xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / arch / parisc / kernel / perf.c
blob0813359049aec5347e7e239850808b9aa02f04a7
1 /*
2 * Parisc performance counters
3 * Copyright (C) 2001 Randolph Chung <tausq@debian.org>
5 * This code is derived, with permission, from HP/UX sources.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 * Edited comment from original sources:
25 * This driver programs the PCX-U/PCX-W performance counters
26 * on the PA-RISC 2.0 chips. The driver keeps all images now
27 * internally to the kernel to hopefully eliminate the possibility
28 * of a bad image halting the CPU. Also, there are different
29 * images for the PCX-W and later chips vs the PCX-U chips.
31 * Only 1 process is allowed to access the driver at any time,
32 * so the only protection that is needed is at open and close.
33 * A variable "perf_enabled" is used to hold the state of the
34 * driver. The spinlock "perf_lock" is used to protect the
35 * modification of the state during open/close operations so
36 * multiple processes don't get into the driver simultaneously.
38 * This driver accesses the processor directly vs going through
39 * the PDC INTRIGUE calls. This is done to eliminate bugs introduced
40 * in various PDC revisions. The code is much more maintainable
41 * and reliable this way vs having to debug on every version of PDC
42 * on every box.
45 #include <linux/capability.h>
46 #include <linux/init.h>
47 #include <linux/proc_fs.h>
48 #include <linux/miscdevice.h>
49 #include <linux/spinlock.h>
51 #include <linux/uaccess.h>
52 #include <asm/perf.h>
53 #include <asm/parisc-device.h>
54 #include <asm/processor.h>
55 #include <asm/runway.h>
56 #include <asm/io.h> /* for __raw_read() */
58 #include "perf_images.h"
60 #define MAX_RDR_WORDS 24
61 #define PERF_VERSION 2 /* derived from hpux's PI v2 interface */
63 /* definition of RDR regs */
64 struct rdr_tbl_ent {
65 uint16_t width;
66 uint8_t num_words;
67 uint8_t write_control;
70 static int perf_processor_interface __read_mostly = UNKNOWN_INTF;
71 static int perf_enabled __read_mostly;
72 static DEFINE_SPINLOCK(perf_lock);
73 struct parisc_device *cpu_device __read_mostly;
75 /* RDRs to write for PCX-W */
76 static const int perf_rdrs_W[] =
77 { 0, 1, 4, 5, 6, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
79 /* RDRs to write for PCX-U */
80 static const int perf_rdrs_U[] =
81 { 0, 1, 4, 5, 6, 7, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
83 /* RDR register descriptions for PCX-W */
84 static const struct rdr_tbl_ent perf_rdr_tbl_W[] = {
85 { 19, 1, 8 }, /* RDR 0 */
86 { 16, 1, 16 }, /* RDR 1 */
87 { 72, 2, 0 }, /* RDR 2 */
