xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / arch / parisc / kernel / firmware.c
blob6d471c00c71af12f6a48c4deebb5d260071d5dd3
1 /*
2 * arch/parisc/kernel/firmware.c - safe PDC access routines
4 * PDC == Processor Dependent Code
6 * See http://www.parisc-linux.org/documentation/index.html
7 * for documentation describing the entry points and calling
8 * conventions defined below.
10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
23 /* I think it would be in everyone's best interest to follow this
24 * guidelines when writing PDC wrappers:
26 * - the name of the pdc wrapper should match one of the macros
27 * used for the first two arguments
28 * - don't use caps for random parts of the name
29 * - use the static PDC result buffers and "copyout" to structs
30 * supplied by the caller to encapsulate alignment restrictions
31 * - hold pdc_lock while in PDC or using static result buffers
32 * - use __pa() to convert virtual (kernel) pointers to physical
33 * ones.
34 * - the name of the struct used for pdc return values should equal
35 * one of the macros used for the first two arguments to the
36 * corresponding PDC call
37 * - keep the order of arguments
38 * - don't be smart (setting trailing NUL bytes for strings, return
39 * something useful even if the call failed) unless you are sure
40 * it's not going to affect functionality or performance
42 * Example:
43 * int pdc_cache_info(struct pdc_cache_info *cache_info )
44 * {
45 * int retval;
47 * spin_lock_irq(&pdc_lock);
48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49 * convert_to_wide(pdc_result);
50 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
51 * spin_unlock_irq(&pdc_lock);
53 * return retval;
54 * }
55 * prumpf 991016
58 #include <stdarg.h>
60 #include <linux/delay.h>
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/spinlock.h>
67 #include <asm/page.h>
68 #include <asm/pdc.h>
69 #include <asm/pdcpat.h>
70 #include <asm/processor.h> /* for boot_cpu_data */
72 #if defined(BOOTLOADER)
73 # undef spin_lock_irqsave
74 # define spin_lock_irqsave(a, b) { b = 1; }
75 # undef spin_unlock_irqrestore
76 # define spin_unlock_irqrestore(a, b)
77 #else
78 static DEFINE_SPINLOCK(pdc_lock);
79 #endif
81 extern unsigned long pdc_result[NUM_PDC_RESULT];
82 extern unsigned long pdc_result2[NUM_PDC_RESULT];
84 #ifdef CONFIG_64BIT
85 #define WIDE_FIRMWARE 0x1
86 #define NARROW_FIRMWARE 0x2
88 /* Firmware needs to be initially set to narrow to determine the
89 * actual firmware width. */
90 int parisc_narrow_firmware __read_mostly = 1;
91 #endif
93 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
94 * and MEM_PDC calls are always the same width as the OS.
95 * Some PAT boxes may have 64-bit IODC I/O.
97 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
98 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
99 * This allowed wide kernels to run on Cxxx boxes.
100 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
101 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
104 #ifdef CONFIG_64BIT
105 long real64_call(unsigned long function, ...);
106 #endif
107 long real32_call(unsigned long function, ...);
109 #ifdef CONFIG_64BIT
110 # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
111 # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
112 #else
113 # define MEM_PDC (unsigned long)PAGE0->mem_pdc
114 # define mem_pdc_call(args...) real32_call(MEM_PDC, args)
115 #endif
119 * f_extend - Convert PDC addresses to kernel addresses.
120 * @address: Address returned from PDC.
122 * This function is used to convert PDC addresses into kernel addresses
123 * when the PDC address size and kernel address size are different.
125 static unsigned long f_extend(unsigned long address)
127 #ifdef CONFIG_64BIT
128 if(unlikely(parisc_narrow_firmware)) {
129 if((address & 0xff000000) == 0xf0000000)
130 return 0xf0f0f0f000000000UL | (u32)address;
132 if((address & 0xf0000000) == 0xf0000000)
133 return 0xffffffff00000000UL | (u32)address;
135 #endif
136 return address;
140 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
141 * @address: The return buffer from PDC.
143 * This function is used to convert the return buffer addresses retrieved from PDC
144 * into kernel addresses when the PDC address size and kernel address size are
145 * different.
147 static void convert_to_wide(unsigned long *addr)
149 #ifdef CONFIG_64BIT
150 int i;
151 unsigned int *p = (unsigned int *)addr;
153 if (unlikely(parisc_narrow_firmware)) {
154 for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
155 addr[i] = p[i];
157 #endif
160 #ifdef CONFIG_64BIT
161 void set_firmware_width_unlocked(void)
163 int ret;
165 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
166 __pa(pdc_result), 0);
167 convert_to_wide(pdc_result);
168 if (pdc_result[0] != NARROW_FIRMWARE)
169 parisc_narrow_firmware = 0;
173 * set_firmware_width - Determine if the firmware is wide or narrow.
175 * This function must be called before any pdc_* function that uses the
176 * convert_to_wide function.
178 void set_firmware_width(void)
180 unsigned long flags;
181 spin_lock_irqsave(&pdc_lock, flags);
182 set_firmware_width_unlocked();
183 spin_unlock_irqrestore(&pdc_lock, flags);
185 #else
186 void set_firmware_width_unlocked(void)
188 return;
191 void set_firmware_width(void)
193 return;
195 #endif /*CONFIG_64BIT*/
198 #if !defined(BOOTLOADER)
200 * pdc_emergency_unlock - Unlock the linux pdc lock
202 * This call unlocks the linux pdc lock in case we need some PDC functions
203 * (like pdc_add_valid) during kernel stack dump.
205 void pdc_emergency_unlock(void)
207 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
208 if (spin_is_locked(&pdc_lock))
209 spin_unlock(&pdc_lock);
214 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
215 * @address: Address to be verified.
