4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/export.h>
47 #include <linux/init.h>
48 #include <linux/gfp.h>
49 #include <linux/memblock.h>
50 #include <linux/seq_file.h>
51 #include <linux/crash_dump.h>
52 #ifdef CONFIG_KEXEC_CORE
53 #include <linux/kexec.h>
56 #include <trace/events/xen.h>
58 #include <asm/pgtable.h>
59 #include <asm/tlbflush.h>
60 #include <asm/fixmap.h>
61 #include <asm/mmu_context.h>
62 #include <asm/setup.h>
63 #include <asm/paravirt.h>
64 #include <asm/e820/api.h>
65 #include <asm/linkage.h>
71 #include <asm/xen/hypercall.h>
72 #include <asm/xen/hypervisor.h>
76 #include <xen/interface/xen.h>
77 #include <xen/interface/hvm/hvm_op.h>
78 #include <xen/interface/version.h>
79 #include <xen/interface/memory.h>
80 #include <xen/hvc-console.h>
82 #include "multicalls.h"
88 * Identity map, in addition to plain kernel map. This needs to be
89 * large enough to allocate page table pages to allocate the rest.
90 * Each page can map 2MB.
92 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
93 static RESERVE_BRK_ARRAY(pte_t
, level1_ident_pgt
, LEVEL1_IDENT_ENTRIES
);
96 /* l3 pud for userspace vsyscall mapping */
97 static pud_t level3_user_vsyscall
[PTRS_PER_PUD
] __page_aligned_bss
;
98 #endif /* CONFIG_X86_64 */
101 * Note about cr3 (pagetable base) values:
103 * xen_cr3 contains the current logical cr3 value; it contains the
104 * last set cr3. This may not be the current effective cr3, because
105 * its update may be being lazily deferred. However, a vcpu looking
106 * at its own cr3 can use this value knowing that it everything will
107 * be self-consistent.
109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
110 * hypercall to set the vcpu cr3 is complete (so it may be a little
111 * out of date, but it will never be set early). If one vcpu is
112 * looking at another vcpu's cr3 value, it should use this variable.
114 DEFINE_PER_CPU(unsigned long, xen_cr3
); /* cr3 stored as physaddr */
115 DEFINE_PER_CPU(unsigned long, xen_current_cr3
); /* actual vcpu cr3 */
117 static phys_addr_t xen_pt_base
, xen_pt_size __initdata
;
120 * Just beyond the highest usermode address. STACK_TOP_MAX has a
121 * redzone above it, so round it up to a PGD boundary.
123 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
125 void make_lowmem_page_readonly(void *vaddr
)
128 unsigned long address
= (unsigned long)vaddr
;
131 pte
= lookup_address(address
, &level
);
133 return; /* vaddr missing */
135 ptev
= pte_wrprotect(*pte
);
137 if (HYPERVISOR_update_va_mapping(address
, ptev
, 0))
141 void make_lowmem_page_readwrite(void *vaddr
)
144 unsigned long address
= (unsigned long)vaddr
;
147 pte
= lookup_address(address
, &level
);
149 return; /* vaddr missing */
151 ptev
= pte_mkwrite(*pte
);
153 if (HYPERVISOR_update_va_mapping(address
, ptev
, 0))
158 static bool xen_page_pinned(void *ptr
)
160 struct page
*page
= virt_to_page(ptr
);
162 return PagePinned(page
);
165 static void xen_extend_mmu_update(const struct mmu_update
*update
)
167 struct multicall_space mcs
;
168 struct mmu_update
*u
;
170 mcs
= xen_mc_extend_args(__HYPERVISOR_mmu_update
, sizeof(*u
));
172 if (mcs
.mc
!= NULL
) {
175 mcs
= __xen_mc_entry(sizeof(*u
));
176 MULTI_mmu_update(mcs
.mc
, mcs
.args
, 1, NULL
, DOMID_SELF
);
183 static void xen_extend_mmuext_op(const struct mmuext_op
*op
)
185 struct multicall_space mcs
;
188 mcs
= xen_mc_extend_args(__HYPERVISOR_mmuext_op
, sizeof(*u
));
190 if (mcs
.mc
!= NULL
) {
193 mcs
= __xen_mc_entry(sizeof(*u
));
194 MULTI_mmuext_op(mcs
.mc
, mcs
.args
, 1, NULL
, DOMID_SELF
);
201 static void xen_set_pmd_hyper(pmd_t
*ptr
, pmd_t val
)
209 /* ptr may be ioremapped for 64-bit pagetable setup */
210 u
.ptr
= arbitrary_virt_to_machine(ptr
).maddr
;
211 u
.val
= pmd_val_ma(val
);
212 xen_extend_mmu_update(&u
);
214 xen_mc_issue(PARAVIRT_LAZY_MMU
);
219 static void xen_set_pmd(pmd_t
*ptr
, pmd_t val
)
221 trace_xen_mmu_set_pmd(ptr
, val
);
223 /* If page is not pinned, we can just update the entry
225 if (!xen_page_pinned(ptr
)) {
230 xen_set_pmd_hyper(ptr
, val
);
234 * Associate a virtual page frame with a given physical page frame
235 * and protection flags for that frame.
237 void set_pte_mfn(unsigned long vaddr
, unsigned long mfn
, pgprot_t flags
)
239 set_pte_vaddr(vaddr
, mfn_pte(mfn
, flags
));
242 static bool xen_batched_set_pte(pte_t
*ptep
, pte_t pteval
)
246 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU
)
251 u
.ptr
= virt_to_machine(ptep
).maddr
| MMU_NORMAL_PT_UPDATE
;
252 u
.val
= pte_val_ma(pteval
);
253 xen_extend_mmu_update(&u
);
255 xen_mc_issue(PARAVIRT_LAZY_MMU
);
260 static inline void __xen_set_pte(pte_t
*ptep
, pte_t pteval
)
262 if (!xen_batched_set_pte(ptep
, pteval
)) {
264 * Could call native_set_pte() here and trap and
265 * emulate the PTE write but with 32-bit guests this
266 * needs two traps (one for each of the two 32-bit
267 * words in the PTE) so do one hypercall directly
272 u
.ptr
= virt_to_machine(ptep
).maddr
| MMU_NORMAL_PT_UPDATE
;
273 u
.val
= pte_val_ma(pteval
);
274 HYPERVISOR_mmu_update(&u
, 1, NULL
, DOMID_SELF
);
278 static void xen_set_pte(pte_t
*ptep
, pte_t pteval
)
280 trace_xen_mmu_set_pte(ptep
, pteval
);
281 __xen_set_pte(ptep
, pteval
);
284 static void xen_set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
285 pte_t
*ptep
, pte_t pteval
)
287 trace_xen_mmu_set_pte_at(mm
, addr
, ptep
, pteval
);
288 __xen_set_pte(ptep
, pteval
);
291 pte_t
xen_ptep_modify_prot_start(struct mm_struct
*mm
,
292 unsigned long addr
, pte_t
*ptep
)
294 /* Just return the pte as-is. We preserve the bits on commit */
295 trace_xen_mmu_ptep_modify_prot_start(mm
, addr
, ptep
, *ptep
);
299 void xen_ptep_modify_prot_commit(struct mm_struct
*mm
, unsigned long addr
,
300 pte_t
*ptep
, pte_t pte
)
304 trace_xen_mmu_ptep_modify_prot_commit(mm
, addr
, ptep
, pte
);
307 u
.ptr
= virt_to_machine(ptep
).maddr
| MMU_PT_UPDATE_PRESERVE_AD
;
308 u
.val
= pte_val_ma(pte
);
309 xen_extend_mmu_update(&u
);
311 xen_mc_issue(PARAVIRT_LAZY_MMU
);
314 /* Assume pteval_t is equivalent to all the other *val_t types. */
315 static pteval_t
pte_mfn_to_pfn(pteval_t val
)
317 if (val
& _PAGE_PRESENT
) {
318 unsigned long mfn
= (val
& XEN_PTE_MFN_MASK
) >> PAGE_SHIFT
;
319 unsigned long pfn
= mfn_to_pfn(mfn
);
321 pteval_t flags
= val
& PTE_FLAGS_MASK
;
322 if (unlikely(pfn
== ~0))
323 val
= flags
& ~_PAGE_PRESENT
;
325 val
= ((pteval_t
)pfn
<< PAGE_SHIFT
) | flags
;
331 static pteval_t
pte_pfn_to_mfn(pteval_t val
)
333 if (val
& _PAGE_PRESENT
) {
334 unsigned long pfn
= (val
& PTE_PFN_MASK
) >> PAGE_SHIFT
;
335 pteval_t flags
= val
& PTE_FLAGS_MASK
;
338 mfn
= __pfn_to_mfn(pfn
);
341 * If there's no mfn for the pfn, then just create an
342 * empty non-present pte. Unfortunately this loses
343 * information about the original pfn, so
344 * pte_mfn_to_pfn is asymmetric.
