xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / fs / ext4 / super.c
blob39bf464c35f170c2e77171fc0422997921949883
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
10 * from
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
49 #include "ext4.h"
50 #include "ext4_extents.h" /* Needed for trace points definition */
51 #include "ext4_jbd2.h"
52 #include "xattr.h"
53 #include "acl.h"
54 #include "mballoc.h"
55 #include "fsmap.h"
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/ext4.h>
60 static struct ext4_lazy_init *ext4_li_info;
61 static struct mutex ext4_li_mtx;
62 static struct ratelimit_state ext4_mount_msg_ratelimit;
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static void ext4_mark_recovery_complete(struct super_block *sb,
69 struct ext4_super_block *es);
70 static void ext4_clear_journal_err(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
89 * Lock ordering
91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
92 * i_mmap_rwsem (inode->i_mmap_rwsem)!
94 * page fault path:
95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
96 * page lock -> i_data_sem (rw)
98 * buffered write path:
99 * sb_start_write -> i_mutex -> mmap_sem
100 * sb_start_write -> i_mutex -> transaction start -> page lock ->
101 * i_data_sem (rw)
103 * truncate:
104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
105 * i_mmap_rwsem (w) -> page lock
106 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
107 * transaction start -> i_data_sem (rw)
109 * direct IO:
110 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
111 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
112 * transaction start -> i_data_sem (rw)
114 * writepages:
115 * transaction start -> page lock(s) -> i_data_sem (rw)
118 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
119 static struct file_system_type ext2_fs_type = {
120 .owner = THIS_MODULE,
121 .name = "ext2",
122 .mount = ext4_mount,
123 .kill_sb = kill_block_super,
124 .fs_flags = FS_REQUIRES_DEV,
126 MODULE_ALIAS_FS("ext2");
127 MODULE_ALIAS("ext2");
128 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
129 #else
130 #define IS_EXT2_SB(sb) (0)
131 #endif
134 static struct file_system_type ext3_fs_type = {
135 .owner = THIS_MODULE,
136 .name = "ext3",
137 .mount = ext4_mount,
138 .kill_sb = kill_block_super,
139 .fs_flags = FS_REQUIRES_DEV,
141 MODULE_ALIAS_FS("ext3");
142 MODULE_ALIAS("ext3");
143 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
145 static int ext4_verify_csum_type(struct super_block *sb,
146 struct ext4_super_block *es)
148 if (!ext4_has_feature_metadata_csum(sb))
149 return 1;
151 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
154 static __le32 ext4_superblock_csum(struct super_block *sb,
155 struct ext4_super_block *es)
157 struct ext4_sb_info *sbi = EXT4_SB(sb);
158 int offset = offsetof(struct ext4_super_block, s_checksum);
159 __u32 csum;
161 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
163 return cpu_to_le32(csum);
166 static int ext4_superblock_csum_verify(struct super_block *sb,
167 struct ext4_super_block *es)
169 if (!ext4_has_metadata_csum(sb))
170 return 1;
172 return es->s_checksum == ext4_superblock_csum(sb, es);
175 void ext4_superblock_csum_set(struct super_block *sb)
177 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
179 if (!ext4_has_metadata_csum(sb))
180 return;
182 es->s_checksum = ext4_superblock_csum(sb, es);
185 void *ext4_kvmalloc(size_t size, gfp_t flags)
187 void *ret;
189 ret = kmalloc(size, flags | __GFP_NOWARN);
190 if (!ret)
191 ret = __vmalloc(size, flags, PAGE_KERNEL);
192 return ret;
195 void *ext4_kvzalloc(size_t size, gfp_t flags)
197 void *ret;
199 ret = kzalloc(size, flags | __GFP_NOWARN);
200 if (!ret)
201 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
202 return ret;
205 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
206 struct ext4_group_desc *bg)
208 return le32_to_cpu(bg->bg_block_bitmap_lo) |
209 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
210 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
213 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
214 struct ext4_group_desc *bg)
216 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
217 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
218 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
221 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
222 struct ext4_group_desc *bg)
224 return le32_to_cpu(bg->bg_inode_table_lo) |
225 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
226 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
229 __u32 ext4_free_group_clusters(struct super_block *sb,
230 struct ext4_group_desc *bg)
232 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
233 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
234 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
237 __u32 ext4_free_inodes_count(struct super_block *sb,
238 struct ext4_group_desc *bg)
240 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
241 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
242 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
245 __u32 ext4_used_dirs_count(struct super_block *sb,
246 struct ext4_group_desc *bg)
248 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
249 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
250 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
253 __u32 ext4_itable_unused_count(struct super_block *sb,
254 struct ext4_group_desc *bg)
256 return le16_to_cpu(bg->bg_itable_unused_lo) |
257 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
258 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
261 void ext4_block_bitmap_set(struct super_block *sb,
262 struct ext4_group_desc *bg, ext4_fsblk_t blk)
264 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
265 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
266 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
269 void ext4_inode_bitmap_set(struct super_block *sb,
270 struct ext4_group_desc *bg, ext4_fsblk_t blk)
272 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
273 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
274 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
277 void ext4_inode_table_set(struct super_block *sb,
278 struct ext4_group_desc *bg, ext4_fsblk_t blk)
280 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
281 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
282 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
285 void ext4_free_group_clusters_set(struct super_block *sb,
286 struct ext4_group_desc *bg, __u32 count)
288 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
289 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
290 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
293 void ext4_free_inodes_set(struct super_block *sb,
294 struct ext4_group_desc *bg, __u32 count)
296 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
297 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
298 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
301 void ext4_used_dirs_set(struct super_block *sb,
302 struct ext4_group_desc *bg, __u32 count)
304 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
305 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
306 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
309 void ext4_itable_unused_set(struct super_block *sb,
310 struct ext4_group_desc *bg, __u32 count)
312 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
313 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
314 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
318 static void __save_error_info(struct super_block *sb, const char *func,
319 unsigned int line)
321 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
323 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
324 if (bdev_read_only(sb->s_bdev))
325 return;
326 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
327 es->s_last_error_time = cpu_to_le32(get_seconds());
328 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
329 es->s_last_error_line = cpu_to_le32(line);
330 if (!es->s_first_error_time) {
331 es->s_first_error_time = es->s_last_error_time;
332 strncpy(es->s_first_error_func, func,
333 sizeof(es->s_first_error_func));
334 es->s_first_error_line = cpu_to_le32(line);
335 es->s_first_error_ino = es->s_last_error_ino;
336 es->s_first_error_block = es->s_last_error_block;
339 * Start the daily error reporting function if it hasn't been
340 * started already
342 if (!es->s_error_count)
343 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
344 le32_add_cpu(&es->s_error_count, 1);
347 static void save_error_info(struct super_block *sb, const char *func,
348 unsigned int line)
350 __save_error_info(sb, func, line);
351 ext4_commit_super(sb, 1);
355 * The del_gendisk() function uninitializes the disk-specific data
356 * structures, including the bdi structure, without telling anyone
357 * else. Once this happens, any attempt to call mark_buffer_dirty()
358 * (for example, by ext4_commit_super), will cause a kernel OOPS.
359 * This is a kludge to prevent these oops until we can put in a proper
360 * hook in del_gendisk() to inform the VFS and file system layers.
362 static int block_device_ejected(struct super_block *sb)
364 struct inode *bd_inode = sb->s_bdev->bd_inode;
365 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
367 return bdi->dev == NULL;
370 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
372 struct super_block *sb = journal->j_private;
373 struct ext4_sb_info *sbi = EXT4_SB(sb);
374 int error = is_journal_aborted(journal);
375 struct ext4_journal_cb_entry *jce;
377 BUG_ON(txn->t_state == T_FINISHED);
379 ext4_process_freed_data(sb, txn->t_tid);
381 spin_lock(&sbi->s_md_lock);
382 while (!list_empty(&txn->t_private_list)) {
383 jce = list_entry(txn->t_private_list.next,
384 struct ext4_journal_cb_entry, jce_list);
385 list_del_init(&jce->jce_list);
386 spin_unlock(&sbi->s_md_lock);
387 jce->jce_func(sb, jce, error);
388 spin_lock(&sbi->s_md_lock);
390 spin_unlock(&sbi->s_md_lock);
393 /* Deal with the reporting of failure conditions on a filesystem such as
394 * inconsistencies detected or read IO failures.