217 * This PDC call attempts to read from the specified address and verifies
218 * if the address is valid.
220 * The return value is PDC_OK (0) in case accessing this address is valid.
222 int pdc_add_valid(unsigned long address)
224 int retval;
225 unsigned long flags;
227 spin_lock_irqsave(&pdc_lock, flags);
228 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
229 spin_unlock_irqrestore(&pdc_lock, flags);
231 return retval;
233 EXPORT_SYMBOL(pdc_add_valid);
236 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
237 * @instr: Pointer to variable which will get instruction opcode.
239 * The return value is PDC_OK (0) in case call succeeded.
241 int __init pdc_instr(unsigned int *instr)
243 int retval;
244 unsigned long flags;
246 spin_lock_irqsave(&pdc_lock, flags);
247 retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
248 convert_to_wide(pdc_result);
249 *instr = pdc_result[0];
250 spin_unlock_irqrestore(&pdc_lock, flags);
252 return retval;
256 * pdc_chassis_info - Return chassis information.
257 * @result: The return buffer.
258 * @chassis_info: The memory buffer address.
259 * @len: The size of the memory buffer address.
261 * An HVERSION dependent call for returning the chassis information.
263 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
265 int retval;
266 unsigned long flags;
268 spin_lock_irqsave(&pdc_lock, flags);
269 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
270 memcpy(&pdc_result2, led_info, len);
271 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
272 __pa(pdc_result), __pa(pdc_result2), len);
273 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
274 memcpy(led_info, pdc_result2, len);
275 spin_unlock_irqrestore(&pdc_lock, flags);
277 return retval;
281 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
282 * @retval: -1 on error, 0 on success. Other value are PDC errors
284 * Must be correctly formatted or expect system crash
286 #ifdef CONFIG_64BIT
287 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
289 int retval = 0;
290 unsigned long flags;
292 if (!is_pdc_pat())
293 return -1;
295 spin_lock_irqsave(&pdc_lock, flags);
296 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
297 spin_unlock_irqrestore(&pdc_lock, flags);
299 return retval;
301 #endif
304 * pdc_chassis_disp - Updates chassis code
305 * @retval: -1 on error, 0 on success
307 int pdc_chassis_disp(unsigned long disp)
309 int retval = 0;
310 unsigned long flags;
312 spin_lock_irqsave(&pdc_lock, flags);
313 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
314 spin_unlock_irqrestore(&pdc_lock, flags);
316 return retval;
320 * pdc_chassis_warn - Fetches chassis warnings
321 * @retval: -1 on error, 0 on success
323 int pdc_chassis_warn(unsigned long *warn)
325 int retval = 0;
326 unsigned long flags;
328 spin_lock_irqsave(&pdc_lock, flags);
329 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
330 *warn = pdc_result[0];
331 spin_unlock_irqrestore(&pdc_lock, flags);
333 return retval;
336 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
338 int ret;
340 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
341 convert_to_wide(pdc_result);
342 pdc_coproc_info->ccr_functional = pdc_result[0];
343 pdc_coproc_info->ccr_present = pdc_result[1];
344 pdc_coproc_info->revision = pdc_result[17];
345 pdc_coproc_info->model = pdc_result[18];
347 return ret;
351 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
352 * @pdc_coproc_info: Return buffer address.
354 * This PDC call returns the presence and status of all the coprocessors
355 * attached to the processor.
357 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
359 int ret;
360 unsigned long flags;
362 spin_lock_irqsave(&pdc_lock, flags);
363 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
364 spin_unlock_irqrestore(&pdc_lock, flags);
366 return ret;
370 * pdc_iodc_read - Read data from the modules IODC.
371 * @actcnt: The actual number of bytes.
372 * @hpa: The HPA of the module for the iodc read.
373 * @index: The iodc entry point.
374 * @iodc_data: A buffer memory for the iodc options.
375 * @iodc_data_size: Size of the memory buffer.
377 * This PDC call reads from the IODC of the module specified by the hpa
378 * argument.
380 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
381 void *iodc_data, unsigned int iodc_data_size)
383 int retval;
384 unsigned long flags;
386 spin_lock_irqsave(&pdc_lock, flags);
387 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
388 index, __pa(pdc_result2), iodc_data_size);
389 convert_to_wide(pdc_result);
390 *actcnt = pdc_result[0];
391 memcpy(iodc_data, pdc_result2, iodc_data_size);
392 spin_unlock_irqrestore(&pdc_lock, flags);
394 return retval;
396 EXPORT_SYMBOL(pdc_iodc_read);
399 * pdc_system_map_find_mods - Locate unarchitected modules.
400 * @pdc_mod_info: Return buffer address.
401 * @mod_path: pointer to dev path structure.
402 * @mod_index: fixed address module index.
404 * To locate and identify modules which reside at fixed I/O addresses, which
405 * do not self-identify via architected bus walks.
407 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
408 struct pdc_module_path *mod_path, long mod_index)
410 int retval;
411 unsigned long flags;
413 spin_lock_irqsave(&pdc_lock, flags);
414 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
415 __pa(pdc_result2), mod_index);
416 convert_to_wide(pdc_result);
417 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
418 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
419 spin_unlock_irqrestore(&pdc_lock, flags);
421 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
422 return retval;
426 * pdc_system_map_find_addrs - Retrieve additional address ranges.
427 * @pdc_addr_info: Return buffer address.
428 * @mod_index: Fixed address module index.
429 * @addr_index: Address range index.
431 * Retrieve additional information about subsequent address ranges for modules
432 * with multiple address ranges.
