xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / arch / powerpc / kernel / setup_64.c
blobc388cc3357fa0e9f236277ac6f18a782a62c6bcd
1 /*
2 *
3 * Common boot and setup code.
5 * Copyright (C) 2001 PPC64 Team, IBM Corp
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/export.h>
14 #include <linux/string.h>
15 #include <linux/sched.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/reboot.h>
19 #include <linux/delay.h>
20 #include <linux/initrd.h>
21 #include <linux/seq_file.h>
22 #include <linux/ioport.h>
23 #include <linux/console.h>
24 #include <linux/utsname.h>
25 #include <linux/tty.h>
26 #include <linux/root_dev.h>
27 #include <linux/notifier.h>
28 #include <linux/cpu.h>
29 #include <linux/unistd.h>
30 #include <linux/serial.h>
31 #include <linux/serial_8250.h>
32 #include <linux/bootmem.h>
33 #include <linux/pci.h>
34 #include <linux/lockdep.h>
35 #include <linux/memblock.h>
36 #include <linux/memory.h>
37 #include <linux/nmi.h>
39 #include <asm/debugfs.h>
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/prom.h>
43 #include <asm/processor.h>
44 #include <asm/pgtable.h>
45 #include <asm/smp.h>
46 #include <asm/elf.h>
47 #include <asm/machdep.h>
48 #include <asm/paca.h>
49 #include <asm/time.h>
50 #include <asm/cputable.h>
51 #include <asm/dt_cpu_ftrs.h>
52 #include <asm/sections.h>
53 #include <asm/btext.h>
54 #include <asm/nvram.h>
55 #include <asm/setup.h>
56 #include <asm/rtas.h>
57 #include <asm/iommu.h>
58 #include <asm/serial.h>
59 #include <asm/cache.h>
60 #include <asm/page.h>
61 #include <asm/mmu.h>
62 #include <asm/firmware.h>
63 #include <asm/xmon.h>
64 #include <asm/udbg.h>
65 #include <asm/kexec.h>
66 #include <asm/code-patching.h>
67 #include <asm/livepatch.h>
68 #include <asm/opal.h>
69 #include <asm/cputhreads.h>
70 #include <asm/hw_irq.h>
72 #include "setup.h"
74 #ifdef DEBUG
75 #define DBG(fmt...) udbg_printf(fmt)
76 #else
77 #define DBG(fmt...)
78 #endif
80 int spinning_secondaries;
81 u64 ppc64_pft_size;
83 struct ppc64_caches ppc64_caches = {
84 .l1d = {
85 .block_size = 0x40,
86 .log_block_size = 6,
88 .l1i = {
89 .block_size = 0x40,
90 .log_block_size = 6
93 EXPORT_SYMBOL_GPL(ppc64_caches);
95 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
96 void __init setup_tlb_core_data(void)
98 int cpu;
100 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
102 for_each_possible_cpu(cpu) {
103 int first = cpu_first_thread_sibling(cpu);
106 * If we boot via kdump on a non-primary thread,
107 * make sure we point at the thread that actually
108 * set up this TLB.
110 if (cpu_first_thread_sibling(boot_cpuid) == first)
111 first = boot_cpuid;
113 paca[cpu].tcd_ptr = &paca[first].tcd;
116 * If we have threads, we need either tlbsrx.
117 * or e6500 tablewalk mode, or else TLB handlers
118 * will be racy and could produce duplicate entries.
119 * Should we panic instead?