396 * On ext2, we can store the error state of the filesystem in the
397 * superblock. That is not possible on ext4, because we may have other
398 * write ordering constraints on the superblock which prevent us from
399 * writing it out straight away; and given that the journal is about to
400 * be aborted, we can't rely on the current, or future, transactions to
401 * write out the superblock safely.
403 * We'll just use the jbd2_journal_abort() error code to record an error in
404 * the journal instead. On recovery, the journal will complain about
405 * that error until we've noted it down and cleared it.
408 static void ext4_handle_error(struct super_block *sb)
410 if (sb_rdonly(sb))
411 return;
413 if (!test_opt(sb, ERRORS_CONT)) {
414 journal_t *journal = EXT4_SB(sb)->s_journal;
416 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
417 if (journal)
418 jbd2_journal_abort(journal, -EIO);
420 if (test_opt(sb, ERRORS_RO)) {
421 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
423 * Make sure updated value of ->s_mount_flags will be visible
424 * before ->s_flags update
426 smp_wmb();
427 sb->s_flags |= SB_RDONLY;
429 if (test_opt(sb, ERRORS_PANIC)) {
430 if (EXT4_SB(sb)->s_journal &&
431 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
432 return;
433 panic("EXT4-fs (device %s): panic forced after error\n",
434 sb->s_id);
438 #define ext4_error_ratelimit(sb) \
439 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
440 "EXT4-fs error")
442 void __ext4_error(struct super_block *sb, const char *function,
443 unsigned int line, const char *fmt, ...)
445 struct va_format vaf;
446 va_list args;
448 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
449 return;
451 if (ext4_error_ratelimit(sb)) {
452 va_start(args, fmt);
453 vaf.fmt = fmt;
454 vaf.va = &args;
455 printk(KERN_CRIT
456 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
457 sb->s_id, function, line, current->comm, &vaf);
458 va_end(args);
460 save_error_info(sb, function, line);
461 ext4_handle_error(sb);
464 void __ext4_error_inode(struct inode *inode, const char *function,
465 unsigned int line, ext4_fsblk_t block,
466 const char *fmt, ...)
468 va_list args;
469 struct va_format vaf;
470 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
472 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
473 return;
475 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
476 es->s_last_error_block = cpu_to_le64(block);
477 if (ext4_error_ratelimit(inode->i_sb)) {
478 va_start(args, fmt);
479 vaf.fmt = fmt;
480 vaf.va = &args;
481 if (block)
482 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
483 "inode #%lu: block %llu: comm %s: %pV\n",
484 inode->i_sb->s_id, function, line, inode->i_ino,
485 block, current->comm, &vaf);
486 else
487 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
488 "inode #%lu: comm %s: %pV\n",
489 inode->i_sb->s_id, function, line, inode->i_ino,
490 current->comm, &vaf);
491 va_end(args);
493 save_error_info(inode->i_sb, function, line);
494 ext4_handle_error(inode->i_sb);
497 void __ext4_error_file(struct file *file, const char *function,
498 unsigned int line, ext4_fsblk_t block,
499 const char *fmt, ...)
501 va_list args;
502 struct va_format vaf;
503 struct ext4_super_block *es;
504 struct inode *inode = file_inode(file);
505 char pathname[80], *path;
507 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
508 return;
510 es = EXT4_SB(inode->i_sb)->s_es;
511 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
512 if (ext4_error_ratelimit(inode->i_sb)) {
513 path = file_path(file, pathname, sizeof(pathname));
514 if (IS_ERR(path))
515 path = "(unknown)";
516 va_start(args, fmt);
517 vaf.fmt = fmt;
518 vaf.va = &args;
519 if (block)
520 printk(KERN_CRIT
521 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
522 "block %llu: comm %s: path %s: %pV\n",
523 inode->i_sb->s_id, function, line, inode->i_ino,
524 block, current->comm, path, &vaf);
525 else
526 printk(KERN_CRIT
527 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
528 "comm %s: path %s: %pV\n",
529 inode->i_sb->s_id, function, line, inode->i_ino,
530 current->comm, path, &vaf);
531 va_end(args);
533 save_error_info(inode->i_sb, function, line);
534 ext4_handle_error(inode->i_sb);
537 const char *ext4_decode_error(struct super_block *sb, int errno,
538 char nbuf[16])
540 char *errstr = NULL;
542 switch (errno) {
543 case -EFSCORRUPTED:
544 errstr = "Corrupt filesystem";
545 break;
546 case -EFSBADCRC:
547 errstr = "Filesystem failed CRC";
548 break;
549 case -EIO:
550 errstr = "IO failure";
551 break;
552 case -ENOMEM:
553 errstr = "Out of memory";
554 break;
555 case -EROFS:
556 if (!sb || (EXT4_SB(sb)->s_journal &&
557 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
558 errstr = "Journal has aborted";
559 else
560 errstr = "Readonly filesystem";
561 break;
562 default:
563 /* If the caller passed in an extra buffer for unknown
564 * errors, textualise them now. Else we just return
565 * NULL. */
566 if (nbuf) {
567 /* Check for truncated error codes... */
568 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
569 errstr = nbuf;
571 break;
574 return errstr;
577 /* __ext4_std_error decodes expected errors from journaling functions
578 * automatically and invokes the appropriate error response. */
580 void __ext4_std_error(struct super_block *sb, const char *function,
581 unsigned int line, int errno)
583 char nbuf[16];
584 const char *errstr;
586 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
587 return;
589 /* Special case: if the error is EROFS, and we're not already
590 * inside a transaction, then there's really no point in logging
591 * an error. */
592 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
593 return;
595 if (ext4_error_ratelimit(sb)) {
596 errstr = ext4_decode_error(sb, errno, nbuf);
597 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
598 sb->s_id, function, line, errstr);
601 save_error_info(sb, function, line);
602 ext4_handle_error(sb);
606 * ext4_abort is a much stronger failure handler than ext4_error. The
607 * abort function may be used to deal with unrecoverable failures such
608 * as journal IO errors or ENOMEM at a critical moment in log management.
610 * We unconditionally force the filesystem into an ABORT|READONLY state,
611 * unless the error response on the fs has been set to panic in which
612 * case we take the easy way out and panic immediately.
615 void __ext4_abort(struct super_block *sb, const char *function,
616 unsigned int line, const char *fmt, ...)
618 struct va_format vaf;
619 va_list args;
621 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
622 return;
624 save_error_info(sb, function, line);
625 va_start(args, fmt);
626 vaf.fmt = fmt;
627 vaf.va = &args;
628 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
629 sb->s_id, function, line, &vaf);
630 va_end(args);
632 if (sb_rdonly(sb) == 0) {
633 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
634 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
636 * Make sure updated value of ->s_mount_flags will be visible
637 * before ->s_flags update
639 smp_wmb();
640 sb->s_flags |= SB_RDONLY;
641 if (EXT4_SB(sb)->s_journal)
642 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
643 save_error_info(sb, function, line);
645 if (test_opt(sb, ERRORS_PANIC)) {
646 if (EXT4_SB(sb)->s_journal &&
647 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
648 return;
649 panic("EXT4-fs panic from previous error\n");
653 void __ext4_msg(struct super_block *sb,
654 const char *prefix, const char *fmt, ...)
656 struct va_format vaf;
657 va_list args;
659 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
660 return;
662 va_start(args, fmt);
663 vaf.fmt = fmt;
664 vaf.va = &args;
665 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
666 va_end(args);
669 #define ext4_warning_ratelimit(sb) \
670 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
671 "EXT4-fs warning")
673 void __ext4_warning(struct super_block *sb, const char *function,
674 unsigned int line, const char *fmt, ...)