434 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
435 long mod_index, long addr_index)
437 int retval;
438 unsigned long flags;
440 spin_lock_irqsave(&pdc_lock, flags);
441 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
442 mod_index, addr_index);
443 convert_to_wide(pdc_result);
444 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
445 spin_unlock_irqrestore(&pdc_lock, flags);
447 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
448 return retval;
452 * pdc_model_info - Return model information about the processor.
453 * @model: The return buffer.
455 * Returns the version numbers, identifiers, and capabilities from the processor module.
457 int pdc_model_info(struct pdc_model *model)
459 int retval;
460 unsigned long flags;
462 spin_lock_irqsave(&pdc_lock, flags);
463 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
464 convert_to_wide(pdc_result);
465 memcpy(model, pdc_result, sizeof(*model));
466 spin_unlock_irqrestore(&pdc_lock, flags);
468 return retval;
472 * pdc_model_sysmodel - Get the system model name.
473 * @name: A char array of at least 81 characters.
475 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
476 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
477 * on HP/UX.
479 int pdc_model_sysmodel(char *name)
481 int retval;
482 unsigned long flags;
484 spin_lock_irqsave(&pdc_lock, flags);
485 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
486 OS_ID_HPUX, __pa(name));
487 convert_to_wide(pdc_result);
489 if (retval == PDC_OK) {
490 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
491 } else {
492 name[0] = 0;
494 spin_unlock_irqrestore(&pdc_lock, flags);
496 return retval;
500 * pdc_model_versions - Identify the version number of each processor.
501 * @cpu_id: The return buffer.
502 * @id: The id of the processor to check.
504 * Returns the version number for each processor component.
506 * This comment was here before, but I do not know what it means :( -RB
507 * id: 0 = cpu revision, 1 = boot-rom-version
509 int pdc_model_versions(unsigned long *versions, int id)
511 int retval;
512 unsigned long flags;
514 spin_lock_irqsave(&pdc_lock, flags);
515 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
516 convert_to_wide(pdc_result);
517 *versions = pdc_result[0];
518 spin_unlock_irqrestore(&pdc_lock, flags);
520 return retval;
524 * pdc_model_cpuid - Returns the CPU_ID.
525 * @cpu_id: The return buffer.
527 * Returns the CPU_ID value which uniquely identifies the cpu portion of
528 * the processor module.
530 int pdc_model_cpuid(unsigned long *cpu_id)
532 int retval;
533 unsigned long flags;
535 spin_lock_irqsave(&pdc_lock, flags);
536 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
537 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
538 convert_to_wide(pdc_result);
539 *cpu_id = pdc_result[0];
540 spin_unlock_irqrestore(&pdc_lock, flags);
542 return retval;
546 * pdc_model_capabilities - Returns the platform capabilities.
547 * @capabilities: The return buffer.
549 * Returns information about platform support for 32- and/or 64-bit
550 * OSes, IO-PDIR coherency, and virtual aliasing.
552 int pdc_model_capabilities(unsigned long *capabilities)
554 int retval;
555 unsigned long flags;
557 spin_lock_irqsave(&pdc_lock, flags);
558 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
559 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
560 convert_to_wide(pdc_result);
561 if (retval == PDC_OK) {
562 *capabilities = pdc_result[0];
563 } else {
564 *capabilities = PDC_MODEL_OS32;
566 spin_unlock_irqrestore(&pdc_lock, flags);
568 return retval;
572 * pdc_cache_info - Return cache and TLB information.
573 * @cache_info: The return buffer.
575 * Returns information about the processor's cache and TLB.
577 int pdc_cache_info(struct pdc_cache_info *cache_info)
579 int retval;
580 unsigned long flags;
582 spin_lock_irqsave(&pdc_lock, flags);
583 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
584 convert_to_wide(pdc_result);
585 memcpy(cache_info, pdc_result, sizeof(*cache_info));
586 spin_unlock_irqrestore(&pdc_lock, flags);
588 return retval;
592 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
593 * @space_bits: Should be 0, if not, bad mojo!
595 * Returns information about Space ID hashing.
597 int pdc_spaceid_bits(unsigned long *space_bits)
599 int retval;
600 unsigned long flags;
602 spin_lock_irqsave(&pdc_lock, flags);
603 pdc_result[0] = 0;
604 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
605 convert_to_wide(pdc_result);
606 *space_bits = pdc_result[0];
607 spin_unlock_irqrestore(&pdc_lock, flags);
609 return retval;
612 #ifndef CONFIG_PA20
614 * pdc_btlb_info - Return block TLB information.
615 * @btlb: The return buffer.
617 * Returns information about the hardware Block TLB.
619 int pdc_btlb_info(struct pdc_btlb_info *btlb)
621 int retval;
622 unsigned long flags;
624 spin_lock_irqsave(&pdc_lock, flags);
625 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
626 memcpy(btlb, pdc_result, sizeof(*btlb));
627 spin_unlock_irqrestore(&pdc_lock, flags);
629 if(retval < 0) {
630 btlb->max_size = 0;
632 return retval;
636 * pdc_mem_map_hpa - Find fixed module information.
637 * @address: The return buffer
638 * @mod_path: pointer to dev path structure.
640 * This call was developed for S700 workstations to allow the kernel to find
641 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
642 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
643 * call.
645 * This call is supported by all existing S700 workstations (up to Gecko).
647 int pdc_mem_map_hpa(struct pdc_memory_map *address,
648 struct pdc_module_path *mod_path)
650 int retval;
651 unsigned long flags;
653 spin_lock_irqsave(&pdc_lock, flags);
654 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
655 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
656 __pa(pdc_result2));
657 memcpy(address, pdc_result, sizeof(*address));
658 spin_unlock_irqrestore(&pdc_lock, flags);
660 return retval;
662 #endif /* !CONFIG_PA20 */
665 * pdc_lan_station_id - Get the LAN address.