346 if (unlikely(mfn
== INVALID_P2M_ENTRY
)) {
350 mfn
&= ~(FOREIGN_FRAME_BIT
| IDENTITY_FRAME_BIT
);
351 val
= ((pteval_t
)mfn
<< PAGE_SHIFT
) | flags
;
357 __visible pteval_t
xen_pte_val(pte_t pte
)
359 pteval_t pteval
= pte
.pte
;
361 return pte_mfn_to_pfn(pteval
);
363 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val
);
365 __visible pgdval_t
xen_pgd_val(pgd_t pgd
)
367 return pte_mfn_to_pfn(pgd
.pgd
);
369 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val
);
371 __visible pte_t
xen_make_pte(pteval_t pte
)
373 pte
= pte_pfn_to_mfn(pte
);
375 return native_make_pte(pte
);
377 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte
);
379 __visible pgd_t
xen_make_pgd(pgdval_t pgd
)
381 pgd
= pte_pfn_to_mfn(pgd
);
382 return native_make_pgd(pgd
);
384 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd
);
386 __visible pmdval_t
xen_pmd_val(pmd_t pmd
)
388 return pte_mfn_to_pfn(pmd
.pmd
);
390 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val
);
392 static void xen_set_pud_hyper(pud_t
*ptr
, pud_t val
)
400 /* ptr may be ioremapped for 64-bit pagetable setup */
401 u
.ptr
= arbitrary_virt_to_machine(ptr
).maddr
;
402 u
.val
= pud_val_ma(val
);
403 xen_extend_mmu_update(&u
);
405 xen_mc_issue(PARAVIRT_LAZY_MMU
);
410 static void xen_set_pud(pud_t
*ptr
, pud_t val
)
412 trace_xen_mmu_set_pud(ptr
, val
);
414 /* If page is not pinned, we can just update the entry
416 if (!xen_page_pinned(ptr
)) {
421 xen_set_pud_hyper(ptr
, val
);
424 #ifdef CONFIG_X86_PAE
425 static void xen_set_pte_atomic(pte_t
*ptep
, pte_t pte
)
427 trace_xen_mmu_set_pte_atomic(ptep
, pte
);
428 set_64bit((u64
*)ptep
, native_pte_val(pte
));
431 static void xen_pte_clear(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
433 trace_xen_mmu_pte_clear(mm
, addr
, ptep
);
434 if (!xen_batched_set_pte(ptep
, native_make_pte(0)))
435 native_pte_clear(mm
, addr
, ptep
);
438 static void xen_pmd_clear(pmd_t
*pmdp
)
440 trace_xen_mmu_pmd_clear(pmdp
);
441 set_pmd(pmdp
, __pmd(0));
443 #endif /* CONFIG_X86_PAE */
445 __visible pmd_t
xen_make_pmd(pmdval_t pmd
)
447 pmd
= pte_pfn_to_mfn(pmd
);
448 return native_make_pmd(pmd
);
450 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd
);
453 __visible pudval_t
xen_pud_val(pud_t pud
)
455 return pte_mfn_to_pfn(pud
.pud
);
457 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val
);
459 __visible pud_t
xen_make_pud(pudval_t pud
)
461 pud
= pte_pfn_to_mfn(pud
);
463 return native_make_pud(pud
);
465 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud
);
467 static pgd_t
*xen_get_user_pgd(pgd_t
*pgd
)
469 pgd_t
*pgd_page
= (pgd_t
*)(((unsigned long)pgd
) & PAGE_MASK
);
470 unsigned offset
= pgd
- pgd_page
;
471 pgd_t
*user_ptr
= NULL
;
473 if (offset
< pgd_index(USER_LIMIT
)) {
474 struct page
*page
= virt_to_page(pgd_page
);
475 user_ptr
= (pgd_t
*)page
->private;
483 static void __xen_set_p4d_hyper(p4d_t
*ptr
, p4d_t val
)
487 u
.ptr
= virt_to_machine(ptr
).maddr
;
488 u
.val
= p4d_val_ma(val
);
489 xen_extend_mmu_update(&u
);
493 * Raw hypercall-based set_p4d, intended for in early boot before
494 * there's a page structure. This implies:
495 * 1. The only existing pagetable is the kernel's
496 * 2. It is always pinned
497 * 3. It has no user pagetable attached to it
499 static void __init
xen_set_p4d_hyper(p4d_t
*ptr
, p4d_t val
)
505 __xen_set_p4d_hyper(ptr
, val
);
507 xen_mc_issue(PARAVIRT_LAZY_MMU
);
512 static void xen_set_p4d(p4d_t
*ptr
, p4d_t val
)
514 pgd_t
*user_ptr
= xen_get_user_pgd((pgd_t
*)ptr
);
517 trace_xen_mmu_set_p4d(ptr
, (p4d_t
*)user_ptr
, val
);
519 /* If page is not pinned, we can just update the entry
521 if (!xen_page_pinned(ptr
)) {
524 WARN_ON(xen_page_pinned(user_ptr
));
525 pgd_val
.pgd
= p4d_val_ma(val
);
531 /* If it's pinned, then we can at least batch the kernel and
532 user updates together. */
535 __xen_set_p4d_hyper(ptr
, val
);
537 __xen_set_p4d_hyper((p4d_t
*)user_ptr
, val
);
539 xen_mc_issue(PARAVIRT_LAZY_MMU
);
541 #endif /* CONFIG_X86_64 */
543 static int xen_pmd_walk(struct mm_struct
*mm
, pmd_t
*pmd
,
544 int (*func
)(struct mm_struct
*mm
, struct page
*, enum pt_level
),
545 bool last
, unsigned long limit
)
547 int i
, nr
, flush
= 0;
549 nr
= last
? pmd_index(limit
) + 1 : PTRS_PER_PMD
;
550 for (i
= 0; i
< nr
; i
++) {
551 if (!pmd_none(pmd
[i
]))
552 flush
|= (*func
)(mm
, pmd_page(pmd
[i
]), PT_PTE
);
557 static int xen_pud_walk(struct mm_struct
*mm
, pud_t
*pud
,
558 int (*func
)(struct mm_struct
*mm
, struct page
*, enum pt_level
),
559 bool last
, unsigned long limit
)
561 int i
, nr
, flush
= 0;
563 nr
= last
? pud_index(limit
) + 1 : PTRS_PER_PUD
;
564 for (i
= 0; i
< nr
; i
++) {
567 if (pud_none(pud
[i
]))
570 pmd
= pmd_offset(&pud
[i
], 0);
571 if (PTRS_PER_PMD
> 1)
572 flush
|= (*func
)(mm
, virt_to_page(pmd
), PT_PMD
);
573 flush
|= xen_pmd_walk(mm
, pmd
, func
,
574 last
&& i
== nr
- 1, limit
);
579 static int xen_p4d_walk(struct mm_struct
*mm
, p4d_t
*p4d
,
580 int (*func
)(struct mm_struct
*mm
, struct page
*, enum pt_level
),
581 bool last
, unsigned long limit
)
590 pud
= pud_offset(p4d
, 0);
591 if (PTRS_PER_PUD
> 1)
592 flush
|= (*func
)(mm
, virt_to_page(pud
), PT_PUD
);
593 flush
|= xen_pud_walk(mm
, pud
, func
, last
, limit
);
598 * (Yet another) pagetable walker. This one is intended for pinning a
599 * pagetable. This means that it walks a pagetable and calls the
600 * callback function on each page it finds making up the page table,
601 * at every level. It walks the entire pagetable, but it only bothers
602 * pinning pte pages which are below limit. In the normal case this
603 * will be STACK_TOP_MAX, but at boot we need to pin up to
606 * For 32-bit the important bit is that we don't pin beyond there,
607 * because then we start getting into Xen's ptes.
609 * For 64-bit, we must skip the Xen hole in the middle of the address
610 * space, just after the big x86-64 virtual hole.
612 static int __xen_pgd_walk(struct mm_struct
*mm
, pgd_t
*pgd
,
613 int (*func
)(struct mm_struct
*mm
, struct page
*,
617 int i
, nr
, flush
= 0;
618 unsigned hole_low
, hole_high
;
620 /* The limit is the last byte to be touched */
622 BUG_ON(limit
>= FIXADDR_TOP
);
625 * 64-bit has a great big hole in the middle of the address
626 * space, which contains the Xen mappings. On 32-bit these
627 * will end up making a zero-sized hole and so is a no-op.
629 hole_low
= pgd_index(USER_LIMIT
);
630 hole_high
= pgd_index(PAGE_OFFSET
);
632 nr
= pgd_index(limit
) + 1;
633 for (i
= 0; i
< nr
; i
++) {
636 if (i
>= hole_low
&& i
< hole_high
)
639 if (pgd_none(pgd
[i
]))
642 p4d
= p4d_offset(&pgd
[i
], 0);
643 flush
|= xen_p4d_walk(mm
, p4d
, func
, i
== nr
- 1, limit
);
646 /* Do the top level last, so that the callbacks can use it as
647 a cue to do final things like tlb flushes. */
648 flush
|= (*func
)(mm
, virt_to_page(pgd
), PT_PGD
);
653 static int xen_pgd_walk(struct mm_struct
*mm
,
654 int (*func
)(struct mm_struct
*mm
, struct page
*,
658 return __xen_pgd_walk(mm
, mm
->pgd
, func
, limit
);
661 /* If we're using split pte locks, then take the page's lock and
662 return a pointer to it. Otherwise return NULL. */
663 static spinlock_t
*xen_pte_lock(struct page
*page
, struct mm_struct
*mm
)
665 spinlock_t
*ptl
= NULL
;
667 #if USE_SPLIT_PTE_PTLOCKS
668 ptl
= ptlock_ptr(page
);
669 spin_lock_nest_lock(ptl
, &mm
->page_table_lock
);
675 static void xen_pte_unlock(void *v
)
681 static void xen_do_pin(unsigned level
, unsigned long pfn
)
686 op
.arg1
.mfn
= pfn_to_mfn(pfn
);
688 xen_extend_mmuext_op(&op
);
691 static int xen_pin_page(struct mm_struct
*mm
, struct page
*page
,
694 unsigned pgfl
= TestSetPagePinned(page
);
698 flush
= 0; /* already pinned */
699 else if (PageHighMem(page
))
700 /* kmaps need flushing if we found an unpinned
704 void *pt
= lowmem_page_address(page
);
705 unsigned long pfn
= page_to_pfn(page
);
706 struct multicall_space mcs
= __xen_mc_entry(0);
712 * We need to hold the pagetable lock between the time
713 * we make the pagetable RO and when we actually pin
714 * it. If we don't, then other users may come in and
715 * attempt to update the pagetable by writing it,
716 * which will fail because the memory is RO but not
717 * pinned, so Xen won't do the trap'n'emulate.
719 * If we're using split pte locks, we can't hold the
720 * entire pagetable's worth of locks during the
721 * traverse, because we may wrap the preempt count (8
722 * bits). The solution is to mark RO and pin each PTE
723 * page while holding the lock. This means the number
724 * of locks we end up holding is never more than a
725 * batch size (~32 entries, at present).
727 * If we're not using split pte locks, we needn't pin
728 * the PTE pages independently, because we're
729 * protected by the overall pagetable lock.
733 ptl
= xen_pte_lock(page
, mm
);
735 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)pt
,
736 pfn_pte(pfn
, PAGE_KERNEL_RO
),
737 level
== PT_PGD
? UVMF_TLB_FLUSH
: 0);
740 xen_do_pin(MMUEXT_PIN_L1_TABLE
, pfn
);
742 /* Queue a deferred unlock for when this batch
744 xen_mc_callback(xen_pte_unlock
, ptl
);
751 /* This is called just after a mm has been created, but it has not
752 been used yet. We need to make sure that its pagetable is all
753 read-only, and can be pinned. */
754 static void __xen_pgd_pin(struct mm_struct
*mm
, pgd_t
*pgd
)
756 trace_xen_mmu_pgd_pin(mm
, pgd
);
760 if (__xen_pgd_walk(mm
, pgd
, xen_pin_page
, USER_LIMIT
)) {
761 /* re-enable interrupts for flushing */
771 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
773 xen_do_pin(MMUEXT_PIN_L4_TABLE
, PFN_DOWN(__pa(pgd
)));
776 xen_pin_page(mm
, virt_to_page(user_pgd
), PT_PGD
);
777 xen_do_pin(MMUEXT_PIN_L4_TABLE
,
778 PFN_DOWN(__pa(user_pgd
)));
781 #else /* CONFIG_X86_32 */
782 #ifdef CONFIG_X86_PAE
783 /* Need to make sure unshared kernel PMD is pinnable */
784 xen_pin_page(mm
, pgd_page(pgd
[pgd_index(TASK_SIZE
)]),
787 xen_do_pin(MMUEXT_PIN_L3_TABLE
, PFN_DOWN(__pa(pgd
)));
788 #endif /* CONFIG_X86_64 */
792 static void xen_pgd_pin(struct mm_struct
*mm
)
794 __xen_pgd_pin(mm
, mm
->pgd
);
798 * On save, we need to pin all pagetables to make sure they get their
799 * mfns turned into pfns. Search the list for any unpinned pgds and pin
800 * them (unpinned pgds are not currently in use, probably because the
801 * process is under construction or destruction).