121 WARN_ONCE(smt_enabled_at_boot >= 2 &&
122 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
123 book3e_htw_mode != PPC_HTW_E6500,
124 "%s: unsupported MMU configuration\n", __func__);
127 #endif
129 #ifdef CONFIG_SMP
131 static char *smt_enabled_cmdline;
133 /* Look for ibm,smt-enabled OF option */
134 void __init check_smt_enabled(void)
136 struct device_node *dn;
137 const char *smt_option;
139 /* Default to enabling all threads */
140 smt_enabled_at_boot = threads_per_core;
142 /* Allow the command line to overrule the OF option */
143 if (smt_enabled_cmdline) {
144 if (!strcmp(smt_enabled_cmdline, "on"))
145 smt_enabled_at_boot = threads_per_core;
146 else if (!strcmp(smt_enabled_cmdline, "off"))
147 smt_enabled_at_boot = 0;
148 else {
149 int smt;
150 int rc;
152 rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
153 if (!rc)
154 smt_enabled_at_boot =
155 min(threads_per_core, smt);
157 } else {
158 dn = of_find_node_by_path("/options");
159 if (dn) {
160 smt_option = of_get_property(dn, "ibm,smt-enabled",
161 NULL);
163 if (smt_option) {
164 if (!strcmp(smt_option, "on"))
165 smt_enabled_at_boot = threads_per_core;
166 else if (!strcmp(smt_option, "off"))
167 smt_enabled_at_boot = 0;
170 of_node_put(dn);
175 /* Look for smt-enabled= cmdline option */
176 static int __init early_smt_enabled(char *p)
178 smt_enabled_cmdline = p;
179 return 0;
181 early_param("smt-enabled", early_smt_enabled);
183 #endif /* CONFIG_SMP */
185 /** Fix up paca fields required for the boot cpu */
186 static void __init fixup_boot_paca(void)
188 /* The boot cpu is started */
189 get_paca()->cpu_start = 1;
190 /* Allow percpu accesses to work until we setup percpu data */
191 get_paca()->data_offset = 0;
192 /* Mark interrupts disabled in PACA */
193 irq_soft_mask_set(IRQS_DISABLED);
196 static void __init configure_exceptions(void)
199 * Setup the trampolines from the lowmem exception vectors
200 * to the kdump kernel when not using a relocatable kernel.
202 setup_kdump_trampoline();
204 /* Under a PAPR hypervisor, we need hypercalls */
205 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
206 /* Enable AIL if possible */
207 pseries_enable_reloc_on_exc();
210 * Tell the hypervisor that we want our exceptions to
211 * be taken in little endian mode.
213 * We don't call this for big endian as our calling convention
214 * makes us always enter in BE, and the call may fail under
215 * some circumstances with kdump.
217 #ifdef __LITTLE_ENDIAN__
218 pseries_little_endian_exceptions();
219 #endif
220 } else {
221 /* Set endian mode using OPAL */
222 if (firmware_has_feature(FW_FEATURE_OPAL))
223 opal_configure_cores();
225 /* AIL on native is done in cpu_ready_for_interrupts() */
229 static void cpu_ready_for_interrupts(void)
232 * Enable AIL if supported, and we are in hypervisor mode. This
233 * is called once for every processor.
235 * If we are not in hypervisor mode the job is done once for
236 * the whole partition in configure_exceptions().
238 if (cpu_has_feature(CPU_FTR_HVMODE) &&
239 cpu_has_feature(CPU_FTR_ARCH_207S)) {
240 unsigned long lpcr = mfspr(SPRN_LPCR);
241 mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
245 * Fixup HFSCR:TM based on CPU features. The bit is set by our
246 * early asm init because at that point we haven't updated our
247 * CPU features from firmware and device-tree. Here we have,
248 * so let's do it.
250 if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP))
251 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
253 /* Set IR and DR in PACA MSR */
254 get_paca()->kernel_msr = MSR_KERNEL;
258 * Early initialization entry point. This is called by head.S
259 * with MMU translation disabled. We rely on the "feature" of
260 * the CPU that ignores the top 2 bits of the address in real
261 * mode so we can access kernel globals normally provided we
262 * only toy with things in the RMO region. From here, we do
263 * some early parsing of the device-tree to setup out MEMBLOCK
264 * data structures, and allocate & initialize the hash table
265 * and segment tables so we can start running with translation
266 * enabled.
