xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / arch / powerpc / kernel / module_64.c
bloba2636c250b7be63e08a9e8ff57140d1e83467c85
1 /* Kernel module help for PPC64.
2 Copyright (C) 2001, 2003 Rusty Russell IBM Corporation.
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 #include <linux/module.h>
22 #include <linux/elf.h>
23 #include <linux/moduleloader.h>
24 #include <linux/err.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ftrace.h>
27 #include <linux/bug.h>
28 #include <linux/uaccess.h>
29 #include <asm/module.h>
30 #include <asm/firmware.h>
31 #include <asm/code-patching.h>
32 #include <linux/sort.h>
33 #include <asm/setup.h>
34 #include <asm/sections.h>
36 /* FIXME: We don't do .init separately. To do this, we'd need to have
37 a separate r2 value in the init and core section, and stub between
38 them, too.
40 Using a magic allocator which places modules within 32MB solves
41 this, and makes other things simpler. Anton?
42 --RR. */
44 #ifdef PPC64_ELF_ABI_v2
46 /* An address is simply the address of the function. */
47 typedef unsigned long func_desc_t;
49 static func_desc_t func_desc(unsigned long addr)
51 return addr;
53 static unsigned long func_addr(unsigned long addr)
55 return addr;
57 static unsigned long stub_func_addr(func_desc_t func)
59 return func;
62 /* PowerPC64 specific values for the Elf64_Sym st_other field. */
63 #define STO_PPC64_LOCAL_BIT 5
64 #define STO_PPC64_LOCAL_MASK (7 << STO_PPC64_LOCAL_BIT)
65 #define PPC64_LOCAL_ENTRY_OFFSET(other) \
66 (((1 << (((other) & STO_PPC64_LOCAL_MASK) >> STO_PPC64_LOCAL_BIT)) >> 2) << 2)
68 static unsigned int local_entry_offset(const Elf64_Sym *sym)
70 /* sym->st_other indicates offset to local entry point
71 * (otherwise it will assume r12 is the address of the start
72 * of function and try to derive r2 from it). */
73 return PPC64_LOCAL_ENTRY_OFFSET(sym->st_other);
75 #else
77 /* An address is address of the OPD entry, which contains address of fn. */
78 typedef struct ppc64_opd_entry func_desc_t;
80 static func_desc_t func_desc(unsigned long addr)
82 return *(struct ppc64_opd_entry *)addr;
84 static unsigned long func_addr(unsigned long addr)
86 return func_desc(addr).funcaddr;
88 static unsigned long stub_func_addr(func_desc_t func)
90 return func.funcaddr;
92 static unsigned int local_entry_offset(const Elf64_Sym *sym)
94 return 0;
97 void *dereference_module_function_descriptor(struct module *mod, void *ptr)
99 if (ptr < (void *)mod->arch.start_opd ||
100 ptr >= (void *)mod->arch.end_opd)
101 return ptr;
103 return dereference_function_descriptor(ptr);
105 #endif
107 #define STUB_MAGIC 0x73747562 /* stub */
109 /* Like PPC32, we need little trampolines to do > 24-bit jumps (into
110 the kernel itself). But on PPC64, these need to be used for every
111 jump, actually, to reset r2 (TOC+0x8000). */
112 struct ppc64_stub_entry
114 /* 28 byte jump instruction sequence (7 instructions). We only
115 * need 6 instructions on ABIv2 but we always allocate 7 so
116 * so we don't have to modify the trampoline load instruction. */
117 u32 jump[7];
118 /* Used by ftrace to identify stubs */
119 u32 magic;
120 /* Data for the above code */
121 func_desc_t funcdata;
125 * PPC64 uses 24 bit jumps, but we need to jump into other modules or
126 * the kernel which may be further. So we jump to a stub.
128 * For ELFv1 we need to use this to set up the new r2 value (aka TOC
129 * pointer). For ELFv2 it's the callee's responsibility to set up the
130 * new r2, but for both we need to save the old r2.
132 * We could simply patch the new r2 value and function pointer into
133 * the stub, but it's significantly shorter to put these values at the
134 * end of the stub code, and patch the stub address (32-bits relative
135 * to the TOC ptr, r2) into the stub.