666 * @lan_addr: The return buffer.
667 * @hpa: The network device HPA.
669 * Get the LAN station address when it is not directly available from the LAN hardware.
671 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
673 int retval;
674 unsigned long flags;
676 spin_lock_irqsave(&pdc_lock, flags);
677 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
678 __pa(pdc_result), hpa);
679 if (retval < 0) {
680 /* FIXME: else read MAC from NVRAM */
681 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
682 } else {
683 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
685 spin_unlock_irqrestore(&pdc_lock, flags);
687 return retval;
689 EXPORT_SYMBOL(pdc_lan_station_id);
692 * pdc_stable_read - Read data from Stable Storage.
693 * @staddr: Stable Storage address to access.
694 * @memaddr: The memory address where Stable Storage data shall be copied.
695 * @count: number of bytes to transfer. count is multiple of 4.
697 * This PDC call reads from the Stable Storage address supplied in staddr
698 * and copies count bytes to the memory address memaddr.
699 * The call will fail if staddr+count > PDC_STABLE size.
701 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
703 int retval;
704 unsigned long flags;
706 spin_lock_irqsave(&pdc_lock, flags);
707 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
708 __pa(pdc_result), count);
709 convert_to_wide(pdc_result);
710 memcpy(memaddr, pdc_result, count);
711 spin_unlock_irqrestore(&pdc_lock, flags);
713 return retval;
715 EXPORT_SYMBOL(pdc_stable_read);
718 * pdc_stable_write - Write data to Stable Storage.
719 * @staddr: Stable Storage address to access.
720 * @memaddr: The memory address where Stable Storage data shall be read from.
721 * @count: number of bytes to transfer. count is multiple of 4.
723 * This PDC call reads count bytes from the supplied memaddr address,
724 * and copies count bytes to the Stable Storage address staddr.
725 * The call will fail if staddr+count > PDC_STABLE size.
727 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
729 int retval;
730 unsigned long flags;
732 spin_lock_irqsave(&pdc_lock, flags);
733 memcpy(pdc_result, memaddr, count);
734 convert_to_wide(pdc_result);
735 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
736 __pa(pdc_result), count);
737 spin_unlock_irqrestore(&pdc_lock, flags);
739 return retval;
741 EXPORT_SYMBOL(pdc_stable_write);
744 * pdc_stable_get_size - Get Stable Storage size in bytes.
745 * @size: pointer where the size will be stored.
747 * This PDC call returns the number of bytes in the processor's Stable
748 * Storage, which is the number of contiguous bytes implemented in Stable
749 * Storage starting from staddr=0. size in an unsigned 64-bit integer
750 * which is a multiple of four.
752 int pdc_stable_get_size(unsigned long *size)
754 int retval;
755 unsigned long flags;
757 spin_lock_irqsave(&pdc_lock, flags);
758 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
759 *size = pdc_result[0];
760 spin_unlock_irqrestore(&pdc_lock, flags);
762 return retval;
764 EXPORT_SYMBOL(pdc_stable_get_size);
767 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
769 * This PDC call is meant to be used to check the integrity of the current
770 * contents of Stable Storage.
772 int pdc_stable_verify_contents(void)
774 int retval;
775 unsigned long flags;
777 spin_lock_irqsave(&pdc_lock, flags);
778 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
779 spin_unlock_irqrestore(&pdc_lock, flags);
781 return retval;
783 EXPORT_SYMBOL(pdc_stable_verify_contents);
786 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
787 * the validity indicator.
789 * This PDC call will erase all contents of Stable Storage. Use with care!
791 int pdc_stable_initialize(void)
793 int retval;
794 unsigned long flags;
796 spin_lock_irqsave(&pdc_lock, flags);
797 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
798 spin_unlock_irqrestore(&pdc_lock, flags);
800 return retval;
802 EXPORT_SYMBOL(pdc_stable_initialize);
805 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
806 * @hwpath: fully bc.mod style path to the device.
807 * @initiator: the array to return the result into
809 * Get the SCSI operational parameters from PDC.
810 * Needed since HPUX never used BIOS or symbios card NVRAM.
811 * Most ncr/sym cards won't have an entry and just use whatever
812 * capabilities of the card are (eg Ultra, LVD). But there are
813 * several cases where it's useful:
814 * o set SCSI id for Multi-initiator clusters,
815 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
816 * o bus width exported is less than what the interface chip supports.
818 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
820 int retval;
821 unsigned long flags;
823 spin_lock_irqsave(&pdc_lock, flags);
825 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
826 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
827 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
829 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
830 __pa(pdc_result), __pa(hwpath));
831 if (retval < PDC_OK)
832 goto out;
834 if (pdc_result[0] < 16) {
835 initiator->host_id = pdc_result[0];
836 } else {
837 initiator->host_id = -1;
841 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
842 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
844 switch (pdc_result[1]) {
845 case 1: initiator->factor = 50; break;
846 case 2: initiator->factor = 25; break;
847 case 5: initiator->factor = 12; break;
848 case 25: initiator->factor = 10; break;
849 case 20: initiator->factor = 12; break;
850 case 40: initiator->factor = 10; break;
851 default: initiator->factor = -1; break;
854 if (IS_SPROCKETS()) {
855 initiator->width = pdc_result[4];
856 initiator->mode = pdc_result[5];
857 } else {
858 initiator->width = -1;
859 initiator->mode = -1;
862 out:
863 spin_unlock_irqrestore(&pdc_lock, flags);
865 return (retval >= PDC_OK);
867 EXPORT_SYMBOL(pdc_get_initiator);
871 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
872 * @num_entries: The return value.
