xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / drivers / watchdog / aspeed_wdt.c
blobca5b91e2eb9257c1be5da003fec6282dff64ca5a
1 /*
2 * Copyright 2016 IBM Corporation
4 * Joel Stanley <joel@jms.id.au>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #include <linux/delay.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/platform_device.h>
18 #include <linux/watchdog.h>
20 struct aspeed_wdt {
21 struct watchdog_device wdd;
22 void __iomem *base;
23 u32 ctrl;
26 struct aspeed_wdt_config {
27 u32 ext_pulse_width_mask;
30 static const struct aspeed_wdt_config ast2400_config = {
31 .ext_pulse_width_mask = 0xff,
34 static const struct aspeed_wdt_config ast2500_config = {
35 .ext_pulse_width_mask = 0xfffff,
38 static const struct of_device_id aspeed_wdt_of_table[] = {
39 { .compatible = "aspeed,ast2400-wdt", .data = &ast2400_config },
40 { .compatible = "aspeed,ast2500-wdt", .data = &ast2500_config },
41 { },
43 MODULE_DEVICE_TABLE(of, aspeed_wdt_of_table);
45 #define WDT_STATUS 0x00
46 #define WDT_RELOAD_VALUE 0x04
47 #define WDT_RESTART 0x08
48 #define WDT_CTRL 0x0C
49 #define WDT_CTRL_RESET_MODE_SOC (0x00 << 5)
50 #define WDT_CTRL_RESET_MODE_FULL_CHIP (0x01 << 5)
51 #define WDT_CTRL_RESET_MODE_ARM_CPU (0x10 << 5)
52 #define WDT_CTRL_1MHZ_CLK BIT(4)
53 #define WDT_CTRL_WDT_EXT BIT(3)
54 #define WDT_CTRL_WDT_INTR BIT(2)
55 #define WDT_CTRL_RESET_SYSTEM BIT(1)
56 #define WDT_CTRL_ENABLE BIT(0)
59 * WDT_RESET_WIDTH controls the characteristics of the external pulse (if
60 * enabled), specifically:
62 * * Pulse duration
63 * * Drive mode: push-pull vs open-drain
64 * * Polarity: Active high or active low
66 * Pulse duration configuration is available on both the AST2400 and AST2500,
67 * though the field changes between SoCs:
69 * AST2400: Bits 7:0
70 * AST2500: Bits 19:0
72 * This difference is captured in struct aspeed_wdt_config.
74 * The AST2500 exposes the drive mode and polarity options, but not in a
75 * regular fashion. For read purposes, bit 31 represents active high or low,
76 * and bit 30 represents push-pull or open-drain. With respect to write, magic
77 * values need to be written to the top byte to change the state of the drive
78 * mode and polarity bits. Any other value written to the top byte has no
79 * effect on the state of the drive mode or polarity bits. However, the pulse
80 * width value must be preserved (as desired) if written.