138 static u32 ppc64_stub_insns[] = {
139 0x3d620000, /* addis r11,r2, <high> */
140 0x396b0000, /* addi r11,r11, <low> */
141 /* Save current r2 value in magic place on the stack. */
142 0xf8410000|R2_STACK_OFFSET, /* std r2,R2_STACK_OFFSET(r1) */
143 0xe98b0020, /* ld r12,32(r11) */
144 #ifdef PPC64_ELF_ABI_v1
145 /* Set up new r2 from function descriptor */
146 0xe84b0028, /* ld r2,40(r11) */
147 #endif
148 0x7d8903a6, /* mtctr r12 */
149 0x4e800420 /* bctr */
152 #ifdef CONFIG_DYNAMIC_FTRACE
153 int module_trampoline_target(struct module *mod, unsigned long addr,
154 unsigned long *target)
156 struct ppc64_stub_entry *stub;
157 func_desc_t funcdata;
158 u32 magic;
160 if (!within_module_core(addr, mod)) {
161 pr_err("%s: stub %lx not in module %s\n", __func__, addr, mod->name);
162 return -EFAULT;
165 stub = (struct ppc64_stub_entry *)addr;
167 if (probe_kernel_read(&magic, &stub->magic, sizeof(magic))) {
168 pr_err("%s: fault reading magic for stub %lx for %s\n", __func__, addr, mod->name);
169 return -EFAULT;
172 if (magic != STUB_MAGIC) {
173 pr_err("%s: bad magic for stub %lx for %s\n", __func__, addr, mod->name);
174 return -EFAULT;
177 if (probe_kernel_read(&funcdata, &stub->funcdata, sizeof(funcdata))) {
178 pr_err("%s: fault reading funcdata for stub %lx for %s\n", __func__, addr, mod->name);
179 return -EFAULT;
182 *target = stub_func_addr(funcdata);
184 return 0;
186 #endif
188 /* Count how many different 24-bit relocations (different symbol,
189 different addend) */
190 static unsigned int count_relocs(const Elf64_Rela *rela, unsigned int num)
192 unsigned int i, r_info, r_addend, _count_relocs;
194 /* FIXME: Only count external ones --RR */
195 _count_relocs = 0;
196 r_info = 0;
197 r_addend = 0;
198 for (i = 0; i < num; i++)
199 /* Only count 24-bit relocs, others don't need stubs */
200 if (ELF64_R_TYPE(rela[i].r_info) == R_PPC_REL24 &&
201 (r_info != ELF64_R_SYM(rela[i].r_info) ||
202 r_addend != rela[i].r_addend)) {
203 _count_relocs++;
204 r_info = ELF64_R_SYM(rela[i].r_info);
205 r_addend = rela[i].r_addend;
208 return _count_relocs;
211 static int relacmp(const void *_x, const void *_y)
213 const Elf64_Rela *x, *y;
215 y = (Elf64_Rela *)_x;
216 x = (Elf64_Rela *)_y;
218 /* Compare the entire r_info (as opposed to ELF64_R_SYM(r_info) only) to
219 * make the comparison cheaper/faster. It won't affect the sorting or
220 * the counting algorithms' performance
222 if (x->r_info < y->r_info)
223 return -1;
224 else if (x->r_info > y->r_info)
225 return 1;
226 else if (x->r_addend < y->r_addend)
227 return -1;
228 else if (x->r_addend > y->r_addend)
229 return 1;
230 else
231 return 0;
234 static void relaswap(void *_x, void *_y, int size)
236 uint64_t *x, *y, tmp;
237 int i;
239 y = (uint64_t *)_x;
240 x = (uint64_t *)_y;
242 for (i = 0; i < sizeof(Elf64_Rela) / sizeof(uint64_t); i++) {
243 tmp = x[i];
244 x[i] = y[i];
245 y[i] = tmp;
249 /* Get size of potential trampolines required. */
250 static unsigned long get_stubs_size(const Elf64_Ehdr *hdr,
251 const Elf64_Shdr *sechdrs)
253 /* One extra reloc so it's always 0-funcaddr terminated */
254 unsigned long relocs = 1;
255 unsigned i;
257 /* Every relocated section... */