873 * @hpa: The HPA for the device.
875 * This PDC function returns the number of entries in the specified cell's
876 * interrupt table.
877 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
879 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
881 int retval;
882 unsigned long flags;
884 spin_lock_irqsave(&pdc_lock, flags);
885 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
886 __pa(pdc_result), hpa);
887 convert_to_wide(pdc_result);
888 *num_entries = pdc_result[0];
889 spin_unlock_irqrestore(&pdc_lock, flags);
891 return retval;
894 /**
895 * pdc_pci_irt - Get the PCI interrupt routing table.
896 * @num_entries: The number of entries in the table.
897 * @hpa: The Hard Physical Address of the device.
898 * @tbl:
900 * Get the PCI interrupt routing table for the device at the given HPA.
901 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
903 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
905 int retval;
906 unsigned long flags;
908 BUG_ON((unsigned long)tbl & 0x7);
910 spin_lock_irqsave(&pdc_lock, flags);
911 pdc_result[0] = num_entries;
912 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
913 __pa(pdc_result), hpa, __pa(tbl));
914 spin_unlock_irqrestore(&pdc_lock, flags);
916 return retval;
920 #if 0 /* UNTEST CODE - left here in case someone needs it */
922 /**
923 * pdc_pci_config_read - read PCI config space.
924 * @hpa token from PDC to indicate which PCI device
925 * @pci_addr configuration space address to read from
927 * Read PCI Configuration space *before* linux PCI subsystem is running.
929 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
931 int retval;
932 unsigned long flags;
934 spin_lock_irqsave(&pdc_lock, flags);
935 pdc_result[0] = 0;
936 pdc_result[1] = 0;
937 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
938 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
939 spin_unlock_irqrestore(&pdc_lock, flags);
941 return retval ? ~0 : (unsigned int) pdc_result[0];
945 /**
946 * pdc_pci_config_write - read PCI config space.
947 * @hpa token from PDC to indicate which PCI device
948 * @pci_addr configuration space address to write
949 * @val value we want in the 32-bit register
951 * Write PCI Configuration space *before* linux PCI subsystem is running.
953 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
955 int retval;
956 unsigned long flags;
958 spin_lock_irqsave(&pdc_lock, flags);
959 pdc_result[0] = 0;
960 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
961 __pa(pdc_result), hpa,
962 cfg_addr&~3UL, 4UL, (unsigned long) val);
963 spin_unlock_irqrestore(&pdc_lock, flags);
965 return retval;
967 #endif /* UNTESTED CODE */
970 * pdc_tod_read - Read the Time-Of-Day clock.
971 * @tod: The return buffer:
973 * Read the Time-Of-Day clock
975 int pdc_tod_read(struct pdc_tod *tod)
977 int retval;
978 unsigned long flags;
980 spin_lock_irqsave(&pdc_lock, flags);
981 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
982 convert_to_wide(pdc_result);
983 memcpy(tod, pdc_result, sizeof(*tod));
984 spin_unlock_irqrestore(&pdc_lock, flags);
986 return retval;
988 EXPORT_SYMBOL(pdc_tod_read);
990 int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
992 int retval;
993 unsigned long flags;
995 spin_lock_irqsave(&pdc_lock, flags);
996 retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
997 convert_to_wide(pdc_result);
998 memcpy(rinfo, pdc_result, sizeof(*rinfo));
999 spin_unlock_irqrestore(&pdc_lock, flags);
1001 return retval;
1004 int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1005 unsigned long *pdt_entries_ptr)
1007 int retval;
1008 unsigned long flags;
1010 spin_lock_irqsave(&pdc_lock, flags);
1011 retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1012 __pa(pdt_entries_ptr));
1013 if (retval == PDC_OK) {
1014 convert_to_wide(pdc_result);
1015 memcpy(pret, pdc_result, sizeof(*pret));
1017 spin_unlock_irqrestore(&pdc_lock, flags);
1019 #ifdef CONFIG_64BIT
1021 * 64-bit kernels should not call this PDT function in narrow mode.
1022 * The pdt_entries_ptr array above will now contain 32-bit values
1024 if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1025 return PDC_ERROR;
1026 #endif
1028 return retval;
1032 * pdc_tod_set - Set the Time-Of-Day clock.
1033 * @sec: The number of seconds since epoch.
1034 * @usec: The number of micro seconds.
1036 * Set the Time-Of-Day clock.
1038 int pdc_tod_set(unsigned long sec, unsigned long usec)
1040 int retval;
1041 unsigned long flags;
1043 spin_lock_irqsave(&pdc_lock, flags);
1044 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1045 spin_unlock_irqrestore(&pdc_lock, flags);
1047 return retval;
1049 EXPORT_SYMBOL(pdc_tod_set);
1051 #ifdef CONFIG_64BIT
1052 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1053 struct pdc_memory_table *tbl, unsigned long entries)
1055 int retval;
1056 unsigned long flags;
1058 spin_lock_irqsave(&pdc_lock, flags);
1059 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1060 convert_to_wide(pdc_result);
1061 memcpy(r_addr, pdc_result, sizeof(*r_addr));
1062 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1063 spin_unlock_irqrestore(&pdc_lock, flags);
1065 return retval;
1067 #endif /* CONFIG_64BIT */
1069 /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
1070 * so I guessed at unsigned long. Someone who knows what this does, can fix
1071 * it later. :)
1073 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1075 int retval;
1076 unsigned long flags;
1078 spin_lock_irqsave(&pdc_lock, flags);
1079 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1080 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1081 spin_unlock_irqrestore(&pdc_lock, flags);
1083 return retval;
1087 * pdc_do_reset - Reset the system.