82 #define WDT_RESET_WIDTH 0x18
83 #define WDT_RESET_WIDTH_ACTIVE_HIGH BIT(31)
84 #define WDT_ACTIVE_HIGH_MAGIC (0xA5 << 24)
85 #define WDT_ACTIVE_LOW_MAGIC (0x5A << 24)
86 #define WDT_RESET_WIDTH_PUSH_PULL BIT(30)
87 #define WDT_PUSH_PULL_MAGIC (0xA8 << 24)
88 #define WDT_OPEN_DRAIN_MAGIC (0x8A << 24)
90 #define WDT_RESTART_MAGIC 0x4755
92 /* 32 bits at 1MHz, in milliseconds */
93 #define WDT_MAX_TIMEOUT_MS 4294967
94 #define WDT_DEFAULT_TIMEOUT 30
95 #define WDT_RATE_1MHZ 1000000
97 static struct aspeed_wdt *to_aspeed_wdt(struct watchdog_device *wdd)
99 return container_of(wdd, struct aspeed_wdt, wdd);
102 static void aspeed_wdt_enable(struct aspeed_wdt *wdt, int count)
104 wdt->ctrl |= WDT_CTRL_ENABLE;
106 writel(0, wdt->base + WDT_CTRL);
107 writel(count, wdt->base + WDT_RELOAD_VALUE);
108 writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
109 writel(wdt->ctrl, wdt->base + WDT_CTRL);
112 static int aspeed_wdt_start(struct watchdog_device *wdd)
114 struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
116 aspeed_wdt_enable(wdt, wdd->timeout * WDT_RATE_1MHZ);
118 return 0;
121 static int aspeed_wdt_stop(struct watchdog_device *wdd)
123 struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
125 wdt->ctrl &= ~WDT_CTRL_ENABLE;
126 writel(wdt->ctrl, wdt->base + WDT_CTRL);
128 return 0;
131 static int aspeed_wdt_ping(struct watchdog_device *wdd)
133 struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
135 writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
137 return 0;
140 static int aspeed_wdt_set_timeout(struct watchdog_device *wdd,
141 unsigned int timeout)
143 struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
144 u32 actual;
146 wdd->timeout = timeout;
148 actual = min(timeout, wdd->max_hw_heartbeat_ms * 1000);
150 writel(actual * WDT_RATE_1MHZ, wdt->base + WDT_RELOAD_VALUE);
151 writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
153 return 0;
156 static int aspeed_wdt_restart(struct watchdog_device *wdd,
157 unsigned long action, void *data)
159 struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
161 aspeed_wdt_enable(wdt, 128 * WDT_RATE_1MHZ / 1000);
163 mdelay(1000);
165 return 0;
168 static const struct watchdog_ops aspeed_wdt_ops = {
169 .start = aspeed_wdt_start,
170 .stop = aspeed_wdt_stop,
171 .ping = aspeed_wdt_ping,
172 .set_timeout = aspeed_wdt_set_timeout,
173 .restart = aspeed_wdt_restart,
174 .owner = THIS_MODULE,
177 static const struct watchdog_info aspeed_wdt_info = {
178 .options = WDIOF_KEEPALIVEPING
179 | WDIOF_MAGICCLOSE
180 | WDIOF_SETTIMEOUT,
181 .identity = KBUILD_MODNAME,
184 static int aspeed_wdt_probe(struct platform_device *pdev)
186 const struct aspeed_wdt_config *config;
187 const struct of_device_id *ofdid;
188 struct aspeed_wdt *wdt;
189 struct resource *res;
190 struct device_node *np;
191 const char *reset_type;
192 u32 duration;
193 int ret;
195 wdt = devm_kzalloc(&pdev->dev, sizeof(*wdt), GFP_KERNEL);
196 if (!wdt)
197 return -ENOMEM;
199 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
200 wdt->base = devm_ioremap_resource(&pdev->dev, res);
201 if (IS_ERR(wdt->base))
202 return PTR_ERR(wdt->base);
205 * The ast2400 wdt can run at PCLK, or 1MHz. The ast2500 only
206 * runs at 1MHz. We chose to always run at 1MHz, as there's no
207 * good reason to have a faster watchdog counter.