803 * Expected to be called in stop_machine() ("equivalent to taking
804 * every spinlock in the system"), so the locking doesn't really
805 * matter all that much.
807 void xen_mm_pin_all(void)
811 spin_lock(&pgd_lock
);
813 list_for_each_entry(page
, &pgd_list
, lru
) {
814 if (!PagePinned(page
)) {
815 __xen_pgd_pin(&init_mm
, (pgd_t
*)page_address(page
));
816 SetPageSavePinned(page
);
820 spin_unlock(&pgd_lock
);
824 * The init_mm pagetable is really pinned as soon as its created, but
825 * that's before we have page structures to store the bits. So do all
826 * the book-keeping now.
828 static int __init
xen_mark_pinned(struct mm_struct
*mm
, struct page
*page
,
835 static void __init
xen_mark_init_mm_pinned(void)
837 xen_pgd_walk(&init_mm
, xen_mark_pinned
, FIXADDR_TOP
);
840 static int xen_unpin_page(struct mm_struct
*mm
, struct page
*page
,
843 unsigned pgfl
= TestClearPagePinned(page
);
845 if (pgfl
&& !PageHighMem(page
)) {
846 void *pt
= lowmem_page_address(page
);
847 unsigned long pfn
= page_to_pfn(page
);
848 spinlock_t
*ptl
= NULL
;
849 struct multicall_space mcs
;
852 * Do the converse to pin_page. If we're using split
853 * pte locks, we must be holding the lock for while
854 * the pte page is unpinned but still RO to prevent
855 * concurrent updates from seeing it in this
856 * partially-pinned state.
858 if (level
== PT_PTE
) {
859 ptl
= xen_pte_lock(page
, mm
);
862 xen_do_pin(MMUEXT_UNPIN_TABLE
, pfn
);
865 mcs
= __xen_mc_entry(0);
867 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)pt
,
868 pfn_pte(pfn
, PAGE_KERNEL
),
869 level
== PT_PGD
? UVMF_TLB_FLUSH
: 0);
872 /* unlock when batch completed */
873 xen_mc_callback(xen_pte_unlock
, ptl
);
877 return 0; /* never need to flush on unpin */
880 /* Release a pagetables pages back as normal RW */
881 static void __xen_pgd_unpin(struct mm_struct
*mm
, pgd_t
*pgd
)
883 trace_xen_mmu_pgd_unpin(mm
, pgd
);
887 xen_do_pin(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
891 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
894 xen_do_pin(MMUEXT_UNPIN_TABLE
,
895 PFN_DOWN(__pa(user_pgd
)));
896 xen_unpin_page(mm
, virt_to_page(user_pgd
), PT_PGD
);
901 #ifdef CONFIG_X86_PAE
902 /* Need to make sure unshared kernel PMD is unpinned */
903 xen_unpin_page(mm
, pgd_page(pgd
[pgd_index(TASK_SIZE
)]),
907 __xen_pgd_walk(mm
, pgd
, xen_unpin_page
, USER_LIMIT
);
912 static void xen_pgd_unpin(struct mm_struct
*mm
)
914 __xen_pgd_unpin(mm
, mm
->pgd
);
918 * On resume, undo any pinning done at save, so that the rest of the
919 * kernel doesn't see any unexpected pinned pagetables.
921 void xen_mm_unpin_all(void)
925 spin_lock(&pgd_lock
);
927 list_for_each_entry(page
, &pgd_list
, lru
) {
928 if (PageSavePinned(page
)) {
929 BUG_ON(!PagePinned(page
));
930 __xen_pgd_unpin(&init_mm
, (pgd_t
*)page_address(page
));
931 ClearPageSavePinned(page
);
935 spin_unlock(&pgd_lock
);
938 static void xen_activate_mm(struct mm_struct
*prev
, struct mm_struct
*next
)
940 spin_lock(&next
->page_table_lock
);
942 spin_unlock(&next
->page_table_lock
);
945 static void xen_dup_mmap(struct mm_struct
*oldmm
, struct mm_struct
*mm
)
947 spin_lock(&mm
->page_table_lock
);
949 spin_unlock(&mm
->page_table_lock
);
952 static void drop_mm_ref_this_cpu(void *info
)
954 struct mm_struct
*mm
= info
;
956 if (this_cpu_read(cpu_tlbstate
.loaded_mm
) == mm
)
957 leave_mm(smp_processor_id());
960 * If this cpu still has a stale cr3 reference, then make sure
961 * it has been flushed.
963 if (this_cpu_read(xen_current_cr3
) == __pa(mm
->pgd
))
969 * Another cpu may still have their %cr3 pointing at the pagetable, so
970 * we need to repoint it somewhere else before we can unpin it.
972 static void xen_drop_mm_ref(struct mm_struct
*mm
)
977 drop_mm_ref_this_cpu(mm
);
979 /* Get the "official" set of cpus referring to our pagetable. */
980 if (!alloc_cpumask_var(&mask
, GFP_ATOMIC
)) {
981 for_each_online_cpu(cpu
) {
982 if (per_cpu(xen_current_cr3
, cpu
) != __pa(mm
->pgd
))
984 smp_call_function_single(cpu
, drop_mm_ref_this_cpu
, mm
, 1);
990 * It's possible that a vcpu may have a stale reference to our
991 * cr3, because its in lazy mode, and it hasn't yet flushed
992 * its set of pending hypercalls yet. In this case, we can
993 * look at its actual current cr3 value, and force it to flush
997 for_each_online_cpu(cpu
) {
998 if (per_cpu(xen_current_cr3
, cpu
) == __pa(mm
->pgd
))
999 cpumask_set_cpu(cpu
, mask
);
1002 smp_call_function_many(mask
, drop_mm_ref_this_cpu
, mm
, 1);
1003 free_cpumask_var(mask
);
1006 static void xen_drop_mm_ref(struct mm_struct
*mm
)
1008 drop_mm_ref_this_cpu(mm
);
1013 * While a process runs, Xen pins its pagetables, which means that the
1014 * hypervisor forces it to be read-only, and it controls all updates
1015 * to it. This means that all pagetable updates have to go via the
1016 * hypervisor, which is moderately expensive.
1018 * Since we're pulling the pagetable down, we switch to use init_mm,
1019 * unpin old process pagetable and mark it all read-write, which
1020 * allows further operations on it to be simple memory accesses.
1022 * The only subtle point is that another CPU may be still using the
1023 * pagetable because of lazy tlb flushing. This means we need need to
1024 * switch all CPUs off this pagetable before we can unpin it.
1026 static void xen_exit_mmap(struct mm_struct
*mm
)
1028 get_cpu(); /* make sure we don't move around */
1029 xen_drop_mm_ref(mm
);
1032 spin_lock(&mm
->page_table_lock
);
1034 /* pgd may not be pinned in the error exit path of execve */
1035 if (xen_page_pinned(mm
->pgd
))
1038 spin_unlock(&mm
->page_table_lock
);
1041 static void xen_post_allocator_init(void);
1043 static void __init
pin_pagetable_pfn(unsigned cmd
, unsigned long pfn
)
1045 struct mmuext_op op
;
1048 op
.arg1
.mfn
= pfn_to_mfn(pfn
);
1049 if (HYPERVISOR_mmuext_op(&op
, 1, NULL
, DOMID_SELF
))
1053 #ifdef CONFIG_X86_64
1054 static void __init
xen_cleanhighmap(unsigned long vaddr
,
1055 unsigned long vaddr_end
)
1057 unsigned long kernel_end
= roundup((unsigned long)_brk_end
, PMD_SIZE
) - 1;
1058 pmd_t
*pmd
= level2_kernel_pgt
+ pmd_index(vaddr
);
1060 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1061 * We include the PMD passed in on _both_ boundaries. */
1062 for (; vaddr
<= vaddr_end
&& (pmd
< (level2_kernel_pgt
+ PTRS_PER_PMD
));
1063 pmd
++, vaddr
+= PMD_SIZE
) {
1066 if (vaddr
< (unsigned long) _text
|| vaddr
> kernel_end
)
1067 set_pmd(pmd
, __pmd(0));
1069 /* In case we did something silly, we should crash in this function
1070 * instead of somewhere later and be confusing. */
1075 * Make a page range writeable and free it.
1077 static void __init
xen_free_ro_pages(unsigned long paddr
, unsigned long size
)
1079 void *vaddr
= __va(paddr
);
1080 void *vaddr_end
= vaddr
+ size
;
1082 for (; vaddr
< vaddr_end
; vaddr
+= PAGE_SIZE
)
1083 make_lowmem_page_readwrite(vaddr
);
1085 memblock_free(paddr
, size
);
1088 static void __init
xen_cleanmfnmap_free_pgtbl(void *pgtbl
, bool unpin
)
1090 unsigned long pa
= __pa(pgtbl
) & PHYSICAL_PAGE_MASK
;
1093 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, PFN_DOWN(pa
));
1094 ClearPagePinned(virt_to_page(__va(pa
)));
1095 xen_free_ro_pages(pa
, PAGE_SIZE
);
1098 static void __init
xen_cleanmfnmap_pmd(pmd_t
*pmd
, bool unpin
)
1104 if (pmd_large(*pmd
)) {
1105 pa
= pmd_val(*pmd
) & PHYSICAL_PAGE_MASK
;
1106 xen_free_ro_pages(pa
, PMD_SIZE
);
1110 pte_tbl
= pte_offset_kernel(pmd
, 0);
1111 for (i
= 0; i
< PTRS_PER_PTE
; i
++) {
1112 if (pte_none(pte_tbl
[i
]))
1114 pa
= pte_pfn(pte_tbl
[i
]) << PAGE_SHIFT
;
1115 xen_free_ro_pages(pa
, PAGE_SIZE
);
1117 set_pmd(pmd
, __pmd(0));
1118 xen_cleanmfnmap_free_pgtbl(pte_tbl
, unpin
);
1121 static void __init
xen_cleanmfnmap_pud(pud_t
*pud
, bool unpin
)
1127 if (pud_large(*pud
)) {
1128 pa
= pud_val(*pud
) & PHYSICAL_PAGE_MASK
;
1129 xen_free_ro_pages(pa
, PUD_SIZE
);
1133 pmd_tbl
= pmd_offset(pud
, 0);
1134 for (i
= 0; i
< PTRS_PER_PMD
; i
++) {
1135 if (pmd_none(pmd_tbl
[i
]))
1137 xen_cleanmfnmap_pmd(pmd_tbl
+ i
, unpin
);
1139 set_pud(pud
, __pud(0));
1140 xen_cleanmfnmap_free_pgtbl(pmd_tbl
, unpin
);
1143 static void __init
xen_cleanmfnmap_p4d(p4d_t
*p4d
, bool unpin
)
1149 if (p4d_large(*p4d
)) {
1150 pa
= p4d_val(*p4d
) & PHYSICAL_PAGE_MASK
;
1151 xen_free_ro_pages(pa
, P4D_SIZE
);
1155 pud_tbl
= pud_offset(p4d
, 0);
1156 for (i
= 0; i
< PTRS_PER_PUD
; i
++) {
1157 if (pud_none(pud_tbl
[i
]))
1159 xen_cleanmfnmap_pud(pud_tbl
+ i
, unpin
);
1161 set_p4d(p4d
, __p4d(0));
1162 xen_cleanmfnmap_free_pgtbl(pud_tbl
, unpin
);
1166 * Since it is well isolated we can (and since it is perhaps large we should)
1167 * also free the page tables mapping the initial P->M table.
