xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / arch / powerpc / kernel / traps.c
blob1e48d157196a6157b014d0ed6046cfde92d40777
1 /*
2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
15 * This file handles the architecture-dependent parts of hardware exceptions
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/pkeys.h>
24 #include <linux/stddef.h>
25 #include <linux/unistd.h>
26 #include <linux/ptrace.h>
27 #include <linux/user.h>
28 #include <linux/interrupt.h>
29 #include <linux/init.h>
30 #include <linux/extable.h>
31 #include <linux/module.h> /* print_modules */
32 #include <linux/prctl.h>
33 #include <linux/delay.h>
34 #include <linux/kprobes.h>
35 #include <linux/kexec.h>
36 #include <linux/backlight.h>
37 #include <linux/bug.h>
38 #include <linux/kdebug.h>
39 #include <linux/ratelimit.h>
40 #include <linux/context_tracking.h>
41 #include <linux/smp.h>
42 #include <linux/console.h>
43 #include <linux/kmsg_dump.h>
45 #include <asm/emulated_ops.h>
46 #include <asm/pgtable.h>
47 #include <linux/uaccess.h>
48 #include <asm/debugfs.h>
49 #include <asm/io.h>
50 #include <asm/machdep.h>
51 #include <asm/rtas.h>
52 #include <asm/pmc.h>
53 #include <asm/reg.h>
54 #ifdef CONFIG_PMAC_BACKLIGHT
55 #include <asm/backlight.h>
56 #endif
57 #ifdef CONFIG_PPC64
58 #include <asm/firmware.h>
59 #include <asm/processor.h>
60 #include <asm/tm.h>
61 #endif
62 #include <asm/kexec.h>
63 #include <asm/ppc-opcode.h>
64 #include <asm/rio.h>
65 #include <asm/fadump.h>
66 #include <asm/switch_to.h>
67 #include <asm/tm.h>
68 #include <asm/debug.h>
69 #include <asm/asm-prototypes.h>
70 #include <asm/hmi.h>
71 #include <sysdev/fsl_pci.h>
72 #include <asm/kprobes.h>
74 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
75 int (*__debugger)(struct pt_regs *regs) __read_mostly;
76 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
77 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
78 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
79 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
80 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
81 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
83 EXPORT_SYMBOL(__debugger);
84 EXPORT_SYMBOL(__debugger_ipi);
85 EXPORT_SYMBOL(__debugger_bpt);
86 EXPORT_SYMBOL(__debugger_sstep);
87 EXPORT_SYMBOL(__debugger_iabr_match);
88 EXPORT_SYMBOL(__debugger_break_match);
89 EXPORT_SYMBOL(__debugger_fault_handler);
90 #endif
92 /* Transactional Memory trap debug */
93 #ifdef TM_DEBUG_SW
94 #define TM_DEBUG(x...) printk(KERN_INFO x)
95 #else
96 #define TM_DEBUG(x...) do { } while(0)
97 #endif
100 * Trap & Exception support
103 #ifdef CONFIG_PMAC_BACKLIGHT
104 static void pmac_backlight_unblank(void)
106 mutex_lock(&pmac_backlight_mutex);
107 if (pmac_backlight) {
108 struct backlight_properties *props;
110 props = &pmac_backlight->props;
111 props->brightness = props->max_brightness;
112 props->power = FB_BLANK_UNBLANK;
113 backlight_update_status(pmac_backlight);
115 mutex_unlock(&pmac_backlight_mutex);
117 #else
118 static inline void pmac_backlight_unblank(void) { }
119 #endif
122 * If oops/die is expected to crash the machine, return true here.
124 * This should not be expected to be 100% accurate, there may be
125 * notifiers registered or other unexpected conditions that may bring
126 * down the kernel. Or if the current process in the kernel is holding
127 * locks or has other critical state, the kernel may become effectively
128 * unusable anyway.
130 bool die_will_crash(void)
132 if (should_fadump_crash())
133 return true;
134 if (kexec_should_crash(current))
135 return true;
136 if (in_interrupt() || panic_on_oops ||
137 !current->pid || is_global_init(current))
138 return true;
140 return false;
143 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
144 static int die_owner = -1;
145 static unsigned int die_nest_count;
146 static int die_counter;
148 extern void panic_flush_kmsg_start(void)
151 * These are mostly taken from kernel/panic.c, but tries to do
152 * relatively minimal work. Don't use delay functions (TB may
153 * be broken), don't crash dump (need to set a firmware log),
154 * don't run notifiers. We do want to get some information to
155 * Linux console.
157 console_verbose();
158 bust_spinlocks(1);
161 extern void panic_flush_kmsg_end(void)
163 printk_safe_flush_on_panic();
164 kmsg_dump(KMSG_DUMP_PANIC);
165 bust_spinlocks(0);
166 debug_locks_off();
167 console_flush_on_panic();
170 static unsigned long oops_begin(struct pt_regs *regs)
172 int cpu;
173 unsigned long flags;
175 oops_enter();
177 /* racy, but better than risking deadlock. */
178 raw_local_irq_save(flags);
179 cpu = smp_processor_id();
180 if (!arch_spin_trylock(&die_lock)) {
181 if (cpu == die_owner)
182 /* nested oops. should stop eventually */;
183 else
184 arch_spin_lock(&die_lock);
186 die_nest_count++;
187 die_owner = cpu;
188 console_verbose();
189 bust_spinlocks(1);
190 if (machine_is(powermac))
191 pmac_backlight_unblank();
192 return flags;
194 NOKPROBE_SYMBOL(oops_begin);
196 static void oops_end(unsigned long flags, struct pt_regs *regs,
197 int signr)
199 bust_spinlocks(0);
200 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
201 die_nest_count--;
202 oops_exit();
203 printk("\n");
204 if (!die_nest_count) {
205 /* Nest count reaches zero, release the lock. */
206 die_owner = -1;
207 arch_spin_unlock(&die_lock);
209 raw_local_irq_restore(flags);
211 crash_fadump(regs, "die oops");
213 if (kexec_should_crash(current))
214 crash_kexec(regs);
216 if (!signr)
217 return;
220 * While our oops output is serialised by a spinlock, output
221 * from panic() called below can race and corrupt it. If we
222 * know we are going to panic, delay for 1 second so we have a
223 * chance to get clean backtraces from all CPUs that are oopsing.
225 if (in_interrupt() || panic_on_oops || !current->pid ||
226 is_global_init(current)) {
227 mdelay(MSEC_PER_SEC);
230 if (in_interrupt())
231 panic("Fatal exception in interrupt");
232 if (panic_on_oops)
233 panic("Fatal exception");
234 do_exit(signr);
236 NOKPROBE_SYMBOL(oops_end);
238 static int __die(const char *str, struct pt_regs *regs, long err)
240 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
242 if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN))
243 printk("LE ");
244 else
245 printk("BE ");
247 if (IS_ENABLED(CONFIG_PREEMPT))
248 pr_cont("PREEMPT ");
250 if (IS_ENABLED(CONFIG_SMP))
251 pr_cont("SMP NR_CPUS=%d ", NR_CPUS);
253 if (debug_pagealloc_enabled())
254 pr_cont("DEBUG_PAGEALLOC ");
256 if (IS_ENABLED(CONFIG_NUMA))
257 pr_cont("NUMA ");
259 pr_cont("%s\n", ppc_md.name ? ppc_md.name : "");
261 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
262 return 1;
264 print_modules();
265 show_regs(regs);
267 return 0;
269 NOKPROBE_SYMBOL(__die);
271 void die(const char *str, struct pt_regs *regs, long err)
273 unsigned long flags;
275 if (debugger(regs))
276 return;
278 flags = oops_begin(regs);
279 if (__die(str, regs, err))
280 err = 0;
281 oops_end(flags, regs, err);
283 NOKPROBE_SYMBOL(die);
285 void user_single_step_siginfo(struct task_struct *tsk,
286 struct pt_regs *regs, siginfo_t *info)
288 memset(info, 0, sizeof(*info));
289 info->si_signo = SIGTRAP;
290 info->si_code = TRAP_TRACE;
291 info->si_addr = (void __user *)regs->nip;
295 void _exception_pkey(int signr, struct pt_regs *regs, int code,
296 unsigned long addr, int key)
298 siginfo_t info;
299 const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
300 "at %08lx nip %08lx lr %08lx code %x\n";
301 const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
302 "at %016lx nip %016lx lr %016lx code %x\n";
304 if (!user_mode(regs)) {
305 die("Exception in kernel mode", regs, signr);
306 return;
309 if (show_unhandled_signals && unhandled_signal(current, signr)) {
310 printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
311 current->comm, current->pid, signr,
312 addr, regs->nip, regs->link, code);
315 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
316 local_irq_enable();
318 current->thread.trap_nr = code;
321 * Save all the pkey registers AMR/IAMR/UAMOR. Eg: Core dumps need
322 * to capture the content, if the task gets killed.