676 struct va_format vaf;
677 va_list args;
679 if (!ext4_warning_ratelimit(sb))
680 return;
682 va_start(args, fmt);
683 vaf.fmt = fmt;
684 vaf.va = &args;
685 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
686 sb->s_id, function, line, &vaf);
687 va_end(args);
690 void __ext4_warning_inode(const struct inode *inode, const char *function,
691 unsigned int line, const char *fmt, ...)
693 struct va_format vaf;
694 va_list args;
696 if (!ext4_warning_ratelimit(inode->i_sb))
697 return;
699 va_start(args, fmt);
700 vaf.fmt = fmt;
701 vaf.va = &args;
702 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
703 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
704 function, line, inode->i_ino, current->comm, &vaf);
705 va_end(args);
708 void __ext4_grp_locked_error(const char *function, unsigned int line,
709 struct super_block *sb, ext4_group_t grp,
710 unsigned long ino, ext4_fsblk_t block,
711 const char *fmt, ...)
712 __releases(bitlock)
713 __acquires(bitlock)
715 struct va_format vaf;
716 va_list args;
717 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
719 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
720 return;
722 es->s_last_error_ino = cpu_to_le32(ino);
723 es->s_last_error_block = cpu_to_le64(block);
724 __save_error_info(sb, function, line);
726 if (ext4_error_ratelimit(sb)) {
727 va_start(args, fmt);
728 vaf.fmt = fmt;
729 vaf.va = &args;
730 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
731 sb->s_id, function, line, grp);
732 if (ino)
733 printk(KERN_CONT "inode %lu: ", ino);
734 if (block)
735 printk(KERN_CONT "block %llu:",
736 (unsigned long long) block);
737 printk(KERN_CONT "%pV\n", &vaf);
738 va_end(args);
741 if (test_opt(sb, ERRORS_CONT)) {
742 ext4_commit_super(sb, 0);
743 return;
746 ext4_unlock_group(sb, grp);
747 ext4_commit_super(sb, 1);
748 ext4_handle_error(sb);
750 * We only get here in the ERRORS_RO case; relocking the group
751 * may be dangerous, but nothing bad will happen since the
752 * filesystem will have already been marked read/only and the
753 * journal has been aborted. We return 1 as a hint to callers
754 * who might what to use the return value from
755 * ext4_grp_locked_error() to distinguish between the
756 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
757 * aggressively from the ext4 function in question, with a
758 * more appropriate error code.
760 ext4_lock_group(sb, grp);
761 return;
764 void ext4_update_dynamic_rev(struct super_block *sb)
766 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
768 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
769 return;
771 ext4_warning(sb,
772 "updating to rev %d because of new feature flag, "
773 "running e2fsck is recommended",
774 EXT4_DYNAMIC_REV);
776 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
777 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
778 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
779 /* leave es->s_feature_*compat flags alone */
780 /* es->s_uuid will be set by e2fsck if empty */
783 * The rest of the superblock fields should be zero, and if not it
784 * means they are likely already in use, so leave them alone. We
785 * can leave it up to e2fsck to clean up any inconsistencies there.
790 * Open the external journal device
792 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
794 struct block_device *bdev;
795 char b[BDEVNAME_SIZE];
797 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
798 if (IS_ERR(bdev))
799 goto fail;
800 return bdev;
802 fail:
803 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
804 __bdevname(dev, b), PTR_ERR(bdev));
805 return NULL;
809 * Release the journal device
811 static void ext4_blkdev_put(struct block_device *bdev)
813 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
816 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
818 struct block_device *bdev;
819 bdev = sbi->journal_bdev;
820 if (bdev) {
821 ext4_blkdev_put(bdev);
822 sbi->journal_bdev = NULL;
826 static inline struct inode *orphan_list_entry(struct list_head *l)
828 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
831 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
833 struct list_head *l;
835 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
836 le32_to_cpu(sbi->s_es->s_last_orphan));
838 printk(KERN_ERR "sb_info orphan list:\n");
839 list_for_each(l, &sbi->s_orphan) {
840 struct inode *inode = orphan_list_entry(l);
841 printk(KERN_ERR " "
842 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
843 inode->i_sb->s_id, inode->i_ino, inode,
844 inode->i_mode, inode->i_nlink,
845 NEXT_ORPHAN(inode));
849 #ifdef CONFIG_QUOTA
850 static int ext4_quota_off(struct super_block *sb, int type);
852 static inline void ext4_quota_off_umount(struct super_block *sb)
854 int type;
856 /* Use our quota_off function to clear inode flags etc. */
857 for (type = 0; type < EXT4_MAXQUOTAS; type++)
858 ext4_quota_off(sb, type);
860 #else
861 static inline void ext4_quota_off_umount(struct super_block *sb)
864 #endif
866 static void ext4_put_super(struct super_block *sb)
868 struct ext4_sb_info *sbi = EXT4_SB(sb);
869 struct ext4_super_block *es = sbi->s_es;
870 int aborted = 0;
871 int i, err;
873 ext4_unregister_li_request(sb);
874 ext4_quota_off_umount(sb);
876 destroy_workqueue(sbi->rsv_conversion_wq);
878 if (sbi->s_journal) {
879 aborted = is_journal_aborted(sbi->s_journal);
880 err = jbd2_journal_destroy(sbi->s_journal);
881 sbi->s_journal = NULL;
882 if ((err < 0) && !aborted)
883 ext4_abort(sb, "Couldn't clean up the journal");
886 ext4_unregister_sysfs(sb);
887 ext4_es_unregister_shrinker(sbi);
888 del_timer_sync(&sbi->s_err_report);
889 ext4_release_system_zone(sb);
890 ext4_mb_release(sb);
891 ext4_ext_release(sb);
893 if (!sb_rdonly(sb) && !aborted) {
894 ext4_clear_feature_journal_needs_recovery(sb);
895 es->s_state = cpu_to_le16(sbi->s_mount_state);
897 if (!sb_rdonly(sb))
898 ext4_commit_super(sb, 1);
900 for (i = 0; i < sbi->s_gdb_count; i++)
901 brelse(sbi->s_group_desc[i]);
902 kvfree(sbi->s_group_desc);
903 kvfree(sbi->s_flex_groups);
904 percpu_counter_destroy(&sbi->s_freeclusters_counter);
905 percpu_counter_destroy(&sbi->s_freeinodes_counter);
906 percpu_counter_destroy(&sbi->s_dirs_counter);
907 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
908 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
909 #ifdef CONFIG_QUOTA
910 for (i = 0; i < EXT4_MAXQUOTAS; i++)
911 kfree(sbi->s_qf_names[i]);
912 #endif
914 /* Debugging code just in case the in-memory inode orphan list
915 * isn't empty. The on-disk one can be non-empty if we've
916 * detected an error and taken the fs readonly, but the
917 * in-memory list had better be clean by this point. */
918 if (!list_empty(&sbi->s_orphan))
919 dump_orphan_list(sb, sbi);
920 J_ASSERT(list_empty(&sbi->s_orphan));
922 sync_blockdev(sb->s_bdev);
923 invalidate_bdev(sb->s_bdev);
924 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
926 * Invalidate the journal device's buffers. We don't want them
927 * floating about in memory - the physical journal device may
928 * hotswapped, and it breaks the `ro-after' testing code.
930 sync_blockdev(sbi->journal_bdev);
931 invalidate_bdev(sbi->journal_bdev);
932 ext4_blkdev_remove(sbi);
934 if (sbi->s_ea_inode_cache) {
935 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
936 sbi->s_ea_inode_cache = NULL;
938 if (sbi->s_ea_block_cache) {
939 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
940 sbi->s_ea_block_cache = NULL;
942 if (sbi->s_mmp_tsk)
943 kthread_stop(sbi->s_mmp_tsk);
944 brelse(sbi->s_sbh);
945 sb->s_fs_info = NULL;
947 * Now that we are completely done shutting down the
948 * superblock, we need to actually destroy the kobject.