258 for (i = 1; i < hdr->e_shnum; i++) {
259 if (sechdrs[i].sh_type == SHT_RELA) {
260 pr_debug("Found relocations in section %u\n", i);
261 pr_debug("Ptr: %p. Number: %Lu\n",
262 (void *)sechdrs[i].sh_addr,
263 sechdrs[i].sh_size / sizeof(Elf64_Rela));
265 /* Sort the relocation information based on a symbol and
266 * addend key. This is a stable O(n*log n) complexity
267 * alogrithm but it will reduce the complexity of
268 * count_relocs() to linear complexity O(n)
270 sort((void *)sechdrs[i].sh_addr,
271 sechdrs[i].sh_size / sizeof(Elf64_Rela),
272 sizeof(Elf64_Rela), relacmp, relaswap);
274 relocs += count_relocs((void *)sechdrs[i].sh_addr,
275 sechdrs[i].sh_size
276 / sizeof(Elf64_Rela));
280 #ifdef CONFIG_DYNAMIC_FTRACE
281 /* make the trampoline to the ftrace_caller */
282 relocs++;
283 #endif
285 pr_debug("Looks like a total of %lu stubs, max\n", relocs);
286 return relocs * sizeof(struct ppc64_stub_entry);
289 /* Still needed for ELFv2, for .TOC. */
290 static void dedotify_versions(struct modversion_info *vers,
291 unsigned long size)
293 struct modversion_info *end;
295 for (end = (void *)vers + size; vers < end; vers++)
296 if (vers->name[0] == '.') {
297 memmove(vers->name, vers->name+1, strlen(vers->name));
302 * Undefined symbols which refer to .funcname, hack to funcname. Make .TOC.
303 * seem to be defined (value set later).
305 static void dedotify(Elf64_Sym *syms, unsigned int numsyms, char *strtab)
307 unsigned int i;
309 for (i = 1; i < numsyms; i++) {
310 if (syms[i].st_shndx == SHN_UNDEF) {
311 char *name = strtab + syms[i].st_name;
312 if (name[0] == '.') {
313 if (strcmp(name+1, "TOC.") == 0)
314 syms[i].st_shndx = SHN_ABS;
315 syms[i].st_name++;
321 static Elf64_Sym *find_dot_toc(Elf64_Shdr *sechdrs,
322 const char *strtab,
323 unsigned int symindex)
325 unsigned int i, numsyms;
326 Elf64_Sym *syms;
328 syms = (Elf64_Sym *)sechdrs[symindex].sh_addr;
329 numsyms = sechdrs[symindex].sh_size / sizeof(Elf64_Sym);
331 for (i = 1; i < numsyms; i++) {
332 if (syms[i].st_shndx == SHN_ABS
333 && strcmp(strtab + syms[i].st_name, "TOC.") == 0)
334 return &syms[i];
336 return NULL;
339 int module_frob_arch_sections(Elf64_Ehdr *hdr,
340 Elf64_Shdr *sechdrs,
341 char *secstrings,
342 struct module *me)
344 unsigned int i;
346 /* Find .toc and .stubs sections, symtab and strtab */
347 for (i = 1; i < hdr->e_shnum; i++) {
348 char *p;
349 if (strcmp(secstrings + sechdrs[i].sh_name, ".stubs") == 0)
350 me->arch.stubs_section = i;
351 else if (strcmp(secstrings + sechdrs[i].sh_name, ".toc") == 0) {
352 me->arch.toc_section = i;
353 if (sechdrs[i].sh_addralign < 8)
354 sechdrs[i].sh_addralign = 8;
356 else if (strcmp(secstrings+sechdrs[i].sh_name,"__versions")==0)
357 dedotify_versions((void *)hdr + sechdrs[i].sh_offset,
358 sechdrs[i].sh_size);
359 else if (!strcmp(secstrings + sechdrs[i].sh_name, ".opd")) {
360 me->arch.start_opd = sechdrs[i].sh_addr;
361 me->arch.end_opd = sechdrs[i].sh_addr +
362 sechdrs[i].sh_size;
365 /* We don't handle .init for the moment: rename to _init */
366 while ((p = strstr(secstrings + sechdrs[i].sh_name, ".init")))
367 p[0] = '_';
369 if (sechdrs[i].sh_type == SHT_SYMTAB)
370 dedotify((void *)hdr + sechdrs[i].sh_offset,