1169 static void __init
xen_cleanmfnmap(unsigned long vaddr
)
1175 unpin
= (vaddr
== 2 * PGDIR_SIZE
);
1177 pgd
= pgd_offset_k(vaddr
);
1178 p4d
= p4d_offset(pgd
, 0);
1179 if (!p4d_none(*p4d
))
1180 xen_cleanmfnmap_p4d(p4d
, unpin
);
1183 static void __init
xen_pagetable_p2m_free(void)
1188 size
= PAGE_ALIGN(xen_start_info
->nr_pages
* sizeof(unsigned long));
1190 /* No memory or already called. */
1191 if ((unsigned long)xen_p2m_addr
== xen_start_info
->mfn_list
)
1194 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1195 memset((void *)xen_start_info
->mfn_list
, 0xff, size
);
1197 addr
= xen_start_info
->mfn_list
;
1199 * We could be in __ka space.
1200 * We roundup to the PMD, which means that if anybody at this stage is
1201 * using the __ka address of xen_start_info or
1202 * xen_start_info->shared_info they are in going to crash. Fortunatly
1203 * we have already revectored in xen_setup_kernel_pagetable and in
1204 * xen_setup_shared_info.
1206 size
= roundup(size
, PMD_SIZE
);
1208 if (addr
>= __START_KERNEL_map
) {
1209 xen_cleanhighmap(addr
, addr
+ size
);
1210 size
= PAGE_ALIGN(xen_start_info
->nr_pages
*
1211 sizeof(unsigned long));
1212 memblock_free(__pa(addr
), size
);
1214 xen_cleanmfnmap(addr
);
1218 static void __init
xen_pagetable_cleanhighmap(void)
1223 /* At this stage, cleanup_highmap has already cleaned __ka space
1224 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1225 * the ramdisk). We continue on, erasing PMD entries that point to page
1226 * tables - do note that they are accessible at this stage via __va.
1227 * As Xen is aligning the memory end to a 4MB boundary, for good
1228 * measure we also round up to PMD_SIZE * 2 - which means that if
1229 * anybody is using __ka address to the initial boot-stack - and try
1230 * to use it - they are going to crash. The xen_start_info has been
1231 * taken care of already in xen_setup_kernel_pagetable. */
1232 addr
= xen_start_info
->pt_base
;
1233 size
= xen_start_info
->nr_pt_frames
* PAGE_SIZE
;
1235 xen_cleanhighmap(addr
, roundup(addr
+ size
, PMD_SIZE
* 2));
1236 xen_start_info
->pt_base
= (unsigned long)__va(__pa(xen_start_info
->pt_base
));
1240 static void __init
xen_pagetable_p2m_setup(void)
1242 xen_vmalloc_p2m_tree();
1244 #ifdef CONFIG_X86_64
1245 xen_pagetable_p2m_free();
1247 xen_pagetable_cleanhighmap();
1249 /* And revector! Bye bye old array */
1250 xen_start_info
->mfn_list
= (unsigned long)xen_p2m_addr
;
1253 static void __init
xen_pagetable_init(void)
1256 xen_post_allocator_init();
1258 xen_pagetable_p2m_setup();
1260 /* Allocate and initialize top and mid mfn levels for p2m structure */
1261 xen_build_mfn_list_list();
1263 /* Remap memory freed due to conflicts with E820 map */
1266 xen_setup_shared_info();
1268 static void xen_write_cr2(unsigned long cr2
)
1270 this_cpu_read(xen_vcpu
)->arch
.cr2
= cr2
;
1273 static unsigned long xen_read_cr2(void)
1275 return this_cpu_read(xen_vcpu
)->arch
.cr2
;
1278 unsigned long xen_read_cr2_direct(void)
1280 return this_cpu_read(xen_vcpu_info
.arch
.cr2
);
1283 static void xen_flush_tlb(void)
1285 struct mmuext_op
*op
;
1286 struct multicall_space mcs
;
1288 trace_xen_mmu_flush_tlb(0);
1292 mcs
= xen_mc_entry(sizeof(*op
));
1295 op
->cmd
= MMUEXT_TLB_FLUSH_LOCAL
;
1296 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
1298 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1303 static void xen_flush_tlb_single(unsigned long addr
)
1305 struct mmuext_op
*op
;
1306 struct multicall_space mcs
;
1308 trace_xen_mmu_flush_tlb_single(addr
);
1312 mcs
= xen_mc_entry(sizeof(*op
));
1314 op
->cmd
= MMUEXT_INVLPG_LOCAL
;
1315 op
->arg1
.linear_addr
= addr
& PAGE_MASK
;
1316 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
1318 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1323 static void xen_flush_tlb_others(const struct cpumask
*cpus
,
1324 const struct flush_tlb_info
*info
)
1327 struct mmuext_op op
;
1328 DECLARE_BITMAP(mask
, NR_CPUS
);
1330 struct multicall_space mcs
;
1331 const size_t mc_entry_size
= sizeof(args
->op
) +
1332 sizeof(args
->mask
[0]) * BITS_TO_LONGS(num_possible_cpus());
1334 trace_xen_mmu_flush_tlb_others(cpus
, info
->mm
, info
->start
, info
->end
);
1336 if (cpumask_empty(cpus
))
1337 return; /* nothing to do */
1339 mcs
= xen_mc_entry(mc_entry_size
);
1341 args
->op
.arg2
.vcpumask
= to_cpumask(args
->mask
);
1343 /* Remove us, and any offline CPUS. */
1344 cpumask_and(to_cpumask(args
->mask
), cpus
, cpu_online_mask
);
1345 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args
->mask
));
1347 args
->op
.cmd
= MMUEXT_TLB_FLUSH_MULTI
;
1348 if (info
->end
!= TLB_FLUSH_ALL
&&
1349 (info
->end
- info
->start
) <= PAGE_SIZE
) {
1350 args
->op
.cmd
= MMUEXT_INVLPG_MULTI
;
1351 args
->op
.arg1
.linear_addr
= info
->start
;
1354 MULTI_mmuext_op(mcs
.mc
, &args
->op
, 1, NULL
, DOMID_SELF
);
1356 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1359 static unsigned long xen_read_cr3(void)
1361 return this_cpu_read(xen_cr3
);
1364 static void set_current_cr3(void *v
)
1366 this_cpu_write(xen_current_cr3
, (unsigned long)v
);
1369 static void __xen_write_cr3(bool kernel
, unsigned long cr3
)
1371 struct mmuext_op op
;
1374 trace_xen_mmu_write_cr3(kernel
, cr3
);
1377 mfn
= pfn_to_mfn(PFN_DOWN(cr3
));
1381 WARN_ON(mfn
== 0 && kernel
);
1383 op
.cmd
= kernel
? MMUEXT_NEW_BASEPTR
: MMUEXT_NEW_USER_BASEPTR
;
1386 xen_extend_mmuext_op(&op
);
1389 this_cpu_write(xen_cr3
, cr3
);
1391 /* Update xen_current_cr3 once the batch has actually
1393 xen_mc_callback(set_current_cr3
, (void *)cr3
);
1396 static void xen_write_cr3(unsigned long cr3
)
1398 BUG_ON(preemptible());
1400 xen_mc_batch(); /* disables interrupts */
1402 /* Update while interrupts are disabled, so its atomic with
1404 this_cpu_write(xen_cr3
, cr3
);
1406 __xen_write_cr3(true, cr3
);
1408 #ifdef CONFIG_X86_64
1410 pgd_t
*user_pgd
= xen_get_user_pgd(__va(cr3
));
1412 __xen_write_cr3(false, __pa(user_pgd
));
1414 __xen_write_cr3(false, 0);
1418 xen_mc_issue(PARAVIRT_LAZY_CPU
); /* interrupts restored */
1421 #ifdef CONFIG_X86_64
1423 * At the start of the day - when Xen launches a guest, it has already
1424 * built pagetables for the guest. We diligently look over them
1425 * in xen_setup_kernel_pagetable and graft as appropriate them in the
1426 * init_top_pgt and its friends. Then when we are happy we load
1427 * the new init_top_pgt - and continue on.
1429 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1430 * up the rest of the pagetables. When it has completed it loads the cr3.
1431 * N.B. that baremetal would start at 'start_kernel' (and the early
1432 * #PF handler would create bootstrap pagetables) - so we are running
1433 * with the same assumptions as what to do when write_cr3 is executed
1436 * Since there are no user-page tables at all, we have two variants
1437 * of xen_write_cr3 - the early bootup (this one), and the late one
1438 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1439 * the Linux kernel and user-space are both in ring 3 while the
1440 * hypervisor is in ring 0.
1442 static void __init
xen_write_cr3_init(unsigned long cr3
)
1444 BUG_ON(preemptible());
1446 xen_mc_batch(); /* disables interrupts */
1448 /* Update while interrupts are disabled, so its atomic with
1450 this_cpu_write(xen_cr3
, cr3
);
1452 __xen_write_cr3(true, cr3
);
1454 xen_mc_issue(PARAVIRT_LAZY_CPU
); /* interrupts restored */
1458 static int xen_pgd_alloc(struct mm_struct
*mm
)
1460 pgd_t
*pgd
= mm
->pgd
;
1463 BUG_ON(PagePinned(virt_to_page(pgd
)));
1465 #ifdef CONFIG_X86_64
1467 struct page
*page
= virt_to_page(pgd
);
1470 BUG_ON(page
->private != 0);
1474 user_pgd
= (pgd_t
*)__get_free_page(GFP_KERNEL
| __GFP_ZERO
);
1475 page
->private = (unsigned long)user_pgd
;
1477 if (user_pgd
!= NULL
) {
1478 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1479 user_pgd
[pgd_index(VSYSCALL_ADDR
)] =
1480 __pgd(__pa(level3_user_vsyscall
) | _PAGE_TABLE
);
1485 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd
))));
1491 static void xen_pgd_free(struct mm_struct
*mm
, pgd_t
*pgd
)
1493 #ifdef CONFIG_X86_64
1494 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
1497 free_page((unsigned long)user_pgd
);
1502 * Init-time set_pte while constructing initial pagetables, which
1503 * doesn't allow RO page table pages to be remapped RW.
