xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / arch / powerpc / oprofile / op_model_cell.c
blobb90a21bc2f3faeb2e14384c0df62b7c53a6acda7
1 /*
2 * Cell Broadband Engine OProfile Support
4 * (C) Copyright IBM Corporation 2006
6 * Author: David Erb (djerb@us.ibm.com)
7 * Modifications:
8 * Carl Love <carll@us.ibm.com>
9 * Maynard Johnson <maynardj@us.ibm.com>
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/cpufreq.h>
18 #include <linux/delay.h>
19 #include <linux/jiffies.h>
20 #include <linux/kthread.h>
21 #include <linux/oprofile.h>
22 #include <linux/percpu.h>
23 #include <linux/smp.h>
24 #include <linux/spinlock.h>
25 #include <linux/timer.h>
26 #include <asm/cell-pmu.h>
27 #include <asm/cputable.h>
28 #include <asm/firmware.h>
29 #include <asm/io.h>
30 #include <asm/oprofile_impl.h>
31 #include <asm/processor.h>
32 #include <asm/prom.h>
33 #include <asm/ptrace.h>
34 #include <asm/reg.h>
35 #include <asm/rtas.h>
36 #include <asm/cell-regs.h>
38 #include "../platforms/cell/interrupt.h"
39 #include "cell/pr_util.h"
41 #define PPU_PROFILING 0
42 #define SPU_PROFILING_CYCLES 1
43 #define SPU_PROFILING_EVENTS 2
45 #define SPU_EVENT_NUM_START 4100
46 #define SPU_EVENT_NUM_STOP 4399
47 #define SPU_PROFILE_EVENT_ADDR 4363 /* spu, address trace, decimal */
48 #define SPU_PROFILE_EVENT_ADDR_MASK_A 0x146 /* sub unit set to zero */
49 #define SPU_PROFILE_EVENT_ADDR_MASK_B 0x186 /* sub unit set to zero */
51 #define NUM_SPUS_PER_NODE 8
52 #define SPU_CYCLES_EVENT_NUM 2 /* event number for SPU_CYCLES */
54 #define PPU_CYCLES_EVENT_NUM 1 /* event number for CYCLES */
55 #define PPU_CYCLES_GRP_NUM 1 /* special group number for identifying
56 * PPU_CYCLES event
58 #define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
60 #define NUM_THREADS 2 /* number of physical threads in
61 * physical processor
63 #define NUM_DEBUG_BUS_WORDS 4
64 #define NUM_INPUT_BUS_WORDS 2
66 #define MAX_SPU_COUNT 0xFFFFFF /* maximum 24 bit LFSR value */
68 /* Minimum HW interval timer setting to send value to trace buffer is 10 cycle.
69 * To configure counter to send value every N cycles set counter to
70 * 2^32 - 1 - N.
72 #define NUM_INTERVAL_CYC 0xFFFFFFFF - 10
75 * spu_cycle_reset is the number of cycles between samples.
76 * This variable is used for SPU profiling and should ONLY be set
77 * at the beginning of cell_reg_setup; otherwise, it's read-only.
79 static unsigned int spu_cycle_reset;
80 static unsigned int profiling_mode;
81 static int spu_evnt_phys_spu_indx;
83 struct pmc_cntrl_data {
84 unsigned long vcntr;
85 unsigned long evnts;
86 unsigned long masks;
87 unsigned long enabled;
91 * ibm,cbe-perftools rtas parameters
93 struct pm_signal {
94 u16 cpu; /* Processor to modify */
95 u16 sub_unit; /* hw subunit this applies to (if applicable)*/
96 short int signal_group; /* Signal Group to Enable/Disable */
97 u8 bus_word; /* Enable/Disable on this Trace/Trigger/Event
98 * Bus Word(s) (bitmask)
100 u8 bit; /* Trigger/Event bit (if applicable) */
104 * rtas call arguments
106 enum {
107 SUBFUNC_RESET = 1,
108 SUBFUNC_ACTIVATE = 2,
109 SUBFUNC_DEACTIVATE = 3,
111 PASSTHRU_IGNORE = 0,
112 PASSTHRU_ENABLE = 1,
113 PASSTHRU_DISABLE = 2,
116 struct pm_cntrl {
117 u16 enable;
118 u16 stop_at_max;
119 u16 trace_mode;
120 u16 freeze;
121 u16 count_mode;
122 u16 spu_addr_trace;
123 u8 trace_buf_ovflw;
126 static struct {
127 u32 group_control;
128 u32 debug_bus_control;
129 struct pm_cntrl pm_cntrl;
130 u32 pm07_cntrl[NR_PHYS_CTRS];
131 } pm_regs;
133 #define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
134 #define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
135 #define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
136 #define GET_POLARITY(x) ((x & 0x00000002) >> 1)
137 #define GET_COUNT_CYCLES(x) (x & 0x00000001)
138 #define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
140 static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
141 static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
142 static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
145 * The CELL profiling code makes rtas calls to setup the debug bus to
146 * route the performance signals. Additionally, SPU profiling requires
147 * a second rtas call to setup the hardware to capture the SPU PCs.
148 * The EIO error value is returned if the token lookups or the rtas
149 * call fail. The EIO error number is the best choice of the existing
150 * error numbers. The probability of rtas related error is very low. But
151 * by returning EIO and printing additional information to dmsg the user
152 * will know that OProfile did not start and dmesg will tell them why.
153 * OProfile does not support returning errors on Stop. Not a huge issue
154 * since failure to reset the debug bus or stop the SPU PC collection is
155 * not a fatel issue. Chances are if the Stop failed, Start doesn't work
156 * either.
160 * Interpetation of hdw_thread:
161 * 0 - even virtual cpus 0, 2, 4,...
162 * 1 - odd virtual cpus 1, 3, 5, ...
164 * FIXME: this is strictly wrong, we need to clean this up in a number
165 * of places. It works for now. -arnd
167 static u32 hdw_thread;
169 static u32 virt_cntr_inter_mask;
170 static struct timer_list timer_virt_cntr;
171 static struct timer_list timer_spu_event_swap;
174 * pm_signal needs to be global since it is initialized in
175 * cell_reg_setup at the time when the necessary information
176 * is available.