324 thread_pkey_regs_save(&current->thread);
326 memset(&info, 0, sizeof(info));
327 info.si_signo = signr;
328 info.si_code = code;
329 info.si_addr = (void __user *) addr;
330 info.si_pkey = key;
332 force_sig_info(signr, &info, current);
335 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
337 _exception_pkey(signr, regs, code, addr, 0);
340 void system_reset_exception(struct pt_regs *regs)
343 * Avoid crashes in case of nested NMI exceptions. Recoverability
344 * is determined by RI and in_nmi
346 bool nested = in_nmi();
347 if (!nested)
348 nmi_enter();
350 __this_cpu_inc(irq_stat.sreset_irqs);
352 /* See if any machine dependent calls */
353 if (ppc_md.system_reset_exception) {
354 if (ppc_md.system_reset_exception(regs))
355 goto out;
358 if (debugger(regs))
359 goto out;
362 * A system reset is a request to dump, so we always send
363 * it through the crashdump code (if fadump or kdump are
364 * registered).
366 crash_fadump(regs, "System Reset");
368 crash_kexec(regs);
371 * We aren't the primary crash CPU. We need to send it
372 * to a holding pattern to avoid it ending up in the panic
373 * code.
375 crash_kexec_secondary(regs);
378 * No debugger or crash dump registered, print logs then
379 * panic.
381 die("System Reset", regs, SIGABRT);
383 mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
384 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
385 nmi_panic(regs, "System Reset");
387 out:
388 #ifdef CONFIG_PPC_BOOK3S_64
389 BUG_ON(get_paca()->in_nmi == 0);
390 if (get_paca()->in_nmi > 1)
391 nmi_panic(regs, "Unrecoverable nested System Reset");
392 #endif
393 /* Must die if the interrupt is not recoverable */
394 if (!(regs->msr & MSR_RI))
395 nmi_panic(regs, "Unrecoverable System Reset");
397 if (!nested)
398 nmi_exit();
400 /* What should we do here? We could issue a shutdown or hard reset. */
404 * I/O accesses can cause machine checks on powermacs.
405 * Check if the NIP corresponds to the address of a sync
406 * instruction for which there is an entry in the exception
407 * table.
408 * Note that the 601 only takes a machine check on TEA
409 * (transfer error ack) signal assertion, and does not
410 * set any of the top 16 bits of SRR1.
411 * -- paulus.
413 static inline int check_io_access(struct pt_regs *regs)
415 #ifdef CONFIG_PPC32
416 unsigned long msr = regs->msr;
417 const struct exception_table_entry *entry;
418 unsigned int *nip = (unsigned int *)regs->nip;
420 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
421 && (entry = search_exception_tables(regs->nip)) != NULL) {
423 * Check that it's a sync instruction, or somewhere
424 * in the twi; isync; nop sequence that inb/inw/inl uses.
425 * As the address is in the exception table
426 * we should be able to read the instr there.
427 * For the debug message, we look at the preceding
428 * load or store.
430 if (*nip == PPC_INST_NOP)
431 nip -= 2;
432 else if (*nip == PPC_INST_ISYNC)
433 --nip;
434 if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
435 unsigned int rb;
437 --nip;
438 rb = (*nip >> 11) & 0x1f;
439 printk(KERN_DEBUG "%s bad port %lx at %p\n",
440 (*nip & 0x100)? "OUT to": "IN from",
441 regs->gpr[rb] - _IO_BASE, nip);
442 regs->msr |= MSR_RI;
443 regs->nip = extable_fixup(entry);
444 return 1;
447 #endif /* CONFIG_PPC32 */
448 return 0;
451 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
452 /* On 4xx, the reason for the machine check or program exception
453 is in the ESR. */
454 #define get_reason(regs) ((regs)->dsisr)
455 #define REASON_FP ESR_FP
456 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
457 #define REASON_PRIVILEGED ESR_PPR
458 #define REASON_TRAP ESR_PTR
460 /* single-step stuff */
461 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
462 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
464 #else
465 /* On non-4xx, the reason for the machine check or program
466 exception is in the MSR. */
467 #define get_reason(regs) ((regs)->msr)
468 #define REASON_TM SRR1_PROGTM
469 #define REASON_FP SRR1_PROGFPE
470 #define REASON_ILLEGAL SRR1_PROGILL
471 #define REASON_PRIVILEGED SRR1_PROGPRIV
472 #define REASON_TRAP SRR1_PROGTRAP
474 #define single_stepping(regs) ((regs)->msr & MSR_SE)
475 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
476 #endif
478 #if defined(CONFIG_E500)
479 int machine_check_e500mc(struct pt_regs *regs)
481 unsigned long mcsr = mfspr(SPRN_MCSR);
482 unsigned long pvr = mfspr(SPRN_PVR);
483 unsigned long reason = mcsr;
484 int recoverable = 1;
486 if (reason & MCSR_LD) {
487 recoverable = fsl_rio_mcheck_exception(regs);
488 if (recoverable == 1)
489 goto silent_out;
492 printk("Machine check in kernel mode.\n");
493 printk("Caused by (from MCSR=%lx): ", reason);
495 if (reason & MCSR_MCP)
496 printk("Machine Check Signal\n");
498 if (reason & MCSR_ICPERR) {
499 printk("Instruction Cache Parity Error\n");
502 * This is recoverable by invalidating the i-cache.
504 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
505 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
509 * This will generally be accompanied by an instruction
510 * fetch error report -- only treat MCSR_IF as fatal
511 * if it wasn't due to an L1 parity error.
513 reason &= ~MCSR_IF;
516 if (reason & MCSR_DCPERR_MC) {
517 printk("Data Cache Parity Error\n");
520 * In write shadow mode we auto-recover from the error, but it
521 * may still get logged and cause a machine check. We should
522 * only treat the non-write shadow case as non-recoverable.
524 /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
525 * is not implemented but L1 data cache always runs in write
526 * shadow mode. Hence on data cache parity errors HW will
527 * automatically invalidate the L1 Data Cache.
