xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / arch / openrisc / kernel / dma.c
bloba945f00011b426e501bf2ac1e2bce398a78a7487
1 /*
2 * OpenRISC Linux
4 * Linux architectural port borrowing liberally from similar works of
5 * others. All original copyrights apply as per the original source
6 * declaration.
8 * Modifications for the OpenRISC architecture:
9 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
10 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
17 * DMA mapping callbacks...
18 * As alloc_coherent is the only DMA callback being used currently, that's
19 * the only thing implemented properly. The rest need looking into...
22 #include <linux/dma-mapping.h>
23 #include <linux/dma-debug.h>
24 #include <linux/export.h>
26 #include <asm/cpuinfo.h>
27 #include <asm/spr_defs.h>
28 #include <asm/tlbflush.h>
30 static int
31 page_set_nocache(pte_t *pte, unsigned long addr,
32 unsigned long next, struct mm_walk *walk)
34 unsigned long cl;
35 struct cpuinfo_or1k *cpuinfo = &cpuinfo_or1k[smp_processor_id()];
37 pte_val(*pte) |= _PAGE_CI;
40 * Flush the page out of the TLB so that the new page flags get
41 * picked up next time there's an access
43 flush_tlb_page(NULL, addr);
45 /* Flush page out of dcache */
46 for (cl = __pa(addr); cl < __pa(next); cl += cpuinfo->dcache_block_size)
47 mtspr(SPR_DCBFR, cl);
49 return 0;
52 static int
53 page_clear_nocache(pte_t *pte, unsigned long addr,
54 unsigned long next, struct mm_walk *walk)
56 pte_val(*pte) &= ~_PAGE_CI;
59 * Flush the page out of the TLB so that the new page flags get
60 * picked up next time there's an access
62 flush_tlb_page(NULL, addr);
64 return 0;
68 * Alloc "coherent" memory, which for OpenRISC means simply uncached.
70 * This function effectively just calls __get_free_pages, sets the
71 * cache-inhibit bit on those pages, and makes sure that the pages are
72 * flushed out of the cache before they are used.
74 * If the NON_CONSISTENT attribute is set, then this function just
75 * returns "normal", cachable memory.
77 * There are additional flags WEAK_ORDERING and WRITE_COMBINE to take
78 * into consideration here, too. All current known implementations of
79 * the OR1K support only strongly ordered memory accesses, so that flag
80 * is being ignored for now; uncached but write-combined memory is a
81 * missing feature of the OR1K.
83 static void *
84 or1k_dma_alloc(struct device *dev, size_t size,
85 dma_addr_t *dma_handle, gfp_t gfp,
86 unsigned long attrs)
88 unsigned long va;
89 void *page;
90 struct mm_walk walk = {
91 .pte_entry = page_set_nocache,
92 .mm = &init_mm
95 page = alloc_pages_exact(size, gfp);
96 if (!page)
97 return NULL;
99 /* This gives us the real physical address of the first page. */
100 *dma_handle = __pa(page);
102 va = (unsigned long)page;
104 if ((attrs & DMA_ATTR_NON_CONSISTENT) == 0) {
106 * We need to iterate through the pages, clearing the dcache for
107 * them and setting the cache-inhibit bit.