88 { 81, 2, 0 }, /* RDR 3 */
89 { 328, 6, 0 }, /* RDR 4 */
90 { 160, 3, 0 }, /* RDR 5 */
91 { 336, 6, 0 }, /* RDR 6 */
92 { 164, 3, 0 }, /* RDR 7 */
93 { 0, 0, 0 }, /* RDR 8 */
94 { 35, 1, 0 }, /* RDR 9 */
95 { 6, 1, 0 }, /* RDR 10 */
96 { 18, 1, 0 }, /* RDR 11 */
97 { 13, 1, 0 }, /* RDR 12 */
98 { 8, 1, 0 }, /* RDR 13 */
99 { 8, 1, 0 }, /* RDR 14 */
100 { 8, 1, 0 }, /* RDR 15 */
101 { 1530, 24, 0 }, /* RDR 16 */
102 { 16, 1, 0 }, /* RDR 17 */
103 { 4, 1, 0 }, /* RDR 18 */
104 { 0, 0, 0 }, /* RDR 19 */
105 { 152, 3, 24 }, /* RDR 20 */
106 { 152, 3, 24 }, /* RDR 21 */
107 { 233, 4, 48 }, /* RDR 22 */
108 { 233, 4, 48 }, /* RDR 23 */
109 { 71, 2, 0 }, /* RDR 24 */
110 { 71, 2, 0 }, /* RDR 25 */
111 { 11, 1, 0 }, /* RDR 26 */
112 { 18, 1, 0 }, /* RDR 27 */
113 { 128, 2, 0 }, /* RDR 28 */
114 { 0, 0, 0 }, /* RDR 29 */
115 { 16, 1, 0 }, /* RDR 30 */
116 { 16, 1, 0 }, /* RDR 31 */
119 /* RDR register descriptions for PCX-U */
120 static const struct rdr_tbl_ent perf_rdr_tbl_U[] = {
121 { 19, 1, 8 }, /* RDR 0 */
122 { 32, 1, 16 }, /* RDR 1 */
123 { 20, 1, 0 }, /* RDR 2 */
124 { 0, 0, 0 }, /* RDR 3 */
125 { 344, 6, 0 }, /* RDR 4 */
126 { 176, 3, 0 }, /* RDR 5 */
127 { 336, 6, 0 }, /* RDR 6 */
128 { 0, 0, 0 }, /* RDR 7 */
129 { 0, 0, 0 }, /* RDR 8 */
130 { 0, 0, 0 }, /* RDR 9 */
131 { 28, 1, 0 }, /* RDR 10 */
132 { 33, 1, 0 }, /* RDR 11 */
133 { 0, 0, 0 }, /* RDR 12 */
134 { 230, 4, 0 }, /* RDR 13 */
135 { 32, 1, 0 }, /* RDR 14 */
136 { 128, 2, 0 }, /* RDR 15 */
137 { 1494, 24, 0 }, /* RDR 16 */
138 { 18, 1, 0 }, /* RDR 17 */
139 { 4, 1, 0 }, /* RDR 18 */
140 { 0, 0, 0 }, /* RDR 19 */
141 { 158, 3, 24 }, /* RDR 20 */
142 { 158, 3, 24 }, /* RDR 21 */
143 { 194, 4, 48 }, /* RDR 22 */
144 { 194, 4, 48 }, /* RDR 23 */
145 { 71, 2, 0 }, /* RDR 24 */
146 { 71, 2, 0 }, /* RDR 25 */
147 { 28, 1, 0 }, /* RDR 26 */
148 { 33, 1, 0 }, /* RDR 27 */
149 { 88, 2, 0 }, /* RDR 28 */
150 { 32, 1, 0 }, /* RDR 29 */
151 { 24, 1, 0 }, /* RDR 30 */
152 { 16, 1, 0 }, /* RDR 31 */
156 * A non-zero write_control in the above tables is a byte offset into
157 * this array.
159 static const uint64_t perf_bitmasks[] = {
160 0x0000000000000000ul, /* first dbl word must be zero */
161 0xfdffe00000000000ul, /* RDR0 bitmask */
162 0x003f000000000000ul, /* RDR1 bitmask */
163 0x00fffffffffffffful, /* RDR20-RDR21 bitmask (152 bits) */
164 0xfffffffffffffffful,
165 0xfffffffc00000000ul,
166 0xfffffffffffffffful, /* RDR22-RDR23 bitmask (233 bits) */
167 0xfffffffffffffffful,
168 0xfffffffffffffffcul,
169 0xff00000000000000ul
173 * Write control bitmasks for Pa-8700 processor given
174 * some things have changed slightly.