529 if (PVR_VER(pvr) != PVR_VER_E6500) {
530 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
531 recoverable = 0;
535 if (reason & MCSR_L2MMU_MHIT) {
536 printk("Hit on multiple TLB entries\n");
537 recoverable = 0;
540 if (reason & MCSR_NMI)
541 printk("Non-maskable interrupt\n");
543 if (reason & MCSR_IF) {
544 printk("Instruction Fetch Error Report\n");
545 recoverable = 0;
548 if (reason & MCSR_LD) {
549 printk("Load Error Report\n");
550 recoverable = 0;
553 if (reason & MCSR_ST) {
554 printk("Store Error Report\n");
555 recoverable = 0;
558 if (reason & MCSR_LDG) {
559 printk("Guarded Load Error Report\n");
560 recoverable = 0;
563 if (reason & MCSR_TLBSYNC)
564 printk("Simultaneous tlbsync operations\n");
566 if (reason & MCSR_BSL2_ERR) {
567 printk("Level 2 Cache Error\n");
568 recoverable = 0;
571 if (reason & MCSR_MAV) {
572 u64 addr;
574 addr = mfspr(SPRN_MCAR);
575 addr |= (u64)mfspr(SPRN_MCARU) << 32;
577 printk("Machine Check %s Address: %#llx\n",
578 reason & MCSR_MEA ? "Effective" : "Physical", addr);
581 silent_out:
582 mtspr(SPRN_MCSR, mcsr);
583 return mfspr(SPRN_MCSR) == 0 && recoverable;
586 int machine_check_e500(struct pt_regs *regs)
588 unsigned long reason = mfspr(SPRN_MCSR);
590 if (reason & MCSR_BUS_RBERR) {
591 if (fsl_rio_mcheck_exception(regs))
592 return 1;
593 if (fsl_pci_mcheck_exception(regs))
594 return 1;
597 printk("Machine check in kernel mode.\n");
598 printk("Caused by (from MCSR=%lx): ", reason);
600 if (reason & MCSR_MCP)
601 printk("Machine Check Signal\n");
602 if (reason & MCSR_ICPERR)
603 printk("Instruction Cache Parity Error\n");
604 if (reason & MCSR_DCP_PERR)
605 printk("Data Cache Push Parity Error\n");
606 if (reason & MCSR_DCPERR)
607 printk("Data Cache Parity Error\n");
608 if (reason & MCSR_BUS_IAERR)
609 printk("Bus - Instruction Address Error\n");
610 if (reason & MCSR_BUS_RAERR)
611 printk("Bus - Read Address Error\n");
612 if (reason & MCSR_BUS_WAERR)
613 printk("Bus - Write Address Error\n");
614 if (reason & MCSR_BUS_IBERR)
615 printk("Bus - Instruction Data Error\n");
616 if (reason & MCSR_BUS_RBERR)
617 printk("Bus - Read Data Bus Error\n");
618 if (reason & MCSR_BUS_WBERR)
619 printk("Bus - Write Data Bus Error\n");
620 if (reason & MCSR_BUS_IPERR)
621 printk("Bus - Instruction Parity Error\n");
622 if (reason & MCSR_BUS_RPERR)
623 printk("Bus - Read Parity Error\n");
625 return 0;
628 int machine_check_generic(struct pt_regs *regs)
630 return 0;
632 #elif defined(CONFIG_E200)
633 int machine_check_e200(struct pt_regs *regs)
635 unsigned long reason = mfspr(SPRN_MCSR);
637 printk("Machine check in kernel mode.\n");
638 printk("Caused by (from MCSR=%lx): ", reason);
640 if (reason & MCSR_MCP)
641 printk("Machine Check Signal\n");
642 if (reason & MCSR_CP_PERR)
643 printk("Cache Push Parity Error\n");
644 if (reason & MCSR_CPERR)
645 printk("Cache Parity Error\n");
646 if (reason & MCSR_EXCP_ERR)
647 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
648 if (reason & MCSR_BUS_IRERR)
649 printk("Bus - Read Bus Error on instruction fetch\n");
650 if (reason & MCSR_BUS_DRERR)
651 printk("Bus - Read Bus Error on data load\n");
652 if (reason & MCSR_BUS_WRERR)
653 printk("Bus - Write Bus Error on buffered store or cache line push\n");
655 return 0;
657 #elif defined(CONFIG_PPC32)
658 int machine_check_generic(struct pt_regs *regs)
660 unsigned long reason = regs->msr;
662 printk("Machine check in kernel mode.\n");
663 printk("Caused by (from SRR1=%lx): ", reason);
664 switch (reason & 0x601F0000) {
665 case 0x80000:
666 printk("Machine check signal\n");
667 break;
668 case 0: /* for 601 */
669 case 0x40000:
670 case 0x140000: /* 7450 MSS error and TEA */
671 printk("Transfer error ack signal\n");
672 break;
673 case 0x20000:
674 printk("Data parity error signal\n");
675 break;
676 case 0x10000:
677 printk("Address parity error signal\n");
678 break;
679 case 0x20000000:
680 printk("L1 Data Cache error\n");
681 break;
682 case 0x40000000:
683 printk("L1 Instruction Cache error\n");
684 break;
685 case 0x00100000:
686 printk("L2 data cache parity error\n");
687 break;
688 default:
689 printk("Unknown values in msr\n");
691 return 0;
693 #endif /* everything else */
695 void machine_check_exception(struct pt_regs *regs)
697 int recover = 0;
698 bool nested = in_nmi();
699 if (!nested)
700 nmi_enter();
702 /* 64s accounts the mce in machine_check_early when in HVMODE */
703 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64) || !cpu_has_feature(CPU_FTR_HVMODE))
704 __this_cpu_inc(irq_stat.mce_exceptions);
706 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
708 /* See if any machine dependent calls. In theory, we would want
709 * to call the CPU first, and call the ppc_md. one if the CPU
710 * one returns a positive number. However there is existing code
711 * that assumes the board gets a first chance, so let's keep it
712 * that way for now and fix things later. --BenH.
714 if (ppc_md.machine_check_exception)
715 recover = ppc_md.machine_check_exception(regs);
716 else if (cur_cpu_spec->machine_check)
717 recover = cur_cpu_spec->machine_check(regs);
719 if (recover > 0)
720 goto bail;
722 if (debugger_fault_handler(regs))
723 goto bail;
725 if (check_io_access(regs))
726 goto bail;
728 die("Machine check", regs, SIGBUS);
730 /* Must die if the interrupt is not recoverable */
731 if (!(regs->msr & MSR_RI))
732 nmi_panic(regs, "Unrecoverable Machine check");
734 bail:
735 if (!nested)
736 nmi_exit();
739 void SMIException(struct pt_regs *regs)
741 die("System Management Interrupt", regs, SIGABRT);
744 #ifdef CONFIG_VSX
745 static void p9_hmi_special_emu(struct pt_regs *regs)
747 unsigned int ra, rb, t, i, sel, instr, rc;
748 const void __user *addr;
749 u8 vbuf[16], *vdst;
750 unsigned long ea, msr, msr_mask;
751 bool swap;
753 if (__get_user_inatomic(instr, (unsigned int __user *)regs->nip))
754 return;
757 * lxvb16x opcode: 0x7c0006d8
758 * lxvd2x opcode: 0x7c000698
759 * lxvh8x opcode: 0x7c000658
760 * lxvw4x opcode: 0x7c000618
762 if ((instr & 0xfc00073e) != 0x7c000618) {
763 pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
764 " instr=%08x\n",
765 smp_processor_id(), current->comm, current->pid,
766 regs->nip, instr);
767 return;
770 /* Grab vector registers into the task struct */
771 msr = regs->msr; /* Grab msr before we flush the bits */
772 flush_vsx_to_thread(current);
773 enable_kernel_altivec();
776 * Is userspace running with a different endian (this is rare but
777 * not impossible)
779 swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
781 /* Decode the instruction */
782 ra = (instr >> 16) & 0x1f;
783 rb = (instr >> 11) & 0x1f;
784 t = (instr >> 21) & 0x1f;
785 if (instr & 1)
786 vdst = (u8 *)&current->thread.vr_state.vr[t];
787 else
788 vdst = (u8 *)&current->thread.fp_state.fpr[t][0];
790 /* Grab the vector address */
791 ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
792 if (is_32bit_task())
793 ea &= 0xfffffffful;
794 addr = (__force const void __user *)ea;
796 /* Check it */
797 if (!access_ok(VERIFY_READ, addr, 16)) {
798 pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
799 " instr=%08x addr=%016lx\n",
800 smp_processor_id(), current->comm, current->pid,
801 regs->nip, instr, (unsigned long)addr);
802 return;
805 /* Read the vector */
806 rc = 0;
807 if ((unsigned long)addr & 0xfUL)
808 /* unaligned case */
809 rc = __copy_from_user_inatomic(vbuf, addr, 16);
810 else
811 __get_user_atomic_128_aligned(vbuf, addr, rc);
812 if (rc) {
813 pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
814 " instr=%08x addr=%016lx\n",
815 smp_processor_id(), current->comm, current->pid,
816 regs->nip, instr, (unsigned long)addr);
817 return;
820 pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
821 " instr=%08x addr=%016lx\n",
822 smp_processor_id(), current->comm, current->pid, regs->nip,
823 instr, (unsigned long) addr);
825 /* Grab instruction "selector" */
826 sel = (instr >> 6) & 3;
829 * Check to make sure the facility is actually enabled. This
830 * could happen if we get a false positive hit.