268 * It is this function which will call the probe() callback of
269 * the various platform types and copy the matching one to the
270 * global ppc_md structure. Your platform can eventually do
271 * some very early initializations from the probe() routine, but
272 * this is not recommended, be very careful as, for example, the
273 * device-tree is not accessible via normal means at this point.
276 void __init early_setup(unsigned long dt_ptr)
278 static __initdata struct paca_struct boot_paca;
280 /* -------- printk is _NOT_ safe to use here ! ------- */
282 /* Try new device tree based feature discovery ... */
283 if (!dt_cpu_ftrs_init(__va(dt_ptr)))
284 /* Otherwise use the old style CPU table */
285 identify_cpu(0, mfspr(SPRN_PVR));
287 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */
288 initialise_paca(&boot_paca, 0);
289 setup_paca(&boot_paca);
290 fixup_boot_paca();
292 /* -------- printk is now safe to use ------- */
294 /* Enable early debugging if any specified (see udbg.h) */
295 udbg_early_init();
297 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
300 * Do early initialization using the flattened device
301 * tree, such as retrieving the physical memory map or
302 * calculating/retrieving the hash table size.
304 early_init_devtree(__va(dt_ptr));
306 /* Now we know the logical id of our boot cpu, setup the paca. */
307 setup_paca(&paca[boot_cpuid]);
308 fixup_boot_paca();
311 * Configure exception handlers. This include setting up trampolines
312 * if needed, setting exception endian mode, etc...
314 configure_exceptions();
316 /* Apply all the dynamic patching */
317 apply_feature_fixups();
318 setup_feature_keys();
320 /* Initialize the hash table or TLB handling */
321 early_init_mmu();
324 * After firmware and early platform setup code has set things up,
325 * we note the SPR values for configurable control/performance
326 * registers, and use those as initial defaults.
328 record_spr_defaults();
331 * At this point, we can let interrupts switch to virtual mode
332 * (the MMU has been setup), so adjust the MSR in the PACA to
333 * have IR and DR set and enable AIL if it exists
335 cpu_ready_for_interrupts();
337 DBG(" <- early_setup()\n");
339 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
341 * This needs to be done *last* (after the above DBG() even)
343 * Right after we return from this function, we turn on the MMU
344 * which means the real-mode access trick that btext does will
345 * no longer work, it needs to switch to using a real MMU
346 * mapping. This call will ensure that it does
348 btext_map();
349 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
352 #ifdef CONFIG_SMP
353 void early_setup_secondary(void)
355 /* Mark interrupts disabled in PACA */
356 irq_soft_mask_set(IRQS_DISABLED);
358 /* Initialize the hash table or TLB handling */
359 early_init_mmu_secondary();
362 * At this point, we can let interrupts switch to virtual mode
363 * (the MMU has been setup), so adjust the MSR in the PACA to
364 * have IR and DR set.
366 cpu_ready_for_interrupts();
369 #endif /* CONFIG_SMP */
371 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
372 static bool use_spinloop(void)
374 if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
376 * See comments in head_64.S -- not all platforms insert
377 * secondaries at __secondary_hold and wait at the spin
378 * loop.
380 if (firmware_has_feature(FW_FEATURE_OPAL))
381 return false;
382 return true;
386 * When book3e boots from kexec, the ePAPR spin table does
387 * not get used.
389 return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
392 void smp_release_cpus(void)
394 unsigned long *ptr;
395 int i;
397 if (!use_spinloop())
398 return;
400 DBG(" -> smp_release_cpus()\n");
402 /* All secondary cpus are spinning on a common spinloop, release them
403 * all now so they can start to spin on their individual paca
404 * spinloops. For non SMP kernels, the secondary cpus never get out
405 * of the common spinloop.
