory is accounted as any regular page in rss counters (either
361 anonymous if device page is use for anonymous, file if device page is use for
362 file back page or shmem if device page is use for share memory). This is a
363 deliberate choice to keep existing application that might start using device
364 memory without knowing about it to keep runing unimpacted.
366 Drawbacks is that OOM killer might kill an application using a lot of device
367 memory and not a lot of regular system memory and thus not freeing much system
368 memory. We want to gather more real world experience on how application and
369 system react under memory pressure in the presence of device memory before
370 deciding to account device memory differently.
373 Same decision was made for memory cgroup. Device memory page are accounted
374 against same memory cgroup a regular page would be accounted to. This does
375 simplify migration to and from device memory. This also means that migration
376 back from device memory to regular memory can not fail because it would
377 go above memory cgroup limit. We might revisit this choice latter on once we
378 get more experience in how device memory is use and its impact on memory
379 resource control.
382 Note that device memory can never be pin nor by device driver nor through GUP
383 and thus such memory is always free upon process exit. Or when last reference
384 is drop in case of share memory or file back memory.