371 sechdrs[i].sh_size / sizeof(Elf64_Sym),
372 (void *)hdr
373 + sechdrs[sechdrs[i].sh_link].sh_offset);
376 if (!me->arch.stubs_section) {
377 pr_err("%s: doesn't contain .stubs.\n", me->name);
378 return -ENOEXEC;
381 /* If we don't have a .toc, just use .stubs. We need to set r2
382 to some reasonable value in case the module calls out to
383 other functions via a stub, or if a function pointer escapes
384 the module by some means. */
385 if (!me->arch.toc_section)
386 me->arch.toc_section = me->arch.stubs_section;
388 /* Override the stubs size */
389 sechdrs[me->arch.stubs_section].sh_size = get_stubs_size(hdr, sechdrs);
390 return 0;
394 * r2 is the TOC pointer: it actually points 0x8000 into the TOC (this gives the
395 * value maximum span in an instruction which uses a signed offset). Round down
396 * to a 256 byte boundary for the odd case where we are setting up r2 without a
397 * .toc section.
399 static inline unsigned long my_r2(const Elf64_Shdr *sechdrs, struct module *me)
401 return (sechdrs[me->arch.toc_section].sh_addr & ~0xfful) + 0x8000;
404 /* Both low and high 16 bits are added as SIGNED additions, so if low
405 16 bits has high bit set, high 16 bits must be adjusted. These
406 macros do that (stolen from binutils). */
407 #define PPC_LO(v) ((v) & 0xffff)
408 #define PPC_HI(v) (((v) >> 16) & 0xffff)
409 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
411 /* Patch stub to reference function and correct r2 value. */
412 static inline int create_stub(const Elf64_Shdr *sechdrs,
413 struct ppc64_stub_entry *entry,
414 unsigned long addr,
415 struct module *me)
417 long reladdr;
419 memcpy(entry->jump, ppc64_stub_insns, sizeof(ppc64_stub_insns));
421 /* Stub uses address relative to r2. */
422 reladdr = (unsigned long)entry - my_r2(sechdrs, me);
423 if (reladdr > 0x7FFFFFFF || reladdr < -(0x80000000L)) {
424 pr_err("%s: Address %p of stub out of range of %p.\n",
425 me->name, (void *)reladdr, (void *)my_r2);
426 return 0;
428 pr_debug("Stub %p get data from reladdr %li\n", entry, reladdr);
430 entry->jump[0] |= PPC_HA(reladdr);
431 entry->jump[1] |= PPC_LO(reladdr);
432 entry->funcdata = func_desc(addr);
433 entry->magic = STUB_MAGIC;
435 return 1;
438 /* Create stub to jump to function described in this OPD/ptr: we need the
439 stub to set up the TOC ptr (r2) for the function. */
440 static unsigned long stub_for_addr(const Elf64_Shdr *sechdrs,
441 unsigned long addr,
442 struct module *me)
444 struct ppc64_stub_entry *stubs;
445 unsigned int i, num_stubs;
447 num_stubs = sechdrs[me->arch.stubs_section].sh_size / sizeof(*stubs);
449 /* Find this stub, or if that fails, the next avail. entry */
450 stubs = (void *)sechdrs[me->arch.stubs_section].sh_addr;
451 for (i = 0; stub_func_addr(stubs[i].funcdata); i++) {
452 if (WARN_ON(i >= num_stubs))
453 return 0;
455 if (stub_func_addr(stubs[i].funcdata) == func_addr(addr))
456 return (unsigned long)&stubs[i];
459 if (!create_stub(sechdrs, &stubs[i], addr, me))
460 return 0;
462 return (unsigned long)&stubs[i];
465 #ifdef CC_USING_MPROFILE_KERNEL
466 static bool is_early_mcount_callsite(u32 *instruction)
469 * Check if this is one of the -mprofile-kernel sequences.