178 static struct pm_signal pm_signal[NR_PHYS_CTRS];
179 static int pm_rtas_token; /* token for debug bus setup call */
180 static int spu_rtas_token; /* token for SPU cycle profiling */
182 static u32 reset_value[NR_PHYS_CTRS];
183 static int num_counters;
184 static int oprofile_running;
185 static DEFINE_SPINLOCK(cntr_lock);
187 static u32 ctr_enabled;
189 static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
192 * Firmware interface functions
194 static int
195 rtas_ibm_cbe_perftools(int subfunc, int passthru,
196 void *address, unsigned long length)
198 u64 paddr = __pa(address);
200 return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
201 passthru, paddr >> 32, paddr & 0xffffffff, length);
204 static void pm_rtas_reset_signals(u32 node)
206 int ret;
207 struct pm_signal pm_signal_local;
210 * The debug bus is being set to the passthru disable state.
211 * However, the FW still expects at least one legal signal routing
212 * entry or it will return an error on the arguments. If we don't
213 * supply a valid entry, we must ignore all return values. Ignoring
214 * all return values means we might miss an error we should be
215 * concerned about.
218 /* fw expects physical cpu #. */
219 pm_signal_local.cpu = node;
220 pm_signal_local.signal_group = 21;
221 pm_signal_local.bus_word = 1;
222 pm_signal_local.sub_unit = 0;
223 pm_signal_local.bit = 0;
225 ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
226 &pm_signal_local,
227 sizeof(struct pm_signal));
229 if (unlikely(ret))
231 * Not a fatal error. For Oprofile stop, the oprofile
232 * functions do not support returning an error for
233 * failure to stop OProfile.
235 printk(KERN_WARNING "%s: rtas returned: %d\n",
236 __func__, ret);
239 static int pm_rtas_activate_signals(u32 node, u32 count)
241 int ret;
242 int i, j;
243 struct pm_signal pm_signal_local[NR_PHYS_CTRS];
246 * There is no debug setup required for the cycles event.
247 * Note that only events in the same group can be used.
248 * Otherwise, there will be conflicts in correctly routing
249 * the signals on the debug bus. It is the responsibility
250 * of the OProfile user tool to check the events are in
251 * the same group.
253 i = 0;
254 for (j = 0; j < count; j++) {
255 if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
257 /* fw expects physical cpu # */
258 pm_signal_local[i].cpu = node;
259 pm_signal_local[i].signal_group
260 = pm_signal[j].signal_group;
261 pm_signal_local[i].bus_word = pm_signal[j].bus_word;
262 pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
263 pm_signal_local[i].bit = pm_signal[j].bit;
264 i++;
268 if (i != 0) {
269 ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
270 pm_signal_local,
271 i * sizeof(struct pm_signal));
273 if (unlikely(ret)) {
274 printk(KERN_WARNING "%s: rtas returned: %d\n",
275 __func__, ret);
276 return -EIO;
280 return 0;
284 * PM Signal functions
286 static void set_pm_event(u32 ctr, int event, u32 unit_mask)
288 struct pm_signal *p;
289 u32 signal_bit;
290 u32 bus_word, bus_type, count_cycles, polarity, input_control;
291 int j, i;
293 if (event == PPU_CYCLES_EVENT_NUM) {
294 /* Special Event: Count all cpu cycles */
295 pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
296 p = &(pm_signal[ctr]);
297 p->signal_group = PPU_CYCLES_GRP_NUM;
298 p->bus_word = 1;
299 p->sub_unit = 0;
300 p->bit = 0;
301 goto out;
302 } else {
303 pm_regs.pm07_cntrl[ctr] = 0;
306 bus_word = GET_BUS_WORD(unit_mask);
307 bus_type = GET_BUS_TYPE(unit_mask);
308 count_cycles = GET_COUNT_CYCLES(unit_mask);
309 polarity = GET_POLARITY(unit_mask);
310 input_control = GET_INPUT_CONTROL(unit_mask);
311 signal_bit = (event % 100);
313 p = &(pm_signal[ctr]);
315 p->signal_group = event / 100;
316 p->bus_word = bus_word;
317 p->sub_unit = GET_SUB_UNIT(unit_mask);
319 pm_regs.pm07_cntrl[ctr] = 0;
320 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
321 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
322 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
325 * Some of the islands signal selection is based on 64 bit words.
326 * The debug bus words are 32 bits, the input words to the performance
327 * counters are defined as 32 bits. Need to convert the 64 bit island
328 * specification to the appropriate 32 input bit and bus word for the
329 * performance counter event selection. See the CELL Performance
330 * monitoring signals manual and the Perf cntr hardware descriptions
331 * for the details.
333 if (input_control == 0) {
334 if (signal_bit > 31) {
335 signal_bit -= 32;
336 if (bus_word == 0x3)
337 bus_word = 0x2;
338 else if (bus_word == 0xc)
339 bus_word = 0x8;
342 if ((bus_type == 0) && p->signal_group >= 60)
343 bus_type = 2;
344 if ((bus_type == 1) && p->signal_group >= 50)
345 bus_type = 0;
347 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
348 } else {
349 pm_regs.pm07_cntrl[ctr] = 0;
350 p->bit = signal_bit;
353 for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
354 if (bus_word & (1 << i)) {
355 pm_regs.debug_bus_control |=
356 (bus_type << (30 - (2 * i)));
358 for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
359 if (input_bus[j] == 0xff) {
360 input_bus[j] = i;
361 pm_regs.group_control |=
362 (i << (30 - (2 * j)));
364 break;
369 out:
373 static void write_pm_cntrl(int cpu)
376 * Oprofile will use 32 bit counters, set bits 7:10 to 0
377 * pmregs.pm_cntrl is a global
380 u32 val = 0;
381 if (pm_regs.pm_cntrl.enable == 1)
382 val |= CBE_PM_ENABLE_PERF_MON;
384 if (pm_regs.pm_cntrl.stop_at_max == 1)
385 val |= CBE_PM_STOP_AT_MAX;
387 if (pm_regs.pm_cntrl.trace_mode != 0)
388 val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
390 if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
391 val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
392 if (pm_regs.pm_cntrl.freeze == 1)
393 val |= CBE_PM_FREEZE_ALL_CTRS;
395 val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
398 * Routine set_count_mode must be called previously to set
399 * the count mode based on the user selection of user and kernel.
401 val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
402 cbe_write_pm(cpu, pm_control, val);
405 static inline void
406 set_count_mode(u32 kernel, u32 user)
409 * The user must specify user and kernel if they want them. If
410 * neither is specified, OProfile will count in hypervisor mode.