1505 * If there is no MFN for this PFN then this page is initially
1506 * ballooned out so clear the PTE (as in decrease_reservation() in
1507 * drivers/xen/balloon.c).
1509 * Many of these PTE updates are done on unpinned and writable pages
1510 * and doing a hypercall for these is unnecessary and expensive. At
1511 * this point it is not possible to tell if a page is pinned or not,
1512 * so always write the PTE directly and rely on Xen trapping and
1513 * emulating any updates as necessary.
1515 __visible pte_t
xen_make_pte_init(pteval_t pte
)
1517 #ifdef CONFIG_X86_64
1521 * Pages belonging to the initial p2m list mapped outside the default
1522 * address range must be mapped read-only. This region contains the
1523 * page tables for mapping the p2m list, too, and page tables MUST be
1526 pfn
= (pte
& PTE_PFN_MASK
) >> PAGE_SHIFT
;
1527 if (xen_start_info
->mfn_list
< __START_KERNEL_map
&&
1528 pfn
>= xen_start_info
->first_p2m_pfn
&&
1529 pfn
< xen_start_info
->first_p2m_pfn
+ xen_start_info
->nr_p2m_frames
)
1532 pte
= pte_pfn_to_mfn(pte
);
1533 return native_make_pte(pte
);
1535 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init
);
1537 static void __init
xen_set_pte_init(pte_t
*ptep
, pte_t pte
)
1539 #ifdef CONFIG_X86_32
1540 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1541 if (pte_mfn(pte
) != INVALID_P2M_ENTRY
1542 && pte_val_ma(*ptep
) & _PAGE_PRESENT
)
1543 pte
= __pte_ma(((pte_val_ma(*ptep
) & _PAGE_RW
) | ~_PAGE_RW
) &
1546 native_set_pte(ptep
, pte
);
1549 /* Early in boot, while setting up the initial pagetable, assume
1550 everything is pinned. */
1551 static void __init
xen_alloc_pte_init(struct mm_struct
*mm
, unsigned long pfn
)
1553 #ifdef CONFIG_FLATMEM
1554 BUG_ON(mem_map
); /* should only be used early */
1556 make_lowmem_page_readonly(__va(PFN_PHYS(pfn
)));
1557 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
, pfn
);
1560 /* Used for pmd and pud */
1561 static void __init
xen_alloc_pmd_init(struct mm_struct
*mm
, unsigned long pfn
)
1563 #ifdef CONFIG_FLATMEM
1564 BUG_ON(mem_map
); /* should only be used early */
1566 make_lowmem_page_readonly(__va(PFN_PHYS(pfn
)));
1569 /* Early release_pte assumes that all pts are pinned, since there's
1570 only init_mm and anything attached to that is pinned. */
1571 static void __init
xen_release_pte_init(unsigned long pfn
)
1573 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, pfn
);
1574 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
1577 static void __init
xen_release_pmd_init(unsigned long pfn
)
1579 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
1582 static inline void __pin_pagetable_pfn(unsigned cmd
, unsigned long pfn
)
1584 struct multicall_space mcs
;
1585 struct mmuext_op
*op
;
1587 mcs
= __xen_mc_entry(sizeof(*op
));
1590 op
->arg1
.mfn
= pfn_to_mfn(pfn
);
1592 MULTI_mmuext_op(mcs
.mc
, mcs
.args
, 1, NULL
, DOMID_SELF
);
1595 static inline void __set_pfn_prot(unsigned long pfn
, pgprot_t prot
)
1597 struct multicall_space mcs
;
1598 unsigned long addr
= (unsigned long)__va(pfn
<< PAGE_SHIFT
);
1600 mcs
= __xen_mc_entry(0);
1601 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)addr
,
1602 pfn_pte(pfn
, prot
), 0);
1605 /* This needs to make sure the new pte page is pinned iff its being
1606 attached to a pinned pagetable. */
1607 static inline void xen_alloc_ptpage(struct mm_struct
*mm
, unsigned long pfn
,
1610 bool pinned
= PagePinned(virt_to_page(mm
->pgd
));
1612 trace_xen_mmu_alloc_ptpage(mm
, pfn
, level
, pinned
);
1615 struct page
*page
= pfn_to_page(pfn
);
1617 SetPagePinned(page
);
1619 if (!PageHighMem(page
)) {
1622 __set_pfn_prot(pfn
, PAGE_KERNEL_RO
);
1624 if (level
== PT_PTE
&& USE_SPLIT_PTE_PTLOCKS
)
1625 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
, pfn
);
1627 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1629 /* make sure there are no stray mappings of
1631 kmap_flush_unused();
1636 static void xen_alloc_pte(struct mm_struct
*mm
, unsigned long pfn
)
1638 xen_alloc_ptpage(mm
, pfn
, PT_PTE
);
1641 static void xen_alloc_pmd(struct mm_struct
*mm
, unsigned long pfn
)
1643 xen_alloc_ptpage(mm
, pfn
, PT_PMD
);
1646 /* This should never happen until we're OK to use struct page */
1647 static inline void xen_release_ptpage(unsigned long pfn
, unsigned level
)
1649 struct page
*page
= pfn_to_page(pfn
);
1650 bool pinned
= PagePinned(page
);
1652 trace_xen_mmu_release_ptpage(pfn
, level
, pinned
);
1655 if (!PageHighMem(page
)) {
1658 if (level
== PT_PTE
&& USE_SPLIT_PTE_PTLOCKS
)
1659 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, pfn
);
1661 __set_pfn_prot(pfn
, PAGE_KERNEL
);
1663 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1665 ClearPagePinned(page
);
1669 static void xen_release_pte(unsigned long pfn
)
1671 xen_release_ptpage(pfn
, PT_PTE
);
1674 static void xen_release_pmd(unsigned long pfn
)
1676 xen_release_ptpage(pfn
, PT_PMD
);
1679 #ifdef CONFIG_X86_64
1680 static void xen_alloc_pud(struct mm_struct
*mm
, unsigned long pfn
)
1682 xen_alloc_ptpage(mm
, pfn
, PT_PUD
);
1685 static void xen_release_pud(unsigned long pfn
)
1687 xen_release_ptpage(pfn
, PT_PUD
);
1691 void __init
xen_reserve_top(void)
1693 #ifdef CONFIG_X86_32
1694 unsigned long top
= HYPERVISOR_VIRT_START
;
1695 struct xen_platform_parameters pp
;
1697 if (HYPERVISOR_xen_version(XENVER_platform_parameters
, &pp
) == 0)
1698 top
= pp
.virt_start
;
1700 reserve_top_address(-top
);
1701 #endif /* CONFIG_X86_32 */
1705 * Like __va(), but returns address in the kernel mapping (which is
1706 * all we have until the physical memory mapping has been set up.
1708 static void * __init
__ka(phys_addr_t paddr
)
1710 #ifdef CONFIG_X86_64
1711 return (void *)(paddr
+ __START_KERNEL_map
);
1717 /* Convert a machine address to physical address */
1718 static unsigned long __init
m2p(phys_addr_t maddr
)
1722 maddr
&= XEN_PTE_MFN_MASK
;
1723 paddr
= mfn_to_pfn(maddr
>> PAGE_SHIFT
) << PAGE_SHIFT
;
1728 /* Convert a machine address to kernel virtual */
1729 static void * __init
m2v(phys_addr_t maddr
)
1731 return __ka(m2p(maddr
));
1734 /* Set the page permissions on an identity-mapped pages */
1735 static void __init
set_page_prot_flags(void *addr
, pgprot_t prot
,
1736 unsigned long flags
)
1738 unsigned long pfn
= __pa(addr
) >> PAGE_SHIFT
;
1739 pte_t pte
= pfn_pte(pfn
, prot
);
1741 if (HYPERVISOR_update_va_mapping((unsigned long)addr
, pte
, flags
))
1744 static void __init
set_page_prot(void *addr
, pgprot_t prot
)
1746 return set_page_prot_flags(addr
, prot
, UVMF_NONE
);
1748 #ifdef CONFIG_X86_32
1749 static void __init
xen_map_identity_early(pmd_t
*pmd
, unsigned long max_pfn
)
1751 unsigned pmdidx
, pteidx
;
1755 level1_ident_pgt
= extend_brk(sizeof(pte_t
) * LEVEL1_IDENT_ENTRIES
,
1760 for (pmdidx
= 0; pmdidx
< PTRS_PER_PMD
&& pfn
< max_pfn
; pmdidx
++) {
1763 /* Reuse or allocate a page of ptes */
1764 if (pmd_present(pmd
[pmdidx
]))
1765 pte_page
= m2v(pmd
[pmdidx
].pmd
);
1767 /* Check for free pte pages */
1768 if (ident_pte
== LEVEL1_IDENT_ENTRIES
)
1771 pte_page
= &level1_ident_pgt
[ident_pte
];
1772 ident_pte
+= PTRS_PER_PTE
;
1774 pmd
[pmdidx
] = __pmd(__pa(pte_page
) | _PAGE_TABLE
);
1777 /* Install mappings */
1778 for (pteidx
= 0; pteidx
< PTRS_PER_PTE
; pteidx
++, pfn
++) {
1781 if (pfn
> max_pfn_mapped
)
1782 max_pfn_mapped
= pfn
;
1784 if (!pte_none(pte_page
[pteidx
]))
1787 pte
= pfn_pte(pfn
, PAGE_KERNEL_EXEC
);
1788 pte_page
[pteidx
] = pte
;
1792 for (pteidx
= 0; pteidx
< ident_pte
; pteidx
+= PTRS_PER_PTE
)
1793 set_page_prot(&level1_ident_pgt
[pteidx
], PAGE_KERNEL_RO
);
1795 set_page_prot(pmd
, PAGE_KERNEL_RO
);
1798 void __init
xen_setup_machphys_mapping(void)
1800 struct xen_machphys_mapping mapping
;
1802 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping
, &mapping
) == 0) {
1803 machine_to_phys_mapping
= (unsigned long *)mapping
.v_start
;
1804 machine_to_phys_nr
= mapping
.max_mfn
+ 1;
1806 machine_to_phys_nr
= MACH2PHYS_NR_ENTRIES
;
1808 #ifdef CONFIG_X86_32
1809 WARN_ON((machine_to_phys_mapping
+ (machine_to_phys_nr
- 1))
1810 < machine_to_phys_mapping
);
1814 #ifdef CONFIG_X86_64
1815 static void __init
convert_pfn_mfn(void *v
)
1820 /* All levels are converted the same way, so just treat them
1822 for (i
= 0; i
< PTRS_PER_PTE
; i
++)
1823 pte
[i
] = xen_make_pte(pte
[i
].pte
);
1825 static void __init
check_pt_base(unsigned long *pt_base
, unsigned long *pt_end
,
1828 if (*pt_base
== PFN_DOWN(__pa(addr
))) {
1829 set_page_prot_flags((void *)addr
, PAGE_KERNEL
, UVMF_INVLPG
);
1830 clear_page((void *)addr
);
1833 if (*pt_end
== PFN_DOWN(__pa(addr
))) {
1834 set_page_prot_flags((void *)addr
, PAGE_KERNEL
, UVMF_INVLPG
);
1835 clear_page((void *)addr
);
1840 * Set up the initial kernel pagetable.