832 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
833 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
835 msr_mask = MSR_VSX;
836 if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
837 msr_mask = MSR_VEC;
838 if (!(msr & msr_mask)) {
839 pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
840 " instr=%08x msr:%016lx\n",
841 smp_processor_id(), current->comm, current->pid,
842 regs->nip, instr, msr);
843 return;
846 /* Do logging here before we modify sel based on endian */
847 switch (sel) {
848 case 0: /* lxvw4x */
849 PPC_WARN_EMULATED(lxvw4x, regs);
850 break;
851 case 1: /* lxvh8x */
852 PPC_WARN_EMULATED(lxvh8x, regs);
853 break;
854 case 2: /* lxvd2x */
855 PPC_WARN_EMULATED(lxvd2x, regs);
856 break;
857 case 3: /* lxvb16x */
858 PPC_WARN_EMULATED(lxvb16x, regs);
859 break;
862 #ifdef __LITTLE_ENDIAN__
864 * An LE kernel stores the vector in the task struct as an LE
865 * byte array (effectively swapping both the components and
866 * the content of the components). Those instructions expect
867 * the components to remain in ascending address order, so we
868 * swap them back.
870 * If we are running a BE user space, the expectation is that
871 * of a simple memcpy, so forcing the emulation to look like
872 * a lxvb16x should do the trick.
874 if (swap)
875 sel = 3;
877 switch (sel) {
878 case 0: /* lxvw4x */
879 for (i = 0; i < 4; i++)
880 ((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
881 break;
882 case 1: /* lxvh8x */
883 for (i = 0; i < 8; i++)
884 ((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
885 break;
886 case 2: /* lxvd2x */
887 for (i = 0; i < 2; i++)
888 ((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
889 break;
890 case 3: /* lxvb16x */
891 for (i = 0; i < 16; i++)
892 vdst[i] = vbuf[15-i];
893 break;
895 #else /* __LITTLE_ENDIAN__ */
896 /* On a big endian kernel, a BE userspace only needs a memcpy */
897 if (!swap)
898 sel = 3;
900 /* Otherwise, we need to swap the content of the components */
901 switch (sel) {
902 case 0: /* lxvw4x */
903 for (i = 0; i < 4; i++)
904 ((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
905 break;
906 case 1: /* lxvh8x */
907 for (i = 0; i < 8; i++)
908 ((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
909 break;
910 case 2: /* lxvd2x */
911 for (i = 0; i < 2; i++)
912 ((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
913 break;
914 case 3: /* lxvb16x */
915 memcpy(vdst, vbuf, 16);
916 break;
918 #endif /* !__LITTLE_ENDIAN__ */
920 /* Go to next instruction */
921 regs->nip += 4;
923 #endif /* CONFIG_VSX */
925 void handle_hmi_exception(struct pt_regs *regs)
927 struct pt_regs *old_regs;
929 old_regs = set_irq_regs(regs);
930 irq_enter();
932 #ifdef CONFIG_VSX
933 /* Real mode flagged P9 special emu is needed */
934 if (local_paca->hmi_p9_special_emu) {
935 local_paca->hmi_p9_special_emu = 0;
938 * We don't want to take page faults while doing the
939 * emulation, we just replay the instruction if necessary.
941 pagefault_disable();
942 p9_hmi_special_emu(regs);
943 pagefault_enable();
945 #endif /* CONFIG_VSX */
947 if (ppc_md.handle_hmi_exception)
948 ppc_md.handle_hmi_exception(regs);
950 irq_exit();
951 set_irq_regs(old_regs);
954 void unknown_exception(struct pt_regs *regs)
956 enum ctx_state prev_state = exception_enter();
958 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
959 regs->nip, regs->msr, regs->trap);
961 _exception(SIGTRAP, regs, TRAP_FIXME, 0);
963 exception_exit(prev_state);
966 void instruction_breakpoint_exception(struct pt_regs *regs)
968 enum ctx_state prev_state = exception_enter();
970 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
971 5, SIGTRAP) == NOTIFY_STOP)
972 goto bail;
973 if (debugger_iabr_match(regs))
974 goto bail;
975 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
977 bail:
978 exception_exit(prev_state);
981 void RunModeException(struct pt_regs *regs)
983 _exception(SIGTRAP, regs, TRAP_FIXME, 0);
986 void single_step_exception(struct pt_regs *regs)
988 enum ctx_state prev_state = exception_enter();
990 clear_single_step(regs);
992 if (kprobe_post_handler(regs))
993 return;
995 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
996 5, SIGTRAP) == NOTIFY_STOP)
997 goto bail;
998 if (debugger_sstep(regs))
999 goto bail;
1001 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1003 bail:
1004 exception_exit(prev_state);
1006 NOKPROBE_SYMBOL(single_step_exception);
1009 * After we have successfully emulated an instruction, we have to
1010 * check if the instruction was being single-stepped, and if so,
1011 * pretend we got a single-step exception. This was pointed out
1012 * by Kumar Gala. -- paulus
1014 static void emulate_single_step(struct pt_regs *regs)
1016 if (single_stepping(regs))
1017 single_step_exception(regs);
1020 static inline int __parse_fpscr(unsigned long fpscr)
1022 int ret = FPE_FIXME;
1024 /* Invalid operation */
1025 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
1026 ret = FPE_FLTINV;
1028 /* Overflow */
1029 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
1030 ret = FPE_FLTOVF;
1032 /* Underflow */
1033 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
1034 ret = FPE_FLTUND;
1036 /* Divide by zero */
1037 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
1038 ret = FPE_FLTDIV;
1040 /* Inexact result */
1041 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
1042 ret = FPE_FLTRES;
1044 return ret;
1047 static void parse_fpe(struct pt_regs *regs)
1049 int code = 0;
1051 flush_fp_to_thread(current);
1053 code = __parse_fpscr(current->thread.fp_state.fpscr);
1055 _exception(SIGFPE, regs, code, regs->nip);
1059 * Illegal instruction emulation support. Originally written to
1060 * provide the PVR to user applications using the mfspr rd, PVR.
1061 * Return non-zero if we can't emulate, or -EFAULT if the associated
1062 * memory access caused an access fault. Return zero on success.
1064 * There are a couple of ways to do this, either "decode" the instruction
1065 * or directly match lots of bits. In this case, matching lots of
1066 * bits is faster and easier.