411 * pm_regs.pm_cntrl is a global
413 if (kernel) {
414 if (user)
415 pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
416 else
417 pm_regs.pm_cntrl.count_mode =
418 CBE_COUNT_SUPERVISOR_MODE;
419 } else {
420 if (user)
421 pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
422 else
423 pm_regs.pm_cntrl.count_mode =
424 CBE_COUNT_HYPERVISOR_MODE;
428 static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
431 pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
432 cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
436 * Oprofile is expected to collect data on all CPUs simultaneously.
437 * However, there is one set of performance counters per node. There are
438 * two hardware threads or virtual CPUs on each node. Hence, OProfile must
439 * multiplex in time the performance counter collection on the two virtual
440 * CPUs. The multiplexing of the performance counters is done by this
441 * virtual counter routine.
443 * The pmc_values used below is defined as 'per-cpu' but its use is
444 * more akin to 'per-node'. We need to store two sets of counter
445 * values per node -- one for the previous run and one for the next.
446 * The per-cpu[NR_PHYS_CTRS] gives us the storage we need. Each odd/even
447 * pair of per-cpu arrays is used for storing the previous and next
448 * pmc values for a given node.
449 * NOTE: We use the per-cpu variable to improve cache performance.
451 * This routine will alternate loading the virtual counters for
452 * virtual CPUs
454 static void cell_virtual_cntr(struct timer_list *unused)
456 int i, prev_hdw_thread, next_hdw_thread;
457 u32 cpu;
458 unsigned long flags;
461 * Make sure that the interrupt_hander and the virt counter are
462 * not both playing with the counters on the same node.
465 spin_lock_irqsave(&cntr_lock, flags);
467 prev_hdw_thread = hdw_thread;
469 /* switch the cpu handling the interrupts */
470 hdw_thread = 1 ^ hdw_thread;
471 next_hdw_thread = hdw_thread;
473 pm_regs.group_control = 0;
474 pm_regs.debug_bus_control = 0;
476 for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
477 input_bus[i] = 0xff;
480 * There are some per thread events. Must do the
481 * set event, for the thread that is being started
483 for (i = 0; i < num_counters; i++)
484 set_pm_event(i,
485 pmc_cntrl[next_hdw_thread][i].evnts,
486 pmc_cntrl[next_hdw_thread][i].masks);
489 * The following is done only once per each node, but
490 * we need cpu #, not node #, to pass to the cbe_xxx functions.
492 for_each_online_cpu(cpu) {
493 if (cbe_get_hw_thread_id(cpu))
494 continue;
497 * stop counters, save counter values, restore counts
498 * for previous thread
500 cbe_disable_pm(cpu);
501 cbe_disable_pm_interrupts(cpu);
502 for (i = 0; i < num_counters; i++) {
503 per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
504 = cbe_read_ctr(cpu, i);
506 if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
507 == 0xFFFFFFFF)
508 /* If the cntr value is 0xffffffff, we must
509 * reset that to 0xfffffff0 when the current
510 * thread is restarted. This will generate a
511 * new interrupt and make sure that we never
512 * restore the counters to the max value. If
513 * the counters were restored to the max value,
514 * they do not increment and no interrupts are
515 * generated. Hence no more samples will be
516 * collected on that cpu.
518 cbe_write_ctr(cpu, i, 0xFFFFFFF0);
519 else
520 cbe_write_ctr(cpu, i,
521 per_cpu(pmc_values,
522 cpu +
523 next_hdw_thread)[i]);
527 * Switch to the other thread. Change the interrupt
528 * and control regs to be scheduled on the CPU
529 * corresponding to the thread to execute.
531 for (i = 0; i < num_counters; i++) {
532 if (pmc_cntrl[next_hdw_thread][i].enabled) {
534 * There are some per thread events.
535 * Must do the set event, enable_cntr
536 * for each cpu.
538 enable_ctr(cpu, i,
539 pm_regs.pm07_cntrl);
540 } else {
541 cbe_write_pm07_control(cpu, i, 0);
545 /* Enable interrupts on the CPU thread that is starting */
546 cbe_enable_pm_interrupts(cpu, next_hdw_thread,
547 virt_cntr_inter_mask);
548 cbe_enable_pm(cpu);
551 spin_unlock_irqrestore(&cntr_lock, flags);
553 mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
556 static void start_virt_cntrs(void)
558 timer_setup(&timer_virt_cntr, cell_virtual_cntr, 0);
559 timer_virt_cntr.expires = jiffies + HZ / 10;
560 add_timer(&timer_virt_cntr);
563 static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
564 struct op_system_config *sys, int num_ctrs)
566 spu_cycle_reset = ctr[0].count;
569 * Each node will need to make the rtas call to start
570 * and stop SPU profiling. Get the token once and store it.
572 spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
574 if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
575 printk(KERN_ERR
576 "%s: rtas token ibm,cbe-spu-perftools unknown\n",
577 __func__);
578 return -EIO;
580 return 0;
583 /* Unfortunately, the hardware will only support event profiling
584 * on one SPU per node at a time. Therefore, we must time slice
585 * the profiling across all SPUs in the node. Note, we do this
586 * in parallel for each node. The following routine is called
587 * periodically based on kernel timer to switch which SPU is
588 * being monitored in a round robbin fashion.
590 static void spu_evnt_swap(struct timer_list *unused)
592 int node;
593 int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
594 unsigned long flags;
595 int cpu;
596 int ret;
597 u32 interrupt_mask;
600 /* enable interrupts on cntr 0 */
601 interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
603 hdw_thread = 0;
605 /* Make sure spu event interrupt handler and spu event swap
606 * don't access the counters simultaneously.
608 spin_lock_irqsave(&cntr_lock, flags);
610 cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
612 if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
613 spu_evnt_phys_spu_indx = 0;
615 pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
616 pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
617 pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
619 /* switch the SPU being profiled on each node */
620 for_each_online_cpu(cpu) {
621 if (cbe_get_hw_thread_id(cpu))
622 continue;
624 node = cbe_cpu_to_node(cpu);
625 cur_phys_spu = (node * NUM_SPUS_PER_NODE)
626 + cur_spu_evnt_phys_spu_indx;
627 nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
628 + spu_evnt_phys_spu_indx;
631 * stop counters, save counter values, restore counts
632 * for previous physical SPU
634 cbe_disable_pm(cpu);
635 cbe_disable_pm_interrupts(cpu);
637 spu_pm_cnt[cur_phys_spu]
638 = cbe_read_ctr(cpu, 0);
640 /* restore previous count for the next spu to sample */
641 /* NOTE, hardware issue, counter will not start if the
642 * counter value is at max (0xFFFFFFFF).