1842 * We can construct this by grafting the Xen provided pagetable into
1843 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1844 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1845 * kernel has a physical mapping to start with - but that's enough to
1846 * get __va working. We need to fill in the rest of the physical
1847 * mapping once some sort of allocator has been set up.
1849 void __init
xen_setup_kernel_pagetable(pgd_t
*pgd
, unsigned long max_pfn
)
1853 unsigned long addr
[3];
1854 unsigned long pt_base
, pt_end
;
1857 /* max_pfn_mapped is the last pfn mapped in the initial memory
1858 * mappings. Considering that on Xen after the kernel mappings we
1859 * have the mappings of some pages that don't exist in pfn space, we
1860 * set max_pfn_mapped to the last real pfn mapped. */
1861 if (xen_start_info
->mfn_list
< __START_KERNEL_map
)
1862 max_pfn_mapped
= xen_start_info
->first_p2m_pfn
;
1864 max_pfn_mapped
= PFN_DOWN(__pa(xen_start_info
->mfn_list
));
1866 pt_base
= PFN_DOWN(__pa(xen_start_info
->pt_base
));
1867 pt_end
= pt_base
+ xen_start_info
->nr_pt_frames
;
1869 /* Zap identity mapping */
1870 init_top_pgt
[0] = __pgd(0);
1872 /* Pre-constructed entries are in pfn, so convert to mfn */
1873 /* L4[272] -> level3_ident_pgt */
1874 /* L4[511] -> level3_kernel_pgt */
1875 convert_pfn_mfn(init_top_pgt
);
1877 /* L3_i[0] -> level2_ident_pgt */
1878 convert_pfn_mfn(level3_ident_pgt
);
1879 /* L3_k[510] -> level2_kernel_pgt */
1880 /* L3_k[511] -> level2_fixmap_pgt */
1881 convert_pfn_mfn(level3_kernel_pgt
);
1883 /* L3_k[511][506] -> level1_fixmap_pgt */
1884 convert_pfn_mfn(level2_fixmap_pgt
);
1886 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1887 l3
= m2v(pgd
[pgd_index(__START_KERNEL_map
)].pgd
);
1888 l2
= m2v(l3
[pud_index(__START_KERNEL_map
)].pud
);
1890 addr
[0] = (unsigned long)pgd
;
1891 addr
[1] = (unsigned long)l3
;
1892 addr
[2] = (unsigned long)l2
;
1893 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1894 * Both L4[272][0] and L4[511][510] have entries that point to the same
1895 * L2 (PMD) tables. Meaning that if you modify it in __va space
1896 * it will be also modified in the __ka space! (But if you just
1897 * modify the PMD table to point to other PTE's or none, then you
1898 * are OK - which is what cleanup_highmap does) */
1899 copy_page(level2_ident_pgt
, l2
);
1900 /* Graft it onto L4[511][510] */
1901 copy_page(level2_kernel_pgt
, l2
);
1904 * Zap execute permission from the ident map. Due to the sharing of
1905 * L1 entries we need to do this in the L2.
1907 if (__supported_pte_mask
& _PAGE_NX
) {
1908 for (i
= 0; i
< PTRS_PER_PMD
; ++i
) {
1909 if (pmd_none(level2_ident_pgt
[i
]))
1911 level2_ident_pgt
[i
] = pmd_set_flags(level2_ident_pgt
[i
], _PAGE_NX
);
1915 /* Copy the initial P->M table mappings if necessary. */
1916 i
= pgd_index(xen_start_info
->mfn_list
);
1917 if (i
&& i
< pgd_index(__START_KERNEL_map
))
1918 init_top_pgt
[i
] = ((pgd_t
*)xen_start_info
->pt_base
)[i
];
1920 /* Make pagetable pieces RO */
1921 set_page_prot(init_top_pgt
, PAGE_KERNEL_RO
);
1922 set_page_prot(level3_ident_pgt
, PAGE_KERNEL_RO
);
1923 set_page_prot(level3_kernel_pgt
, PAGE_KERNEL_RO
);
1924 set_page_prot(level3_user_vsyscall
, PAGE_KERNEL_RO
);
1925 set_page_prot(level2_ident_pgt
, PAGE_KERNEL_RO
);
1926 set_page_prot(level2_kernel_pgt
, PAGE_KERNEL_RO
);
1927 set_page_prot(level2_fixmap_pgt
, PAGE_KERNEL_RO
);
1928 set_page_prot(level1_fixmap_pgt
, PAGE_KERNEL_RO
);
1930 /* Pin down new L4 */
1931 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE
,
1932 PFN_DOWN(__pa_symbol(init_top_pgt
)));
1934 /* Unpin Xen-provided one */
1935 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
1938 * At this stage there can be no user pgd, and no page structure to
1939 * attach it to, so make sure we just set kernel pgd.
1942 __xen_write_cr3(true, __pa(init_top_pgt
));
1943 xen_mc_issue(PARAVIRT_LAZY_CPU
);
1945 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1946 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1947 * the initial domain. For guests using the toolstack, they are in:
1948 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1949 * rip out the [L4] (pgd), but for guests we shave off three pages.
1951 for (i
= 0; i
< ARRAY_SIZE(addr
); i
++)
1952 check_pt_base(&pt_base
, &pt_end
, addr
[i
]);
1954 /* Our (by three pages) smaller Xen pagetable that we are using */
1955 xen_pt_base
= PFN_PHYS(pt_base
);
1956 xen_pt_size
= (pt_end
- pt_base
) * PAGE_SIZE
;
1957 memblock_reserve(xen_pt_base
, xen_pt_size
);
1959 /* Revector the xen_start_info */
1960 xen_start_info
= (struct start_info
*)__va(__pa(xen_start_info
));
1964 * Read a value from a physical address.
1966 static unsigned long __init
xen_read_phys_ulong(phys_addr_t addr
)
1968 unsigned long *vaddr
;
1971 vaddr
= early_memremap_ro(addr
, sizeof(val
));
1973 early_memunmap(vaddr
, sizeof(val
));
1978 * Translate a virtual address to a physical one without relying on mapped
1979 * page tables. Don't rely on big pages being aligned in (guest) physical
1982 static phys_addr_t __init
xen_early_virt_to_phys(unsigned long vaddr
)
1991 pgd
= native_make_pgd(xen_read_phys_ulong(pa
+ pgd_index(vaddr
) *
1993 if (!pgd_present(pgd
))
1996 pa
= pgd_val(pgd
) & PTE_PFN_MASK
;
1997 pud
= native_make_pud(xen_read_phys_ulong(pa
+ pud_index(vaddr
) *
1999 if (!pud_present(pud
))
2001 pa
= pud_val(pud
) & PTE_PFN_MASK
;
2003 return pa
+ (vaddr
& ~PUD_MASK
);
2005 pmd
= native_make_pmd(xen_read_phys_ulong(pa
+ pmd_index(vaddr
) *
2007 if (!pmd_present(pmd
))
2009 pa
= pmd_val(pmd
) & PTE_PFN_MASK
;
2011 return pa
+ (vaddr
& ~PMD_MASK
);
2013 pte
= native_make_pte(xen_read_phys_ulong(pa
+ pte_index(vaddr
) *
2015 if (!pte_present(pte
))
2017 pa
= pte_pfn(pte
) << PAGE_SHIFT
;
2019 return pa
| (vaddr
& ~PAGE_MASK
);
2023 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2026 void __init
xen_relocate_p2m(void)
2028 phys_addr_t size
, new_area
, pt_phys
, pmd_phys
, pud_phys
;
2029 unsigned long p2m_pfn
, p2m_pfn_end
, n_frames
, pfn
, pfn_end
;
2030 int n_pte
, n_pt
, n_pmd
, n_pud
, idx_pte
, idx_pt
, idx_pmd
, idx_pud
;
2035 unsigned long *new_p2m
;
2038 size
= PAGE_ALIGN(xen_start_info
->nr_pages
* sizeof(unsigned long));
2039 n_pte
= roundup(size
, PAGE_SIZE
) >> PAGE_SHIFT
;
2040 n_pt
= roundup(size
, PMD_SIZE
) >> PMD_SHIFT
;
2041 n_pmd
= roundup(size
, PUD_SIZE
) >> PUD_SHIFT
;
2042 n_pud
= roundup(size
, P4D_SIZE
) >> P4D_SHIFT
;
2043 n_frames
= n_pte
+ n_pt
+ n_pmd
+ n_pud
;
2045 new_area
= xen_find_free_area(PFN_PHYS(n_frames
));
2047 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2052 * Setup the page tables for addressing the new p2m list.
2053 * We have asked the hypervisor to map the p2m list at the user address
2054 * PUD_SIZE. It may have done so, or it may have used a kernel space
2055 * address depending on the Xen version.
2056 * To avoid any possible virtual address collision, just use
2057 * 2 * PUD_SIZE for the new area.
