1 // SPDX-License-Identifier: GPL-2.0
3 * Watchdog support on powerpc systems.
5 * Copyright 2017, IBM Corporation.
7 * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
10 #define pr_fmt(fmt) "watchdog: " fmt
12 #include <linux/kernel.h>
13 #include <linux/param.h>
14 #include <linux/init.h>
15 #include <linux/percpu.h>
16 #include <linux/cpu.h>
17 #include <linux/nmi.h>
18 #include <linux/module.h>
19 #include <linux/export.h>
20 #include <linux/kprobes.h>
21 #include <linux/hardirq.h>
22 #include <linux/reboot.h>
23 #include <linux/slab.h>
24 #include <linux/kdebug.h>
25 #include <linux/sched/debug.h>
26 #include <linux/delay.h>
27 #include <linux/smp.h>
32 * The powerpc watchdog ensures that each CPU is able to service timers.
33 * The watchdog sets up a simple timer on each CPU to run once per timer
34 * period, and updates a per-cpu timestamp and a "pending" cpumask. This is
37 * Then there are two systems to check that the heartbeat is still running.
38 * The local soft-NMI, and the SMP checker.
40 * The soft-NMI checker can detect lockups on the local CPU. When interrupts
41 * are disabled with local_irq_disable(), platforms that use soft-masking
42 * can leave hardware interrupts enabled and handle them with a masked
43 * interrupt handler. The masked handler can send the timer interrupt to the
44 * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
45 * interrupt, and can be used to detect CPUs stuck with IRQs disabled.
47 * The soft-NMI checker will compare the heartbeat timestamp for this CPU
48 * with the current time, and take action if the difference exceeds the
51 * The limitation of the soft-NMI watchdog is that it does not work when
52 * interrupts are hard disabled or otherwise not being serviced. This is
53 * solved by also having a SMP watchdog where all CPUs check all other
56 * The SMP checker can detect lockups on other CPUs. A gobal "pending"
57 * cpumask is kept, containing all CPUs which enable the watchdog. Each
58 * CPU clears their pending bit in their heartbeat timer. When the bitmask
59 * becomes empty, the last CPU to clear its pending bit updates a global
60 * timestamp and refills the pending bitmask.
62 * In the heartbeat timer, if any CPU notices that the global timestamp has
63 * not been updated for a period exceeding the watchdog threshold, then it
64 * means the CPU(s) with their bit still set in the pending mask have had
65 * their heartbeat stop, and action is taken.
67 * Some platforms implement true NMI IPIs, which can by used by the SMP
68 * watchdog to detect an unresponsive CPU and pull it out of its stuck
69 * state with the NMI IPI, to get crash/debug data from it. This way the
70 * SMP watchdog can detect hardware interrupts off lockups.
73 static cpumask_t wd_cpus_enabled __read_mostly
;
75 static u64 wd_panic_timeout_tb __read_mostly
; /* timebase ticks until panic */
76 static u64 wd_smp_panic_timeout_tb __read_mostly
; /* panic other CPUs */
78 static u64 wd_timer_period_ms __read_mostly
; /* interval between heartbeat */
80 static DEFINE_PER_CPU(struct timer_list
, wd_timer
);
81 static DEFINE_PER_CPU(u64
, wd_timer_tb
);
83 /* SMP checker bits */
84 static unsigned long __wd_smp_lock
;
85 static cpumask_t wd_smp_cpus_pending
;
86 static cpumask_t wd_smp_cpus_stuck
;
87 static u64 wd_smp_last_reset_tb
;
89 static inline void wd_smp_lock(unsigned long *flags
)
92 * Avoid locking layers if possible.