109 if (walk_page_range(va, va + size, &walk)) {
110 free_pages_exact(page, size);
111 return NULL;
115 return (void *)va;
118 static void
119 or1k_dma_free(struct device *dev, size_t size, void *vaddr,
120 dma_addr_t dma_handle, unsigned long attrs)
122 unsigned long va = (unsigned long)vaddr;
123 struct mm_walk walk = {
124 .pte_entry = page_clear_nocache,
125 .mm = &init_mm
128 if ((attrs & DMA_ATTR_NON_CONSISTENT) == 0) {
129 /* walk_page_range shouldn't be able to fail here */
130 WARN_ON(walk_page_range(va, va + size, &walk));
133 free_pages_exact(vaddr, size);
136 static dma_addr_t
137 or1k_map_page(struct device *dev, struct page *page,
138 unsigned long offset, size_t size,
139 enum dma_data_direction dir,
140 unsigned long attrs)
142 unsigned long cl;
143 dma_addr_t addr = page_to_phys(page) + offset;
144 struct cpuinfo_or1k *cpuinfo = &cpuinfo_or1k[smp_processor_id()];
146 if (attrs & DMA_ATTR_SKIP_CPU_SYNC)
147 return addr;
149 switch (dir) {
150 case DMA_TO_DEVICE:
151 /* Flush the dcache for the requested range */
152 for (cl = addr; cl < addr + size;
153 cl += cpuinfo->dcache_block_size)
154 mtspr(SPR_DCBFR, cl);
155 break;
156 case DMA_FROM_DEVICE:
157 /* Invalidate the dcache for the requested range */
158 for (cl = addr; cl < addr + size;
159 cl += cpuinfo->dcache_block_size)
160 mtspr(SPR_DCBIR, cl);
161 break;
162 default:
164 * NOTE: If dir == DMA_BIDIRECTIONAL then there's no need to
165 * flush nor invalidate the cache here as the area will need
166 * to be manually synced anyway.
168 break;
171 return addr;
174 static void
175 or1k_unmap_page(struct device *dev, dma_addr_t dma_handle,
176 size_t size, enum dma_data_direction dir,
177 unsigned long attrs)
179 /* Nothing special to do here... */
182 static int
183 or1k_map_sg(struct device *dev, struct scatterlist *sg,
184 int nents, enum dma_data_direction dir,
185 unsigned long attrs)
187 struct scatterlist *s;
188 int i;
190 for_each_sg(sg, s, nents, i) {
191 s->dma_address = or1k_map_page(dev, sg_page(s), s->offset,
192 s->length, dir, 0);
195 return nents;
198 static void
199 or1k_unmap_sg(struct device *dev, struct scatterlist *sg,
200 int nents, enum dma_data_direction dir,
201 unsigned long attrs)
203 struct scatterlist *s;
204 int i;
206 for_each_sg(sg, s, nents, i) {
207 or1k_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, 0);
211 static void
212 or1k_sync_single_for_cpu(struct device *dev,
213 dma_addr_t dma_handle, size_t size,
214 enum dma_data_direction dir)
216 unsigned long cl;
217 dma_addr_t addr = dma_handle;
218 struct cpuinfo_or1k *cpuinfo = &cpuinfo_or1k[smp_processor_id()];
220 /* Invalidate the dcache for the requested range */
221 for (cl = addr; cl < addr + size; cl += cpuinfo->dcache_block_size)
222 mtspr(SPR_DCBIR, cl);
225 static void
226 or1k_sync_single_for_device(struct device *dev,
227 dma_addr_t dma_handle, size_t size,
228 enum dma_data_direction dir)
230 unsigned long cl;
231 dma_addr_t addr = dma_handle;
232 struct cpuinfo_or1k *cpuinfo = &cpuinfo_or1k[smp_processor_id()];
234 /* Flush the dcache for the requested range */
235 for (cl = addr; cl < addr + size; cl += cpuinfo->dcache_block_size)
236 mtspr(SPR_DCBFR, cl);
239 const struct dma_map_ops or1k_dma_map_ops = {
240 .alloc = or1k_dma_alloc,
241 .free = or1k_dma_free,
242 .map_page = or1k_map_page,
243 .unmap_page = or1k_unmap_page,
244 .map_sg = or1k_map_sg,
245 .unmap_sg = or1k_unmap_sg,
246 .sync_single_for_cpu = or1k_sync_single_for_cpu,
247 .sync_single_for_device = or1k_sync_single_for_device,
249 EXPORT_SYMBOL(or1k_dma_map_ops);
251 /* Number of entries preallocated for DMA-API debugging */
252 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
254 static int __init dma_init(void)
256 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
258 return 0;
260 fs_initcall(dma_init);