471 if (instruction[-1] == PPC_INST_STD_LR &&
472 instruction[-2] == PPC_INST_MFLR)
473 return true;
475 if (instruction[-1] == PPC_INST_MFLR)
476 return true;
478 return false;
482 * In case of _mcount calls, do not save the current callee's TOC (in r2) into
483 * the original caller's stack frame. If we did we would clobber the saved TOC
484 * value of the original caller.
486 static void squash_toc_save_inst(const char *name, unsigned long addr)
488 struct ppc64_stub_entry *stub = (struct ppc64_stub_entry *)addr;
490 /* Only for calls to _mcount */
491 if (strcmp("_mcount", name) != 0)
492 return;
494 stub->jump[2] = PPC_INST_NOP;
496 #else
497 static void squash_toc_save_inst(const char *name, unsigned long addr) { }
499 /* without -mprofile-kernel, mcount calls are never early */
500 static bool is_early_mcount_callsite(u32 *instruction)
502 return false;
504 #endif
506 /* We expect a noop next: if it is, replace it with instruction to
507 restore r2. */
508 static int restore_r2(u32 *instruction, struct module *me)
510 u32 *prev_insn = instruction - 1;
512 if (is_early_mcount_callsite(prev_insn))
513 return 1;
516 * Make sure the branch isn't a sibling call. Sibling calls aren't
517 * "link" branches and they don't return, so they don't need the r2
518 * restore afterwards.
520 if (!instr_is_relative_link_branch(*prev_insn))
521 return 1;
523 if (*instruction != PPC_INST_NOP) {
524 pr_err("%s: Expected nop after call, got %08x at %pS\n",
525 me->name, *instruction, instruction);
526 return 0;
528 /* ld r2,R2_STACK_OFFSET(r1) */
529 *instruction = PPC_INST_LD_TOC;
530 return 1;
533 int apply_relocate_add(Elf64_Shdr *sechdrs,
534 const char *strtab,
535 unsigned int symindex,
536 unsigned int relsec,
537 struct module *me)
539 unsigned int i;
540 Elf64_Rela *rela = (void *)sechdrs[relsec].sh_addr;
541 Elf64_Sym *sym;
542 unsigned long *location;
543 unsigned long value;
545 pr_debug("Applying ADD relocate section %u to %u\n", relsec,
546 sechdrs[relsec].sh_info);
548 /* First time we're called, we can fix up .TOC. */
549 if (!me->arch.toc_fixed) {
550 sym = find_dot_toc(sechdrs, strtab, symindex);
551 /* It's theoretically possible that a module doesn't want a
552 * .TOC. so don't fail it just for that. */
553 if (sym)
554 sym->st_value = my_r2(sechdrs, me);
555 me->arch.toc_fixed = true;
558 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rela); i++) {
559 /* This is where to make the change */
560 location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
561 + rela[i].r_offset;
562 /* This is the symbol it is referring to */
563 sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
564 + ELF64_R_SYM(rela[i].r_info);
566 pr_debug("RELOC at %p: %li-type as %s (0x%lx) + %li\n",
567 location, (long)ELF64_R_TYPE(rela[i].r_info),
568 strtab + sym->st_name, (unsigned long)sym->st_value,
569 (long)rela[i].r_addend);
571 /* `Everything is relative'. */
572 value = sym->st_value + rela[i].r_addend;
574 switch (ELF64_R_TYPE(rela[i].r_info)) {
575 case R_PPC64_ADDR32:
576 /* Simply set it */