644 if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
645 cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
646 else
647 cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
649 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
651 /* setup the debug bus measure the one event and
652 * the two events to route the next SPU's PC on
653 * the debug bus
655 ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
656 if (ret)
657 printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
658 "SPU event swap\n", __func__);
660 /* clear the trace buffer, don't want to take PC for
661 * previous SPU*/
662 cbe_write_pm(cpu, trace_address, 0);
664 enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
666 /* Enable interrupts on the CPU thread that is starting */
667 cbe_enable_pm_interrupts(cpu, hdw_thread,
668 interrupt_mask);
669 cbe_enable_pm(cpu);
672 spin_unlock_irqrestore(&cntr_lock, flags);
674 /* swap approximately every 0.1 seconds */
675 mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
678 static void start_spu_event_swap(void)
680 timer_setup(&timer_spu_event_swap, spu_evnt_swap, 0);
681 timer_spu_event_swap.expires = jiffies + HZ / 25;
682 add_timer(&timer_spu_event_swap);
685 static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
686 struct op_system_config *sys, int num_ctrs)
688 int i;
690 /* routine is called once for all nodes */
692 spu_evnt_phys_spu_indx = 0;
694 * For all events except PPU CYCLEs, each node will need to make
695 * the rtas cbe-perftools call to setup and reset the debug bus.
696 * Make the token lookup call once and store it in the global
697 * variable pm_rtas_token.
699 pm_rtas_token = rtas_token("ibm,cbe-perftools");
701 if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
702 printk(KERN_ERR
703 "%s: rtas token ibm,cbe-perftools unknown\n",
704 __func__);
705 return -EIO;
708 /* setup the pm_control register settings,
709 * settings will be written per node by the
710 * cell_cpu_setup() function.
712 pm_regs.pm_cntrl.trace_buf_ovflw = 1;
714 /* Use the occurrence trace mode to have SPU PC saved
715 * to the trace buffer. Occurrence data in trace buffer
716 * is not used. Bit 2 must be set to store SPU addresses.
718 pm_regs.pm_cntrl.trace_mode = 2;
720 pm_regs.pm_cntrl.spu_addr_trace = 0x1; /* using debug bus
721 event 2 & 3 */
723 /* setup the debug bus event array with the SPU PC routing events.
724 * Note, pm_signal[0] will be filled in by set_pm_event() call below.
726 pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
727 pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
728 pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
729 pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
731 pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
732 pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
733 pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
734 pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
736 /* Set the user selected spu event to profile on,
737 * note, only one SPU profiling event is supported
739 num_counters = 1; /* Only support one SPU event at a time */
740 set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
742 reset_value[0] = 0xFFFFFFFF - ctr[0].count;
744 /* global, used by cell_cpu_setup */
745 ctr_enabled |= 1;
747 /* Initialize the count for each SPU to the reset value */
748 for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
749 spu_pm_cnt[i] = reset_value[0];
751 return 0;
754 static int cell_reg_setup_ppu(struct op_counter_config *ctr,
755 struct op_system_config *sys, int num_ctrs)
757 /* routine is called once for all nodes */
758 int i, j, cpu;
760 num_counters = num_ctrs;
762 if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
763 printk(KERN_ERR
764 "%s: Oprofile, number of specified events " \
765 "exceeds number of physical counters\n",
766 __func__);
767 return -EIO;
770 set_count_mode(sys->enable_kernel, sys->enable_user);
772 /* Setup the thread 0 events */
773 for (i = 0; i < num_ctrs; ++i) {
775 pmc_cntrl[0][i].evnts = ctr[i].event;
776 pmc_cntrl[0][i].masks = ctr[i].unit_mask;
777 pmc_cntrl[0][i].enabled = ctr[i].enabled;
778 pmc_cntrl[0][i].vcntr = i;
780 for_each_possible_cpu(j)
781 per_cpu(pmc_values, j)[i] = 0;
785 * Setup the thread 1 events, map the thread 0 event to the
786 * equivalent thread 1 event.
788 for (i = 0; i < num_ctrs; ++i) {
789 if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
790 pmc_cntrl[1][i].evnts = ctr[i].event + 19;
791 else if (ctr[i].event == 2203)
792 pmc_cntrl[1][i].evnts = ctr[i].event;
793 else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
794 pmc_cntrl[1][i].evnts = ctr[i].event + 16;
795 else
796 pmc_cntrl[1][i].evnts = ctr[i].event;
798 pmc_cntrl[1][i].masks = ctr[i].unit_mask;
799 pmc_cntrl[1][i].enabled = ctr[i].enabled;
800 pmc_cntrl[1][i].vcntr = i;
803 for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
804 input_bus[i] = 0xff;
807 * Our counters count up, and "count" refers to
808 * how much before the next interrupt, and we interrupt
809 * on overflow. So we calculate the starting value
810 * which will give us "count" until overflow.
811 * Then we set the events on the enabled counters.
813 for (i = 0; i < num_counters; ++i) {
814 /* start with virtual counter set 0 */
815 if (pmc_cntrl[0][i].enabled) {
816 /* Using 32bit counters, reset max - count */
817 reset_value[i] = 0xFFFFFFFF - ctr[i].count;
818 set_pm_event(i,
819 pmc_cntrl[0][i].evnts,
820 pmc_cntrl[0][i].masks);
822 /* global, used by cell_cpu_setup */
823 ctr_enabled |= (1 << i);
827 /* initialize the previous counts for the virtual cntrs */
828 for_each_online_cpu(cpu)
829 for (i = 0; i < num_counters; ++i) {
830 per_cpu(pmc_values, cpu)[i] = reset_value[i];
833 return 0;
837 /* This function is called once for all cpus combined */
838 static int cell_reg_setup(struct op_counter_config *ctr,
839 struct op_system_config *sys, int num_ctrs)
841 int ret=0;
842 spu_cycle_reset = 0;
844 /* initialize the spu_arr_trace value, will be reset if
845 * doing spu event profiling.
847 pm_regs.group_control = 0;
848 pm_regs.debug_bus_control = 0;
849 pm_regs.pm_cntrl.stop_at_max = 1;
850 pm_regs.pm_cntrl.trace_mode = 0;
851 pm_regs.pm_cntrl.freeze = 1;
852 pm_regs.pm_cntrl.trace_buf_ovflw = 0;
853 pm_regs.pm_cntrl.spu_addr_trace = 0;
856 * For all events except PPU CYCLEs, each node will need to make
857 * the rtas cbe-perftools call to setup and reset the debug bus.
858 * Make the token lookup call once and store it in the global
859 * variable pm_rtas_token.