1089 * Reset the system.
1091 int pdc_do_reset(void)
1093 int retval;
1094 unsigned long flags;
1096 spin_lock_irqsave(&pdc_lock, flags);
1097 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1098 spin_unlock_irqrestore(&pdc_lock, flags);
1100 return retval;
1104 * pdc_soft_power_info - Enable soft power switch.
1105 * @power_reg: address of soft power register
1107 * Return the absolute address of the soft power switch register
1109 int __init pdc_soft_power_info(unsigned long *power_reg)
1111 int retval;
1112 unsigned long flags;
1114 *power_reg = (unsigned long) (-1);
1116 spin_lock_irqsave(&pdc_lock, flags);
1117 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1118 if (retval == PDC_OK) {
1119 convert_to_wide(pdc_result);
1120 *power_reg = f_extend(pdc_result[0]);
1122 spin_unlock_irqrestore(&pdc_lock, flags);
1124 return retval;
1128 * pdc_soft_power_button - Control the soft power button behaviour
1129 * @sw_control: 0 for hardware control, 1 for software control
1132 * This PDC function places the soft power button under software or
1133 * hardware control.
1134 * Under software control the OS may control to when to allow to shut
1135 * down the system. Under hardware control pressing the power button
1136 * powers off the system immediately.
1138 int pdc_soft_power_button(int sw_control)
1140 int retval;
1141 unsigned long flags;
1143 spin_lock_irqsave(&pdc_lock, flags);
1144 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1145 spin_unlock_irqrestore(&pdc_lock, flags);
1147 return retval;
1151 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1152 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1153 * who knows what other platform firmware might do with this OS "hook".
1155 void pdc_io_reset(void)
1157 unsigned long flags;
1159 spin_lock_irqsave(&pdc_lock, flags);
1160 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1161 spin_unlock_irqrestore(&pdc_lock, flags);
1165 * pdc_io_reset_devices - Hack to Stop USB controller
1167 * If PDC used the usb controller, the usb controller
1168 * is still running and will crash the machines during iommu
1169 * setup, because of still running DMA. This PDC call
1170 * stops the USB controller.
1171 * Normally called after calling pdc_io_reset().
1173 void pdc_io_reset_devices(void)
1175 unsigned long flags;
1177 spin_lock_irqsave(&pdc_lock, flags);
1178 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1179 spin_unlock_irqrestore(&pdc_lock, flags);
1182 #endif /* defined(BOOTLOADER) */
1184 /* locked by pdc_console_lock */
1185 static int __attribute__((aligned(8))) iodc_retbuf[32];
1186 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1189 * pdc_iodc_print - Console print using IODC.
1190 * @str: the string to output.
1191 * @count: length of str
1193 * Note that only these special chars are architected for console IODC io:
1194 * BEL, BS, CR, and LF. Others are passed through.
1195 * Since the HP console requires CR+LF to perform a 'newline', we translate
1196 * "\n" to "\r\n".
1198 int pdc_iodc_print(const unsigned char *str, unsigned count)
1200 unsigned int i;
1201 unsigned long flags;
1203 for (i = 0; i < count;) {
1204 switch(str[i]) {
1205 case '\n':
1206 iodc_dbuf[i+0] = '\r';
1207 iodc_dbuf[i+1] = '\n';
1208 i += 2;
1209 goto print;
1210 default:
1211 iodc_dbuf[i] = str[i];
1212 i++;
1213 break;
1217 print:
1218 spin_lock_irqsave(&pdc_lock, flags);
1219 real32_call(PAGE0->mem_cons.iodc_io,
1220 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1221 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1222 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1223 spin_unlock_irqrestore(&pdc_lock, flags);
1225 return i;
1228 #if !defined(BOOTLOADER)
1230 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1232 * Read a character (non-blocking) from the PDC console, returns -1 if
1233 * key is not present.
1235 int pdc_iodc_getc(void)
1237 int ch;
1238 int status;
1239 unsigned long flags;
1241 /* Bail if no console input device. */
1242 if (!PAGE0->mem_kbd.iodc_io)
1243 return 0;
1245 /* wait for a keyboard (rs232)-input */
1246 spin_lock_irqsave(&pdc_lock, flags);
1247 real32_call(PAGE0->mem_kbd.iodc_io,
1248 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1249 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1250 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1252 ch = *iodc_dbuf;
1253 status = *iodc_retbuf;
1254 spin_unlock_irqrestore(&pdc_lock, flags);
1256 if (status == 0)
1257 return -1;
1259 return ch;
1262 int pdc_sti_call(unsigned long func, unsigned long flags,
1263 unsigned long inptr, unsigned long outputr,
1264 unsigned long glob_cfg)
1266 int retval;
1267 unsigned long irqflags;
1269 spin_lock_irqsave(&pdc_lock, irqflags);
1270 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1271 spin_unlock_irqrestore(&pdc_lock, irqflags);
1273 return retval;
1275 EXPORT_SYMBOL(pdc_sti_call);
1277 #ifdef CONFIG_64BIT
1279 * pdc_pat_cell_get_number - Returns the cell number.
1280 * @cell_info: The return buffer.
1282 * This PDC call returns the cell number of the cell from which the call
1283 * is made.
1285 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1287 int retval;
1288 unsigned long flags;
1290 spin_lock_irqsave(&pdc_lock, flags);
1291 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1292 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1293 spin_unlock_irqrestore(&pdc_lock, flags);
1295 return retval;
1299 * pdc_pat_cell_module - Retrieve the cell's module information.