176 static const uint64_t perf_bitmasks_piranha[] = {
177 0x0000000000000000ul, /* first dbl word must be zero */
178 0xfdffe00000000000ul, /* RDR0 bitmask */
179 0x003f000000000000ul, /* RDR1 bitmask */
180 0x00fffffffffffffful, /* RDR20-RDR21 bitmask (158 bits) */
181 0xfffffffffffffffful,
182 0xfffffffc00000000ul,
183 0xfffffffffffffffful, /* RDR22-RDR23 bitmask (210 bits) */
184 0xfffffffffffffffful,
185 0xfffffffffffffffful,
186 0xfffc000000000000ul
189 static const uint64_t *bitmask_array; /* array of bitmasks to use */
191 /******************************************************************************
192 * Function Prototypes
193 *****************************************************************************/
194 static int perf_config(uint32_t *image_ptr);
195 static int perf_release(struct inode *inode, struct file *file);
196 static int perf_open(struct inode *inode, struct file *file);
197 static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos);
198 static ssize_t perf_write(struct file *file, const char __user *buf,
199 size_t count, loff_t *ppos);
200 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
201 static void perf_start_counters(void);
202 static int perf_stop_counters(uint32_t *raddr);
203 static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num);
204 static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer);
205 static int perf_rdr_clear(uint32_t rdr_num);
206 static int perf_write_image(uint64_t *memaddr);
207 static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer);
209 /* External Assembly Routines */
210 extern uint64_t perf_rdr_shift_in_W (uint32_t rdr_num, uint16_t width);
211 extern uint64_t perf_rdr_shift_in_U (uint32_t rdr_num, uint16_t width);
212 extern void perf_rdr_shift_out_W (uint32_t rdr_num, uint64_t buffer);
213 extern void perf_rdr_shift_out_U (uint32_t rdr_num, uint64_t buffer);
214 extern void perf_intrigue_enable_perf_counters (void);
215 extern void perf_intrigue_disable_perf_counters (void);
217 /******************************************************************************
218 * Function Definitions
219 *****************************************************************************/
223 * configure:
225 * Configure the cpu with a given data image. First turn off the counters,
226 * then download the image, then turn the counters back on.
228 static int perf_config(uint32_t *image_ptr)
230 long error;
231 uint32_t raddr[4];
233 /* Stop the counters*/
234 error = perf_stop_counters(raddr);
235 if (error != 0) {
236 printk("perf_config: perf_stop_counters = %ld\n", error);
237 return -EINVAL;
240 printk("Preparing to write image\n");
241 /* Write the image to the chip */
242 error = perf_write_image((uint64_t *)image_ptr);
243 if (error != 0) {
244 printk("perf_config: DOWNLOAD = %ld\n", error);
245 return -EINVAL;
248 printk("Preparing to start counters\n");
250 /* Start the counters */
251 perf_start_counters();
253 return sizeof(uint32_t);
257 * Open the device and initialize all of its memory. The device is only
258 * opened once, but can be "queried" by multiple processes that know its
259 * file descriptor.
261 static int perf_open(struct inode *inode, struct file *file)
263 spin_lock(&perf_lock);
264 if (perf_enabled) {
265 spin_unlock(&perf_lock);
266 return -EBUSY;
268 perf_enabled = 1;
269 spin_unlock(&perf_lock);
271 return 0;
275 * Close the device.
277 static int perf_release(struct inode *inode, struct file *file)
279 spin_lock(&perf_lock);
280 perf_enabled = 0;
281 spin_unlock(&perf_lock);
283 return 0;
287 * Read does nothing for this driver
289 static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos)
291 return 0;
295 * write:
297 * This routine downloads the image to the chip. It must be
298 * called on the processor that the download should happen
299 * on.
301 static ssize_t perf_write(struct file *file, const char __user *buf,
302 size_t count, loff_t *ppos)
304 size_t image_size;
305 uint32_t image_type;
306 uint32_t interface_type;
307 uint32_t test;
309 if (perf_processor_interface == ONYX_INTF)
310 image_size = PCXU_IMAGE_SIZE;
311 else if (perf_processor_interface == CUDA_INTF)
312 image_size = PCXW_IMAGE_SIZE;
313 else
314 return -EFAULT;
316 if (!capable(CAP_SYS_ADMIN))
317 return -EACCES;
319 if (count != sizeof(uint32_t))
320 return -EIO;
322 if (copy_from_user(&image_type, buf, sizeof(uint32_t)))
323 return -EFAULT;
325 /* Get the interface type and test type */
326 interface_type = (image_type >> 16) & 0xffff;
327 test = (image_type & 0xffff);
329 /* Make sure everything makes sense */
331 /* First check the machine type is correct for
332 the requested image */
333 if (((perf_processor_interface == CUDA_INTF) &&
334 (interface_type != CUDA_INTF)) ||
335 ((perf_processor_interface == ONYX_INTF) &&
336 (interface_type != ONYX_INTF)))
337 return -EINVAL;
339 /* Next check to make sure the requested image
340 is valid */
341 if (((interface_type == CUDA_INTF) &&
342 (test >= MAX_CUDA_IMAGES)) ||
343 ((interface_type == ONYX_INTF) &&
344 (test >= MAX_ONYX_IMAGES)))
345 return -EINVAL;
347 /* Copy the image into the processor */
348 if (interface_type == CUDA_INTF)
349 return perf_config(cuda_images[test]);
350 else
351 return perf_config(onyx_images[test]);
353 return count;
357 * Patch the images that need to know the IVA addresses.