861 pm_rtas_token = rtas_token("ibm,cbe-perftools");
863 if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
864 printk(KERN_ERR
865 "%s: rtas token ibm,cbe-perftools unknown\n",
866 __func__);
867 return -EIO;
870 if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
871 profiling_mode = SPU_PROFILING_CYCLES;
872 ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
873 } else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
874 (ctr[0].event <= SPU_EVENT_NUM_STOP)) {
875 profiling_mode = SPU_PROFILING_EVENTS;
876 spu_cycle_reset = ctr[0].count;
878 /* for SPU event profiling, need to setup the
879 * pm_signal array with the events to route the
880 * SPU PC before making the FW call. Note, only
881 * one SPU event for profiling can be specified
882 * at a time.
884 cell_reg_setup_spu_events(ctr, sys, num_ctrs);
885 } else {
886 profiling_mode = PPU_PROFILING;
887 ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
890 return ret;
895 /* This function is called once for each cpu */
896 static int cell_cpu_setup(struct op_counter_config *cntr)
898 u32 cpu = smp_processor_id();
899 u32 num_enabled = 0;
900 int i;
901 int ret;
903 /* Cycle based SPU profiling does not use the performance
904 * counters. The trace array is configured to collect
905 * the data.
907 if (profiling_mode == SPU_PROFILING_CYCLES)
908 return 0;
910 /* There is one performance monitor per processor chip (i.e. node),
911 * so we only need to perform this function once per node.
913 if (cbe_get_hw_thread_id(cpu))
914 return 0;
916 /* Stop all counters */
917 cbe_disable_pm(cpu);
918 cbe_disable_pm_interrupts(cpu);
920 cbe_write_pm(cpu, pm_start_stop, 0);
921 cbe_write_pm(cpu, group_control, pm_regs.group_control);
922 cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
923 write_pm_cntrl(cpu);
925 for (i = 0; i < num_counters; ++i) {
926 if (ctr_enabled & (1 << i)) {
927 pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
928 num_enabled++;
933 * The pm_rtas_activate_signals will return -EIO if the FW
934 * call failed.
936 if (profiling_mode == SPU_PROFILING_EVENTS) {
937 /* For SPU event profiling also need to setup the
938 * pm interval timer
940 ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
941 num_enabled+2);
942 /* store PC from debug bus to Trace buffer as often
943 * as possible (every 10 cycles)
945 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
946 return ret;
947 } else
948 return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
949 num_enabled);
952 #define ENTRIES 303
953 #define MAXLFSR 0xFFFFFF
955 /* precomputed table of 24 bit LFSR values */
956 static int initial_lfsr[] = {
957 8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
958 15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
959 4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
960 3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
961 9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
962 2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
963 3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
964 14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
965 11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
966 6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
967 15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
968 7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
969 16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
970 15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
971 15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
972 10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
973 3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
974 3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
975 8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
976 8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
977 4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
978 16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
979 2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
980 14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
981 1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
982 6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
983 10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
984 10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
985 14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
986 7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
987 9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
988 14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
989 13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
990 5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
991 3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
992 6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
993 7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
994 6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
998 * The hardware uses an LFSR counting sequence to determine when to capture
999 * the SPU PCs. An LFSR sequence is like a puesdo random number sequence
1000 * where each number occurs once in the sequence but the sequence is not in
1001 * numerical order. The SPU PC capture is done when the LFSR sequence reaches
1002 * the last value in the sequence. Hence the user specified value N
1003 * corresponds to the LFSR number that is N from the end of the sequence.
1005 * To avoid the time to compute the LFSR, a lookup table is used. The 24 bit
1006 * LFSR sequence is broken into four ranges. The spacing of the precomputed
1007 * values is adjusted in each range so the error between the user specified
1008 * number (N) of events between samples and the actual number of events based
1009 * on the precomputed value will be les then about 6.2%. Note, if the user
1010 * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
1011 * This is to prevent the loss of samples because the trace buffer is full.
1013 * User specified N Step between Index in
1014 * precomputed values precomputed
1015 * table
1016 * 0 to 2^16-1 ---- 0
1017 * 2^16 to 2^16+2^19-1 2^12 1 to 128
1018 * 2^16+2^19 to 2^16+2^19+2^22-1 2^15 129 to 256
1019 * 2^16+2^19+2^22 to 2^24-1 2^18 257 to 302
1022 * For example, the LFSR values in the second range are computed for 2^16,
1023 * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
1024 * 1, 2,..., 127, 128.
1026 * The 24 bit LFSR value for the nth number in the sequence can be
1027 * calculated using the following code:
1029 * #define size 24
1030 * int calculate_lfsr(int n)
1032 * int i;
1033 * unsigned int newlfsr0;
1034 * unsigned int lfsr = 0xFFFFFF;
1035 * unsigned int howmany = n;
1037 * for (i = 2; i < howmany + 2; i++) {
1038 * newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
1039 * ((lfsr >> (size - 1 - 1)) & 1) ^
1040 * (((lfsr >> (size - 1 - 6)) & 1) ^
1041 * ((lfsr >> (size - 1 - 23)) & 1)));
1043 * lfsr >>= 1;
1044 * lfsr = lfsr | (newlfsr0 << (size - 1));
1046 * return lfsr;
1050 #define V2_16 (0x1 << 16)
1051 #define V2_19 (0x1 << 19)
1052 #define V2_22 (0x1 << 22)
1054 static int calculate_lfsr(int n)
1057 * The ranges and steps are in powers of 2 so the calculations
1058 * can be done using shifts rather then divide.