2059 pud_phys
= new_area
;
2060 pmd_phys
= pud_phys
+ PFN_PHYS(n_pud
);
2061 pt_phys
= pmd_phys
+ PFN_PHYS(n_pmd
);
2062 p2m_pfn
= PFN_DOWN(pt_phys
) + n_pt
;
2064 pgd
= __va(read_cr3_pa());
2065 new_p2m
= (unsigned long *)(2 * PGDIR_SIZE
);
2067 for (idx_pud
= 0; idx_pud
< n_pud
; idx_pud
++) {
2068 pud
= early_memremap(pud_phys
, PAGE_SIZE
);
2070 for (idx_pmd
= 0; idx_pmd
< min(n_pmd
, PTRS_PER_PUD
);
2072 pmd
= early_memremap(pmd_phys
, PAGE_SIZE
);
2074 for (idx_pt
= 0; idx_pt
< min(n_pt
, PTRS_PER_PMD
);
2076 pt
= early_memremap(pt_phys
, PAGE_SIZE
);
2079 idx_pte
< min(n_pte
, PTRS_PER_PTE
);
2081 set_pte(pt
+ idx_pte
,
2082 pfn_pte(p2m_pfn
, PAGE_KERNEL
));
2085 n_pte
-= PTRS_PER_PTE
;
2086 early_memunmap(pt
, PAGE_SIZE
);
2087 make_lowmem_page_readonly(__va(pt_phys
));
2088 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
,
2090 set_pmd(pmd
+ idx_pt
,
2091 __pmd(_PAGE_TABLE
| pt_phys
));
2092 pt_phys
+= PAGE_SIZE
;
2094 n_pt
-= PTRS_PER_PMD
;
2095 early_memunmap(pmd
, PAGE_SIZE
);
2096 make_lowmem_page_readonly(__va(pmd_phys
));
2097 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE
,
2098 PFN_DOWN(pmd_phys
));
2099 set_pud(pud
+ idx_pmd
, __pud(_PAGE_TABLE
| pmd_phys
));
2100 pmd_phys
+= PAGE_SIZE
;
2102 n_pmd
-= PTRS_PER_PUD
;
2103 early_memunmap(pud
, PAGE_SIZE
);
2104 make_lowmem_page_readonly(__va(pud_phys
));
2105 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE
, PFN_DOWN(pud_phys
));
2106 set_pgd(pgd
+ 2 + idx_pud
, __pgd(_PAGE_TABLE
| pud_phys
));
2107 pud_phys
+= PAGE_SIZE
;
2110 /* Now copy the old p2m info to the new area. */
2111 memcpy(new_p2m
, xen_p2m_addr
, size
);
2112 xen_p2m_addr
= new_p2m
;
2114 /* Release the old p2m list and set new list info. */
2115 p2m_pfn
= PFN_DOWN(xen_early_virt_to_phys(xen_start_info
->mfn_list
));
2117 p2m_pfn_end
= p2m_pfn
+ PFN_DOWN(size
);
2119 if (xen_start_info
->mfn_list
< __START_KERNEL_map
) {
2120 pfn
= xen_start_info
->first_p2m_pfn
;
2121 pfn_end
= xen_start_info
->first_p2m_pfn
+
2122 xen_start_info
->nr_p2m_frames
;
2123 set_pgd(pgd
+ 1, __pgd(0));
2126 pfn_end
= p2m_pfn_end
;
2129 memblock_free(PFN_PHYS(pfn
), PAGE_SIZE
* (pfn_end
- pfn
));
2130 while (pfn
< pfn_end
) {
2131 if (pfn
== p2m_pfn
) {
2135 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
2139 xen_start_info
->mfn_list
= (unsigned long)xen_p2m_addr
;
2140 xen_start_info
->first_p2m_pfn
= PFN_DOWN(new_area
);
2141 xen_start_info
->nr_p2m_frames
= n_frames
;
2144 #else /* !CONFIG_X86_64 */
2145 static RESERVE_BRK_ARRAY(pmd_t
, initial_kernel_pmd
, PTRS_PER_PMD
);
2146 static RESERVE_BRK_ARRAY(pmd_t
, swapper_kernel_pmd
, PTRS_PER_PMD
);
2148 static void __init
xen_write_cr3_init(unsigned long cr3
)
2150 unsigned long pfn
= PFN_DOWN(__pa(swapper_pg_dir
));
2152 BUG_ON(read_cr3_pa() != __pa(initial_page_table
));
2153 BUG_ON(cr3
!= __pa(swapper_pg_dir
));
2156 * We are switching to swapper_pg_dir for the first time (from
2157 * initial_page_table) and therefore need to mark that page
2158 * read-only and then pin it.
2160 * Xen disallows sharing of kernel PMDs for PAE
2161 * guests. Therefore we must copy the kernel PMD from
2162 * initial_page_table into a new kernel PMD to be used in
2165 swapper_kernel_pmd
=
2166 extend_brk(sizeof(pmd_t
) * PTRS_PER_PMD
, PAGE_SIZE
);
2167 copy_page(swapper_kernel_pmd
, initial_kernel_pmd
);
2168 swapper_pg_dir
[KERNEL_PGD_BOUNDARY
] =
2169 __pgd(__pa(swapper_kernel_pmd
) | _PAGE_PRESENT
);
2170 set_page_prot(swapper_kernel_pmd
, PAGE_KERNEL_RO
);
2172 set_page_prot(swapper_pg_dir
, PAGE_KERNEL_RO
);
2174 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE
, pfn
);
2176 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
,
2177 PFN_DOWN(__pa(initial_page_table
)));
2178 set_page_prot(initial_page_table
, PAGE_KERNEL
);
2179 set_page_prot(initial_kernel_pmd
, PAGE_KERNEL
);
2181 pv_mmu_ops
.write_cr3
= &xen_write_cr3
;
2185 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2186 * not the first page table in the page table pool.
2187 * Iterate through the initial page tables to find the real page table base.
2189 static phys_addr_t __init
xen_find_pt_base(pmd_t
*pmd
)
2191 phys_addr_t pt_base
, paddr
;
2194 pt_base
= min(__pa(xen_start_info
->pt_base
), __pa(pmd
));
2196 for (pmdidx
= 0; pmdidx
< PTRS_PER_PMD
; pmdidx
++)
2197 if (pmd_present(pmd
[pmdidx
]) && !pmd_large(pmd
[pmdidx
])) {
2198 paddr
= m2p(pmd
[pmdidx
].pmd
);
2199 pt_base
= min(pt_base
, paddr
);
2205 void __init
xen_setup_kernel_pagetable(pgd_t
*pgd
, unsigned long max_pfn
)
2209 kernel_pmd
= m2v(pgd
[KERNEL_PGD_BOUNDARY
].pgd
);
2211 xen_pt_base
= xen_find_pt_base(kernel_pmd
);
2212 xen_pt_size
= xen_start_info
->nr_pt_frames
* PAGE_SIZE
;
2214 initial_kernel_pmd
=
2215 extend_brk(sizeof(pmd_t
) * PTRS_PER_PMD
, PAGE_SIZE
);
2217 max_pfn_mapped
= PFN_DOWN(xen_pt_base
+ xen_pt_size
+ 512 * 1024);
2219 copy_page(initial_kernel_pmd
, kernel_pmd
);
2221 xen_map_identity_early(initial_kernel_pmd
, max_pfn
);
2223 copy_page(initial_page_table
, pgd
);
2224 initial_page_table
[KERNEL_PGD_BOUNDARY
] =
2225 __pgd(__pa(initial_kernel_pmd
) | _PAGE_PRESENT
);
2227 set_page_prot(initial_kernel_pmd
, PAGE_KERNEL_RO
);
2228 set_page_prot(initial_page_table
, PAGE_KERNEL_RO
);
2229 set_page_prot(empty_zero_page
, PAGE_KERNEL_RO
);
2231 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
2233 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE
,
2234 PFN_DOWN(__pa(initial_page_table
)));
2235 xen_write_cr3(__pa(initial_page_table
));
2237 memblock_reserve(xen_pt_base
, xen_pt_size
);
2239 #endif /* CONFIG_X86_64 */
2241 void __init
xen_reserve_special_pages(void)
2245 memblock_reserve(__pa(xen_start_info
), PAGE_SIZE
);
2246 if (xen_start_info
->store_mfn
) {
2247 paddr
= PFN_PHYS(mfn_to_pfn(xen_start_info
->store_mfn
));
2248 memblock_reserve(paddr
, PAGE_SIZE
);
2250 if (!xen_initial_domain()) {
2251 paddr
= PFN_PHYS(mfn_to_pfn(xen_start_info
->console
.domU
.mfn
));
2252 memblock_reserve(paddr
, PAGE_SIZE
);
2256 void __init
xen_pt_check_e820(void)
2258 if (xen_is_e820_reserved(xen_pt_base
, xen_pt_size
)) {
2259 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2264 static unsigned char dummy_mapping
[PAGE_SIZE
] __page_aligned_bss
;
2266 static void xen_set_fixmap(unsigned idx
, phys_addr_t phys
, pgprot_t prot
)
2270 phys
>>= PAGE_SHIFT
;
2273 case FIX_BTMAP_END
... FIX_BTMAP_BEGIN
:
2274 #ifdef CONFIG_X86_32
2276 # ifdef CONFIG_HIGHMEM
2277 case FIX_KMAP_BEGIN
... FIX_KMAP_END
:
2279 #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2282 case FIX_TEXT_POKE0
:
2283 case FIX_TEXT_POKE1
:
2284 /* All local page mappings */
2285 pte
= pfn_pte(phys
, prot
);
2288 #ifdef CONFIG_X86_LOCAL_APIC
2289 case FIX_APIC_BASE
: /* maps dummy local APIC */
2290 pte
= pfn_pte(PFN_DOWN(__pa(dummy_mapping
)), PAGE_KERNEL
);
2294 #ifdef CONFIG_X86_IO_APIC
2295 case FIX_IO_APIC_BASE_0
... FIX_IO_APIC_BASE_END
:
2297 * We just don't map the IO APIC - all access is via
2298 * hypercalls. Keep the address in the pte for reference.