359 static void perf_patch_images(void)
361 #if 0 /* FIXME!! */
363 * NOTE: this routine is VERY specific to the current TLB image.
364 * If the image is changed, this routine might also need to be changed.
366 extern void $i_itlb_miss_2_0();
367 extern void $i_dtlb_miss_2_0();
368 extern void PA2_0_iva();
371 * We can only use the lower 32-bits, the upper 32-bits should be 0
372 * anyway given this is in the kernel
374 uint32_t itlb_addr = (uint32_t)&($i_itlb_miss_2_0);
375 uint32_t dtlb_addr = (uint32_t)&($i_dtlb_miss_2_0);
376 uint32_t IVAaddress = (uint32_t)&PA2_0_iva;
378 if (perf_processor_interface == ONYX_INTF) {
379 /* clear last 2 bytes */
380 onyx_images[TLBMISS][15] &= 0xffffff00;
381 /* set 2 bytes */
382 onyx_images[TLBMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
383 onyx_images[TLBMISS][16] = (dtlb_addr << 8)&0xffffff00;
384 onyx_images[TLBMISS][17] = itlb_addr;
386 /* clear last 2 bytes */
387 onyx_images[TLBHANDMISS][15] &= 0xffffff00;
388 /* set 2 bytes */
389 onyx_images[TLBHANDMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
390 onyx_images[TLBHANDMISS][16] = (dtlb_addr << 8)&0xffffff00;
391 onyx_images[TLBHANDMISS][17] = itlb_addr;
393 /* clear last 2 bytes */
394 onyx_images[BIG_CPI][15] &= 0xffffff00;
395 /* set 2 bytes */
396 onyx_images[BIG_CPI][15] |= (0x000000ff&((dtlb_addr) >> 24));
397 onyx_images[BIG_CPI][16] = (dtlb_addr << 8)&0xffffff00;
398 onyx_images[BIG_CPI][17] = itlb_addr;
400 onyx_images[PANIC][15] &= 0xffffff00; /* clear last 2 bytes */
401 onyx_images[PANIC][15] |= (0x000000ff&((IVAaddress) >> 24)); /* set 2 bytes */
402 onyx_images[PANIC][16] = (IVAaddress << 8)&0xffffff00;
405 } else if (perf_processor_interface == CUDA_INTF) {
406 /* Cuda interface */
407 cuda_images[TLBMISS][16] =
408 (cuda_images[TLBMISS][16]&0xffff0000) |
409 ((dtlb_addr >> 8)&0x0000ffff);
410 cuda_images[TLBMISS][17] =
411 ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
412 cuda_images[TLBMISS][18] = (itlb_addr << 16)&0xffff0000;
414 cuda_images[TLBHANDMISS][16] =
415 (cuda_images[TLBHANDMISS][16]&0xffff0000) |
416 ((dtlb_addr >> 8)&0x0000ffff);
417 cuda_images[TLBHANDMISS][17] =
418 ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
419 cuda_images[TLBHANDMISS][18] = (itlb_addr << 16)&0xffff0000;
421 cuda_images[BIG_CPI][16] =
422 (cuda_images[BIG_CPI][16]&0xffff0000) |
423 ((dtlb_addr >> 8)&0x0000ffff);
424 cuda_images[BIG_CPI][17] =
425 ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
426 cuda_images[BIG_CPI][18] = (itlb_addr << 16)&0xffff0000;
427 } else {
428 /* Unknown type */
430 #endif
435 * ioctl routine
436 * All routines effect the processor that they are executed on. Thus you
437 * must be running on the processor that you wish to change.