1060 int index;
1062 if ((n >> 16) == 0)
1063 index = 0;
1064 else if (((n - V2_16) >> 19) == 0)
1065 index = ((n - V2_16) >> 12) + 1;
1066 else if (((n - V2_16 - V2_19) >> 22) == 0)
1067 index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
1068 else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
1069 index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
1070 else
1071 index = ENTRIES-1;
1073 /* make sure index is valid */
1074 if ((index >= ENTRIES) || (index < 0))
1075 index = ENTRIES-1;
1077 return initial_lfsr[index];
1080 static int pm_rtas_activate_spu_profiling(u32 node)
1082 int ret, i;
1083 struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
1086 * Set up the rtas call to configure the debug bus to
1087 * route the SPU PCs. Setup the pm_signal for each SPU
1089 for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
1090 pm_signal_local[i].cpu = node;
1091 pm_signal_local[i].signal_group = 41;
1092 /* spu i on word (i/2) */
1093 pm_signal_local[i].bus_word = 1 << i / 2;
1094 /* spu i */
1095 pm_signal_local[i].sub_unit = i;
1096 pm_signal_local[i].bit = 63;
1099 ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
1100 PASSTHRU_ENABLE, pm_signal_local,
1101 (ARRAY_SIZE(pm_signal_local)
1102 * sizeof(struct pm_signal)));
1104 if (unlikely(ret)) {
1105 printk(KERN_WARNING "%s: rtas returned: %d\n",
1106 __func__, ret);
1107 return -EIO;
1110 return 0;
1113 #ifdef CONFIG_CPU_FREQ
1114 static int
1115 oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
1117 int ret = 0;
1118 struct cpufreq_freqs *frq = data;
1119 if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
1120 (val == CPUFREQ_POSTCHANGE && frq->old > frq->new))
1121 set_spu_profiling_frequency(frq->new, spu_cycle_reset);
1122 return ret;
1125 static struct notifier_block cpu_freq_notifier_block = {
1126 .notifier_call = oprof_cpufreq_notify
1128 #endif
1131 * Note the generic OProfile stop calls do not support returning
1132 * an error on stop. Hence, will not return an error if the FW
1133 * calls fail on stop. Failure to reset the debug bus is not an issue.
1134 * Failure to disable the SPU profiling is not an issue. The FW calls
1135 * to enable the performance counters and debug bus will work even if
1136 * the hardware was not cleanly reset.
1138 static void cell_global_stop_spu_cycles(void)
1140 int subfunc, rtn_value;
1141 unsigned int lfsr_value;
1142 int cpu;
1144 oprofile_running = 0;
1145 smp_wmb();
1147 #ifdef CONFIG_CPU_FREQ
1148 cpufreq_unregister_notifier(&cpu_freq_notifier_block,
1149 CPUFREQ_TRANSITION_NOTIFIER);
1150 #endif
1152 for_each_online_cpu(cpu) {
1153 if (cbe_get_hw_thread_id(cpu))
1154 continue;
1156 subfunc = 3; /*
1157 * 2 - activate SPU tracing,
1158 * 3 - deactivate
1160 lfsr_value = 0x8f100000;
1162 rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
1163 subfunc, cbe_cpu_to_node(cpu),
1164 lfsr_value);
1166 if (unlikely(rtn_value != 0)) {
1167 printk(KERN_ERR
1168 "%s: rtas call ibm,cbe-spu-perftools " \
1169 "failed, return = %d\n",
1170 __func__, rtn_value);
1173 /* Deactivate the signals */
1174 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1177 stop_spu_profiling_cycles();
1180 static void cell_global_stop_spu_events(void)
1182 int cpu;
1183 oprofile_running = 0;
1185 stop_spu_profiling_events();
1186 smp_wmb();
1188 for_each_online_cpu(cpu) {
1189 if (cbe_get_hw_thread_id(cpu))
1190 continue;
1192 cbe_sync_irq(cbe_cpu_to_node(cpu));
1193 /* Stop the counters */
1194 cbe_disable_pm(cpu);
1195 cbe_write_pm07_control(cpu, 0, 0);
1197 /* Deactivate the signals */
1198 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1200 /* Deactivate interrupts */
1201 cbe_disable_pm_interrupts(cpu);
1203 del_timer_sync(&timer_spu_event_swap);
1206 static void cell_global_stop_ppu(void)
1208 int cpu;
1211 * This routine will be called once for the system.
1212 * There is one performance monitor per node, so we
1213 * only need to perform this function once per node.
1215 del_timer_sync(&timer_virt_cntr);
1216 oprofile_running = 0;
1217 smp_wmb();
1219 for_each_online_cpu(cpu) {
1220 if (cbe_get_hw_thread_id(cpu))
1221 continue;
1223 cbe_sync_irq(cbe_cpu_to_node(cpu));
1224 /* Stop the counters */
1225 cbe_disable_pm(cpu);
1227 /* Deactivate the signals */
1228 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1230 /* Deactivate interrupts */
1231 cbe_disable_pm_interrupts(cpu);
1235 static void cell_global_stop(void)
1237 if (profiling_mode == PPU_PROFILING)
1238 cell_global_stop_ppu();
1239 else if (profiling_mode == SPU_PROFILING_EVENTS)
1240 cell_global_stop_spu_events();
1241 else
1242 cell_global_stop_spu_cycles();
1245 static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
1247 int subfunc;
1248 unsigned int lfsr_value;
1249 int cpu;
1250 int ret;
1251 int rtas_error;
1252 unsigned int cpu_khzfreq = 0;
1254 /* The SPU profiling uses time-based profiling based on
1255 * cpu frequency, so if configured with the CPU_FREQ
1256 * option, we should detect frequency changes and react
1257 * accordingly.
1259 #ifdef CONFIG_CPU_FREQ
1260 ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
1261 CPUFREQ_TRANSITION_NOTIFIER);
1262 if (ret < 0)
1263 /* this is not a fatal error */
1264 printk(KERN_ERR "CPU freq change registration failed: %d\n",
1265 ret);
1267 else
1268 cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
1269 #endif
1271 set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
1273 for_each_online_cpu(cpu) {
1274 if (cbe_get_hw_thread_id(cpu))
1275 continue;
1278 * Setup SPU cycle-based profiling.
1279 * Set perf_mon_control bit 0 to a zero before
1280 * enabling spu collection hardware.
1282 cbe_write_pm(cpu, pm_control, 0);
1284 if (spu_cycle_reset > MAX_SPU_COUNT)
1285 /* use largest possible value */
1286 lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
1287 else
1288 lfsr_value = calculate_lfsr(spu_cycle_reset);
1290 /* must use a non zero value. Zero disables data collection. */
1291 if (lfsr_value == 0)
1292 lfsr_value = calculate_lfsr(1);
1294 lfsr_value = lfsr_value << 8; /* shift lfsr to correct
1295 * register location
1298 /* debug bus setup */
1299 ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
1301 if (unlikely(ret)) {
1302 rtas_error = ret;
1303 goto out;
1307 subfunc = 2; /* 2 - activate SPU tracing, 3 - deactivate */
1309 /* start profiling */
1310 ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
1311 cbe_cpu_to_node(cpu), lfsr_value);
1313 if (unlikely(ret != 0)) {
1314 printk(KERN_ERR
1315 "%s: rtas call ibm,cbe-spu-perftools failed, " \
1316 "return = %d\n", __func__, ret);
1317 rtas_error = -EIO;
1318 goto out;
1322 rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
1323 if (rtas_error)
1324 goto out_stop;
1326 oprofile_running = 1;
1327 return 0;
1329 out_stop:
1330 cell_global_stop_spu_cycles(); /* clean up the PMU/debug bus */
1331 out:
1332 return rtas_error;
1335 static int cell_global_start_spu_events(struct op_counter_config *ctr)
1337 int cpu;
1338 u32 interrupt_mask = 0;
1339 int rtn = 0;
1341 hdw_thread = 0;
1343 /* spu event profiling, uses the performance counters to generate
1344 * an interrupt. The hardware is setup to store the SPU program
1345 * counter into the trace array. The occurrence mode is used to
1346 * enable storing data to the trace buffer. The bits are set
1347 * to send/store the SPU address in the trace buffer. The debug
1348 * bus must be setup to route the SPU program counter onto the
1349 * debug bus. The occurrence data in the trace buffer is not used.