408 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
409 - PHYSICAL_START);
410 *ptr = ppc_function_entry(generic_secondary_smp_init);
412 /* And wait a bit for them to catch up */
413 for (i = 0; i < 100000; i++) {
414 mb();
415 HMT_low();
416 if (spinning_secondaries == 0)
417 break;
418 udelay(1);
420 DBG("spinning_secondaries = %d\n", spinning_secondaries);
422 DBG(" <- smp_release_cpus()\n");
424 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
427 * Initialize some remaining members of the ppc64_caches and systemcfg
428 * structures
429 * (at least until we get rid of them completely). This is mostly some
430 * cache informations about the CPU that will be used by cache flush
431 * routines and/or provided to userland
434 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
435 u32 bsize, u32 sets)
437 info->size = size;
438 info->sets = sets;
439 info->line_size = lsize;
440 info->block_size = bsize;
441 info->log_block_size = __ilog2(bsize);
442 if (bsize)
443 info->blocks_per_page = PAGE_SIZE / bsize;
444 else
445 info->blocks_per_page = 0;
447 if (sets == 0)
448 info->assoc = 0xffff;
449 else
450 info->assoc = size / (sets * lsize);
453 static bool __init parse_cache_info(struct device_node *np,
454 bool icache,
455 struct ppc_cache_info *info)
457 static const char *ipropnames[] __initdata = {
458 "i-cache-size",
459 "i-cache-sets",
460 "i-cache-block-size",
461 "i-cache-line-size",
463 static const char *dpropnames[] __initdata = {
464 "d-cache-size",
465 "d-cache-sets",
466 "d-cache-block-size",
467 "d-cache-line-size",
469 const char **propnames = icache ? ipropnames : dpropnames;
470 const __be32 *sizep, *lsizep, *bsizep, *setsp;
471 u32 size, lsize, bsize, sets;
472 bool success = true;
474 size = 0;
475 sets = -1u;
476 lsize = bsize = cur_cpu_spec->dcache_bsize;
477 sizep = of_get_property(np, propnames[0], NULL);
478 if (sizep != NULL)
479 size = be32_to_cpu(*sizep);
480 setsp = of_get_property(np, propnames[1], NULL);
481 if (setsp != NULL)
482 sets = be32_to_cpu(*setsp);
483 bsizep = of_get_property(np, propnames[2], NULL);
484 lsizep = of_get_property(np, propnames[3], NULL);
485 if (bsizep == NULL)
486 bsizep = lsizep;
487 if (lsizep != NULL)
488 lsize = be32_to_cpu(*lsizep);
489 if (bsizep != NULL)
490 bsize = be32_to_cpu(*bsizep);
491 if (sizep == NULL || bsizep == NULL || lsizep == NULL)
492 success = false;
495 * OF is weird .. it represents fully associative caches
496 * as "1 way" which doesn't make much sense and doesn't
497 * leave room for direct mapped. We'll assume that 0
498 * in OF means direct mapped for that reason.
500 if (sets == 1)
501 sets = 0;
502 else if (sets == 0)
503 sets = 1;
505 init_cache_info(info, size, lsize, bsize, sets);
507 return success;
510 void __init initialize_cache_info(void)
512 struct device_node *cpu = NULL, *l2, *l3 = NULL;
513 u32 pvr;
515 DBG(" -> initialize_cache_info()\n");
518 * All shipping POWER8 machines have a firmware bug that
519 * puts incorrect information in the device-tree. This will
520 * be (hopefully) fixed for future chips but for now hard
521 * code the values if we are running on one of these
523 pvr = PVR_VER(mfspr(SPRN_PVR));
524 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
525 pvr == PVR_POWER8NVL) {
526 /* size lsize blk sets */
527 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32);
528 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64);
529 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512);
530 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192);
531 } else
532 cpu = of_find_node_by_type(NULL, "cpu");
535 * We're assuming *all* of the CPUs have the same
536 * d-cache and i-cache sizes... -Peter
538 if (cpu) {
539 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
540 DBG("Argh, can't find dcache properties !\n");
542 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
543 DBG("Argh, can't find icache properties !\n");
546 * Try to find the L2 and L3 if any. Assume they are
547 * unified and use the D-side properties.