440 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
442 long error_start;
443 uint32_t raddr[4];
444 int error = 0;
446 switch (cmd) {
448 case PA_PERF_ON:
449 /* Start the counters */
450 perf_start_counters();
451 break;
453 case PA_PERF_OFF:
454 error_start = perf_stop_counters(raddr);
455 if (error_start != 0) {
456 printk(KERN_ERR "perf_off: perf_stop_counters = %ld\n", error_start);
457 error = -EFAULT;
458 break;
461 /* copy out the Counters */
462 if (copy_to_user((void __user *)arg, raddr,
463 sizeof (raddr)) != 0) {
464 error = -EFAULT;
465 break;
467 break;
469 case PA_PERF_VERSION:
470 /* Return the version # */
471 error = put_user(PERF_VERSION, (int *)arg);
472 break;
474 default:
475 error = -ENOTTY;
478 return error;
481 static const struct file_operations perf_fops = {
482 .llseek = no_llseek,
483 .read = perf_read,
484 .write = perf_write,
485 .unlocked_ioctl = perf_ioctl,
486 .compat_ioctl = perf_ioctl,
487 .open = perf_open,
488 .release = perf_release
491 static struct miscdevice perf_dev = {
492 MISC_DYNAMIC_MINOR,
493 PA_PERF_DEV,
494 &perf_fops
498 * Initialize the module
500 static int __init perf_init(void)
502 int ret;
504 /* Determine correct processor interface to use */
505 bitmask_array = perf_bitmasks;
507 if (boot_cpu_data.cpu_type == pcxu ||
508 boot_cpu_data.cpu_type == pcxu_) {
509 perf_processor_interface = ONYX_INTF;
510 } else if (boot_cpu_data.cpu_type == pcxw ||
511 boot_cpu_data.cpu_type == pcxw_ ||
512 boot_cpu_data.cpu_type == pcxw2 ||
513 boot_cpu_data.cpu_type == mako ||
514 boot_cpu_data.cpu_type == mako2) {
515 perf_processor_interface = CUDA_INTF;
516 if (boot_cpu_data.cpu_type == pcxw2 ||
517 boot_cpu_data.cpu_type == mako ||
518 boot_cpu_data.cpu_type == mako2)
519 bitmask_array = perf_bitmasks_piranha;
520 } else {
521 perf_processor_interface = UNKNOWN_INTF;
522 printk("Performance monitoring counters not supported on this processor\n");
523 return -ENODEV;
526 ret = misc_register(&perf_dev);
527 if (ret) {
528 printk(KERN_ERR "Performance monitoring counters: "
529 "cannot register misc device.\n");
530 return ret;
533 /* Patch the images to match the system */
534 perf_patch_images();
536 /* TODO: this only lets us access the first cpu.. what to do for SMP? */
537 cpu_device = per_cpu(cpu_data, 0).dev;
538 printk("Performance monitoring counters enabled for %s\n",
539 per_cpu(cpu_data, 0).dev->name);
541 return 0;
543 device_initcall(perf_init);
546 * perf_start_counters(void)
548 * Start the counters.
550 static void perf_start_counters(void)
552 /* Enable performance monitor counters */
553 perf_intrigue_enable_perf_counters();
557 * perf_stop_counters
559 * Stop the performance counters and save counts
560 * in a per_processor array.
