xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / arch / cris / mm / fault.c
blob29cc58038b98c0683b9375bd12e51fb8e0c3ffb9
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * arch/cris/mm/fault.c
5 * Copyright (C) 2000-2010 Axis Communications AB
6 */
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/extable.h>
11 #include <linux/wait.h>
12 #include <linux/sched/signal.h>
13 #include <linux/uaccess.h>
14 #include <arch/system.h>
16 extern int find_fixup_code(struct pt_regs *);
17 extern void die_if_kernel(const char *, struct pt_regs *, long);
18 extern void show_registers(struct pt_regs *regs);
20 /* debug of low-level TLB reload */
21 #undef DEBUG
23 #ifdef DEBUG
24 #define D(x) x
25 #else
26 #define D(x)
27 #endif
29 /* debug of higher-level faults */
30 #define DPG(x)
32 /* current active page directory */
34 DEFINE_PER_CPU(pgd_t *, current_pgd);
35 unsigned long cris_signal_return_page;
38 * This routine handles page faults. It determines the address,
39 * and the problem, and then passes it off to one of the appropriate
40 * routines.
42 * Notice that the address we're given is aligned to the page the fault
43 * occurred in, since we only get the PFN in R_MMU_CAUSE not the complete
44 * address.
46 * error_code:
47 * bit 0 == 0 means no page found, 1 means protection fault
48 * bit 1 == 0 means read, 1 means write
50 * If this routine detects a bad access, it returns 1, otherwise it
51 * returns 0.
54 asmlinkage void
55 do_page_fault(unsigned long address, struct pt_regs *regs,
56 int protection, int writeaccess)
58 struct task_struct *tsk;
59 struct mm_struct *mm;
60 struct vm_area_struct * vma;
61 siginfo_t info;
62 int fault;
63 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
65 D(printk(KERN_DEBUG
66 "Page fault for %lX on %X at %lX, prot %d write %d\n",
67 address, smp_processor_id(), instruction_pointer(regs),
68 protection, writeaccess));
70 tsk = current;
73 * We fault-in kernel-space virtual memory on-demand. The
74 * 'reference' page table is init_mm.pgd.
76 * NOTE! We MUST NOT take any locks for this case. We may
77 * be in an interrupt or a critical region, and should
78 * only copy the information from the master page table,
79 * nothing more.
81 * NOTE2: This is done so that, when updating the vmalloc
82 * mappings we don't have to walk all processes pgdirs and
83 * add the high mappings all at once. Instead we do it as they
84 * are used. However vmalloc'ed page entries have the PAGE_GLOBAL
85 * bit set so sometimes the TLB can use a lingering entry.
87 * This verifies that the fault happens in kernel space
88 * and that the fault was not a protection error (error_code & 1).
91 if (address >= VMALLOC_START &&
92 !protection &&
93 !user_mode(regs))
94 goto vmalloc_fault;
96 /* When stack execution is not allowed we store the signal
97 * trampolines in the reserved cris_signal_return_page.
98 * Handle this in the exact same way as vmalloc (we know
99 * that the mapping is there and is valid so no need to
100 * call handle_mm_fault).
102 if (cris_signal_return_page &&
103 address == cris_signal_return_page &&
104 !protection && user_mode(regs))
105 goto vmalloc_fault;
107 /* we can and should enable interrupts at this point */
108 local_irq_enable();
110 mm = tsk->mm;
111 info.si_code = SEGV_MAPERR;
114 * If we're in an interrupt, have pagefaults disabled or have no
115 * user context, we must not take the fault.
118 if (faulthandler_disabled() || !mm)
119 goto no_context;
121 if (user_mode(regs))
122 flags |= FAULT_FLAG_USER;
123 retry:
124 down_read(&mm->mmap_sem);
125 vma = find_vma(mm, address);
126 if (!vma)
127 goto bad_area;
128 if (vma->vm_start <= address)
129 goto good_area;
130 if (!(vma->vm_flags & VM_GROWSDOWN))
131 goto bad_area;
132 if (user_mode(regs)) {
134 * accessing the stack below usp is always a bug.
135 * we get page-aligned addresses so we can only check
136 * if we're within a page from usp, but that might be
137 * enough to catch brutal errors at least.
139 if (address + PAGE_SIZE < rdusp())
140 goto bad_area;
142 if (expand_stack(vma, address))
143 goto bad_area;
146 * Ok, we have a good vm_area for this memory access, so
147 * we can handle it..
150 good_area:
151 info.si_code = SEGV_ACCERR;
153 /* first do some preliminary protection checks */
155 if (writeaccess == 2){
156 if (!(vma->vm_flags & VM_EXEC))
157 goto bad_area;
158 } else if (writeaccess == 1) {
159 if (!(vma->vm_flags & VM_WRITE))
160 goto bad_area;
161 flags |= FAULT_FLAG_WRITE;
162 } else {
163 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
164 goto bad_area;
168 * If for any reason at all we couldn't handle the fault,
169 * make sure we exit gracefully rather than endlessly redo
170 * the fault.
173 fault = handle_mm_fault(vma, address, flags);
175 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
176 return;
178 if (unlikely(fault & VM_FAULT_ERROR)) {
179 if (fault & VM_FAULT_OOM)
180 goto out_of_memory;
181 else if (fault & VM_FAULT_SIGSEGV)
182 goto bad_area;
183 else if (fault & VM_FAULT_SIGBUS)
184 goto do_sigbus;
185 BUG();
188 if (flags & FAULT_FLAG_ALLOW_RETRY) {
189 if (fault & VM_FAULT_MAJOR)
190 tsk->maj_flt++;
191 else
192 tsk->min_flt++;
193 if (fault & VM_FAULT_RETRY) {
194 flags &= ~FAULT_FLAG_ALLOW_RETRY;
195 flags |= FAULT_FLAG_TRIED;
198 * No need to up_read(&mm->mmap_sem) as we would
199 * have already released it in __lock_page_or_retry
200 * in mm/filemap.c.