950 kobject_put(&sbi->s_kobj);
951 wait_for_completion(&sbi->s_kobj_unregister);
952 if (sbi->s_chksum_driver)
953 crypto_free_shash(sbi->s_chksum_driver);
954 kfree(sbi->s_blockgroup_lock);
955 fs_put_dax(sbi->s_daxdev);
956 kfree(sbi);
959 static struct kmem_cache *ext4_inode_cachep;
962 * Called inside transaction, so use GFP_NOFS
964 static struct inode *ext4_alloc_inode(struct super_block *sb)
966 struct ext4_inode_info *ei;
968 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
969 if (!ei)
970 return NULL;
972 inode_set_iversion(&ei->vfs_inode, 1);
973 spin_lock_init(&ei->i_raw_lock);
974 INIT_LIST_HEAD(&ei->i_prealloc_list);
975 spin_lock_init(&ei->i_prealloc_lock);
976 ext4_es_init_tree(&ei->i_es_tree);
977 rwlock_init(&ei->i_es_lock);
978 INIT_LIST_HEAD(&ei->i_es_list);
979 ei->i_es_all_nr = 0;
980 ei->i_es_shk_nr = 0;
981 ei->i_es_shrink_lblk = 0;
982 ei->i_reserved_data_blocks = 0;
983 ei->i_da_metadata_calc_len = 0;
984 ei->i_da_metadata_calc_last_lblock = 0;
985 spin_lock_init(&(ei->i_block_reservation_lock));
986 #ifdef CONFIG_QUOTA
987 ei->i_reserved_quota = 0;
988 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
989 #endif
990 ei->jinode = NULL;
991 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
992 spin_lock_init(&ei->i_completed_io_lock);
993 ei->i_sync_tid = 0;
994 ei->i_datasync_tid = 0;
995 atomic_set(&ei->i_unwritten, 0);
996 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
997 return &ei->vfs_inode;
1000 static int ext4_drop_inode(struct inode *inode)
1002 int drop = generic_drop_inode(inode);
1004 trace_ext4_drop_inode(inode, drop);
1005 return drop;
1008 static void ext4_i_callback(struct rcu_head *head)
1010 struct inode *inode = container_of(head, struct inode, i_rcu);
1011 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1014 static void ext4_destroy_inode(struct inode *inode)
1016 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1017 ext4_msg(inode->i_sb, KERN_ERR,
1018 "Inode %lu (%p): orphan list check failed!",
1019 inode->i_ino, EXT4_I(inode));
1020 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1021 EXT4_I(inode), sizeof(struct ext4_inode_info),
1022 true);
1023 dump_stack();
1025 call_rcu(&inode->i_rcu, ext4_i_callback);
1028 static void init_once(void *foo)
1030 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1032 INIT_LIST_HEAD(&ei->i_orphan);
1033 init_rwsem(&ei->xattr_sem);
1034 init_rwsem(&ei->i_data_sem);
1035 init_rwsem(&ei->i_mmap_sem);
1036 inode_init_once(&ei->vfs_inode);
1039 static int __init init_inodecache(void)
1041 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1042 sizeof(struct ext4_inode_info), 0,
1043 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1044 SLAB_ACCOUNT),
1045 offsetof(struct ext4_inode_info, i_data),
1046 sizeof_field(struct ext4_inode_info, i_data),
1047 init_once);
1048 if (ext4_inode_cachep == NULL)
1049 return -ENOMEM;
1050 return 0;
1053 static void destroy_inodecache(void)
1056 * Make sure all delayed rcu free inodes are flushed before we
1057 * destroy cache.
1059 rcu_barrier();
1060 kmem_cache_destroy(ext4_inode_cachep);
1063 void ext4_clear_inode(struct inode *inode)
1065 invalidate_inode_buffers(inode);
1066 clear_inode(inode);
1067 dquot_drop(inode);
1068 ext4_discard_preallocations(inode);
1069 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1070 if (EXT4_I(inode)->jinode) {
1071 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1072 EXT4_I(inode)->jinode);
1073 jbd2_free_inode(EXT4_I(inode)->jinode);
1074 EXT4_I(inode)->jinode = NULL;
1076 fscrypt_put_encryption_info(inode);
1079 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1080 u64 ino, u32 generation)
1082 struct inode *inode;
1084 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1085 return ERR_PTR(-ESTALE);
1086 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1087 return ERR_PTR(-ESTALE);
1089 /* iget isn't really right if the inode is currently unallocated!!
1091 * ext4_read_inode will return a bad_inode if the inode had been
1092 * deleted, so we should be safe.
1094 * Currently we don't know the generation for parent directory, so
1095 * a generation of 0 means "accept any"
1097 inode = ext4_iget_normal(sb, ino);
1098 if (IS_ERR(inode))
1099 return ERR_CAST(inode);
1100 if (generation && inode->i_generation != generation) {
1101 iput(inode);
1102 return ERR_PTR(-ESTALE);
1105 return inode;
1108 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1109 int fh_len, int fh_type)
1111 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1112 ext4_nfs_get_inode);
1115 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1116 int fh_len, int fh_type)
1118 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1119 ext4_nfs_get_inode);
1123 * Try to release metadata pages (indirect blocks, directories) which are
1124 * mapped via the block device. Since these pages could have journal heads
1125 * which would prevent try_to_free_buffers() from freeing them, we must use
1126 * jbd2 layer's try_to_free_buffers() function to release them.
1128 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1129 gfp_t wait)
1131 journal_t *journal = EXT4_SB(sb)->s_journal;
1133 WARN_ON(PageChecked(page));
1134 if (!page_has_buffers(page))
1135 return 0;
1136 if (journal)
1137 return jbd2_journal_try_to_free_buffers(journal, page,
1138 wait & ~__GFP_DIRECT_RECLAIM);
1139 return try_to_free_buffers(page);
1142 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1143 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1145 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1146 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1149 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1150 void *fs_data)
1152 handle_t *handle = fs_data;
1153 int res, res2, credits, retries = 0;
1156 * Encrypting the root directory is not allowed because e2fsck expects
1157 * lost+found to exist and be unencrypted, and encrypting the root
1158 * directory would imply encrypting the lost+found directory as well as
1159 * the filename "lost+found" itself.
1161 if (inode->i_ino == EXT4_ROOT_INO)
1162 return -EPERM;
1164 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1165 return -EINVAL;
1167 res = ext4_convert_inline_data(inode);
1168 if (res)
1169 return res;
1172 * If a journal handle was specified, then the encryption context is
1173 * being set on a new inode via inheritance and is part of a larger
1174 * transaction to create the inode. Otherwise the encryption context is
1175 * being set on an existing inode in its own transaction. Only in the
1176 * latter case should the "retry on ENOSPC" logic be used.
