xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / arch / powerpc / kernel / watchdog.c
blob6256dc3b0087d2967b8453bd7cd6658d09018d7c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Watchdog support on powerpc systems.
5 * Copyright 2017, IBM Corporation.
7 * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
8 */
10 #define pr_fmt(fmt) "watchdog: " fmt
12 #include <linux/kernel.h>
13 #include <linux/param.h>
14 #include <linux/init.h>
15 #include <linux/percpu.h>
16 #include <linux/cpu.h>
17 #include <linux/nmi.h>
18 #include <linux/module.h>
19 #include <linux/export.h>
20 #include <linux/kprobes.h>
21 #include <linux/hardirq.h>
22 #include <linux/reboot.h>
23 #include <linux/slab.h>
24 #include <linux/kdebug.h>
25 #include <linux/sched/debug.h>
26 #include <linux/delay.h>
27 #include <linux/smp.h>
29 #include <asm/paca.h>
32 * The powerpc watchdog ensures that each CPU is able to service timers.
33 * The watchdog sets up a simple timer on each CPU to run once per timer
34 * period, and updates a per-cpu timestamp and a "pending" cpumask. This is
35 * the heartbeat.
37 * Then there are two systems to check that the heartbeat is still running.
38 * The local soft-NMI, and the SMP checker.
40 * The soft-NMI checker can detect lockups on the local CPU. When interrupts
41 * are disabled with local_irq_disable(), platforms that use soft-masking
42 * can leave hardware interrupts enabled and handle them with a masked
43 * interrupt handler. The masked handler can send the timer interrupt to the
44 * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
45 * interrupt, and can be used to detect CPUs stuck with IRQs disabled.
47 * The soft-NMI checker will compare the heartbeat timestamp for this CPU
48 * with the current time, and take action if the difference exceeds the
49 * watchdog threshold.
51 * The limitation of the soft-NMI watchdog is that it does not work when
52 * interrupts are hard disabled or otherwise not being serviced. This is
53 * solved by also having a SMP watchdog where all CPUs check all other
54 * CPUs heartbeat.
56 * The SMP checker can detect lockups on other CPUs. A gobal "pending"
57 * cpumask is kept, containing all CPUs which enable the watchdog. Each
58 * CPU clears their pending bit in their heartbeat timer. When the bitmask
59 * becomes empty, the last CPU to clear its pending bit updates a global
60 * timestamp and refills the pending bitmask.
62 * In the heartbeat timer, if any CPU notices that the global timestamp has
63 * not been updated for a period exceeding the watchdog threshold, then it
64 * means the CPU(s) with their bit still set in the pending mask have had
65 * their heartbeat stop, and action is taken.
67 * Some platforms implement true NMI IPIs, which can by used by the SMP
68 * watchdog to detect an unresponsive CPU and pull it out of its stuck
69 * state with the NMI IPI, to get crash/debug data from it. This way the
70 * SMP watchdog can detect hardware interrupts off lockups.
73 static cpumask_t wd_cpus_enabled __read_mostly;
75 static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */
76 static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */
78 static u64 wd_timer_period_ms __read_mostly; /* interval between heartbeat */
80 static DEFINE_PER_CPU(struct timer_list, wd_timer);
81 static DEFINE_PER_CPU(u64, wd_timer_tb);
83 /* SMP checker bits */
84 static unsigned long __wd_smp_lock;
85 static cpumask_t wd_smp_cpus_pending;
86 static cpumask_t wd_smp_cpus_stuck;
87 static u64 wd_smp_last_reset_tb;
89 static inline void wd_smp_lock(unsigned long *flags)
92 * Avoid locking layers if possible.
93 * This may be called from low level interrupt handlers at some
94 * point in future.