203 goto retry;
207 up_read(&mm->mmap_sem);
208 return;
211 * Something tried to access memory that isn't in our memory map..
212 * Fix it, but check if it's kernel or user first..
215 bad_area:
216 up_read(&mm->mmap_sem);
218 bad_area_nosemaphore:
219 DPG(show_registers(regs));
221 /* User mode accesses just cause a SIGSEGV */
223 if (user_mode(regs)) {
224 #ifdef CONFIG_NO_SEGFAULT_TERMINATION
225 DECLARE_WAIT_QUEUE_HEAD(wq);
226 #endif
227 printk(KERN_NOTICE "%s (pid %d) segfaults for page "
228 "address %08lx at pc %08lx\n",
229 tsk->comm, tsk->pid,
230 address, instruction_pointer(regs));
232 /* With DPG on, we've already dumped registers above. */
233 DPG(if (0))
234 show_registers(regs);
236 #ifdef CONFIG_NO_SEGFAULT_TERMINATION
237 wait_event_interruptible(wq, 0 == 1);
238 #else
239 info.si_signo = SIGSEGV;
240 info.si_errno = 0;
241 /* info.si_code has been set above */
242 info.si_addr = (void *)address;
243 force_sig_info(SIGSEGV, &info, tsk);
244 #endif
245 return;
248 no_context:
250 /* Are we prepared to handle this kernel fault?
252 * (The kernel has valid exception-points in the source
253 * when it accesses user-memory. When it fails in one
254 * of those points, we find it in a table and do a jump
255 * to some fixup code that loads an appropriate error
256 * code)
259 if (find_fixup_code(regs))
260 return;
263 * Oops. The kernel tried to access some bad page. We'll have to
264 * terminate things with extreme prejudice.
267 if (!oops_in_progress) {
268 oops_in_progress = 1;
269 if ((unsigned long) (address) < PAGE_SIZE)
270 printk(KERN_ALERT "Unable to handle kernel NULL "
271 "pointer dereference");
272 else
273 printk(KERN_ALERT "Unable to handle kernel access"
274 " at virtual address %08lx\n", address);
276 die_if_kernel("Oops", regs, (writeaccess << 1) | protection);
277 oops_in_progress = 0;
280 do_exit(SIGKILL);
283 * We ran out of memory, or some other thing happened to us that made
284 * us unable to handle the page fault gracefully.
287 out_of_memory:
288 up_read(&mm->mmap_sem);
289 if (!user_mode(regs))
290 goto no_context;
291 pagefault_out_of_memory();
292 return;
294 do_sigbus:
295 up_read(&mm->mmap_sem);
298 * Send a sigbus, regardless of whether we were in kernel
299 * or user mode.
301 info.si_signo = SIGBUS;
302 info.si_errno = 0;
303 info.si_code = BUS_ADRERR;
304 info.si_addr = (void *)address;
305 force_sig_info(SIGBUS, &info, tsk);
307 /* Kernel mode? Handle exceptions or die */
308 if (!user_mode(regs))
309 goto no_context;
310 return;
312 vmalloc_fault:
315 * Synchronize this task's top level page-table
316 * with the 'reference' page table.
318 * Use current_pgd instead of tsk->active_mm->pgd
319 * since the latter might be unavailable if this
320 * code is executed in a misfortunately run irq
321 * (like inside schedule() between switch_mm and
322 * switch_to...).
325 int offset = pgd_index(address);
326 pgd_t *pgd, *pgd_k;
327 pud_t *pud, *pud_k;
328 pmd_t *pmd, *pmd_k;
329 pte_t *pte_k;
331 pgd = (pgd_t *)per_cpu(current_pgd, smp_processor_id()) + offset;
332 pgd_k = init_mm.pgd + offset;
334 /* Since we're two-level, we don't need to do both
335 * set_pgd and set_pmd (they do the same thing). If
336 * we go three-level at some point, do the right thing
337 * with pgd_present and set_pgd here.
339 * Also, since the vmalloc area is global, we don't
340 * need to copy individual PTE's, it is enough to
341 * copy the pgd pointer into the pte page of the
342 * root task. If that is there, we'll find our pte if
343 * it exists.
346 pud = pud_offset(pgd, address);
347 pud_k = pud_offset(pgd_k, address);
348 if (!pud_present(*pud_k))
349 goto no_context;
351 pmd = pmd_offset(pud, address);
352 pmd_k = pmd_offset(pud_k, address);
354 if (!pmd_present(*pmd_k))
355 goto bad_area_nosemaphore;
357 set_pmd(pmd, *pmd_k);
359 /* Make sure the actual PTE exists as well to
360 * catch kernel vmalloc-area accesses to non-mapped
361 * addresses. If we don't do this, this will just
362 * silently loop forever.
365 pte_k = pte_offset_kernel(pmd_k, address);
366 if (!pte_present(*pte_k))
367 goto no_context;
369 return;
373 /* Find fixup code. */
375 find_fixup_code(struct pt_regs *regs)
377 const struct exception_table_entry *fixup;
378 /* in case of delay slot fault (v32) */
379 unsigned long ip = (instruction_pointer(regs) & ~0x1);
381 fixup = search_exception_tables(ip);
382 if (fixup != 0) {
383 /* Adjust the instruction pointer in the stackframe. */
384 instruction_pointer(regs) = fixup->fixup;
385 arch_fixup(regs);
386 return 1;
389 return 0;