93 * This may be called from low level interrupt handlers at some
96 raw_local_irq_save(*flags
);
97 hard_irq_disable(); /* Make it soft-NMI safe */
98 while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock
))) {
99 raw_local_irq_restore(*flags
);
100 spin_until_cond(!test_bit(0, &__wd_smp_lock
));
101 raw_local_irq_save(*flags
);
106 static inline void wd_smp_unlock(unsigned long *flags
)
108 clear_bit_unlock(0, &__wd_smp_lock
);
109 raw_local_irq_restore(*flags
);
112 static void wd_lockup_ipi(struct pt_regs
*regs
)
114 pr_emerg("CPU %d Hard LOCKUP\n", raw_smp_processor_id());
116 print_irqtrace_events(current
);
122 /* Do not panic from here because that can recurse into NMI IPI layer */
125 static void set_cpumask_stuck(const struct cpumask
*cpumask
, u64 tb
)
127 cpumask_or(&wd_smp_cpus_stuck
, &wd_smp_cpus_stuck
, cpumask
);
128 cpumask_andnot(&wd_smp_cpus_pending
, &wd_smp_cpus_pending
, cpumask
);
129 if (cpumask_empty(&wd_smp_cpus_pending
)) {
130 wd_smp_last_reset_tb
= tb
;
131 cpumask_andnot(&wd_smp_cpus_pending
,
136 static void set_cpu_stuck(int cpu
, u64 tb
)
138 set_cpumask_stuck(cpumask_of(cpu
), tb
);
141 static void watchdog_smp_panic(int cpu
, u64 tb
)
147 /* Double check some things under lock */
148 if ((s64
)(tb
- wd_smp_last_reset_tb
) < (s64
)wd_smp_panic_timeout_tb
)
150 if (cpumask_test_cpu(cpu
, &wd_smp_cpus_pending
))
152 if (cpumask_weight(&wd_smp_cpus_pending
) == 0)
155 pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
156 cpu
, cpumask_pr_args(&wd_smp_cpus_pending
));
158 if (!sysctl_hardlockup_all_cpu_backtrace
) {
160 * Try to trigger the stuck CPUs, unless we are going to
161 * get a backtrace on all of them anyway.
163 for_each_cpu(c
, &wd_smp_cpus_pending
) {
166 smp_send_nmi_ipi(c
, wd_lockup_ipi
, 1000000);
168 smp_flush_nmi_ipi(1000000);
171 /* Take the stuck CPUs out of the watch group */
172 set_cpumask_stuck(&wd_smp_cpus_pending
, tb
);
174 wd_smp_unlock(&flags
);
178 * printk_safe_flush() seems to require another print
179 * before anything actually goes out to console.
181 if (sysctl_hardlockup_all_cpu_backtrace
)
182 trigger_allbutself_cpu_backtrace();
184 if (hardlockup_panic
)
185 nmi_panic(NULL
, "Hard LOCKUP");
190 wd_smp_unlock(&flags
);
193 static void wd_smp_clear_cpu_pending(int cpu
, u64 tb
)
195 if (!cpumask_test_cpu(cpu
, &wd_smp_cpus_pending
)) {
196 if (unlikely(cpumask_test_cpu(cpu
, &wd_smp_cpus_stuck
))) {
199 pr_emerg("CPU %d became unstuck\n", cpu
);
201 cpumask_clear_cpu(cpu
, &wd_smp_cpus_stuck
);
202 wd_smp_unlock(&flags
);
206 cpumask_clear_cpu(cpu
, &wd_smp_cpus_pending
);
207 if (cpumask_empty(&wd_smp_cpus_pending
)) {
211 if (cpumask_empty(&wd_smp_cpus_pending
)) {
212 wd_smp_last_reset_tb
= tb
;
213 cpumask_andnot(&wd_smp_cpus_pending
,
217 wd_smp_unlock(&flags
);
221 static void watchdog_timer_interrupt(int cpu
)
225 per_cpu(wd_timer_tb
, cpu
) = tb
;
227 wd_smp_clear_cpu_pending(cpu
, tb
);
229 if ((s64
)(tb
- wd_smp_last_reset_tb
) >= (s64
)wd_smp_panic_timeout_tb
)
230 watchdog_smp_panic(cpu
, tb
);
233 void soft_nmi_interrupt(struct pt_regs
*regs
)
236 int cpu
= raw_smp_processor_id();
239 if (!cpumask_test_cpu(cpu
, &wd_cpus_enabled
))
244 __this_cpu_inc(irq_stat
.soft_nmi_irqs
);
247 if (tb
- per_cpu(wd_timer_tb