1179 if (handle) {
1180 res = ext4_xattr_set_handle(handle, inode,
1181 EXT4_XATTR_INDEX_ENCRYPTION,
1182 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1183 ctx, len, 0);
1184 if (!res) {
1185 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1186 ext4_clear_inode_state(inode,
1187 EXT4_STATE_MAY_INLINE_DATA);
1189 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1190 * S_DAX may be disabled
1192 ext4_set_inode_flags(inode);
1194 return res;
1197 res = dquot_initialize(inode);
1198 if (res)
1199 return res;
1200 retry:
1201 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1202 &credits);
1203 if (res)
1204 return res;
1206 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1207 if (IS_ERR(handle))
1208 return PTR_ERR(handle);
1210 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1211 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1212 ctx, len, 0);
1213 if (!res) {
1214 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1216 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1217 * S_DAX may be disabled
1219 ext4_set_inode_flags(inode);
1220 res = ext4_mark_inode_dirty(handle, inode);
1221 if (res)
1222 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1224 res2 = ext4_journal_stop(handle);
1226 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1227 goto retry;
1228 if (!res)
1229 res = res2;
1230 return res;
1233 static bool ext4_dummy_context(struct inode *inode)
1235 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1238 static unsigned ext4_max_namelen(struct inode *inode)
1240 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1241 EXT4_NAME_LEN;
1244 static const struct fscrypt_operations ext4_cryptops = {
1245 .key_prefix = "ext4:",
1246 .get_context = ext4_get_context,
1247 .set_context = ext4_set_context,
1248 .dummy_context = ext4_dummy_context,
1249 .empty_dir = ext4_empty_dir,
1250 .max_namelen = ext4_max_namelen,
1252 #endif
1254 #ifdef CONFIG_QUOTA
1255 static const char * const quotatypes[] = INITQFNAMES;
1256 #define QTYPE2NAME(t) (quotatypes[t])
1258 static int ext4_write_dquot(struct dquot *dquot);
1259 static int ext4_acquire_dquot(struct dquot *dquot);
1260 static int ext4_release_dquot(struct dquot *dquot);
1261 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1262 static int ext4_write_info(struct super_block *sb, int type);
1263 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1264 const struct path *path);
1265 static int ext4_quota_on_mount(struct super_block *sb, int type);
1266 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1267 size_t len, loff_t off);
1268 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1269 const char *data, size_t len, loff_t off);
1270 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1271 unsigned int flags);
1272 static int ext4_enable_quotas(struct super_block *sb);
1273 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1275 static struct dquot **ext4_get_dquots(struct inode *inode)
1277 return EXT4_I(inode)->i_dquot;
1280 static const struct dquot_operations ext4_quota_operations = {
1281 .get_reserved_space = ext4_get_reserved_space,
1282 .write_dquot = ext4_write_dquot,
1283 .acquire_dquot = ext4_acquire_dquot,
1284 .release_dquot = ext4_release_dquot,
1285 .mark_dirty = ext4_mark_dquot_dirty,
1286 .write_info = ext4_write_info,
1287 .alloc_dquot = dquot_alloc,
1288 .destroy_dquot = dquot_destroy,
1289 .get_projid = ext4_get_projid,
1290 .get_inode_usage = ext4_get_inode_usage,
1291 .get_next_id = ext4_get_next_id,
1294 static const struct quotactl_ops ext4_qctl_operations = {
1295 .quota_on = ext4_quota_on,
1296 .quota_off = ext4_quota_off,
1297 .quota_sync = dquot_quota_sync,
1298 .get_state = dquot_get_state,
1299 .set_info = dquot_set_dqinfo,
1300 .get_dqblk = dquot_get_dqblk,
1301 .set_dqblk = dquot_set_dqblk,
1302 .get_nextdqblk = dquot_get_next_dqblk,
1304 #endif
1306 static const struct super_operations ext4_sops = {
1307 .alloc_inode = ext4_alloc_inode,
1308 .destroy_inode = ext4_destroy_inode,
1309 .write_inode = ext4_write_inode,
1310 .dirty_inode = ext4_dirty_inode,
1311 .drop_inode = ext4_drop_inode,
1312 .evict_inode = ext4_evict_inode,
1313 .put_super = ext4_put_super,
1314 .sync_fs = ext4_sync_fs,
1315 .freeze_fs = ext4_freeze,
1316 .unfreeze_fs = ext4_unfreeze,
1317 .statfs = ext4_statfs,
1318 .remount_fs = ext4_remount,
1319 .show_options = ext4_show_options,
1320 #ifdef CONFIG_QUOTA
1321 .quota_read = ext4_quota_read,
1322 .quota_write = ext4_quota_write,
1323 .get_dquots = ext4_get_dquots,
1324 #endif
1325 .bdev_try_to_free_page = bdev_try_to_free_page,
1328 static const struct export_operations ext4_export_ops = {
1329 .fh_to_dentry = ext4_fh_to_dentry,
1330 .fh_to_parent = ext4_fh_to_parent,
1331 .get_parent = ext4_get_parent,
1334 enum {
1335 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1336 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1337 Opt_nouid32, Opt_debug, Opt_removed,
1338 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1339 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1340 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1341 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1342 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1343 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1344 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1345 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1346 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1347 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1348 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1349 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1350 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1351 Opt_inode_readahead_blks, Opt_journal_ioprio,
1352 Opt_dioread_nolock, Opt_dioread_lock,
1353 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1354 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1357 static const match_table_t tokens = {
1358 {Opt_bsd_df, "bsddf"},
1359 {Opt_minix_df, "minixdf"},
1360 {Opt_grpid, "grpid"},
1361 {Opt_grpid, "bsdgroups"},
1362 {Opt_nogrpid, "nogrpid"},
1363 {Opt_nogrpid, "sysvgroups"},
1364 {Opt_resgid, "resgid=%u"},
1365 {Opt_resuid, "resuid=%u"},
1366 {Opt_sb, "sb=%u"},
1367 {Opt_err_cont, "errors=continue"},
1368 {Opt_err_panic, "errors=panic"},
1369 {Opt_err_ro, "errors=remount-ro"},
1370 {Opt_nouid32, "nouid32"},
1371 {Opt_debug, "debug"},
1372 {Opt_removed, "oldalloc"},
1373 {Opt_removed, "orlov"},
1374 {Opt_user_xattr, "user_xattr"},
1375 {Opt_nouser_xattr, "nouser_xattr"},
1376 {Opt_acl, "acl"},
1377 {Opt_noacl, "noacl"},
1378 {Opt_noload, "norecovery"},
1379 {Opt_noload, "noload"},
1380 {Opt_removed, "nobh"},
1381 {Opt_removed, "bh"},
1382 {Opt_commit, "commit=%u"},
1383 {Opt_min_batch_time, "min_batch_time=%u"},
1384 {Opt_max_batch_time, "max_batch_time=%u"},
1385 {Opt_journal_dev, "journal_dev=%u"},
1386 {Opt_journal_path, "journal_path=%s"},
1387 {Opt_journal_checksum, "journal_checksum"},
1388 {Opt_nojournal_checksum, "nojournal_checksum"},
1389 {Opt_journal_async_commit, "journal_async_commit"},
1390 {Opt_abort, "abort"},
1391 {Opt_data_journal, "data=journal"},
1392 {Opt_data_ordered, "data=ordered"},
1393 {Opt_data_writeback, "data=writeback"},
1394 {Opt_data_err_abort, "data_err=abort"},
1395 {Opt_data_err_ignore, "data_err=ignore"},
1396 {Opt_offusrjquota, "usrjquota="},
1397 {Opt_usrjquota, "usrjquota=%s"},
1398 {Opt_offgrpjquota, "grpjquota="},
1399 {Opt_grpjquota, "grpjquota=%s"},
1400 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1401 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1402 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1403 {Opt_grpquota, "grpquota"},
1404 {Opt_noquota, "noquota"},
1405 {Opt_quota, "quota"},
1406 {Opt_usrquota, "usrquota"},
1407 {Opt_prjquota, "prjquota"},
1408 {Opt_barrier, "barrier=%u"},
1409 {Opt_barrier, "barrier"},
1410 {Opt_nobarrier, "nobarrier"},
1411 {Opt_i_version, "i_version"},
1412 {Opt_dax, "dax"},
1413 {Opt_stripe, "stripe=%u"},
1414 {Opt_delalloc, "delalloc"},
1415 {Opt_lazytime, "lazytime"},
1416 {Opt_nolazytime, "nolazytime"},
1417 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1418 {Opt_nodelalloc, "nodelalloc"},
1419 {Opt_removed, "mblk_io_submit"},
1420 {Opt_removed, "nomblk_io_submit"},
1421 {Opt_block_validity, "block_validity"},
