xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / fs / crypto / fname.c
blobe33f3d3c5ade8ce6e647e6b5021f7e51f00a96c1
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This contains functions for filename crypto management
5 * Copyright (C) 2015, Google, Inc.
6 * Copyright (C) 2015, Motorola Mobility
8 * Written by Uday Savagaonkar, 2014.
9 * Modified by Jaegeuk Kim, 2015.
11 * This has not yet undergone a rigorous security audit.
14 #include <linux/scatterlist.h>
15 #include <linux/ratelimit.h>
16 #include <crypto/skcipher.h>
17 #include "fscrypt_private.h"
19 static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
21 if (str->len == 1 && str->name[0] == '.')
22 return true;
24 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
25 return true;
27 return false;
30 /**
31 * fname_encrypt() - encrypt a filename
33 * The output buffer must be at least as large as the input buffer.
34 * Any extra space is filled with NUL padding before encryption.
36 * Return: 0 on success, -errno on failure
38 int fname_encrypt(struct inode *inode, const struct qstr *iname,
39 u8 *out, unsigned int olen)
41 struct skcipher_request *req = NULL;
42 DECLARE_CRYPTO_WAIT(wait);
43 struct crypto_skcipher *tfm = inode->i_crypt_info->ci_ctfm;
44 int res = 0;
45 char iv[FS_CRYPTO_BLOCK_SIZE];
46 struct scatterlist sg;
49 * Copy the filename to the output buffer for encrypting in-place and
50 * pad it with the needed number of NUL bytes.
52 if (WARN_ON(olen < iname->len))
53 return -ENOBUFS;
54 memcpy(out, iname->name, iname->len);
55 memset(out + iname->len, 0, olen - iname->len);
57 /* Initialize the IV */
58 memset(iv, 0, FS_CRYPTO_BLOCK_SIZE);
60 /* Set up the encryption request */
61 req = skcipher_request_alloc(tfm, GFP_NOFS);
62 if (!req) {
63 printk_ratelimited(KERN_ERR
64 "%s: skcipher_request_alloc() failed\n", __func__);
65 return -ENOMEM;
67 skcipher_request_set_callback(req,
68 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
69 crypto_req_done, &wait);
70 sg_init_one(&sg, out, olen);
71 skcipher_request_set_crypt(req, &sg, &sg, olen, iv);
73 /* Do the encryption */
74 res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
75 skcipher_request_free(req);
76 if (res < 0) {
77 printk_ratelimited(KERN_ERR
78 "%s: Error (error code %d)\n", __func__, res);
79 return res;
82 return 0;
85 /**
86 * fname_decrypt() - decrypt a filename
88 * The caller must have allocated sufficient memory for the @oname string.
90 * Return: 0 on success, -errno on failure
92 static int fname_decrypt(struct inode *inode,
93 const struct fscrypt_str *iname,
94 struct fscrypt_str *oname)
96 struct skcipher_request *req = NULL;
97 DECLARE_CRYPTO_WAIT(wait);
98 struct scatterlist src_sg, dst_sg;
99 struct fscrypt_info *ci = inode->i_crypt_info;
100 struct crypto_skcipher *tfm = ci->ci_ctfm;
101 int res = 0;
102 char iv[FS_CRYPTO_BLOCK_SIZE];
103 unsigned lim;
105 lim = inode->i_sb->s_cop->max_namelen(inode);
106 if (iname->len <= 0 || iname->len > lim)
107 return -EIO;
109 /* Allocate request */
110 req = skcipher_request_alloc(tfm, GFP_NOFS);
111 if (!req) {
112 printk_ratelimited(KERN_ERR
113 "%s: crypto_request_alloc() failed\n", __func__);
114 return -ENOMEM;
116 skcipher_request_set_callback(req,
117 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
118 crypto_req_done, &wait);
120 /* Initialize IV */
121 memset(iv, 0, FS_CRYPTO_BLOCK_SIZE);
123 /* Create decryption request */
124 sg_init_one(&src_sg, iname->name, iname->len);
125 sg_init_one(&dst_sg, oname->name, oname->len);
126 skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, iv);
127 res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
128 skcipher_request_free(req);
129 if (res < 0) {
130 printk_ratelimited(KERN_ERR
131 "%s: Error (error code %d)\n", __func__, res);
132 return res;
135 oname->len = strnlen(oname->name, iname->len);
136 return 0;
139 static const char *lookup_table =
140 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
142 #define BASE64_CHARS(nbytes) DIV_ROUND_UP((nbytes) * 4, 3)
145 * digest_encode() -
147 * Encodes the input digest using characters from the set [a-zA-Z0-9_+].