2300 pte
= pfn_pte(PFN_DOWN(__pa(dummy_mapping
)), PAGE_KERNEL
);
2304 case FIX_PARAVIRT_BOOTMAP
:
2305 /* This is an MFN, but it isn't an IO mapping from the
2307 pte
= mfn_pte(phys
, prot
);
2311 /* By default, set_fixmap is used for hardware mappings */
2312 pte
= mfn_pte(phys
, prot
);
2316 __native_set_fixmap(idx
, pte
);
2318 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2319 /* Replicate changes to map the vsyscall page into the user
2320 pagetable vsyscall mapping. */
2321 if (idx
== VSYSCALL_PAGE
) {
2322 unsigned long vaddr
= __fix_to_virt(idx
);
2323 set_pte_vaddr_pud(level3_user_vsyscall
, vaddr
, pte
);
2328 static void __init
xen_post_allocator_init(void)
2330 pv_mmu_ops
.set_pte
= xen_set_pte
;
2331 pv_mmu_ops
.set_pmd
= xen_set_pmd
;
2332 pv_mmu_ops
.set_pud
= xen_set_pud
;
2333 #ifdef CONFIG_X86_64
2334 pv_mmu_ops
.set_p4d
= xen_set_p4d
;
2337 /* This will work as long as patching hasn't happened yet
2338 (which it hasn't) */
2339 pv_mmu_ops
.alloc_pte
= xen_alloc_pte
;
2340 pv_mmu_ops
.alloc_pmd
= xen_alloc_pmd
;
2341 pv_mmu_ops
.release_pte
= xen_release_pte
;
2342 pv_mmu_ops
.release_pmd
= xen_release_pmd
;
2343 #ifdef CONFIG_X86_64
2344 pv_mmu_ops
.alloc_pud
= xen_alloc_pud
;
2345 pv_mmu_ops
.release_pud
= xen_release_pud
;
2347 pv_mmu_ops
.make_pte
= PV_CALLEE_SAVE(xen_make_pte
);
2349 #ifdef CONFIG_X86_64
2350 pv_mmu_ops
.write_cr3
= &xen_write_cr3
;
2351 SetPagePinned(virt_to_page(level3_user_vsyscall
));
2353 xen_mark_init_mm_pinned();
2356 static void xen_leave_lazy_mmu(void)
2360 paravirt_leave_lazy_mmu();
2364 static const struct pv_mmu_ops xen_mmu_ops __initconst
= {
2365 .read_cr2
= xen_read_cr2
,
2366 .write_cr2
= xen_write_cr2
,
2368 .read_cr3
= xen_read_cr3
,
2369 .write_cr3
= xen_write_cr3_init
,
2371 .flush_tlb_user
= xen_flush_tlb
,
2372 .flush_tlb_kernel
= xen_flush_tlb
,
2373 .flush_tlb_single
= xen_flush_tlb_single
,
2374 .flush_tlb_others
= xen_flush_tlb_others
,
2376 .pgd_alloc
= xen_pgd_alloc
,
2377 .pgd_free
= xen_pgd_free
,
2379 .alloc_pte
= xen_alloc_pte_init
,
2380 .release_pte
= xen_release_pte_init
,
2381 .alloc_pmd
= xen_alloc_pmd_init
,
2382 .release_pmd
= xen_release_pmd_init
,
2384 .set_pte
= xen_set_pte_init
,
2385 .set_pte_at
= xen_set_pte_at
,
2386 .set_pmd
= xen_set_pmd_hyper
,
2388 .ptep_modify_prot_start
= __ptep_modify_prot_start
,
2389 .ptep_modify_prot_commit
= __ptep_modify_prot_commit
,
2391 .pte_val
= PV_CALLEE_SAVE(xen_pte_val
),
2392 .pgd_val
= PV_CALLEE_SAVE(xen_pgd_val
),
2394 .make_pte
= PV_CALLEE_SAVE(xen_make_pte_init
),
2395 .make_pgd
= PV_CALLEE_SAVE(xen_make_pgd
),
2397 #ifdef CONFIG_X86_PAE
2398 .set_pte_atomic
= xen_set_pte_atomic
,
2399 .pte_clear
= xen_pte_clear
,
2400 .pmd_clear
= xen_pmd_clear
,
2401 #endif /* CONFIG_X86_PAE */
2402 .set_pud
= xen_set_pud_hyper
,
2404 .make_pmd
= PV_CALLEE_SAVE(xen_make_pmd
),
2405 .pmd_val
= PV_CALLEE_SAVE(xen_pmd_val
),
2407 #ifdef CONFIG_X86_64
2408 .pud_val
= PV_CALLEE_SAVE(xen_pud_val
),
2409 .make_pud
= PV_CALLEE_SAVE(xen_make_pud
),
2410 .set_p4d
= xen_set_p4d_hyper
,
2412 .alloc_pud
= xen_alloc_pmd_init
,
2413 .release_pud
= xen_release_pmd_init
,
2414 #endif /* CONFIG_X86_64 */
2416 .activate_mm
= xen_activate_mm
,
2417 .dup_mmap
= xen_dup_mmap
,
2418 .exit_mmap
= xen_exit_mmap
,
2421 .enter
= paravirt_enter_lazy_mmu
,
2422 .leave
= xen_leave_lazy_mmu
,
2423 .flush
= paravirt_flush_lazy_mmu
,
2426 .set_fixmap
= xen_set_fixmap
,
2429 void __init
xen_init_mmu_ops(void)
2431 x86_init
.paging
.pagetable_init
= xen_pagetable_init
;
2433 pv_mmu_ops
= xen_mmu_ops
;
2435 memset(dummy_mapping
, 0xff, PAGE_SIZE
);
2438 /* Protected by xen_reservation_lock. */
2439 #define MAX_CONTIG_ORDER 9 /* 2MB */
2440 static unsigned long discontig_frames
[1<<MAX_CONTIG_ORDER
];
2442 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2443 static void xen_zap_pfn_range(unsigned long vaddr
, unsigned int order
,
2444 unsigned long *in_frames
,
2445 unsigned long *out_frames
)
2448 struct multicall_space mcs
;
2451 for (i
= 0; i
< (1UL<<order
); i
++, vaddr
+= PAGE_SIZE
) {
2452 mcs
= __xen_mc_entry(0);
2455 in_frames
[i
] = virt_to_mfn(vaddr
);
2457 MULTI_update_va_mapping(mcs
.mc
, vaddr
, VOID_PTE
, 0);
2458 __set_phys_to_machine(virt_to_pfn(vaddr
), INVALID_P2M_ENTRY
);
2461 out_frames
[i
] = virt_to_pfn(vaddr
);
2467 * Update the pfn-to-mfn mappings for a virtual address range, either to
2468 * point to an array of mfns, or contiguously from a single starting
2471 static void xen_remap_exchanged_ptes(unsigned long vaddr
, int order
,
2472 unsigned long *mfns
,
2473 unsigned long first_mfn
)
2480 limit
= 1u << order
;
2481 for (i
= 0; i
< limit
; i
++, vaddr
+= PAGE_SIZE
) {
2482 struct multicall_space mcs
;
2485 mcs
= __xen_mc_entry(0);
2489 mfn
= first_mfn
+ i
;
2491 if (i
< (limit
- 1))
2495 flags
= UVMF_INVLPG
| UVMF_ALL
;
2497 flags
= UVMF_TLB_FLUSH
| UVMF_ALL
;
2500 MULTI_update_va_mapping(mcs
.mc
, vaddr
,
2501 mfn_pte(mfn
, PAGE_KERNEL
), flags
);
2503 set_phys_to_machine(virt_to_pfn(vaddr
), mfn
);
2510 * Perform the hypercall to exchange a region of our pfns to point to
2511 * memory with the required contiguous alignment. Takes the pfns as
2512 * input, and populates mfns as output.
2514 * Returns a success code indicating whether the hypervisor was able to
2515 * satisfy the request or not.
2517 static int xen_exchange_memory(unsigned long extents_in
, unsigned int order_in
,
2518 unsigned long *pfns_in
,
2519 unsigned long extents_out
,
2520 unsigned int order_out
,
2521 unsigned long *mfns_out
,
2522 unsigned int address_bits
)
2527 struct xen_memory_exchange exchange
= {
2529 .nr_extents
= extents_in
,
2530 .extent_order
= order_in
,
2531 .extent_start
= pfns_in
,
2535 .nr_extents
= extents_out
,
2536 .extent_order
= order_out
,
2537 .extent_start
= mfns_out
,
2538 .address_bits
= address_bits
,
2543 BUG_ON(extents_in
<< order_in
!= extents_out
<< order_out
);
2545 rc
= HYPERVISOR_memory_op(XENMEM_exchange
, &exchange
);
2546 success
= (exchange
.nr_exchanged
== extents_in
);
2548 BUG_ON(!success
&& ((exchange
.nr_exchanged
!= 0) || (rc
== 0)));
2549 BUG_ON(success
&& (rc
!= 0));
2554 int xen_create_contiguous_region(phys_addr_t pstart
, unsigned int order
,
2555 unsigned int address_bits
,
2556 dma_addr_t
*dma_handle
)
2558 unsigned long *in_frames
= discontig_frames
, out_frame
;
2559 unsigned long flags
;
2561 unsigned long vstart
= (unsigned long)phys_to_virt(pstart
);
2564 * Currently an auto-translated guest will not perform I/O, nor will
2565 * it require PAE page directories below 4GB. Therefore any calls to
2566 * this function are redundant and can be ignored.
2569 if (unlikely(order
> MAX_CONTIG_ORDER
))
2572 memset((void *) vstart
, 0, PAGE_SIZE
<< order
);
2574 spin_lock_irqsave(&xen_reservation_lock
, flags
);
2576 /* 1. Zap current PTEs, remembering MFNs. */
2577 xen_zap_pfn_range(vstart
, order
, in_frames
, NULL
);
2579 /* 2. Get a new contiguous memory extent. */
2580 out_frame
= virt_to_pfn(vstart
);
2581 success
= xen_exchange_memory(1UL << order
, 0, in_frames
,
2582 1, order
, &out_frame
,
2585 /* 3. Map the new extent in place of old pages. */
2587 xen_remap_exchanged_ptes(vstart
, order
, NULL
, out_frame
);
2589 xen_remap_exchanged_ptes(vstart
, order
, in_frames
, 0);
2591 spin_unlock_irqrestore(&xen_reservation_lock
, flags
);
2593 *dma_handle
= virt_to_machine(vstart
).maddr
;
2594 return success
? 0 : -ENOMEM
;
2596 EXPORT_SYMBOL_GPL(xen_create_contiguous_region
);
2598 void xen_destroy_contiguous_region(phys_addr_t pstart
, unsigned int order
)
2600 unsigned long *out_frames
= discontig_frames
, in_frame
;
2601 unsigned long flags
;
2603 unsigned long vstart
;
2605 if (unlikely(order
> MAX_CONTIG_ORDER
))
2608 vstart
= (unsigned long)phys_to_virt(pstart
);
2609 memset((void *) vstart
, 0, PAGE_SIZE
<< order
);
2611 spin_lock_irqsave(&xen_reservation_lock
, flags
);
2613 /* 1. Find start MFN of contiguous extent. */
2614 in_frame
= virt_to_mfn(vstart
);
2616 /* 2. Zap current PTEs. */
2617 xen_zap_pfn_range(vstart
, order
, NULL
, out_frames
);
2619 /* 3. Do the exchange for non-contiguous MFNs. */
2620 success
= xen_exchange_memory(1, order
, &in_frame
, 1UL << order
,
2623 /* 4. Map new pages in place of old pages. */
2625 xen_remap_exchanged_ptes(vstart
, order
, out_frames
, 0);
2627 xen_remap_exchanged_ptes(vstart
, order
, NULL
, in_frame
);
2629 spin_unlock_irqrestore(&xen_reservation_lock
, flags
);
2631 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region
);
2633 #ifdef CONFIG_KEXEC_CORE
2634 phys_addr_t
paddr_vmcoreinfo_note(void)
2636 if (xen_pv_domain())
2637 return virt_to_machine(vmcoreinfo_note
).maddr
;
2639 return __pa(vmcoreinfo_note
);
2641 #endif /* CONFIG_KEXEC_CORE */