1352 /* This routine gets called once for the system.
1353 * There is one performance monitor per node, so we
1354 * only need to perform this function once per node.
1357 for_each_online_cpu(cpu) {
1358 if (cbe_get_hw_thread_id(cpu))
1359 continue;
1362 * Setup SPU event-based profiling.
1363 * Set perf_mon_control bit 0 to a zero before
1364 * enabling spu collection hardware.
1366 * Only support one SPU event on one SPU per node.
1368 if (ctr_enabled & 1) {
1369 cbe_write_ctr(cpu, 0, reset_value[0]);
1370 enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
1371 interrupt_mask |=
1372 CBE_PM_CTR_OVERFLOW_INTR(0);
1373 } else {
1374 /* Disable counter */
1375 cbe_write_pm07_control(cpu, 0, 0);
1378 cbe_get_and_clear_pm_interrupts(cpu);
1379 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1380 cbe_enable_pm(cpu);
1382 /* clear the trace buffer */
1383 cbe_write_pm(cpu, trace_address, 0);
1386 /* Start the timer to time slice collecting the event profile
1387 * on each of the SPUs. Note, can collect profile on one SPU
1388 * per node at a time.
1390 start_spu_event_swap();
1391 start_spu_profiling_events();
1392 oprofile_running = 1;
1393 smp_wmb();
1395 return rtn;
1398 static int cell_global_start_ppu(struct op_counter_config *ctr)
1400 u32 cpu, i;
1401 u32 interrupt_mask = 0;
1403 /* This routine gets called once for the system.
1404 * There is one performance monitor per node, so we
1405 * only need to perform this function once per node.
1407 for_each_online_cpu(cpu) {
1408 if (cbe_get_hw_thread_id(cpu))
1409 continue;
1411 interrupt_mask = 0;
1413 for (i = 0; i < num_counters; ++i) {
1414 if (ctr_enabled & (1 << i)) {
1415 cbe_write_ctr(cpu, i, reset_value[i]);
1416 enable_ctr(cpu, i, pm_regs.pm07_cntrl);
1417 interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
1418 } else {
1419 /* Disable counter */
1420 cbe_write_pm07_control(cpu, i, 0);
1424 cbe_get_and_clear_pm_interrupts(cpu);
1425 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1426 cbe_enable_pm(cpu);
1429 virt_cntr_inter_mask = interrupt_mask;
1430 oprofile_running = 1;
1431 smp_wmb();
1434 * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
1435 * executed which manipulates the PMU. We start the "virtual counter"
1436 * here so that we do not need to synchronize access to the PMU in
1437 * the above for-loop.
1439 start_virt_cntrs();
1441 return 0;
1444 static int cell_global_start(struct op_counter_config *ctr)
1446 if (profiling_mode == SPU_PROFILING_CYCLES)
1447 return cell_global_start_spu_cycles(ctr);
1448 else if (profiling_mode == SPU_PROFILING_EVENTS)
1449 return cell_global_start_spu_events(ctr);
1450 else
1451 return cell_global_start_ppu(ctr);
1455 /* The SPU interrupt handler
1457 * SPU event profiling works as follows:
1458 * The pm_signal[0] holds the one SPU event to be measured. It is routed on
1459 * the debug bus using word 0 or 1. The value of pm_signal[1] and
1460 * pm_signal[2] contain the necessary events to route the SPU program
1461 * counter for the selected SPU onto the debug bus using words 2 and 3.
1462 * The pm_interval register is setup to write the SPU PC value into the
1463 * trace buffer at the maximum rate possible. The trace buffer is configured
1464 * to store the PCs, wrapping when it is full. The performance counter is
1465 * initialized to the max hardware count minus the number of events, N, between
1466 * samples. Once the N events have occurred, a HW counter overflow occurs
1467 * causing the generation of a HW counter interrupt which also stops the
1468 * writing of the SPU PC values to the trace buffer. Hence the last PC
1469 * written to the trace buffer is the SPU PC that we want. Unfortunately,
1470 * we have to read from the beginning of the trace buffer to get to the
1471 * last value written. We just hope the PPU has nothing better to do then
1472 * service this interrupt. The PC for the specific SPU being profiled is
1473 * extracted from the trace buffer processed and stored. The trace buffer
1474 * is cleared, interrupts are cleared, the counter is reset to max - N.
1475 * A kernel timer is used to periodically call the routine spu_evnt_swap()
1476 * to switch to the next physical SPU in the node to profile in round robbin
1477 * order. This way data is collected for all SPUs on the node. It does mean
1478 * that we need to use a relatively small value of N to ensure enough samples
1479 * on each SPU are collected each SPU is being profiled 1/8 of the time.
1480 * It may also be necessary to use a longer sample collection period.
1482 static void cell_handle_interrupt_spu(struct pt_regs *regs,
1483 struct op_counter_config *ctr)
1485 u32 cpu, cpu_tmp;
1486 u64 trace_entry;
1487 u32 interrupt_mask;
1488 u64 trace_buffer[2];
1489 u64 last_trace_buffer;
1490 u32 sample;
1491 u32 trace_addr;
1492 unsigned long sample_array_lock_flags;
1493 int spu_num;
1494 unsigned long flags;
1496 /* Make sure spu event interrupt handler and spu event swap
1497 * don't access the counters simultaneously.