577 *(u32 *)location = value;
578 break;
580 case R_PPC64_ADDR64:
581 /* Simply set it */
582 *(unsigned long *)location = value;
583 break;
585 case R_PPC64_TOC:
586 *(unsigned long *)location = my_r2(sechdrs, me);
587 break;
589 case R_PPC64_TOC16:
590 /* Subtract TOC pointer */
591 value -= my_r2(sechdrs, me);
592 if (value + 0x8000 > 0xffff) {
593 pr_err("%s: bad TOC16 relocation (0x%lx)\n",
594 me->name, value);
595 return -ENOEXEC;
597 *((uint16_t *) location)
598 = (*((uint16_t *) location) & ~0xffff)
599 | (value & 0xffff);
600 break;
602 case R_PPC64_TOC16_LO:
603 /* Subtract TOC pointer */
604 value -= my_r2(sechdrs, me);
605 *((uint16_t *) location)
606 = (*((uint16_t *) location) & ~0xffff)
607 | (value & 0xffff);
608 break;
610 case R_PPC64_TOC16_DS:
611 /* Subtract TOC pointer */
612 value -= my_r2(sechdrs, me);
613 if ((value & 3) != 0 || value + 0x8000 > 0xffff) {
614 pr_err("%s: bad TOC16_DS relocation (0x%lx)\n",
615 me->name, value);
616 return -ENOEXEC;
618 *((uint16_t *) location)
619 = (*((uint16_t *) location) & ~0xfffc)
620 | (value & 0xfffc);
621 break;
623 case R_PPC64_TOC16_LO_DS:
624 /* Subtract TOC pointer */
625 value -= my_r2(sechdrs, me);
626 if ((value & 3) != 0) {
627 pr_err("%s: bad TOC16_LO_DS relocation (0x%lx)\n",
628 me->name, value);
629 return -ENOEXEC;
631 *((uint16_t *) location)
632 = (*((uint16_t *) location) & ~0xfffc)
633 | (value & 0xfffc);
634 break;
636 case R_PPC64_TOC16_HA:
637 /* Subtract TOC pointer */
638 value -= my_r2(sechdrs, me);
639 value = ((value + 0x8000) >> 16);
640 *((uint16_t *) location)
641 = (*((uint16_t *) location) & ~0xffff)
642 | (value & 0xffff);
643 break;
645 case R_PPC_REL24:
646 /* FIXME: Handle weak symbols here --RR */
647 if (sym->st_shndx == SHN_UNDEF ||
648 sym->st_shndx == SHN_LIVEPATCH) {
649 /* External: go via stub */
650 value = stub_for_addr(sechdrs, value, me);
651 if (!value)
652 return -ENOENT;
653 if (!restore_r2((u32 *)location + 1, me))
654 return -ENOEXEC;
656 squash_toc_save_inst(strtab + sym->st_name, value);
657 } else
658 value += local_entry_offset(sym);
660 /* Convert value to relative */
661 value -= (unsigned long)location;
662 if (value + 0x2000000 > 0x3ffffff || (value & 3) != 0){
663 pr_err("%s: REL24 %li out of range!\n",
664 me->name, (long int)value);
665 return -ENOEXEC;
668 /* Only replace bits 2 through 26 */
669 *(uint32_t *)location
670 = (*(uint32_t *)location & ~0x03fffffc)
671 | (value & 0x03fffffc);
672 break;
674 case R_PPC64_REL64:
675 /* 64 bits relative (used by features fixups) */
676 *location = value - (unsigned long)location;
677 break;
679 case R_PPC64_REL32:
680 /* 32 bits relative (used by relative exception tables) */
681 *(u32 *)location = value - (unsigned long)location;
682 break;
684 case R_PPC64_TOCSAVE:
686 * Marker reloc indicates we don't have to save r2.
687 * That would only save us one instruction, so ignore
688 * it.
690 break;
692 case R_PPC64_ENTRY:
694 * Optimize ELFv2 large code model entry point if
695 * the TOC is within 2GB range of current location.