148 * The encoded string is roughly 4/3 times the size of the input string.
150 static int digest_encode(const char *src, int len, char *dst)
152 int i = 0, bits = 0, ac = 0;
153 char *cp = dst;
155 while (i < len) {
156 ac += (((unsigned char) src[i]) << bits);
157 bits += 8;
158 do {
159 *cp++ = lookup_table[ac & 0x3f];
160 ac >>= 6;
161 bits -= 6;
162 } while (bits >= 6);
163 i++;
165 if (bits)
166 *cp++ = lookup_table[ac & 0x3f];
167 return cp - dst;
170 static int digest_decode(const char *src, int len, char *dst)
172 int i = 0, bits = 0, ac = 0;
173 const char *p;
174 char *cp = dst;
176 while (i < len) {
177 p = strchr(lookup_table, src[i]);
178 if (p == NULL || src[i] == 0)
179 return -2;
180 ac += (p - lookup_table) << bits;
181 bits += 6;
182 if (bits >= 8) {
183 *cp++ = ac & 0xff;
184 ac >>= 8;
185 bits -= 8;
187 i++;
189 if (ac)
190 return -1;
191 return cp - dst;
194 bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
195 u32 max_len, u32 *encrypted_len_ret)
197 int padding = 4 << (inode->i_crypt_info->ci_flags &
198 FS_POLICY_FLAGS_PAD_MASK);
199 u32 encrypted_len;
201 if (orig_len > max_len)
202 return false;
203 encrypted_len = max(orig_len, (u32)FS_CRYPTO_BLOCK_SIZE);
204 encrypted_len = round_up(encrypted_len, padding);
205 *encrypted_len_ret = min(encrypted_len, max_len);
206 return true;
210 * fscrypt_fname_alloc_buffer - allocate a buffer for presented filenames
212 * Allocate a buffer that is large enough to hold any decrypted or encoded
213 * filename (null-terminated), for the given maximum encrypted filename length.
215 * Return: 0 on success, -errno on failure
217 int fscrypt_fname_alloc_buffer(const struct inode *inode,
218 u32 max_encrypted_len,
219 struct fscrypt_str *crypto_str)
221 const u32 max_encoded_len =
222 max_t(u32, BASE64_CHARS(FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE),
223 1 + BASE64_CHARS(sizeof(struct fscrypt_digested_name)));
224 u32 max_presented_len;
226 max_presented_len = max(max_encoded_len, max_encrypted_len);
228 crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS);
229 if (!crypto_str->name)
230 return -ENOMEM;
231 crypto_str->len = max_presented_len;
232 return 0;
234 EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
237 * fscrypt_fname_free_buffer - free the buffer for presented filenames
239 * Free the buffer allocated by fscrypt_fname_alloc_buffer().
241 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
243 if (!crypto_str)
244 return;
245 kfree(crypto_str->name);
246 crypto_str->name = NULL;
248 EXPORT_SYMBOL(fscrypt_fname_free_buffer);
251 * fscrypt_fname_disk_to_usr() - converts a filename from disk space to user
252 * space
254 * The caller must have allocated sufficient memory for the @oname string.
256 * If the key is available, we'll decrypt the disk name; otherwise, we'll encode
257 * it for presentation. Short names are directly base64-encoded, while long
258 * names are encoded in fscrypt_digested_name format.