1069 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
1071 u8 rT = (instword >> 21) & 0x1f;
1072 u8 rA = (instword >> 16) & 0x1f;
1073 u8 NB_RB = (instword >> 11) & 0x1f;
1074 u32 num_bytes;
1075 unsigned long EA;
1076 int pos = 0;
1078 /* Early out if we are an invalid form of lswx */
1079 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
1080 if ((rT == rA) || (rT == NB_RB))
1081 return -EINVAL;
1083 EA = (rA == 0) ? 0 : regs->gpr[rA];
1085 switch (instword & PPC_INST_STRING_MASK) {
1086 case PPC_INST_LSWX:
1087 case PPC_INST_STSWX:
1088 EA += NB_RB;
1089 num_bytes = regs->xer & 0x7f;
1090 break;
1091 case PPC_INST_LSWI:
1092 case PPC_INST_STSWI:
1093 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
1094 break;
1095 default:
1096 return -EINVAL;
1099 while (num_bytes != 0)
1101 u8 val;
1102 u32 shift = 8 * (3 - (pos & 0x3));
1104 /* if process is 32-bit, clear upper 32 bits of EA */
1105 if ((regs->msr & MSR_64BIT) == 0)
1106 EA &= 0xFFFFFFFF;
1108 switch ((instword & PPC_INST_STRING_MASK)) {
1109 case PPC_INST_LSWX:
1110 case PPC_INST_LSWI:
1111 if (get_user(val, (u8 __user *)EA))
1112 return -EFAULT;
1113 /* first time updating this reg,
1114 * zero it out */
1115 if (pos == 0)
1116 regs->gpr[rT] = 0;
1117 regs->gpr[rT] |= val << shift;
1118 break;
1119 case PPC_INST_STSWI:
1120 case PPC_INST_STSWX:
1121 val = regs->gpr[rT] >> shift;
1122 if (put_user(val, (u8 __user *)EA))
1123 return -EFAULT;
1124 break;
1126 /* move EA to next address */
1127 EA += 1;
1128 num_bytes--;
1130 /* manage our position within the register */
1131 if (++pos == 4) {
1132 pos = 0;
1133 if (++rT == 32)
1134 rT = 0;
1138 return 0;
1141 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1143 u32 ra,rs;
1144 unsigned long tmp;
1146 ra = (instword >> 16) & 0x1f;
1147 rs = (instword >> 21) & 0x1f;
1149 tmp = regs->gpr[rs];
1150 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1151 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1152 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1153 regs->gpr[ra] = tmp;
1155 return 0;
1158 static int emulate_isel(struct pt_regs *regs, u32 instword)
1160 u8 rT = (instword >> 21) & 0x1f;
1161 u8 rA = (instword >> 16) & 0x1f;
1162 u8 rB = (instword >> 11) & 0x1f;
1163 u8 BC = (instword >> 6) & 0x1f;
1164 u8 bit;
1165 unsigned long tmp;
1167 tmp = (rA == 0) ? 0 : regs->gpr[rA];
1168 bit = (regs->ccr >> (31 - BC)) & 0x1;
1170 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1172 return 0;
1175 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1176 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1178 /* If we're emulating a load/store in an active transaction, we cannot
1179 * emulate it as the kernel operates in transaction suspended context.
1180 * We need to abort the transaction. This creates a persistent TM
1181 * abort so tell the user what caused it with a new code.
1183 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1184 tm_enable();
1185 tm_abort(cause);
1186 return true;
1188 return false;
1190 #else
1191 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1193 return false;
1195 #endif
1197 static int emulate_instruction(struct pt_regs *regs)
1199 u32 instword;
1200 u32 rd;
1202 if (!user_mode(regs))
1203 return -EINVAL;
1204 CHECK_FULL_REGS(regs);
1206 if (get_user(instword, (u32 __user *)(regs->nip)))
1207 return -EFAULT;
1209 /* Emulate the mfspr rD, PVR. */
1210 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1211 PPC_WARN_EMULATED(mfpvr, regs);
1212 rd = (instword >> 21) & 0x1f;
1213 regs->gpr[rd] = mfspr(SPRN_PVR);
1214 return 0;
1217 /* Emulating the dcba insn is just a no-op. */
1218 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1219 PPC_WARN_EMULATED(dcba, regs);
1220 return 0;
1223 /* Emulate the mcrxr insn. */
1224 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1225 int shift = (instword >> 21) & 0x1c;
1226 unsigned long msk = 0xf0000000UL >> shift;
1228 PPC_WARN_EMULATED(mcrxr, regs);
1229 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1230 regs->xer &= ~0xf0000000UL;
1231 return 0;
1234 /* Emulate load/store string insn. */
1235 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1236 if (tm_abort_check(regs,
1237 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1238 return -EINVAL;
1239 PPC_WARN_EMULATED(string, regs);
1240 return emulate_string_inst(regs, instword);
1243 /* Emulate the popcntb (Population Count Bytes) instruction. */
1244 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1245 PPC_WARN_EMULATED(popcntb, regs);
1246 return emulate_popcntb_inst(regs, instword);
1249 /* Emulate isel (Integer Select) instruction */
1250 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1251 PPC_WARN_EMULATED(isel, regs);
1252 return emulate_isel(regs, instword);
1255 /* Emulate sync instruction variants */
1256 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1257 PPC_WARN_EMULATED(sync, regs);
1258 asm volatile("sync");
1259 return 0;
1262 #ifdef CONFIG_PPC64
1263 /* Emulate the mfspr rD, DSCR. */
1264 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1265 PPC_INST_MFSPR_DSCR_USER) ||
1266 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1267 PPC_INST_MFSPR_DSCR)) &&
1268 cpu_has_feature(CPU_FTR_DSCR)) {
1269 PPC_WARN_EMULATED(mfdscr, regs);
1270 rd = (instword >> 21) & 0x1f;
1271 regs->gpr[rd] = mfspr(SPRN_DSCR);
1272 return 0;
1274 /* Emulate the mtspr DSCR, rD. */
1275 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1276 PPC_INST_MTSPR_DSCR_USER) ||
1277 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1278 PPC_INST_MTSPR_DSCR)) &&
1279 cpu_has_feature(CPU_FTR_DSCR)) {
1280 PPC_WARN_EMULATED(mtdscr, regs);
1281 rd = (instword >> 21) & 0x1f;
1282 current->thread.dscr = regs->gpr[rd];
1283 current->thread.dscr_inherit = 1;
1284 mtspr(SPRN_DSCR, current->thread.dscr);
1285 return 0;
1287 #endif
1289 return -EINVAL;
1292 int is_valid_bugaddr(unsigned long addr)
1294 return is_kernel_addr(addr);
1297 #ifdef CONFIG_MATH_EMULATION
1298 static int emulate_math(struct pt_regs *regs)
1300 int ret;
1301 extern int do_mathemu(struct pt_regs *regs);
1303 ret = do_mathemu(regs);
1304 if (ret >= 0)
1305 PPC_WARN_EMULATED(math, regs);
1307 switch (ret) {
1308 case 0:
1309 emulate_single_step(regs);
1310 return 0;
1311 case 1: {
1312 int code = 0;
1313 code = __parse_fpscr(current->thread.fp_state.fpscr);
1314 _exception(SIGFPE, regs, code, regs->nip);
1315 return 0;
1317 case -EFAULT:
1318 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1319 return 0;
1322 return -1;
1324 #else
1325 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1326 #endif
1328 void program_check_exception(struct pt_regs *regs)
1330 enum ctx_state prev_state = exception_enter();
1331 unsigned int reason = get_reason(regs);
1333 /* We can now get here via a FP Unavailable exception if the core
1334 * has no FPU, in that case the reason flags will be 0 */
1336 if (reason & REASON_FP) {
1337 /* IEEE FP exception */
1338 parse_fpe(regs);
1339 goto bail;
1341 if (reason & REASON_TRAP) {
1342 unsigned long bugaddr;
1343 /* Debugger is first in line to stop recursive faults in
1344 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1345 if (debugger_bpt(regs))
1346 goto bail;
1348 if (kprobe_handler(regs))
1349 goto bail;
1351 /* trap exception */
1352 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1353 == NOTIFY_STOP)
1354 goto bail;
1356 bugaddr = regs->nip;
1358 * Fixup bugaddr for BUG_ON() in real mode
1360 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1361 bugaddr += PAGE_OFFSET;
1363 if (!(regs->msr & MSR_PR) && /* not user-mode */
1364 report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1365 regs->nip += 4;
1366 goto bail;
1368 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1369 goto bail;
1371 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1372 if (reason & REASON_TM) {
1373 /* This is a TM "Bad Thing Exception" program check.