1422 {Opt_noblock_validity, "noblock_validity"},
1423 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1424 {Opt_journal_ioprio, "journal_ioprio=%u"},
1425 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1426 {Opt_auto_da_alloc, "auto_da_alloc"},
1427 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1428 {Opt_dioread_nolock, "dioread_nolock"},
1429 {Opt_dioread_lock, "dioread_lock"},
1430 {Opt_discard, "discard"},
1431 {Opt_nodiscard, "nodiscard"},
1432 {Opt_init_itable, "init_itable=%u"},
1433 {Opt_init_itable, "init_itable"},
1434 {Opt_noinit_itable, "noinit_itable"},
1435 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1436 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1437 {Opt_nombcache, "nombcache"},
1438 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1439 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1440 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1441 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1442 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1443 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1444 {Opt_err, NULL},
1447 static ext4_fsblk_t get_sb_block(void **data)
1449 ext4_fsblk_t sb_block;
1450 char *options = (char *) *data;
1452 if (!options || strncmp(options, "sb=", 3) != 0)
1453 return 1; /* Default location */
1455 options += 3;
1456 /* TODO: use simple_strtoll with >32bit ext4 */
1457 sb_block = simple_strtoul(options, &options, 0);
1458 if (*options && *options != ',') {
1459 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1460 (char *) *data);
1461 return 1;
1463 if (*options == ',')
1464 options++;
1465 *data = (void *) options;
1467 return sb_block;
1470 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1471 static const char deprecated_msg[] =
1472 "Mount option \"%s\" will be removed by %s\n"
1473 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1475 #ifdef CONFIG_QUOTA
1476 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1478 struct ext4_sb_info *sbi = EXT4_SB(sb);
1479 char *qname;
1480 int ret = -1;
1482 if (sb_any_quota_loaded(sb) &&
1483 !sbi->s_qf_names[qtype]) {
1484 ext4_msg(sb, KERN_ERR,
1485 "Cannot change journaled "
1486 "quota options when quota turned on");
1487 return -1;
1489 if (ext4_has_feature_quota(sb)) {
1490 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1491 "ignored when QUOTA feature is enabled");
1492 return 1;
1494 qname = match_strdup(args);
1495 if (!qname) {
1496 ext4_msg(sb, KERN_ERR,
1497 "Not enough memory for storing quotafile name");
1498 return -1;
1500 if (sbi->s_qf_names[qtype]) {
1501 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1502 ret = 1;
1503 else
1504 ext4_msg(sb, KERN_ERR,
1505 "%s quota file already specified",
1506 QTYPE2NAME(qtype));
1507 goto errout;
1509 if (strchr(qname, '/')) {
1510 ext4_msg(sb, KERN_ERR,
1511 "quotafile must be on filesystem root");
1512 goto errout;
1514 sbi->s_qf_names[qtype] = qname;
1515 set_opt(sb, QUOTA);
1516 return 1;
1517 errout:
1518 kfree(qname);
1519 return ret;
1522 static int clear_qf_name(struct super_block *sb, int qtype)
1525 struct ext4_sb_info *sbi = EXT4_SB(sb);
1527 if (sb_any_quota_loaded(sb) &&
1528 sbi->s_qf_names[qtype]) {
1529 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1530 " when quota turned on");
1531 return -1;
1533 kfree(sbi->s_qf_names[qtype]);
1534 sbi->s_qf_names[qtype] = NULL;
1535 return 1;
1537 #endif
1539 #define MOPT_SET 0x0001
1540 #define MOPT_CLEAR 0x0002
1541 #define MOPT_NOSUPPORT 0x0004
1542 #define MOPT_EXPLICIT 0x0008
1543 #define MOPT_CLEAR_ERR 0x0010
1544 #define MOPT_GTE0 0x0020
1545 #ifdef CONFIG_QUOTA
1546 #define MOPT_Q 0
1547 #define MOPT_QFMT 0x0040
1548 #else
1549 #define MOPT_Q MOPT_NOSUPPORT
1550 #define MOPT_QFMT MOPT_NOSUPPORT
1551 #endif
1552 #define MOPT_DATAJ 0x0080
1553 #define MOPT_NO_EXT2 0x0100
1554 #define MOPT_NO_EXT3 0x0200
1555 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1556 #define MOPT_STRING 0x0400
1558 static const struct mount_opts {
1559 int token;
1560 int mount_opt;
1561 int flags;
1562 } ext4_mount_opts[] = {
1563 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1564 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1565 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1566 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1567 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1568 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1569 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1570 MOPT_EXT4_ONLY | MOPT_SET},
1571 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1572 MOPT_EXT4_ONLY | MOPT_CLEAR},
1573 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1574 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1575 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1576 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1577 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1578 MOPT_EXT4_ONLY | MOPT_CLEAR},
1579 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1580 MOPT_EXT4_ONLY | MOPT_CLEAR},
1581 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1582 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1583 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1584 EXT4_MOUNT_JOURNAL_CHECKSUM),
1585 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1586 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1587 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1588 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1589 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1590 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1591 MOPT_NO_EXT2},
1592 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1593 MOPT_NO_EXT2},
1594 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1595 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1596 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1597 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1598 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1599 {Opt_commit, 0, MOPT_GTE0},
1600 {Opt_max_batch_time, 0, MOPT_GTE0},
1601 {Opt_min_batch_time, 0, MOPT_GTE0},
1602 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1603 {Opt_init_itable, 0, MOPT_GTE0},
1604 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1605 {Opt_stripe, 0, MOPT_GTE0},
1606 {Opt_resuid, 0, MOPT_GTE0},
1607 {Opt_resgid, 0, MOPT_GTE0},
1608 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1609 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1610 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1611 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1612 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1613 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1614 MOPT_NO_EXT2 | MOPT_DATAJ},
1615 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1616 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1617 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1618 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1619 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1620 #else
1621 {Opt_acl, 0, MOPT_NOSUPPORT},
1622 {Opt_noacl, 0, MOPT_NOSUPPORT},
1623 #endif
1624 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1625 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1626 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1627 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1628 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1629 MOPT_SET | MOPT_Q},
1630 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1631 MOPT_SET | MOPT_Q},
1632 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1633 MOPT_SET | MOPT_Q},
1634 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1635 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1636 MOPT_CLEAR | MOPT_Q},
1637 {Opt_usrjquota, 0, MOPT_Q},
1638 {Opt_grpjquota, 0, MOPT_Q},
1639 {Opt_offusrjquota, 0, MOPT_Q},
1640 {Opt_offgrpjquota, 0, MOPT_Q},
1641 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1642 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1643 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1644 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1645 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1646 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1647 {Opt_err, 0, 0}
1650 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1651 substring_t *args, unsigned long *journal_devnum,