260 * Return: 0 on success, -errno on failure
262 int fscrypt_fname_disk_to_usr(struct inode *inode,
263 u32 hash, u32 minor_hash,
264 const struct fscrypt_str *iname,
265 struct fscrypt_str *oname)
267 const struct qstr qname = FSTR_TO_QSTR(iname);
268 struct fscrypt_digested_name digested_name;
270 if (fscrypt_is_dot_dotdot(&qname)) {
271 oname->name[0] = '.';
272 oname->name[iname->len - 1] = '.';
273 oname->len = iname->len;
274 return 0;
277 if (iname->len < FS_CRYPTO_BLOCK_SIZE)
278 return -EUCLEAN;
280 if (inode->i_crypt_info)
281 return fname_decrypt(inode, iname, oname);
283 if (iname->len <= FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE) {
284 oname->len = digest_encode(iname->name, iname->len,
285 oname->name);
286 return 0;
288 if (hash) {
289 digested_name.hash = hash;
290 digested_name.minor_hash = minor_hash;
291 } else {
292 digested_name.hash = 0;
293 digested_name.minor_hash = 0;
295 memcpy(digested_name.digest,
296 FSCRYPT_FNAME_DIGEST(iname->name, iname->len),
297 FSCRYPT_FNAME_DIGEST_SIZE);
298 oname->name[0] = '_';
299 oname->len = 1 + digest_encode((const char *)&digested_name,
300 sizeof(digested_name), oname->name + 1);
301 return 0;
303 EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
306 * fscrypt_setup_filename() - prepare to search a possibly encrypted directory
307 * @dir: the directory that will be searched
308 * @iname: the user-provided filename being searched for
309 * @lookup: 1 if we're allowed to proceed without the key because it's
310 * ->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
311 * proceed without the key because we're going to create the dir_entry.
312 * @fname: the filename information to be filled in
314 * Given a user-provided filename @iname, this function sets @fname->disk_name
315 * to the name that would be stored in the on-disk directory entry, if possible.
316 * If the directory is unencrypted this is simply @iname. Else, if we have the
317 * directory's encryption key, then @iname is the plaintext, so we encrypt it to
318 * get the disk_name.
320 * Else, for keyless @lookup operations, @iname is the presented ciphertext, so
321 * we decode it to get either the ciphertext disk_name (for short names) or the
322 * fscrypt_digested_name (for long names). Non-@lookup operations will be
323 * impossible in this case, so we fail them with ENOKEY.
325 * If successful, fscrypt_free_filename() must be called later to clean up.
327 * Return: 0 on success, -errno on failure
329 int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
330 int lookup, struct fscrypt_name *fname)
332 int ret;
333 int digested;
335 memset(fname, 0, sizeof(struct fscrypt_name));
336 fname->usr_fname = iname;
338 if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) {
339 fname->disk_name.name = (unsigned char *)iname->name;
340 fname->disk_name.len = iname->len;
341 return 0;
343 ret = fscrypt_get_encryption_info(dir);
344 if (ret && ret != -EOPNOTSUPP)
345 return ret;
347 if (dir->i_crypt_info) {
348 if (!fscrypt_fname_encrypted_size(dir, iname->len,
349 dir->i_sb->s_cop->max_namelen(dir),
350 &fname->crypto_buf.len))
351 return -ENAMETOOLONG;
352 fname->crypto_buf.name = kmalloc(fname->crypto_buf.len,
353 GFP_NOFS);
354 if (!fname->crypto_buf.name)
355 return -ENOMEM;
357 ret = fname_encrypt(dir, iname, fname->crypto_buf.name,
358 fname->crypto_buf.len);
359 if (ret)
360 goto errout;
361 fname->disk_name.name = fname->crypto_buf.name;
362 fname->disk_name.len = fname->crypto_buf.len;
363 return 0;
365 if (!lookup)
366 return -ENOKEY;
369 * We don't have the key and we are doing a lookup; decode the
370 * user-supplied name
372 if (iname->name[0] == '_') {
373 if (iname->len !=
374 1 + BASE64_CHARS(sizeof(struct fscrypt_digested_name)))
375 return -ENOENT;
376 digested = 1;
377 } else {
378 if (iname->len >
379 BASE64_CHARS(FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE))
380 return -ENOENT;
381 digested = 0;
384 fname->crypto_buf.name =
385 kmalloc(max_t(size_t, FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE,
386 sizeof(struct fscrypt_digested_name)),
387 GFP_KERNEL);
388 if (fname->crypto_buf.name == NULL)
389 return -ENOMEM;
391 ret = digest_decode(iname->name + digested, iname->len - digested,
392 fname->crypto_buf.name);
393 if (ret < 0) {
394 ret = -ENOENT;
395 goto errout;
397 fname->crypto_buf.len = ret;
398 if (digested) {
399 const struct fscrypt_digested_name *n =
400 (const void *)fname->crypto_buf.name;
401 fname->hash = n->hash;
402 fname->minor_hash = n->minor_hash;
403 } else {
404 fname->disk_name.name = fname->crypto_buf.name;
405 fname->disk_name.len = fname->crypto_buf.len;
407 return 0;
409 errout:
410 kfree(fname->crypto_buf.name);
411 return ret;
413 EXPORT_SYMBOL(fscrypt_setup_filename);