1300 * @actcnt: The number of bytes written to mem_addr.
1301 * @ploc: The physical location.
1302 * @mod: The module index.
1303 * @view_type: The view of the address type.
1304 * @mem_addr: The return buffer.
1306 * This PDC call returns information about each module attached to the cell
1307 * at the specified location.
1309 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1310 unsigned long view_type, void *mem_addr)
1312 int retval;
1313 unsigned long flags;
1314 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1316 spin_lock_irqsave(&pdc_lock, flags);
1317 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1318 ploc, mod, view_type, __pa(&result));
1319 if(!retval) {
1320 *actcnt = pdc_result[0];
1321 memcpy(mem_addr, &result, *actcnt);
1323 spin_unlock_irqrestore(&pdc_lock, flags);
1325 return retval;
1329 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1330 * @cpu_info: The return buffer.
1331 * @hpa: The Hard Physical Address of the CPU.
1333 * Retrieve the cpu number for the cpu at the specified HPA.
1335 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1337 int retval;
1338 unsigned long flags;
1340 spin_lock_irqsave(&pdc_lock, flags);
1341 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1342 __pa(&pdc_result), hpa);
1343 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1344 spin_unlock_irqrestore(&pdc_lock, flags);
1346 return retval;
1350 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1351 * @num_entries: The return value.
1352 * @cell_num: The target cell.
1354 * This PDC function returns the number of entries in the specified cell's
1355 * interrupt table.
1357 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1359 int retval;
1360 unsigned long flags;
1362 spin_lock_irqsave(&pdc_lock, flags);
1363 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1364 __pa(pdc_result), cell_num);
1365 *num_entries = pdc_result[0];
1366 spin_unlock_irqrestore(&pdc_lock, flags);
1368 return retval;
1372 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1373 * @r_addr: The return buffer.
1374 * @cell_num: The target cell.
1376 * This PDC function returns the actual interrupt table for the specified cell.
1378 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1380 int retval;
1381 unsigned long flags;
1383 spin_lock_irqsave(&pdc_lock, flags);
1384 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1385 __pa(r_addr), cell_num);
1386 spin_unlock_irqrestore(&pdc_lock, flags);
1388 return retval;
1392 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1393 * @actlen: The return buffer.
1394 * @mem_addr: Pointer to the memory buffer.
1395 * @count: The number of bytes to read from the buffer.
1396 * @offset: The offset with respect to the beginning of the buffer.
1399 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1400 unsigned long count, unsigned long offset)
1402 int retval;
1403 unsigned long flags;
1405 spin_lock_irqsave(&pdc_lock, flags);
1406 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1407 __pa(pdc_result2), count, offset);
1408 *actual_len = pdc_result[0];
1409 memcpy(mem_addr, pdc_result2, *actual_len);
1410 spin_unlock_irqrestore(&pdc_lock, flags);
1412 return retval;
1416 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1417 * @pci_addr: PCI configuration space address for which the read request is being made.
1418 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1419 * @mem_addr: Pointer to return memory buffer.
1422 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1424 int retval;
1425 unsigned long flags;
1427 spin_lock_irqsave(&pdc_lock, flags);
1428 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1429 __pa(pdc_result), pci_addr, pci_size);
1430 switch(pci_size) {
1431 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; break;
1432 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; break;
1433 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; break;
1435 spin_unlock_irqrestore(&pdc_lock, flags);
1437 return retval;
1441 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1442 * @pci_addr: PCI configuration space address for which the write request is being made.
1443 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1444 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1445 * written to PCI Config space.
1448 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1450 int retval;
1451 unsigned long flags;
1453 spin_lock_irqsave(&pdc_lock, flags);
1454 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1455 pci_addr, pci_size, val);
1456 spin_unlock_irqrestore(&pdc_lock, flags);
1458 return retval;
1462 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1463 * @rinfo: memory pdt information
1466 int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1468 int retval;
1469 unsigned long flags;
1471 spin_lock_irqsave(&pdc_lock, flags);
1472 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1473 __pa(&pdc_result));
1474 if (retval == PDC_OK)
1475 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1476 spin_unlock_irqrestore(&pdc_lock, flags);
1478 return retval;
1482 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1483 * table of a cell
1484 * @rinfo: memory pdt information
1485 * @cell: cell number
1488 int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1489 unsigned long cell)
1491 int retval;
1492 unsigned long flags;
1494 spin_lock_irqsave(&pdc_lock, flags);
1495 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1496 __pa(&pdc_result), cell);
1497 if (retval == PDC_OK)
1498 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1499 spin_unlock_irqrestore(&pdc_lock, flags);
1501 return retval;
1505 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1506 * @pret: array of PDT entries
1507 * @pdt_entries_ptr: ptr to hold number of PDT entries