1374 * This occurs when:
1375 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1376 * transition in TM states.
1377 * - A trechkpt is attempted when transactional.
1378 * - A treclaim is attempted when non transactional.
1379 * - A tend is illegally attempted.
1380 * - writing a TM SPR when transactional.
1382 * If usermode caused this, it's done something illegal and
1383 * gets a SIGILL slap on the wrist. We call it an illegal
1384 * operand to distinguish from the instruction just being bad
1385 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1386 * illegal /placement/ of a valid instruction.
1388 if (user_mode(regs)) {
1389 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1390 goto bail;
1391 } else {
1392 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1393 "at %lx (msr 0x%x)\n", regs->nip, reason);
1394 die("Unrecoverable exception", regs, SIGABRT);
1397 #endif
1400 * If we took the program check in the kernel skip down to sending a
1401 * SIGILL. The subsequent cases all relate to emulating instructions
1402 * which we should only do for userspace. We also do not want to enable
1403 * interrupts for kernel faults because that might lead to further
1404 * faults, and loose the context of the original exception.
1406 if (!user_mode(regs))
1407 goto sigill;
1409 /* We restore the interrupt state now */
1410 if (!arch_irq_disabled_regs(regs))
1411 local_irq_enable();
1413 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1414 * but there seems to be a hardware bug on the 405GP (RevD)
1415 * that means ESR is sometimes set incorrectly - either to
1416 * ESR_DST (!?) or 0. In the process of chasing this with the
1417 * hardware people - not sure if it can happen on any illegal
1418 * instruction or only on FP instructions, whether there is a
1419 * pattern to occurrences etc. -dgibson 31/Mar/2003
1421 if (!emulate_math(regs))
1422 goto bail;
1424 /* Try to emulate it if we should. */
1425 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1426 switch (emulate_instruction(regs)) {
1427 case 0:
1428 regs->nip += 4;
1429 emulate_single_step(regs);
1430 goto bail;
1431 case -EFAULT:
1432 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1433 goto bail;
1437 sigill:
1438 if (reason & REASON_PRIVILEGED)
1439 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1440 else
1441 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1443 bail:
1444 exception_exit(prev_state);
1446 NOKPROBE_SYMBOL(program_check_exception);
1449 * This occurs when running in hypervisor mode on POWER6 or later
1450 * and an illegal instruction is encountered.
1452 void emulation_assist_interrupt(struct pt_regs *regs)
1454 regs->msr |= REASON_ILLEGAL;
1455 program_check_exception(regs);
1457 NOKPROBE_SYMBOL(emulation_assist_interrupt);
1459 void alignment_exception(struct pt_regs *regs)
1461 enum ctx_state prev_state = exception_enter();
1462 int sig, code, fixed = 0;
1464 /* We restore the interrupt state now */
1465 if (!arch_irq_disabled_regs(regs))
1466 local_irq_enable();
1468 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1469 goto bail;
1471 /* we don't implement logging of alignment exceptions */
1472 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1473 fixed = fix_alignment(regs);
1475 if (fixed == 1) {
1476 regs->nip += 4; /* skip over emulated instruction */
1477 emulate_single_step(regs);
1478 goto bail;
1481 /* Operand address was bad */
1482 if (fixed == -EFAULT) {
1483 sig = SIGSEGV;
1484 code = SEGV_ACCERR;
1485 } else {
1486 sig = SIGBUS;
1487 code = BUS_ADRALN;
1489 if (user_mode(regs))
1490 _exception(sig, regs, code, regs->dar);
1491 else
1492 bad_page_fault(regs, regs->dar, sig);
1494 bail:
1495 exception_exit(prev_state);
1498 void slb_miss_bad_addr(struct pt_regs *regs)
1500 enum ctx_state prev_state = exception_enter();
1502 if (user_mode(regs))
1503 _exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
1504 else
1505 bad_page_fault(regs, regs->dar, SIGSEGV);
1507 exception_exit(prev_state);
1510 void StackOverflow(struct pt_regs *regs)
1512 printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1513 current, regs->gpr[1]);
1514 debugger(regs);
1515 show_regs(regs);
1516 panic("kernel stack overflow");
1519 void nonrecoverable_exception(struct pt_regs *regs)
1521 printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1522 regs->nip, regs->msr);
1523 debugger(regs);
1524 die("nonrecoverable exception", regs, SIGKILL);
1527 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1529 enum ctx_state prev_state = exception_enter();
1531 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1532 "%lx at %lx\n", regs->trap, regs->nip);
1533 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1535 exception_exit(prev_state);
1538 void altivec_unavailable_exception(struct pt_regs *regs)
1540 enum ctx_state prev_state = exception_enter();
1542 if (user_mode(regs)) {
1543 /* A user program has executed an altivec instruction,
1544 but this kernel doesn't support altivec. */
1545 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1546 goto bail;
1549 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1550 "%lx at %lx\n", regs->trap, regs->nip);
1551 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1553 bail:
1554 exception_exit(prev_state);
1557 void vsx_unavailable_exception(struct pt_regs *regs)
1559 if (user_mode(regs)) {
1560 /* A user program has executed an vsx instruction,
1561 but this kernel doesn't support vsx. */
1562 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1563 return;
1566 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1567 "%lx at %lx\n", regs->trap, regs->nip);
1568 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1571 #ifdef CONFIG_PPC64
1572 static void tm_unavailable(struct pt_regs *regs)
1574 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1575 if (user_mode(regs)) {
1576 current->thread.load_tm++;
1577 regs->msr |= MSR_TM;
1578 tm_enable();
1579 tm_restore_sprs(&current->thread);
1580 return;
1582 #endif
1583 pr_emerg("Unrecoverable TM Unavailable Exception "
1584 "%lx at %lx\n", regs->trap, regs->nip);
1585 die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1588 void facility_unavailable_exception(struct pt_regs *regs)
1590 static char *facility_strings[] = {
1591 [FSCR_FP_LG] = "FPU",
1592 [FSCR_VECVSX_LG] = "VMX/VSX",
1593 [FSCR_DSCR_LG] = "DSCR",
1594 [FSCR_PM_LG] = "PMU SPRs",
1595 [FSCR_BHRB_LG] = "BHRB",
1596 [FSCR_TM_LG] = "TM",
1597 [FSCR_EBB_LG] = "EBB",
1598 [FSCR_TAR_LG] = "TAR",
1599 [FSCR_MSGP_LG] = "MSGP",
1600 [FSCR_SCV_LG] = "SCV",
1602 char *facility = "unknown";
1603 u64 value;
1604 u32 instword, rd;
1605 u8 status;
1606 bool hv;
1608 hv = (TRAP(regs) == 0xf80);
1609 if (hv)
1610 value = mfspr(SPRN_HFSCR);
1611 else
1612 value = mfspr(SPRN_FSCR);
1614 status = value >> 56;
1615 if (status == FSCR_DSCR_LG) {
1617 * User is accessing the DSCR register using the problem
1618 * state only SPR number (0x03) either through a mfspr or
1619 * a mtspr instruction. If it is a write attempt through
1620 * a mtspr, then we set the inherit bit. This also allows
1621 * the user to write or read the register directly in the
1622 * future by setting via the FSCR DSCR bit. But in case it
1623 * is a read DSCR attempt through a mfspr instruction, we
1624 * just emulate the instruction instead. This code path will
1625 * always emulate all the mfspr instructions till the user
1626 * has attempted at least one mtspr instruction. This way it
1627 * preserves the same behaviour when the user is accessing
1628 * the DSCR through privilege level only SPR number (0x11)
1629 * which is emulated through illegal instruction exception.