96 raw_local_irq_save(*flags);
97 hard_irq_disable(); /* Make it soft-NMI safe */
98 while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) {
99 raw_local_irq_restore(*flags);
100 spin_until_cond(!test_bit(0, &__wd_smp_lock));
101 raw_local_irq_save(*flags);
102 hard_irq_disable();
106 static inline void wd_smp_unlock(unsigned long *flags)
108 clear_bit_unlock(0, &__wd_smp_lock);
109 raw_local_irq_restore(*flags);
112 static void wd_lockup_ipi(struct pt_regs *regs)
114 pr_emerg("CPU %d Hard LOCKUP\n", raw_smp_processor_id());
115 print_modules();
116 print_irqtrace_events(current);
117 if (regs)
118 show_regs(regs);
119 else
120 dump_stack();
122 /* Do not panic from here because that can recurse into NMI IPI layer */
125 static void set_cpumask_stuck(const struct cpumask *cpumask, u64 tb)
127 cpumask_or(&wd_smp_cpus_stuck, &wd_smp_cpus_stuck, cpumask);
128 cpumask_andnot(&wd_smp_cpus_pending, &wd_smp_cpus_pending, cpumask);
129 if (cpumask_empty(&wd_smp_cpus_pending)) {
130 wd_smp_last_reset_tb = tb;
131 cpumask_andnot(&wd_smp_cpus_pending,
132 &wd_cpus_enabled,
133 &wd_smp_cpus_stuck);
136 static void set_cpu_stuck(int cpu, u64 tb)
138 set_cpumask_stuck(cpumask_of(cpu), tb);
141 static void watchdog_smp_panic(int cpu, u64 tb)
143 unsigned long flags;
144 int c;
146 wd_smp_lock(&flags);
147 /* Double check some things under lock */
148 if ((s64)(tb - wd_smp_last_reset_tb) < (s64)wd_smp_panic_timeout_tb)
149 goto out;
150 if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending))
151 goto out;
152 if (cpumask_weight(&wd_smp_cpus_pending) == 0)
153 goto out;
155 pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
156 cpu, cpumask_pr_args(&wd_smp_cpus_pending));
158 if (!sysctl_hardlockup_all_cpu_backtrace) {
160 * Try to trigger the stuck CPUs, unless we are going to
161 * get a backtrace on all of them anyway.
163 for_each_cpu(c, &wd_smp_cpus_pending) {
164 if (c == cpu)
165 continue;
166 smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
168 smp_flush_nmi_ipi(1000000);
171 /* Take the stuck CPUs out of the watch group */
172 set_cpumask_stuck(&wd_smp_cpus_pending, tb);
174 wd_smp_unlock(&flags);
176 printk_safe_flush();
178 * printk_safe_flush() seems to require another print
179 * before anything actually goes out to console.
181 if (sysctl_hardlockup_all_cpu_backtrace)
182 trigger_allbutself_cpu_backtrace();
184 if (hardlockup_panic)
185 nmi_panic(NULL, "Hard LOCKUP");
187 return;
189 out:
190 wd_smp_unlock(&flags);
193 static void wd_smp_clear_cpu_pending(int cpu, u64 tb)
195 if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) {
196 if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) {
197 unsigned long flags;
199 pr_emerg("CPU %d became unstuck\n", cpu);
200 wd_smp_lock(&flags);
201 cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck);
202 wd_smp_unlock(&flags);
204 return;
206 cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
207 if (cpumask_empty(&wd_smp_cpus_pending)) {
208 unsigned long flags;
210 wd_smp_lock(&flags);
211 if (cpumask_empty(&wd_smp_cpus_pending)) {
212 wd_smp_last_reset_tb = tb;
213 cpumask_andnot(&wd_smp_cpus_pending,
214 &wd_cpus_enabled,
215 &wd_smp_cpus_stuck);
217 wd_smp_unlock(&flags);
221 static void watchdog_timer_interrupt(int cpu)
223 u64 tb = get_tb();
225 per_cpu(wd_timer_tb, cpu) = tb;
227 wd_smp_clear_cpu_pending(cpu, tb);
229 if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb)
230 watchdog_smp_panic(cpu, tb);
233 void soft_nmi_interrupt(struct pt_regs *regs)
235 unsigned long flags;
236 int cpu = raw_smp_processor_id();
237 u64 tb;
239 if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
240 return;
242 nmi_enter();
244 __this_cpu_inc(irq_stat.soft_nmi_irqs);