209 wdt->wdd.info = &aspeed_wdt_info;
210 wdt->wdd.ops = &aspeed_wdt_ops;
211 wdt->wdd.max_hw_heartbeat_ms = WDT_MAX_TIMEOUT_MS;
212 wdt->wdd.parent = &pdev->dev;
214 wdt->wdd.timeout = WDT_DEFAULT_TIMEOUT;
215 watchdog_init_timeout(&wdt->wdd, 0, &pdev->dev);
217 np = pdev->dev.of_node;
219 ofdid = of_match_node(aspeed_wdt_of_table, np);
220 if (!ofdid)
221 return -EINVAL;
222 config = ofdid->data;
224 wdt->ctrl = WDT_CTRL_1MHZ_CLK;
227 * Control reset on a per-device basis to ensure the
228 * host is not affected by a BMC reboot
230 ret = of_property_read_string(np, "aspeed,reset-type", &reset_type);
231 if (ret) {
232 wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC | WDT_CTRL_RESET_SYSTEM;
233 } else {
234 if (!strcmp(reset_type, "cpu"))
235 wdt->ctrl |= WDT_CTRL_RESET_MODE_ARM_CPU;
236 else if (!strcmp(reset_type, "soc"))
237 wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC;
238 else if (!strcmp(reset_type, "system"))
239 wdt->ctrl |= WDT_CTRL_RESET_SYSTEM;
240 else if (strcmp(reset_type, "none"))
241 return -EINVAL;
243 if (of_property_read_bool(np, "aspeed,external-signal"))
244 wdt->ctrl |= WDT_CTRL_WDT_EXT;
246 if (readl(wdt->base + WDT_CTRL) & WDT_CTRL_ENABLE) {
248 * The watchdog is running, but invoke aspeed_wdt_start() to
249 * write wdt->ctrl to WDT_CTRL to ensure the watchdog's
250 * configuration conforms to the driver's expectations.
251 * Primarily, ensure we're using the 1MHz clock source.
253 aspeed_wdt_start(&wdt->wdd);
254 set_bit(WDOG_HW_RUNNING, &wdt->wdd.status);
257 if (of_device_is_compatible(np, "aspeed,ast2500-wdt")) {
258 u32 reg = readl(wdt->base + WDT_RESET_WIDTH);
260 reg &= config->ext_pulse_width_mask;
261 if (of_property_read_bool(np, "aspeed,ext-push-pull"))
262 reg |= WDT_PUSH_PULL_MAGIC;
263 else
264 reg |= WDT_OPEN_DRAIN_MAGIC;
266 writel(reg, wdt->base + WDT_RESET_WIDTH);
268 reg &= config->ext_pulse_width_mask;
269 if (of_property_read_bool(np, "aspeed,ext-active-high"))
270 reg |= WDT_ACTIVE_HIGH_MAGIC;
271 else
272 reg |= WDT_ACTIVE_LOW_MAGIC;
274 writel(reg, wdt->base + WDT_RESET_WIDTH);
277 if (!of_property_read_u32(np, "aspeed,ext-pulse-duration", &duration)) {
278 u32 max_duration = config->ext_pulse_width_mask + 1;
280 if (duration == 0 || duration > max_duration) {
281 dev_err(&pdev->dev, "Invalid pulse duration: %uus\n",
282 duration);
283 duration = max(1U, min(max_duration, duration));
284 dev_info(&pdev->dev, "Pulse duration set to %uus\n",
285 duration);
289 * The watchdog is always configured with a 1MHz source, so
290 * there is no need to scale the microsecond value. However we
291 * need to offset it - from the datasheet:
293 * "This register decides the asserting duration of wdt_ext and
294 * wdt_rstarm signal. The default value is 0xFF. It means the
295 * default asserting duration of wdt_ext and wdt_rstarm is
296 * 256us."
298 * This implies a value of 0 gives a 1us pulse.
300 writel(duration - 1, wdt->base + WDT_RESET_WIDTH);
303 ret = devm_watchdog_register_device(&pdev->dev, &wdt->wdd);
304 if (ret) {
305 dev_err(&pdev->dev, "failed to register\n");
306 return ret;
309 return 0;
312 static struct platform_driver aspeed_watchdog_driver = {
313 .probe = aspeed_wdt_probe,
314 .driver = {
315 .name = KBUILD_MODNAME,
316 .of_match_table = of_match_ptr(aspeed_wdt_of_table),
320 static int __init aspeed_wdt_init(void)
322 return platform_driver_register(&aspeed_watchdog_driver);
324 arch_initcall(aspeed_wdt_init);
326 static void __exit aspeed_wdt_exit(void)
328 platform_driver_unregister(&aspeed_watchdog_driver);
330 module_exit(aspeed_wdt_exit);
332 MODULE_DESCRIPTION("Aspeed Watchdog Driver");
333 MODULE_LICENSE("GPL");