697 value = my_r2(sechdrs, me) - (unsigned long)location;
698 if (value + 0x80008000 > 0xffffffff)
699 break;
701 * Check for the large code model prolog sequence:
702 * ld r2, ...(r12)
703 * add r2, r2, r12
705 if ((((uint32_t *)location)[0] & ~0xfffc)
706 != 0xe84c0000)
707 break;
708 if (((uint32_t *)location)[1] != 0x7c426214)
709 break;
711 * If found, replace it with:
712 * addis r2, r12, (.TOC.-func)@ha
713 * addi r2, r12, (.TOC.-func)@l
715 ((uint32_t *)location)[0] = 0x3c4c0000 + PPC_HA(value);
716 ((uint32_t *)location)[1] = 0x38420000 + PPC_LO(value);
717 break;
719 case R_PPC64_REL16_HA:
720 /* Subtract location pointer */
721 value -= (unsigned long)location;
722 value = ((value + 0x8000) >> 16);
723 *((uint16_t *) location)
724 = (*((uint16_t *) location) & ~0xffff)
725 | (value & 0xffff);
726 break;
728 case R_PPC64_REL16_LO:
729 /* Subtract location pointer */
730 value -= (unsigned long)location;
731 *((uint16_t *) location)
732 = (*((uint16_t *) location) & ~0xffff)
733 | (value & 0xffff);
734 break;
736 default:
737 pr_err("%s: Unknown ADD relocation: %lu\n",
738 me->name,
739 (unsigned long)ELF64_R_TYPE(rela[i].r_info));
740 return -ENOEXEC;
744 return 0;
747 #ifdef CONFIG_DYNAMIC_FTRACE
749 #ifdef CC_USING_MPROFILE_KERNEL
751 #define PACATOC offsetof(struct paca_struct, kernel_toc)
754 * For mprofile-kernel we use a special stub for ftrace_caller() because we
755 * can't rely on r2 containing this module's TOC when we enter the stub.
757 * That can happen if the function calling us didn't need to use the toc. In
758 * that case it won't have setup r2, and the r2 value will be either the
759 * kernel's toc, or possibly another modules toc.
761 * To deal with that this stub uses the kernel toc, which is always accessible
762 * via the paca (in r13). The target (ftrace_caller()) is responsible for
763 * saving and restoring the toc before returning.
765 static unsigned long create_ftrace_stub(const Elf64_Shdr *sechdrs, struct module *me)
767 struct ppc64_stub_entry *entry;
768 unsigned int i, num_stubs;
769 static u32 stub_insns[] = {
770 0xe98d0000 | PACATOC, /* ld r12,PACATOC(r13) */
771 0x3d8c0000, /* addis r12,r12,<high> */
772 0x398c0000, /* addi r12,r12,<low> */
773 0x7d8903a6, /* mtctr r12 */
774 0x4e800420, /* bctr */
776 long reladdr;
778 num_stubs = sechdrs[me->arch.stubs_section].sh_size / sizeof(*entry);
780 /* Find the next available stub entry */
781 entry = (void *)sechdrs[me->arch.stubs_section].sh_addr;
782 for (i = 0; i < num_stubs && stub_func_addr(entry->funcdata); i++, entry++);
784 if (i >= num_stubs) {
785 pr_err("%s: Unable to find a free slot for ftrace stub.\n", me->name);
786 return 0;
789 memcpy(entry->jump, stub_insns, sizeof(stub_insns));
791 /* Stub uses address relative to kernel toc (from the paca) */
792 reladdr = (unsigned long)ftrace_caller - kernel_toc_addr();
793 if (reladdr > 0x7FFFFFFF || reladdr < -(0x80000000L)) {
794 pr_err("%s: Address of ftrace_caller out of range of kernel_toc.\n", me->name);
795 return 0;
798 entry->jump[1] |= PPC_HA(reladdr);
799 entry->jump[2] |= PPC_LO(reladdr);
801 /* Eventhough we don't use funcdata in the stub, it's needed elsewhere. */
802 entry->funcdata = func_desc((unsigned long)ftrace_caller);
803 entry->magic = STUB_MAGIC;
805 return (unsigned long)entry;
807 #else
808 static unsigned long create_ftrace_stub(const Elf64_Shdr *sechdrs, struct module *me)
810 return stub_for_addr(sechdrs, (unsigned long)ftrace_caller, me);
812 #endif
814 int module_finalize_ftrace(struct module *mod, const Elf_Shdr *sechdrs)
816 mod->arch.toc = my_r2(sechdrs, mod);
817 mod->arch.tramp = create_ftrace_stub(sechdrs, mod);
819 if (!mod->arch.tramp)
820 return -ENOENT;
822 return 0;
824 #endif