562 static int perf_stop_counters(uint32_t *raddr)
564 uint64_t userbuf[MAX_RDR_WORDS];
566 /* Disable performance counters */
567 perf_intrigue_disable_perf_counters();
569 if (perf_processor_interface == ONYX_INTF) {
570 uint64_t tmp64;
572 * Read the counters
574 if (!perf_rdr_read_ubuf(16, userbuf))
575 return -13;
577 /* Counter0 is bits 1398 to 1429 */
578 tmp64 = (userbuf[21] << 22) & 0x00000000ffc00000;
579 tmp64 |= (userbuf[22] >> 42) & 0x00000000003fffff;
580 /* OR sticky0 (bit 1430) to counter0 bit 32 */
581 tmp64 |= (userbuf[22] >> 10) & 0x0000000080000000;
582 raddr[0] = (uint32_t)tmp64;
584 /* Counter1 is bits 1431 to 1462 */
585 tmp64 = (userbuf[22] >> 9) & 0x00000000ffffffff;
586 /* OR sticky1 (bit 1463) to counter1 bit 32 */
587 tmp64 |= (userbuf[22] << 23) & 0x0000000080000000;
588 raddr[1] = (uint32_t)tmp64;
590 /* Counter2 is bits 1464 to 1495 */
591 tmp64 = (userbuf[22] << 24) & 0x00000000ff000000;
592 tmp64 |= (userbuf[23] >> 40) & 0x0000000000ffffff;
593 /* OR sticky2 (bit 1496) to counter2 bit 32 */
594 tmp64 |= (userbuf[23] >> 8) & 0x0000000080000000;
595 raddr[2] = (uint32_t)tmp64;
597 /* Counter3 is bits 1497 to 1528 */
598 tmp64 = (userbuf[23] >> 7) & 0x00000000ffffffff;
599 /* OR sticky3 (bit 1529) to counter3 bit 32 */
600 tmp64 |= (userbuf[23] << 25) & 0x0000000080000000;
601 raddr[3] = (uint32_t)tmp64;
604 * Zero out the counters
608 * The counters and sticky-bits comprise the last 132 bits
609 * (1398 - 1529) of RDR16 on a U chip. We'll zero these
610 * out the easy way: zero out last 10 bits of dword 21,
611 * all of dword 22 and 58 bits (plus 6 don't care bits) of
612 * dword 23.
614 userbuf[21] &= 0xfffffffffffffc00ul; /* 0 to last 10 bits */
615 userbuf[22] = 0;
616 userbuf[23] = 0;
619 * Write back the zeroed bytes + the image given
620 * the read was destructive.
622 perf_rdr_write(16, userbuf);
623 } else {
626 * Read RDR-15 which contains the counters and sticky bits
628 if (!perf_rdr_read_ubuf(15, userbuf)) {
629 return -13;
633 * Clear out the counters
635 perf_rdr_clear(15);
638 * Copy the counters
640 raddr[0] = (uint32_t)((userbuf[0] >> 32) & 0x00000000ffffffffUL);
641 raddr[1] = (uint32_t)(userbuf[0] & 0x00000000ffffffffUL);
642 raddr[2] = (uint32_t)((userbuf[1] >> 32) & 0x00000000ffffffffUL);
643 raddr[3] = (uint32_t)(userbuf[1] & 0x00000000ffffffffUL);
646 return 0;
650 * perf_rdr_get_entry
652 * Retrieve a pointer to the description of what this
653 * RDR contains.
655 static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num)
657 if (perf_processor_interface == ONYX_INTF) {
658 return &perf_rdr_tbl_U[rdr_num];
659 } else {
660 return &perf_rdr_tbl_W[rdr_num];
665 * perf_rdr_read_ubuf
667 * Read the RDR value into the buffer specified.