1652 unsigned int *journal_ioprio, int is_remount)
1654 struct ext4_sb_info *sbi = EXT4_SB(sb);
1655 const struct mount_opts *m;
1656 kuid_t uid;
1657 kgid_t gid;
1658 int arg = 0;
1660 #ifdef CONFIG_QUOTA
1661 if (token == Opt_usrjquota)
1662 return set_qf_name(sb, USRQUOTA, &args[0]);
1663 else if (token == Opt_grpjquota)
1664 return set_qf_name(sb, GRPQUOTA, &args[0]);
1665 else if (token == Opt_offusrjquota)
1666 return clear_qf_name(sb, USRQUOTA);
1667 else if (token == Opt_offgrpjquota)
1668 return clear_qf_name(sb, GRPQUOTA);
1669 #endif
1670 switch (token) {
1671 case Opt_noacl:
1672 case Opt_nouser_xattr:
1673 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1674 break;
1675 case Opt_sb:
1676 return 1; /* handled by get_sb_block() */
1677 case Opt_removed:
1678 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1679 return 1;
1680 case Opt_abort:
1681 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1682 return 1;
1683 case Opt_i_version:
1684 sb->s_flags |= SB_I_VERSION;
1685 return 1;
1686 case Opt_lazytime:
1687 sb->s_flags |= SB_LAZYTIME;
1688 return 1;
1689 case Opt_nolazytime:
1690 sb->s_flags &= ~SB_LAZYTIME;
1691 return 1;
1694 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1695 if (token == m->token)
1696 break;
1698 if (m->token == Opt_err) {
1699 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1700 "or missing value", opt);
1701 return -1;
1704 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1705 ext4_msg(sb, KERN_ERR,
1706 "Mount option \"%s\" incompatible with ext2", opt);
1707 return -1;
1709 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1710 ext4_msg(sb, KERN_ERR,
1711 "Mount option \"%s\" incompatible with ext3", opt);
1712 return -1;
1715 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1716 return -1;
1717 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1718 return -1;
1719 if (m->flags & MOPT_EXPLICIT) {
1720 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1721 set_opt2(sb, EXPLICIT_DELALLOC);
1722 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1723 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1724 } else
1725 return -1;
1727 if (m->flags & MOPT_CLEAR_ERR)
1728 clear_opt(sb, ERRORS_MASK);
1729 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1730 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1731 "options when quota turned on");
1732 return -1;
1735 if (m->flags & MOPT_NOSUPPORT) {
1736 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1737 } else if (token == Opt_commit) {
1738 if (arg == 0)
1739 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1740 sbi->s_commit_interval = HZ * arg;
1741 } else if (token == Opt_debug_want_extra_isize) {
1742 sbi->s_want_extra_isize = arg;
1743 } else if (token == Opt_max_batch_time) {
1744 sbi->s_max_batch_time = arg;
1745 } else if (token == Opt_min_batch_time) {
1746 sbi->s_min_batch_time = arg;
1747 } else if (token == Opt_inode_readahead_blks) {
1748 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1749 ext4_msg(sb, KERN_ERR,
1750 "EXT4-fs: inode_readahead_blks must be "
1751 "0 or a power of 2 smaller than 2^31");
1752 return -1;
1754 sbi->s_inode_readahead_blks = arg;
1755 } else if (token == Opt_init_itable) {
1756 set_opt(sb, INIT_INODE_TABLE);
1757 if (!args->from)
1758 arg = EXT4_DEF_LI_WAIT_MULT;
1759 sbi->s_li_wait_mult = arg;
1760 } else if (token == Opt_max_dir_size_kb) {
1761 sbi->s_max_dir_size_kb = arg;
1762 } else if (token == Opt_stripe) {
1763 sbi->s_stripe = arg;
1764 } else if (token == Opt_resuid) {
1765 uid = make_kuid(current_user_ns(), arg);
1766 if (!uid_valid(uid)) {
1767 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1768 return -1;
1770 sbi->s_resuid = uid;
1771 } else if (token == Opt_resgid) {
1772 gid = make_kgid(current_user_ns(), arg);
1773 if (!gid_valid(gid)) {
1774 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1775 return -1;
1777 sbi->s_resgid = gid;
1778 } else if (token == Opt_journal_dev) {
1779 if (is_remount) {
1780 ext4_msg(sb, KERN_ERR,
1781 "Cannot specify journal on remount");
1782 return -1;
1784 *journal_devnum = arg;
1785 } else if (token == Opt_journal_path) {
1786 char *journal_path;
1787 struct inode *journal_inode;
1788 struct path path;
1789 int error;
1791 if (is_remount) {
1792 ext4_msg(sb, KERN_ERR,
1793 "Cannot specify journal on remount");
1794 return -1;
1796 journal_path = match_strdup(&args[0]);
1797 if (!journal_path) {
1798 ext4_msg(sb, KERN_ERR, "error: could not dup "
1799 "journal device string");
1800 return -1;
1803 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1804 if (error) {
1805 ext4_msg(sb, KERN_ERR, "error: could not find "
1806 "journal device path: error %d", error);
1807 kfree(journal_path);
1808 return -1;
1811 journal_inode = d_inode(path.dentry);
1812 if (!S_ISBLK(journal_inode->i_mode)) {
1813 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1814 "is not a block device", journal_path);
1815 path_put(&path);
1816 kfree(journal_path);
1817 return -1;
1820 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1821 path_put(&path);
1822 kfree(journal_path);
1823 } else if (token == Opt_journal_ioprio) {
1824 if (arg > 7) {
1825 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1826 " (must be 0-7)");
1827 return -1;
1829 *journal_ioprio =
1830 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1831 } else if (token == Opt_test_dummy_encryption) {
1832 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1833 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1834 ext4_msg(sb, KERN_WARNING,
1835 "Test dummy encryption mode enabled");
1836 #else
1837 ext4_msg(sb, KERN_WARNING,
1838 "Test dummy encryption mount option ignored");
1839 #endif
1840 } else if (m->flags & MOPT_DATAJ) {
1841 if (is_remount) {
1842 if (!sbi->s_journal)
1843 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1844 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1845 ext4_msg(sb, KERN_ERR,
1846 "Cannot change data mode on remount");
1847 return -1;
1849 } else {
1850 clear_opt(sb, DATA_FLAGS);
1851 sbi->s_mount_opt |= m->mount_opt;
1853 #ifdef CONFIG_QUOTA
1854 } else if (m->flags & MOPT_QFMT) {
1855 if (sb_any_quota_loaded(sb) &&
1856 sbi->s_jquota_fmt != m->mount_opt) {
1857 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1858 "quota options when quota turned on");
1859 return -1;
1861 if (ext4_has_feature_quota(sb)) {
1862 ext4_msg(sb, KERN_INFO,
1863 "Quota format mount options ignored "
1864 "when QUOTA feature is enabled");
1865 return 1;
1867 sbi->s_jquota_fmt = m->mount_opt;
1868 #endif
1869 } else if (token == Opt_dax) {
1870 #ifdef CONFIG_FS_DAX
1871 ext4_msg(sb, KERN_WARNING,
1872 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1873 sbi->s_mount_opt |= m->mount_opt;
1874 #else
1875 ext4_msg(sb, KERN_INFO, "dax option not supported");
1876 return -1;
1877 #endif
1878 } else if (token == Opt_data_err_abort) {
1879 sbi->s_mount_opt |= m->mount_opt;
1880 } else if (token == Opt_data_err_ignore) {
1881 sbi->s_mount_opt &= ~m->mount_opt;
1882 } else {
1883 if (!args->from)
1884 arg = 1;
1885 if (m->flags & MOPT_CLEAR)
1886 arg = !arg;
1887 else if (unlikely(!(m->flags & MOPT_SET))) {
1888 ext4_msg(sb, KERN_WARNING,
1889 "buggy handling of option %s", opt);
1890 WARN_ON(1);
1891 return -1;
1893 if (arg != 0)
1894 sbi->s_mount_opt |= m->mount_opt;
1895 else
1896 sbi->s_mount_opt &= ~m->mount_opt;
1898 return 1;
1901 static int parse_options(char *options, struct super_block *sb,
1902 unsigned long *journal_devnum,
1903 unsigned int *journal_ioprio,
1904 int is_remount)
1906 struct ext4_sb_info *sbi = EXT4_SB(sb);
1907 char *p;
1908 substring_t args[MAX_OPT_ARGS];
1909 int token;
1911 if (!options)
1912 return 1;
1914 while ((p = strsep(&options, ",")) != NULL) {
1915 if (!*p)
1916 continue;
1918 * Initialize args struct so we know whether arg was
1919 * found; some options take optional arguments.
1921 args[0].to = args[0].from = NULL;
1922 token = match_token(p, tokens, args);
1923 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1924 journal_ioprio, is_remount) < 0)
1925 return 0;
1927 #ifdef CONFIG_QUOTA
1929 * We do the test below only for project quotas. 'usrquota' and
1930 * 'grpquota' mount options are allowed even without quota feature
1931 * to support legacy quotas in quota files.