246 tb = get_tb();
247 if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) {
248 per_cpu(wd_timer_tb, cpu) = tb;
250 wd_smp_lock(&flags);
251 if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) {
252 wd_smp_unlock(&flags);
253 goto out;
255 set_cpu_stuck(cpu, tb);
257 pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n", cpu, (void *)regs->nip);
258 print_modules();
259 print_irqtrace_events(current);
260 show_regs(regs);
262 wd_smp_unlock(&flags);
264 if (sysctl_hardlockup_all_cpu_backtrace)
265 trigger_allbutself_cpu_backtrace();
267 if (hardlockup_panic)
268 nmi_panic(regs, "Hard LOCKUP");
270 if (wd_panic_timeout_tb < 0x7fffffff)
271 mtspr(SPRN_DEC, wd_panic_timeout_tb);
273 out:
274 nmi_exit();
277 static void wd_timer_reset(unsigned int cpu, struct timer_list *t)
279 t->expires = jiffies + msecs_to_jiffies(wd_timer_period_ms);
280 if (wd_timer_period_ms > 1000)
281 t->expires = __round_jiffies_up(t->expires, cpu);
282 add_timer_on(t, cpu);
285 static void wd_timer_fn(struct timer_list *t)
287 int cpu = smp_processor_id();
289 watchdog_timer_interrupt(cpu);
291 wd_timer_reset(cpu, t);
294 void arch_touch_nmi_watchdog(void)
296 unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000;
297 int cpu = smp_processor_id();
298 u64 tb = get_tb();
300 if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) {
301 per_cpu(wd_timer_tb, cpu) = tb;
302 wd_smp_clear_cpu_pending(cpu, tb);
305 EXPORT_SYMBOL(arch_touch_nmi_watchdog);
307 static void start_watchdog_timer_on(unsigned int cpu)
309 struct timer_list *t = per_cpu_ptr(&wd_timer, cpu);
311 per_cpu(wd_timer_tb, cpu) = get_tb();
313 timer_setup(t, wd_timer_fn, TIMER_PINNED);
314 wd_timer_reset(cpu, t);
317 static void stop_watchdog_timer_on(unsigned int cpu)
319 struct timer_list *t = per_cpu_ptr(&wd_timer, cpu);
321 del_timer_sync(t);
324 static int start_wd_on_cpu(unsigned int cpu)
326 unsigned long flags;
328 if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) {
329 WARN_ON(1);
330 return 0;
333 if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
334 return 0;
336 if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
337 return 0;
339 wd_smp_lock(&flags);
340 cpumask_set_cpu(cpu, &wd_cpus_enabled);
341 if (cpumask_weight(&wd_cpus_enabled) == 1) {
342 cpumask_set_cpu(cpu, &wd_smp_cpus_pending);
343 wd_smp_last_reset_tb = get_tb();
345 wd_smp_unlock(&flags);
347 start_watchdog_timer_on(cpu);
349 return 0;
352 static int stop_wd_on_cpu(unsigned int cpu)
354 unsigned long flags;
356 if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
357 return 0; /* Can happen in CPU unplug case */
359 stop_watchdog_timer_on(cpu);
361 wd_smp_lock(&flags);
362 cpumask_clear_cpu(cpu, &wd_cpus_enabled);
363 wd_smp_unlock(&flags);
365 wd_smp_clear_cpu_pending(cpu, get_tb());
367 return 0;
370 static void watchdog_calc_timeouts(void)
372 wd_panic_timeout_tb = watchdog_thresh * ppc_tb_freq;
374 /* Have the SMP detector trigger a bit later */
375 wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2;
377 /* 2/5 is the factor that the perf based detector uses */
378 wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5;
381 void watchdog_nmi_stop(void)
383 int cpu;
385 for_each_cpu(cpu, &wd_cpus_enabled)
386 stop_wd_on_cpu(cpu);
389 void watchdog_nmi_start(void)
391 int cpu;
393 watchdog_calc_timeouts();
394 for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
395 start_wd_on_cpu(cpu);
399 * Invoked from core watchdog init.
401 int __init watchdog_nmi_probe(void)
403 int err;
405 err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
406 "powerpc/watchdog:online",
407 start_wd_on_cpu, stop_wd_on_cpu);
408 if (err < 0) {
409 pr_warn("could not be initialized");
410 return err;
412 return 0;