669 static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer)
671 uint64_t data, data_mask = 0;
672 uint32_t width, xbits, i;
673 const struct rdr_tbl_ent *tentry;
675 tentry = perf_rdr_get_entry(rdr_num);
676 if ((width = tentry->width) == 0)
677 return 0;
679 /* Clear out buffer */
680 i = tentry->num_words;
681 while (i--) {
682 buffer[i] = 0;
685 /* Check for bits an even number of 64 */
686 if ((xbits = width & 0x03f) != 0) {
687 data_mask = 1;
688 data_mask <<= (64 - xbits);
689 data_mask--;
692 /* Grab all of the data */
693 i = tentry->num_words;
694 while (i--) {
696 if (perf_processor_interface == ONYX_INTF) {
697 data = perf_rdr_shift_in_U(rdr_num, width);
698 } else {
699 data = perf_rdr_shift_in_W(rdr_num, width);
701 if (xbits) {
702 buffer[i] |= (data << (64 - xbits));
703 if (i) {
704 buffer[i-1] |= ((data >> xbits) & data_mask);
706 } else {
707 buffer[i] = data;
711 return 1;
715 * perf_rdr_clear
717 * Zero out the given RDR register
719 static int perf_rdr_clear(uint32_t rdr_num)
721 const struct rdr_tbl_ent *tentry;
722 int32_t i;
724 tentry = perf_rdr_get_entry(rdr_num);
726 if (tentry->width == 0) {
727 return -1;
730 i = tentry->num_words;
731 while (i--) {
732 if (perf_processor_interface == ONYX_INTF) {
733 perf_rdr_shift_out_U(rdr_num, 0UL);
734 } else {
735 perf_rdr_shift_out_W(rdr_num, 0UL);
739 return 0;
744 * perf_write_image
746 * Write the given image out to the processor
748 static int perf_write_image(uint64_t *memaddr)
750 uint64_t buffer[MAX_RDR_WORDS];
751 uint64_t *bptr;
752 uint32_t dwords;
753 const uint32_t *intrigue_rdr;
754 const uint64_t *intrigue_bitmask;
755 uint64_t tmp64;
756 void __iomem *runway;
757 const struct rdr_tbl_ent *tentry;
758 int i;
760 /* Clear out counters */
761 if (perf_processor_interface == ONYX_INTF) {
763 perf_rdr_clear(16);
765 /* Toggle performance monitor */
766 perf_intrigue_enable_perf_counters();
767 perf_intrigue_disable_perf_counters();
769 intrigue_rdr = perf_rdrs_U;
770 } else {
771 perf_rdr_clear(15);
772 intrigue_rdr = perf_rdrs_W;
775 /* Write all RDRs */
776 while (*intrigue_rdr != -1) {
777 tentry = perf_rdr_get_entry(*intrigue_rdr);
778 perf_rdr_read_ubuf(*intrigue_rdr, buffer);
779 bptr = &buffer[0];
780 dwords = tentry->num_words;
781 if (tentry->write_control) {
782 intrigue_bitmask = &bitmask_array[tentry->write_control >> 3];
783 while (dwords--) {
784 tmp64 = *intrigue_bitmask & *memaddr++;
785 tmp64 |= (~(*intrigue_bitmask++)) & *bptr;
786 *bptr++ = tmp64;
788 } else {
789 while (dwords--) {
790 *bptr++ = *memaddr++;
794 perf_rdr_write(*intrigue_rdr, buffer);
795 intrigue_rdr++;
799 * Now copy out the Runway stuff which is not in RDRs
802 if (cpu_device == NULL)
804 printk(KERN_ERR "write_image: cpu_device not yet initialized!\n");
805 return -1;
808 runway = ioremap_nocache(cpu_device->hpa.start, 4096);
809 if (!runway) {
810 pr_err("perf_write_image: ioremap failed!\n");
811 return -ENOMEM;
814 /* Merge intrigue bits into Runway STATUS 0 */
815 tmp64 = __raw_readq(runway + RUNWAY_STATUS) & 0xffecfffffffffffful;
816 __raw_writeq(tmp64 | (*memaddr++ & 0x0013000000000000ul),
817 runway + RUNWAY_STATUS);
819 /* Write RUNWAY DEBUG registers */
820 for (i = 0; i < 8; i++) {
821 __raw_writeq(*memaddr++, runway + RUNWAY_DEBUG);
824 return 0;
828 * perf_rdr_write
830 * Write the given RDR register with the contents
831 * of the given buffer.
833 static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer)
835 const struct rdr_tbl_ent *tentry;
836 int32_t i;
838 printk("perf_rdr_write\n");
839 tentry = perf_rdr_get_entry(rdr_num);
840 if (tentry->width == 0) { return; }
842 i = tentry->num_words;
843 while (i--) {
844 if (perf_processor_interface == ONYX_INTF) {
845 perf_rdr_shift_out_U(rdr_num, buffer[i]);
846 } else {
847 perf_rdr_shift_out_W(rdr_num, buffer[i]);
850 printk("perf_rdr_write done\n");