549 l2 = of_find_next_cache_node(cpu);
550 of_node_put(cpu);
551 if (l2) {
552 parse_cache_info(l2, false, &ppc64_caches.l2);
553 l3 = of_find_next_cache_node(l2);
554 of_node_put(l2);
556 if (l3) {
557 parse_cache_info(l3, false, &ppc64_caches.l3);
558 of_node_put(l3);
562 /* For use by binfmt_elf */
563 dcache_bsize = ppc64_caches.l1d.block_size;
564 icache_bsize = ppc64_caches.l1i.block_size;
566 cur_cpu_spec->dcache_bsize = dcache_bsize;
567 cur_cpu_spec->icache_bsize = icache_bsize;
569 DBG(" <- initialize_cache_info()\n");
573 * This returns the limit below which memory accesses to the linear
574 * mapping are guarnateed not to cause an architectural exception (e.g.,
575 * TLB or SLB miss fault).
577 * This is used to allocate PACAs and various interrupt stacks that
578 * that are accessed early in interrupt handlers that must not cause
579 * re-entrant interrupts.
581 __init u64 ppc64_bolted_size(void)
583 #ifdef CONFIG_PPC_BOOK3E
584 /* Freescale BookE bolts the entire linear mapping */
585 /* XXX: BookE ppc64_rma_limit setup seems to disagree? */
586 if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
587 return linear_map_top;
588 /* Other BookE, we assume the first GB is bolted */
589 return 1ul << 30;
590 #else
591 /* BookS radix, does not take faults on linear mapping */
592 if (early_radix_enabled())
593 return ULONG_MAX;
595 /* BookS hash, the first segment is bolted */
596 if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
597 return 1UL << SID_SHIFT_1T;
598 return 1UL << SID_SHIFT;
599 #endif
602 void __init irqstack_early_init(void)
604 u64 limit = ppc64_bolted_size();
605 unsigned int i;
608 * Interrupt stacks must be in the first segment since we
609 * cannot afford to take SLB misses on them. They are not
610 * accessed in realmode.
612 for_each_possible_cpu(i) {
613 softirq_ctx[i] = (struct thread_info *)
614 __va(memblock_alloc_base(THREAD_SIZE,
615 THREAD_SIZE, limit));
616 hardirq_ctx[i] = (struct thread_info *)
617 __va(memblock_alloc_base(THREAD_SIZE,
618 THREAD_SIZE, limit));
622 #ifdef CONFIG_PPC_BOOK3E
623 void __init exc_lvl_early_init(void)
625 unsigned int i;
626 unsigned long sp;
628 for_each_possible_cpu(i) {
629 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
630 critirq_ctx[i] = (struct thread_info *)__va(sp);
631 paca[i].crit_kstack = __va(sp + THREAD_SIZE);
633 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
634 dbgirq_ctx[i] = (struct thread_info *)__va(sp);
635 paca[i].dbg_kstack = __va(sp + THREAD_SIZE);
637 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
638 mcheckirq_ctx[i] = (struct thread_info *)__va(sp);
639 paca[i].mc_kstack = __va(sp + THREAD_SIZE);
642 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
643 patch_exception(0x040, exc_debug_debug_book3e);
645 #endif
648 * Emergency stacks are used for a range of things, from asynchronous
649 * NMIs (system reset, machine check) to synchronous, process context.
650 * We set preempt_count to zero, even though that isn't necessarily correct. To
651 * get the right value we'd need to copy it from the previous thread_info, but
652 * doing that might fault causing more problems.
653 * TODO: what to do with accounting?