1630 * We always leave HFSCR DSCR set.
1632 if (get_user(instword, (u32 __user *)(regs->nip))) {
1633 pr_err("Failed to fetch the user instruction\n");
1634 return;
1637 /* Write into DSCR (mtspr 0x03, RS) */
1638 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1639 == PPC_INST_MTSPR_DSCR_USER) {
1640 rd = (instword >> 21) & 0x1f;
1641 current->thread.dscr = regs->gpr[rd];
1642 current->thread.dscr_inherit = 1;
1643 current->thread.fscr |= FSCR_DSCR;
1644 mtspr(SPRN_FSCR, current->thread.fscr);
1647 /* Read from DSCR (mfspr RT, 0x03) */
1648 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1649 == PPC_INST_MFSPR_DSCR_USER) {
1650 if (emulate_instruction(regs)) {
1651 pr_err("DSCR based mfspr emulation failed\n");
1652 return;
1654 regs->nip += 4;
1655 emulate_single_step(regs);
1657 return;
1660 if (status == FSCR_TM_LG) {
1662 * If we're here then the hardware is TM aware because it
1663 * generated an exception with FSRM_TM set.
1665 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1666 * told us not to do TM, or the kernel is not built with TM
1667 * support.
1669 * If both of those things are true, then userspace can spam the
1670 * console by triggering the printk() below just by continually
1671 * doing tbegin (or any TM instruction). So in that case just
1672 * send the process a SIGILL immediately.
1674 if (!cpu_has_feature(CPU_FTR_TM))
1675 goto out;
1677 tm_unavailable(regs);
1678 return;
1681 if ((hv || status >= 2) &&
1682 (status < ARRAY_SIZE(facility_strings)) &&
1683 facility_strings[status])
1684 facility = facility_strings[status];
1686 /* We restore the interrupt state now */
1687 if (!arch_irq_disabled_regs(regs))
1688 local_irq_enable();
1690 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1691 hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1693 out:
1694 if (user_mode(regs)) {
1695 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1696 return;
1699 die("Unexpected facility unavailable exception", regs, SIGABRT);
1701 #endif
1703 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1705 void fp_unavailable_tm(struct pt_regs *regs)
1707 /* Note: This does not handle any kind of FP laziness. */
1709 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1710 regs->nip, regs->msr);
1712 /* We can only have got here if the task started using FP after
1713 * beginning the transaction. So, the transactional regs are just a
1714 * copy of the checkpointed ones. But, we still need to recheckpoint
1715 * as we're enabling FP for the process; it will return, abort the
1716 * transaction, and probably retry but now with FP enabled. So the
1717 * checkpointed FP registers need to be loaded.
1719 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1720 /* Reclaim didn't save out any FPRs to transact_fprs. */
1722 /* Enable FP for the task: */
1723 current->thread.load_fp = 1;
1725 /* This loads and recheckpoints the FP registers from
1726 * thread.fpr[]. They will remain in registers after the
1727 * checkpoint so we don't need to reload them after.
1728 * If VMX is in use, the VRs now hold checkpointed values,
1729 * so we don't want to load the VRs from the thread_struct.
1731 tm_recheckpoint(&current->thread);
1734 void altivec_unavailable_tm(struct pt_regs *regs)
1736 /* See the comments in fp_unavailable_tm(). This function operates
1737 * the same way.
1740 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1741 "MSR=%lx\n",
1742 regs->nip, regs->msr);
1743 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1744 current->thread.load_vec = 1;
1745 tm_recheckpoint(&current->thread);
1746 current->thread.used_vr = 1;
1749 void vsx_unavailable_tm(struct pt_regs *regs)
1751 /* See the comments in fp_unavailable_tm(). This works similarly,
1752 * though we're loading both FP and VEC registers in here.
1754 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1755 * regs. Either way, set MSR_VSX.
1758 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1759 "MSR=%lx\n",
1760 regs->nip, regs->msr);
1762 current->thread.used_vsr = 1;
1764 /* This reclaims FP and/or VR regs if they're already enabled */
1765 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1767 current->thread.load_vec = 1;
1768 current->thread.load_fp = 1;
1770 tm_recheckpoint(&current->thread);
1772 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1774 void performance_monitor_exception(struct pt_regs *regs)
1776 __this_cpu_inc(irq_stat.pmu_irqs);
1778 perf_irq(regs);
1781 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1782 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1784 int changed = 0;
1786 * Determine the cause of the debug event, clear the
1787 * event flags and send a trap to the handler. Torez
1789 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1790 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1791 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1792 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1793 #endif
1794 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
1796 changed |= 0x01;
1797 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1798 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1799 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
1801 changed |= 0x01;
1802 } else if (debug_status & DBSR_IAC1) {
1803 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1804 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1805 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
1807 changed |= 0x01;
1808 } else if (debug_status & DBSR_IAC2) {
1809 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1810 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
1812 changed |= 0x01;
1813 } else if (debug_status & DBSR_IAC3) {
1814 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1815 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1816 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
1818 changed |= 0x01;
1819 } else if (debug_status & DBSR_IAC4) {
1820 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1821 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
1823 changed |= 0x01;
1826 * At the point this routine was called, the MSR(DE) was turned off.
1827 * Check all other debug flags and see if that bit needs to be turned
1828 * back on or not.