1508 * @max_entries: maximum number of entries to be read
1511 int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1512 unsigned long *pdt_entries_ptr, unsigned long max_entries)
1514 int retval;
1515 unsigned long flags, entries;
1517 spin_lock_irqsave(&pdc_lock, flags);
1518 /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1519 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1520 __pa(&pdc_result), parisc_cell_num,
1521 __pa(pdt_entries_ptr));
1523 if (retval == PDC_OK) {
1524 /* build up return value as for PDC_PAT_MEM_PD_READ */
1525 entries = min(pdc_result[0], max_entries);
1526 pret->pdt_entries = entries;
1527 pret->actual_count_bytes = entries * sizeof(unsigned long);
1530 spin_unlock_irqrestore(&pdc_lock, flags);
1531 WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1533 return retval;
1536 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1537 * @pret: array of PDT entries
1538 * @pdt_entries_ptr: ptr to hold number of PDT entries
1539 * @count: number of bytes to read
1540 * @offset: offset to start (in bytes)
1543 int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1544 unsigned long *pdt_entries_ptr, unsigned long count,
1545 unsigned long offset)
1547 int retval;
1548 unsigned long flags, entries;
1550 spin_lock_irqsave(&pdc_lock, flags);
1551 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1552 __pa(&pdc_result), __pa(pdt_entries_ptr),
1553 count, offset);
1555 if (retval == PDC_OK) {
1556 entries = min(pdc_result[0], count);
1557 pret->actual_count_bytes = entries;
1558 pret->pdt_entries = entries / sizeof(unsigned long);
1561 spin_unlock_irqrestore(&pdc_lock, flags);
1563 return retval;
1567 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1568 * @pret: ptr to hold returned information
1569 * @phys_addr: physical address to examine
1572 int pdc_pat_mem_get_dimm_phys_location(
1573 struct pdc_pat_mem_phys_mem_location *pret,
1574 unsigned long phys_addr)
1576 int retval;
1577 unsigned long flags;
1579 spin_lock_irqsave(&pdc_lock, flags);
1580 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1581 __pa(&pdc_result), phys_addr);
1583 if (retval == PDC_OK)
1584 memcpy(pret, &pdc_result, sizeof(*pret));
1586 spin_unlock_irqrestore(&pdc_lock, flags);
1588 return retval;
1590 #endif /* CONFIG_64BIT */
1591 #endif /* defined(BOOTLOADER) */
1594 /***************** 32-bit real-mode calls ***********/
1595 /* The struct below is used
1596 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1597 * real32_call_asm() then uses this stack in narrow real mode
1600 struct narrow_stack {
1601 /* use int, not long which is 64 bits */
1602 unsigned int arg13;
1603 unsigned int arg12;
1604 unsigned int arg11;
1605 unsigned int arg10;
1606 unsigned int arg9;
1607 unsigned int arg8;
1608 unsigned int arg7;
1609 unsigned int arg6;
1610 unsigned int arg5;
1611 unsigned int arg4;
1612 unsigned int arg3;
1613 unsigned int arg2;
1614 unsigned int arg1;
1615 unsigned int arg0;
1616 unsigned int frame_marker[8];
1617 unsigned int sp;
1618 /* in reality, there's nearly 8k of stack after this */
1621 long real32_call(unsigned long fn, ...)
1623 va_list args;
1624 extern struct narrow_stack real_stack;
1625 extern unsigned long real32_call_asm(unsigned int *,
1626 unsigned int *,
1627 unsigned int);
1629 va_start(args, fn);
1630 real_stack.arg0 = va_arg(args, unsigned int);
1631 real_stack.arg1 = va_arg(args, unsigned int);
1632 real_stack.arg2 = va_arg(args, unsigned int);
1633 real_stack.arg3 = va_arg(args, unsigned int);
1634 real_stack.arg4 = va_arg(args, unsigned int);
1635 real_stack.arg5 = va_arg(args, unsigned int);
1636 real_stack.arg6 = va_arg(args, unsigned int);
1637 real_stack.arg7 = va_arg(args, unsigned int);
1638 real_stack.arg8 = va_arg(args, unsigned int);
1639 real_stack.arg9 = va_arg(args, unsigned int);
1640 real_stack.arg10 = va_arg(args, unsigned int);
1641 real_stack.arg11 = va_arg(args, unsigned int);
1642 real_stack.arg12 = va_arg(args, unsigned int);
1643 real_stack.arg13 = va_arg(args, unsigned int);
1644 va_end(args);
1646 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1649 #ifdef CONFIG_64BIT
1650 /***************** 64-bit real-mode calls ***********/
1652 struct wide_stack {
1653 unsigned long arg0;
1654 unsigned long arg1;
1655 unsigned long arg2;
1656 unsigned long arg3;
1657 unsigned long arg4;
1658 unsigned long arg5;
1659 unsigned long arg6;
1660 unsigned long arg7;
1661 unsigned long arg8;
1662 unsigned long arg9;
1663 unsigned long arg10;
1664 unsigned long arg11;
1665 unsigned long arg12;
1666 unsigned long arg13;
1667 unsigned long frame_marker[2]; /* rp, previous sp */
1668 unsigned long sp;
1669 /* in reality, there's nearly 8k of stack after this */
1672 long real64_call(unsigned long fn, ...)
1674 va_list args;
1675 extern struct wide_stack real64_stack;
1676 extern unsigned long real64_call_asm(unsigned long *,
1677 unsigned long *,
1678 unsigned long);
1680 va_start(args, fn);
1681 real64_stack.arg0 = va_arg(args, unsigned long);
1682 real64_stack.arg1 = va_arg(args, unsigned long);
1683 real64_stack.arg2 = va_arg(args, unsigned long);
1684 real64_stack.arg3 = va_arg(args, unsigned long);
1685 real64_stack.arg4 = va_arg(args, unsigned long);
1686 real64_stack.arg5 = va_arg(args, unsigned long);
1687 real64_stack.arg6 = va_arg(args, unsigned long);
1688 real64_stack.arg7 = va_arg(args, unsigned long);
1689 real64_stack.arg8 = va_arg(args, unsigned long);
1690 real64_stack.arg9 = va_arg(args, unsigned long);
1691 real64_stack.arg10 = va_arg(args, unsigned long);
1692 real64_stack.arg11 = va_arg(args, unsigned long);
1693 real64_stack.arg12 = va_arg(args, unsigned long);
1694 real64_stack.arg13 = va_arg(args, unsigned long);
1695 va_end(args);
1697 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1700 #endif /* CONFIG_64BIT */