655 static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu)
657 ti->task = NULL;
658 ti->cpu = cpu;
659 ti->preempt_count = 0;
660 ti->local_flags = 0;
661 ti->flags = 0;
662 klp_init_thread_info(ti);
666 * Stack space used when we detect a bad kernel stack pointer, and
667 * early in SMP boots before relocation is enabled. Exclusive emergency
668 * stack for machine checks.
670 void __init emergency_stack_init(void)
672 u64 limit;
673 unsigned int i;
676 * Emergency stacks must be under 256MB, we cannot afford to take
677 * SLB misses on them. The ABI also requires them to be 128-byte
678 * aligned.
680 * Since we use these as temporary stacks during secondary CPU
681 * bringup, machine check, system reset, and HMI, we need to get
682 * at them in real mode. This means they must also be within the RMO
683 * region.
685 * The IRQ stacks allocated elsewhere in this file are zeroed and
686 * initialized in kernel/irq.c. These are initialized here in order
687 * to have emergency stacks available as early as possible.
689 limit = min(ppc64_bolted_size(), ppc64_rma_size);
691 for_each_possible_cpu(i) {
692 struct thread_info *ti;
693 ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
694 memset(ti, 0, THREAD_SIZE);
695 emerg_stack_init_thread_info(ti, i);
696 paca[i].emergency_sp = (void *)ti + THREAD_SIZE;
698 #ifdef CONFIG_PPC_BOOK3S_64
699 /* emergency stack for NMI exception handling. */
700 ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
701 memset(ti, 0, THREAD_SIZE);
702 emerg_stack_init_thread_info(ti, i);
703 paca[i].nmi_emergency_sp = (void *)ti + THREAD_SIZE;
705 /* emergency stack for machine check exception handling. */
706 ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
707 memset(ti, 0, THREAD_SIZE);
708 emerg_stack_init_thread_info(ti, i);
709 paca[i].mc_emergency_sp = (void *)ti + THREAD_SIZE;
710 #endif
714 #ifdef CONFIG_SMP
715 #define PCPU_DYN_SIZE ()
717 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
719 return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align,
720 __pa(MAX_DMA_ADDRESS));
723 static void __init pcpu_fc_free(void *ptr, size_t size)
725 free_bootmem(__pa(ptr), size);
728 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
730 if (early_cpu_to_node(from) == early_cpu_to_node(to))
731 return LOCAL_DISTANCE;
732 else
733 return REMOTE_DISTANCE;
736 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
737 EXPORT_SYMBOL(__per_cpu_offset);
739 void __init setup_per_cpu_areas(void)
741 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
742 size_t atom_size;
743 unsigned long delta;
744 unsigned int cpu;
745 int rc;
748 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need
749 * to group units. For larger mappings, use 1M atom which
750 * should be large enough to contain a number of units.
752 if (mmu_linear_psize == MMU_PAGE_4K)
753 atom_size = PAGE_SIZE;
754 else
755 atom_size = 1 << 20;
757 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
758 pcpu_fc_alloc, pcpu_fc_free);
759 if (rc < 0)
760 panic("cannot initialize percpu area (err=%d)", rc);
762 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
763 for_each_possible_cpu(cpu) {
764 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
765 paca[cpu].data_offset = __per_cpu_offset[cpu];
768 #endif
770 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
771 unsigned long memory_block_size_bytes(void)
773 if (ppc_md.memory_block_size)
774 return ppc_md.memory_block_size();
776 return MIN_MEMORY_BLOCK_SIZE;
778 #endif
780 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
781 struct ppc_pci_io ppc_pci_io;
782 EXPORT_SYMBOL(ppc_pci_io);
783 #endif
785 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
786 u64 hw_nmi_get_sample_period(int watchdog_thresh)
788 return ppc_proc_freq * watchdog_thresh;
790 #endif
793 * The perf based hardlockup detector breaks PMU event based branches, so
794 * disable it by default. Book3S has a soft-nmi hardlockup detector based
795 * on the decrementer interrupt, so it does not suffer from this problem.