1830 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1831 current->thread.debug.dbcr1))
1832 regs->msr |= MSR_DE;
1833 else
1834 /* Make sure the IDM flag is off */
1835 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1837 if (changed & 0x01)
1838 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1841 void DebugException(struct pt_regs *regs, unsigned long debug_status)
1843 current->thread.debug.dbsr = debug_status;
1845 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1846 * on server, it stops on the target of the branch. In order to simulate
1847 * the server behaviour, we thus restart right away with a single step
1848 * instead of stopping here when hitting a BT
1850 if (debug_status & DBSR_BT) {
1851 regs->msr &= ~MSR_DE;
1853 /* Disable BT */
1854 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1855 /* Clear the BT event */
1856 mtspr(SPRN_DBSR, DBSR_BT);
1858 /* Do the single step trick only when coming from userspace */
1859 if (user_mode(regs)) {
1860 current->thread.debug.dbcr0 &= ~DBCR0_BT;
1861 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1862 regs->msr |= MSR_DE;
1863 return;
1866 if (kprobe_post_handler(regs))
1867 return;
1869 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1870 5, SIGTRAP) == NOTIFY_STOP) {
1871 return;
1873 if (debugger_sstep(regs))
1874 return;
1875 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1876 regs->msr &= ~MSR_DE;
1878 /* Disable instruction completion */
1879 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1880 /* Clear the instruction completion event */
1881 mtspr(SPRN_DBSR, DBSR_IC);
1883 if (kprobe_post_handler(regs))
1884 return;
1886 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1887 5, SIGTRAP) == NOTIFY_STOP) {
1888 return;
1891 if (debugger_sstep(regs))
1892 return;
1894 if (user_mode(regs)) {
1895 current->thread.debug.dbcr0 &= ~DBCR0_IC;
1896 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1897 current->thread.debug.dbcr1))
1898 regs->msr |= MSR_DE;
1899 else
1900 /* Make sure the IDM bit is off */
1901 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1904 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1905 } else
1906 handle_debug(regs, debug_status);
1908 NOKPROBE_SYMBOL(DebugException);
1909 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1911 #if !defined(CONFIG_TAU_INT)
1912 void TAUException(struct pt_regs *regs)
1914 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1915 regs->nip, regs->msr, regs->trap, print_tainted());
1917 #endif /* CONFIG_INT_TAU */
1919 #ifdef CONFIG_ALTIVEC
1920 void altivec_assist_exception(struct pt_regs *regs)
1922 int err;
1924 if (!user_mode(regs)) {
1925 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1926 " at %lx\n", regs->nip);
1927 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1930 flush_altivec_to_thread(current);
1932 PPC_WARN_EMULATED(altivec, regs);
1933 err = emulate_altivec(regs);
1934 if (err == 0) {
1935 regs->nip += 4; /* skip emulated instruction */
1936 emulate_single_step(regs);
1937 return;
1940 if (err == -EFAULT) {
1941 /* got an error reading the instruction */
1942 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1943 } else {
1944 /* didn't recognize the instruction */
1945 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1946 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1947 "in %s at %lx\n", current->comm, regs->nip);
1948 current->thread.vr_state.vscr.u[3] |= 0x10000;
1951 #endif /* CONFIG_ALTIVEC */
1953 #ifdef CONFIG_FSL_BOOKE
1954 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1955 unsigned long error_code)
1957 /* We treat cache locking instructions from the user
1958 * as priv ops, in the future we could try to do
1959 * something smarter
1961 if (error_code & (ESR_DLK|ESR_ILK))
1962 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1963 return;
1965 #endif /* CONFIG_FSL_BOOKE */
1967 #ifdef CONFIG_SPE
1968 void SPEFloatingPointException(struct pt_regs *regs)
1970 extern int do_spe_mathemu(struct pt_regs *regs);
1971 unsigned long spefscr;
1972 int fpexc_mode;
1973 int code = FPE_FIXME;
1974 int err;
1976 flush_spe_to_thread(current);
1978 spefscr = current->thread.spefscr;
1979 fpexc_mode = current->thread.fpexc_mode;
1981 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1982 code = FPE_FLTOVF;
1984 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1985 code = FPE_FLTUND;
1987 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1988 code = FPE_FLTDIV;
1989 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1990 code = FPE_FLTINV;
1992 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1993 code = FPE_FLTRES;
1995 err = do_spe_mathemu(regs);
1996 if (err == 0) {
1997 regs->nip += 4; /* skip emulated instruction */
1998 emulate_single_step(regs);
1999 return;
2002 if (err == -EFAULT) {
2003 /* got an error reading the instruction */
2004 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2005 } else if (err == -EINVAL) {
2006 /* didn't recognize the instruction */
2007 printk(KERN_ERR "unrecognized spe instruction "
2008 "in %s at %lx\n", current->comm, regs->nip);
2009 } else {
2010 _exception(SIGFPE, regs, code, regs->nip);
2013 return;
2016 void SPEFloatingPointRoundException(struct pt_regs *regs)
2018 extern int speround_handler(struct pt_regs *regs);
2019 int err;
2021 preempt_disable();
2022 if (regs->msr & MSR_SPE)
2023 giveup_spe(current);
2024 preempt_enable();
2026 regs->nip -= 4;
2027 err = speround_handler(regs);
2028 if (err == 0) {
2029 regs->nip += 4; /* skip emulated instruction */
2030 emulate_single_step(regs);
2031 return;
2034 if (err == -EFAULT) {
2035 /* got an error reading the instruction */
2036 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2037 } else if (err == -EINVAL) {
2038 /* didn't recognize the instruction */
2039 printk(KERN_ERR "unrecognized spe instruction "
2040 "in %s at %lx\n", current->comm, regs->nip);
2041 } else {
2042 _exception(SIGFPE, regs, FPE_FIXME, regs->nip);
2043 return;
2046 #endif
2049 * We enter here if we get an unrecoverable exception, that is, one
2050 * that happened at a point where the RI (recoverable interrupt) bit
2051 * in the MSR is 0. This indicates that SRR0/1 are live, and that
2052 * we therefore lost state by taking this exception.
2054 void unrecoverable_exception(struct pt_regs *regs)
2056 printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
2057 regs->trap, regs->nip);
2058 die("Unrecoverable exception", regs, SIGABRT);
2060 NOKPROBE_SYMBOL(unrecoverable_exception);
2062 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
2064 * Default handler for a Watchdog exception,
2065 * spins until a reboot occurs
2067 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
2069 /* Generic WatchdogHandler, implement your own */
2070 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
2071 return;
2074 void WatchdogException(struct pt_regs *regs)
2076 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
2077 WatchdogHandler(regs);
2079 #endif
2082 * We enter here if we discover during exception entry that we are
2083 * running in supervisor mode with a userspace value in the stack pointer.
2085 void kernel_bad_stack(struct pt_regs *regs)
2087 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2088 regs->gpr[1], regs->nip);
2089 die("Bad kernel stack pointer", regs, SIGABRT);
2091 NOKPROBE_SYMBOL(kernel_bad_stack);
2093 void __init trap_init(void)
2098 #ifdef CONFIG_PPC_EMULATED_STATS
2100 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
2102 struct ppc_emulated ppc_emulated = {
2103 #ifdef CONFIG_ALTIVEC
2104 WARN_EMULATED_SETUP(altivec),
2105 #endif
2106 WARN_EMULATED_SETUP(dcba),
2107 WARN_EMULATED_SETUP(dcbz),
2108 WARN_EMULATED_SETUP(fp_pair),
2109 WARN_EMULATED_SETUP(isel),
2110 WARN_EMULATED_SETUP(mcrxr),
2111 WARN_EMULATED_SETUP(mfpvr),
2112 WARN_EMULATED_SETUP(multiple),
2113 WARN_EMULATED_SETUP(popcntb),
2114 WARN_EMULATED_SETUP(spe),
2115 WARN_EMULATED_SETUP(string),
2116 WARN_EMULATED_SETUP(sync),
2117 WARN_EMULATED_SETUP(unaligned),
2118 #ifdef CONFIG_MATH_EMULATION
2119 WARN_EMULATED_SETUP(math),
2120 #endif
2121 #ifdef CONFIG_VSX
2122 WARN_EMULATED_SETUP(vsx),
2123 #endif
2124 #ifdef CONFIG_PPC64
2125 WARN_EMULATED_SETUP(mfdscr),
2126 WARN_EMULATED_SETUP(mtdscr),
2127 WARN_EMULATED_SETUP(lq_stq),
2128 WARN_EMULATED_SETUP(lxvw4x),
2129 WARN_EMULATED_SETUP(lxvh8x),
2130 WARN_EMULATED_SETUP(lxvd2x),
2131 WARN_EMULATED_SETUP(lxvb16x),
2132 #endif
2135 u32 ppc_warn_emulated;
2137 void ppc_warn_emulated_print(const char *type)
2139 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2140 type);
2143 static int __init ppc_warn_emulated_init(void)
2145 struct dentry *dir, *d;
2146 unsigned int i;
2147 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2149 if (!powerpc_debugfs_root)
2150 return -ENODEV;
2152 dir = debugfs_create_dir("emulated_instructions",
2153 powerpc_debugfs_root);
2154 if (!dir)
2155 return -ENOMEM;
2157 d = debugfs_create_u32("do_warn", 0644, dir,
2158 &ppc_warn_emulated);
2159 if (!d)
2160 goto fail;
2162 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
2163 d = debugfs_create_u32(entries[i].name, 0644, dir,
2164 (u32 *)&entries[i].val.counter);
2165 if (!d)
2166 goto fail;
2169 return 0;
2171 fail:
2172 debugfs_remove_recursive(dir);
2173 return -ENOMEM;
2176 device_initcall(ppc_warn_emulated_init);
2178 #endif /* CONFIG_PPC_EMULATED_STATS */