, cpu
) >= wd_panic_timeout_tb
) {
248 per_cpu(wd_timer_tb
, cpu
) = tb
;
251 if (cpumask_test_cpu(cpu
, &wd_smp_cpus_stuck
)) {
252 wd_smp_unlock(&flags
);
255 set_cpu_stuck(cpu
, tb
);
257 pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n", cpu
, (void *)regs
->nip
);
259 print_irqtrace_events(current
);
262 wd_smp_unlock(&flags
);
264 if (sysctl_hardlockup_all_cpu_backtrace
)
265 trigger_allbutself_cpu_backtrace();
267 if (hardlockup_panic
)
268 nmi_panic(regs
, "Hard LOCKUP");
270 if (wd_panic_timeout_tb
< 0x7fffffff)
271 mtspr(SPRN_DEC
, wd_panic_timeout_tb
);
277 static void wd_timer_reset(unsigned int cpu
, struct timer_list
*t
)
279 t
->expires
= jiffies
+ msecs_to_jiffies(wd_timer_period_ms
);
280 if (wd_timer_period_ms
> 1000)
281 t
->expires
= __round_jiffies_up(t
->expires
, cpu
);
282 add_timer_on(t
, cpu
);
285 static void wd_timer_fn(struct timer_list
*t
)
287 int cpu
= smp_processor_id();
289 watchdog_timer_interrupt(cpu
);
291 wd_timer_reset(cpu
, t
);
294 void arch_touch_nmi_watchdog(void)
296 unsigned long ticks
= tb_ticks_per_usec
* wd_timer_period_ms
* 1000;
297 int cpu
= smp_processor_id();
300 if (tb
- per_cpu(wd_timer_tb
, cpu
) >= ticks
) {
301 per_cpu(wd_timer_tb
, cpu
) = tb
;
302 wd_smp_clear_cpu_pending(cpu
, tb
);
305 EXPORT_SYMBOL(arch_touch_nmi_watchdog
);
307 static void start_watchdog_timer_on(unsigned int cpu
)
309 struct timer_list
*t
= per_cpu_ptr(&wd_timer
, cpu
);
311 per_cpu(wd_timer_tb
, cpu
) = get_tb();
313 timer_setup(t
, wd_timer_fn
, TIMER_PINNED
);
314 wd_timer_reset(cpu
, t
);
317 static void stop_watchdog_timer_on(unsigned int cpu
)
319 struct timer_list
*t
= per_cpu_ptr(&wd_timer
, cpu
);
324 static int start_wd_on_cpu(unsigned int cpu
)
328 if (cpumask_test_cpu(cpu
, &wd_cpus_enabled
)) {
333 if (!(watchdog_enabled
& NMI_WATCHDOG_ENABLED
))
336 if (!cpumask_test_cpu(cpu
, &watchdog_cpumask
))
340 cpumask_set_cpu(cpu
, &wd_cpus_enabled
);
341 if (cpumask_weight(&wd_cpus_enabled
) == 1) {
342 cpumask_set_cpu(cpu
, &wd_smp_cpus_pending
);
343 wd_smp_last_reset_tb
= get_tb();
345 wd_smp_unlock(&flags
);
347 start_watchdog_timer_on(cpu
);
352 static int stop_wd_on_cpu(unsigned int cpu
)
356 if (!cpumask_test_cpu(cpu
, &wd_cpus_enabled
))
357 return 0; /* Can happen in CPU unplug case */
359 stop_watchdog_timer_on(cpu
);
362 cpumask_clear_cpu(cpu
, &wd_cpus_enabled
);
363 wd_smp_unlock(&flags
);
365 wd_smp_clear_cpu_pending(cpu
, get_tb());
370 static void watchdog_calc_timeouts(void)
372 wd_panic_timeout_tb
= watchdog_thresh
* ppc_tb_freq
;
374 /* Have the SMP detector trigger a bit later */
375 wd_smp_panic_timeout_tb
= wd_panic_timeout_tb
* 3 / 2;
377 /* 2/5 is the factor that the perf based detector uses */
378 wd_timer_period_ms
= watchdog_thresh
* 1000 * 2 / 5;
381 void watchdog_nmi_stop(void)
385 for_each_cpu(cpu
, &wd_cpus_enabled
)
389 void watchdog_nmi_start(void)
393 watchdog_calc_timeouts();
394 for_each_cpu_and(cpu
, cpu_online_mask
, &watchdog_cpumask
)
395 start_wd_on_cpu(cpu
);
399 * Invoked from core watchdog init.
401 int __init
watchdog_nmi_probe(void)
405 err
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
406 "powerpc/watchdog:online",
407 start_wd_on_cpu
, stop_wd_on_cpu
);
409 pr_warn("could not be initialized");