1499 cpu = smp_processor_id();
1500 spin_lock_irqsave(&cntr_lock, flags);
1502 cpu_tmp = cpu;
1503 cbe_disable_pm(cpu);
1505 interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1507 sample = 0xABCDEF;
1508 trace_entry = 0xfedcba;
1509 last_trace_buffer = 0xdeadbeaf;
1511 if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1512 /* disable writes to trace buff */
1513 cbe_write_pm(cpu, pm_interval, 0);
1515 /* only have one perf cntr being used, cntr 0 */
1516 if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
1517 && ctr[0].enabled)
1518 /* The SPU PC values will be read
1519 * from the trace buffer, reset counter
1522 cbe_write_ctr(cpu, 0, reset_value[0]);
1524 trace_addr = cbe_read_pm(cpu, trace_address);
1526 while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
1527 /* There is data in the trace buffer to process
1528 * Read the buffer until you get to the last
1529 * entry. This is the value we want.
1532 cbe_read_trace_buffer(cpu, trace_buffer);
1533 trace_addr = cbe_read_pm(cpu, trace_address);
1536 /* SPU Address 16 bit count format for 128 bit
1537 * HW trace buffer is used for the SPU PC storage
1538 * HDR bits 0:15
1539 * SPU Addr 0 bits 16:31
1540 * SPU Addr 1 bits 32:47
1541 * unused bits 48:127
1543 * HDR: bit4 = 1 SPU Address 0 valid
1544 * HDR: bit5 = 1 SPU Address 1 valid
1545 * - unfortunately, the valid bits don't seem to work
1547 * Note trace_buffer[0] holds bits 0:63 of the HW
1548 * trace buffer, trace_buffer[1] holds bits 64:127
1551 trace_entry = trace_buffer[0]
1552 & 0x00000000FFFF0000;
1554 /* only top 16 of the 18 bit SPU PC address
1555 * is stored in trace buffer, hence shift right
1556 * by 16 -2 bits */
1557 sample = trace_entry >> 14;
1558 last_trace_buffer = trace_buffer[0];
1560 spu_num = spu_evnt_phys_spu_indx
1561 + (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
1563 /* make sure only one process at a time is calling
1564 * spu_sync_buffer()
1566 spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
1567 sample_array_lock_flags);
1568 spu_sync_buffer(spu_num, &sample, 1);
1569 spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
1570 sample_array_lock_flags);
1572 smp_wmb(); /* insure spu event buffer updates are written
1573 * don't want events intermingled... */
1575 /* The counters were frozen by the interrupt.
1576 * Reenable the interrupt and restart the counters.
1578 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1579 cbe_enable_pm_interrupts(cpu, hdw_thread,
1580 virt_cntr_inter_mask);
1582 /* clear the trace buffer, re-enable writes to trace buff */
1583 cbe_write_pm(cpu, trace_address, 0);
1584 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1586 /* The writes to the various performance counters only writes
1587 * to a latch. The new values (interrupt setting bits, reset
1588 * counter value etc.) are not copied to the actual registers
1589 * until the performance monitor is enabled. In order to get
1590 * this to work as desired, the performance monitor needs to
1591 * be disabled while writing to the latches. This is a
1592 * HW design issue.
1594 write_pm_cntrl(cpu);
1595 cbe_enable_pm(cpu);
1597 spin_unlock_irqrestore(&cntr_lock, flags);
1600 static void cell_handle_interrupt_ppu(struct pt_regs *regs,
1601 struct op_counter_config *ctr)
1603 u32 cpu;
1604 u64 pc;
1605 int is_kernel;
1606 unsigned long flags = 0;
1607 u32 interrupt_mask;
1608 int i;
1610 cpu = smp_processor_id();
1613 * Need to make sure the interrupt handler and the virt counter
1614 * routine are not running at the same time. See the
1615 * cell_virtual_cntr() routine for additional comments.
1617 spin_lock_irqsave(&cntr_lock, flags);
1620 * Need to disable and reenable the performance counters
1621 * to get the desired behavior from the hardware. This
1622 * is hardware specific.
1625 cbe_disable_pm(cpu);
1627 interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1630 * If the interrupt mask has been cleared, then the virt cntr
1631 * has cleared the interrupt. When the thread that generated
1632 * the interrupt is restored, the data count will be restored to
1633 * 0xffffff0 to cause the interrupt to be regenerated.
1636 if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1637 pc = regs->nip;
1638 is_kernel = is_kernel_addr(pc);
1640 for (i = 0; i < num_counters; ++i) {
1641 if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
1642 && ctr[i].enabled) {
1643 oprofile_add_ext_sample(pc, regs, i, is_kernel);
1644 cbe_write_ctr(cpu, i, reset_value[i]);
1649 * The counters were frozen by the interrupt.
1650 * Reenable the interrupt and restart the counters.
1651 * If there was a race between the interrupt handler and
1652 * the virtual counter routine. The virtual counter
1653 * routine may have cleared the interrupts. Hence must
1654 * use the virt_cntr_inter_mask to re-enable the interrupts.
1656 cbe_enable_pm_interrupts(cpu, hdw_thread,
1657 virt_cntr_inter_mask);
1660 * The writes to the various performance counters only writes
1661 * to a latch. The new values (interrupt setting bits, reset
1662 * counter value etc.) are not copied to the actual registers
1663 * until the performance monitor is enabled. In order to get
1664 * this to work as desired, the performance monitor needs to
1665 * be disabled while writing to the latches. This is a
1666 * HW design issue.
1668 cbe_enable_pm(cpu);
1670 spin_unlock_irqrestore(&cntr_lock, flags);
1673 static void cell_handle_interrupt(struct pt_regs *regs,
1674 struct op_counter_config *ctr)
1676 if (profiling_mode == PPU_PROFILING)
1677 cell_handle_interrupt_ppu(regs, ctr);
1678 else
1679 cell_handle_interrupt_spu(regs, ctr);
1683 * This function is called from the generic OProfile
1684 * driver. When profiling PPUs, we need to do the
1685 * generic sync start; otherwise, do spu_sync_start.
1687 static int cell_sync_start(void)
1689 if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1690 (profiling_mode == SPU_PROFILING_EVENTS))
1691 return spu_sync_start();
1692 else
1693 return DO_GENERIC_SYNC;
1696 static int cell_sync_stop(void)
1698 if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1699 (profiling_mode == SPU_PROFILING_EVENTS))
1700 return spu_sync_stop();
1701 else
1702 return 1;
1705 struct op_powerpc_model op_model_cell = {
1706 .reg_setup = cell_reg_setup,
1707 .cpu_setup = cell_cpu_setup,
1708 .global_start = cell_global_start,
1709 .global_stop = cell_global_stop,
1710 .sync_start = cell_sync_start,
1711 .sync_stop = cell_sync_stop,
1712 .handle_interrupt = cell_handle_interrupt,