797 * It is likely to get false positives in VM guests, so disable it there
798 * by default too.
800 static int __init disable_hardlockup_detector(void)
802 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
803 hardlockup_detector_disable();
804 #else
805 if (firmware_has_feature(FW_FEATURE_LPAR))
806 hardlockup_detector_disable();
807 #endif
809 return 0;
811 early_initcall(disable_hardlockup_detector);
813 #ifdef CONFIG_PPC_BOOK3S_64
814 static enum l1d_flush_type enabled_flush_types;
815 static void *l1d_flush_fallback_area;
816 static bool no_rfi_flush;
817 bool rfi_flush;
819 static int __init handle_no_rfi_flush(char *p)
821 pr_info("rfi-flush: disabled on command line.");
822 no_rfi_flush = true;
823 return 0;
825 early_param("no_rfi_flush", handle_no_rfi_flush);
828 * The RFI flush is not KPTI, but because users will see doco that says to use
829 * nopti we hijack that option here to also disable the RFI flush.
831 static int __init handle_no_pti(char *p)
833 pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
834 handle_no_rfi_flush(NULL);
835 return 0;
837 early_param("nopti", handle_no_pti);
839 static void do_nothing(void *unused)
842 * We don't need to do the flush explicitly, just enter+exit kernel is
843 * sufficient, the RFI exit handlers will do the right thing.
847 void rfi_flush_enable(bool enable)
849 if (rfi_flush == enable)
850 return;
852 if (enable) {
853 do_rfi_flush_fixups(enabled_flush_types);
854 on_each_cpu(do_nothing, NULL, 1);
855 } else
856 do_rfi_flush_fixups(L1D_FLUSH_NONE);
858 rfi_flush = enable;
861 static void init_fallback_flush(void)
863 u64 l1d_size, limit;
864 int cpu;
866 l1d_size = ppc64_caches.l1d.size;
867 limit = min(ppc64_bolted_size(), ppc64_rma_size);
870 * Align to L1d size, and size it at 2x L1d size, to catch possible
871 * hardware prefetch runoff. We don't have a recipe for load patterns to
872 * reliably avoid the prefetcher.
874 l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit));
875 memset(l1d_flush_fallback_area, 0, l1d_size * 2);
877 for_each_possible_cpu(cpu) {
878 paca[cpu].rfi_flush_fallback_area = l1d_flush_fallback_area;
879 paca[cpu].l1d_flush_size = l1d_size;
883 void __init setup_rfi_flush(enum l1d_flush_type types, bool enable)
885 if (types & L1D_FLUSH_FALLBACK) {
886 pr_info("rfi-flush: Using fallback displacement flush\n");
887 init_fallback_flush();
890 if (types & L1D_FLUSH_ORI)
891 pr_info("rfi-flush: Using ori type flush\n");
893 if (types & L1D_FLUSH_MTTRIG)
894 pr_info("rfi-flush: Using mttrig type flush\n");
896 enabled_flush_types = types;
898 if (!no_rfi_flush)
899 rfi_flush_enable(enable);
902 #ifdef CONFIG_DEBUG_FS
903 static int rfi_flush_set(void *data, u64 val)
905 if (val == 1)
906 rfi_flush_enable(true);
907 else if (val == 0)
908 rfi_flush_enable(false);
909 else
910 return -EINVAL;
912 return 0;
915 static int rfi_flush_get(void *data, u64 *val)
917 *val = rfi_flush ? 1 : 0;
918 return 0;
921 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
923 static __init int rfi_flush_debugfs_init(void)
925 debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
926 return 0;
928 device_initcall(rfi_flush_debugfs_init);
929 #endif
931 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
933 if (rfi_flush)
934 return sprintf(buf, "Mitigation: RFI Flush\n");
936 return sprintf(buf, "Vulnerable\n");
938 #endif /* CONFIG_PPC_BOOK3S_64 */