1933 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1934 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1935 "Cannot enable project quota enforcement.");
1936 return 0;
1938 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1939 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1940 clear_opt(sb, USRQUOTA);
1942 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1943 clear_opt(sb, GRPQUOTA);
1945 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1946 ext4_msg(sb, KERN_ERR, "old and new quota "
1947 "format mixing");
1948 return 0;
1951 if (!sbi->s_jquota_fmt) {
1952 ext4_msg(sb, KERN_ERR, "journaled quota format "
1953 "not specified");
1954 return 0;
1957 #endif
1958 if (test_opt(sb, DIOREAD_NOLOCK)) {
1959 int blocksize =
1960 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1962 if (blocksize < PAGE_SIZE) {
1963 ext4_msg(sb, KERN_ERR, "can't mount with "
1964 "dioread_nolock if block size != PAGE_SIZE");
1965 return 0;
1968 return 1;
1971 static inline void ext4_show_quota_options(struct seq_file *seq,
1972 struct super_block *sb)
1974 #if defined(CONFIG_QUOTA)
1975 struct ext4_sb_info *sbi = EXT4_SB(sb);
1977 if (sbi->s_jquota_fmt) {
1978 char *fmtname = "";
1980 switch (sbi->s_jquota_fmt) {
1981 case QFMT_VFS_OLD:
1982 fmtname = "vfsold";
1983 break;
1984 case QFMT_VFS_V0:
1985 fmtname = "vfsv0";
1986 break;
1987 case QFMT_VFS_V1:
1988 fmtname = "vfsv1";
1989 break;
1991 seq_printf(seq, ",jqfmt=%s", fmtname);
1994 if (sbi->s_qf_names[USRQUOTA])
1995 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1997 if (sbi->s_qf_names[GRPQUOTA])
1998 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1999 #endif
2002 static const char *token2str(int token)
2004 const struct match_token *t;
2006 for (t = tokens; t->token != Opt_err; t++)
2007 if (t->token == token && !strchr(t->pattern, '='))
2008 break;
2009 return t->pattern;
2013 * Show an option if
2014 * - it's set to a non-default value OR
2015 * - if the per-sb default is different from the global default
2017 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2018 int nodefs)
2020 struct ext4_sb_info *sbi = EXT4_SB(sb);
2021 struct ext4_super_block *es = sbi->s_es;
2022 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
2023 const struct mount_opts *m;
2024 char sep = nodefs ? '\n' : ',';
2026 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2027 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2029 if (sbi->s_sb_block != 1)
2030 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2032 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2033 int want_set = m->flags & MOPT_SET;
2034 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2035 (m->flags & MOPT_CLEAR_ERR))
2036 continue;
2037 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2038 continue; /* skip if same as the default */
2039 if ((want_set &&
2040 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2041 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2042 continue; /* select Opt_noFoo vs Opt_Foo */
2043 SEQ_OPTS_PRINT("%s", token2str(m->token));
2046 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2047 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2048 SEQ_OPTS_PRINT("resuid=%u",
2049 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2050 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2051 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2052 SEQ_OPTS_PRINT("resgid=%u",
2053 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2054 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2055 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2056 SEQ_OPTS_PUTS("errors=remount-ro");
2057 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2058 SEQ_OPTS_PUTS("errors=continue");
2059 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2060 SEQ_OPTS_PUTS("errors=panic");
2061 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2062 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2063 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2064 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2065 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2066 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2067 if (sb->s_flags & SB_I_VERSION)
2068 SEQ_OPTS_PUTS("i_version");
2069 if (nodefs || sbi->s_stripe)
2070 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2071 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
2072 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2073 SEQ_OPTS_PUTS("data=journal");
2074 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2075 SEQ_OPTS_PUTS("data=ordered");
2076 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2077 SEQ_OPTS_PUTS("data=writeback");
2079 if (nodefs ||
2080 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2081 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2082 sbi->s_inode_readahead_blks);
2084 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2085 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2086 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2087 if (nodefs || sbi->s_max_dir_size_kb)
2088 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2089 if (test_opt(sb, DATA_ERR_ABORT))
2090 SEQ_OPTS_PUTS("data_err=abort");
2092 ext4_show_quota_options(seq, sb);
2093 return 0;
2096 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2098 return _ext4_show_options(seq, root->d_sb, 0);
2101 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2103 struct super_block *sb = seq->private;
2104 int rc;
2106 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2107 rc = _ext4_show_options(seq, sb, 1);
2108 seq_puts(seq, "\n");
2109 return rc;
2112 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2113 int read_only)
2115 struct ext4_sb_info *sbi = EXT4_SB(sb);
2116 int res = 0;
2118 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2119 ext4_msg(sb, KERN_ERR, "revision level too high, "
2120 "forcing read-only mode");
2121 res = SB_RDONLY;
2123 if (read_only)
2124 goto done;
2125 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2126 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2127 "running e2fsck is recommended");
2128 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2129 ext4_msg(sb, KERN_WARNING,
2130 "warning: mounting fs with errors, "
2131 "running e2fsck is recommended");
2132 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2133 le16_to_cpu(es->s_mnt_count) >=
2134 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2135 ext4_msg(sb, KERN_WARNING,
2136 "warning: maximal mount count reached, "
2137 "running e2fsck is recommended");
2138 else if (le32_to_cpu(es->s_checkinterval) &&
2139 (le32_to_cpu(es->s_lastcheck) +
2140 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2141 ext4_msg(sb, KERN_WARNING,
2142 "warning: checktime reached, "
2143 "running e2fsck is recommended");
2144 if (!sbi->s_journal)
2145 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2146 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2147 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2148 le16_add_cpu(&es->s_mnt_count, 1);
2149 es->s_mtime = cpu_to_le32(get_seconds());
2150 ext4_update_dynamic_rev(sb);
2151 if (sbi->s_journal)
2152 ext4_set_feature_journal_needs_recovery(sb);
2154 ext4_commit_super(sb, 1);
2155 done:
2156 if (test_opt(sb, DEBUG))
2157 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2158 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2159 sb->s_blocksize,
2160 sbi->s_groups_count,
2161 EXT4_BLOCKS_PER_GROUP(sb),
2162 EXT4_INODES_PER_GROUP(sb),
2163 sbi->s_mount_opt, sbi->s_mount_opt2);
2165 cleancache_init_fs(sb);
2166 return res;
2169 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2171 struct ext4_sb_info *sbi = EXT4_SB(sb);
2172 struct flex_groups *new_groups;
2173 int size;
2175 if (!sbi->s_log_groups_per_flex)
2176 return 0;
2178 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2179 if (size <= sbi->s_flex_groups_allocated)
2180 return 0;
2182 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2183 new_groups = kvzalloc(size, GFP_KERNEL);
2184 if (!new_groups) {
2185 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2186 size / (int) sizeof(struct flex_groups));
2187 return -ENOMEM;
2190 if (sbi->s_flex_groups) {
2191 memcpy(new_groups, sbi->s_flex_groups,
2192 (sbi->s_flex_groups_allocated *
2193 sizeof(struct flex_groups)));
2194 kvfree(sbi->s_flex_groups);
2196 sbi->s_flex_groups = new_groups;
2197 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2198 return 0;
2201 static int ext4_fill_flex_info(struct super_block *sb)
2203 struct ext4_sb_info *sbi = EXT4_SB(sb);
2204 struct ext4_group_desc *gdp = NULL;
2205 ext4_group_t flex_group;
2206 int i, err;
2208 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2209 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2210 sbi->s_log_groups_per_flex = 0;
2211 return 1;
2214 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2215 if (err)
2216 goto failed;
2218 for (i = 0; i < sbi->s_groups_count; i++) {
2219 gdp = ext4_get_group_desc(sb, i, NULL);
2221 flex_group = ext4_flex_group(sbi, i);
2222 atomic_add(ext4_free_inodes_count(sb, gdp),
2223 &sbi->s_flex_groups[flex_group].free_inodes);
2224 atomic64_add(ext4_free_group_clusters(sb, gdp),
2225 &sbi->s_flex_groups[flex_group].free_clusters);
2226 atomic_add(ext4_used_dirs_count(sb, gdp),
2227 &sbi->s_flex_groups[flex_group].used_dirs);
2230 return 1;
2231 failed:
2232 return 0;
2235 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2236 struct ext4_group_desc *gdp)
2238 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2239 __u16 crc = 0;
2240 __le32 le_group = cpu_to_le32(block_group);
2241 struct ext4_sb_info *sbi = EXT4_SB(sb);
2243 if (ext4_has_metadata_csum(sbi->s_sb)) {
2244 /* Use new metadata_csum algorithm */
2245 __u32 csum32;
2246 __u16 dummy_csum = 0;
2248 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2249 sizeof(le_group));
2250 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2251 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2252 sizeof(dummy_csum));
2253 offset += sizeof(dummy_csum);
2254 if (offset < sbi->s_desc_size)
2255 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2256 sbi->s_desc_size - offset);
2258 crc = csum32 & 0xFFFF;
2259 goto out;
2262 /* old crc16 code */
2263 if (!ext4_has_feature_gdt_csum(sb))
2264 return 0;
2266 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2267 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2268 crc = crc16(crc, (__u8 *)gdp, offset);
2269 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2270 /* for checksum of struct ext4_group_desc do the rest...*/
2271 if (ext4_has_feature_64bit(sb) &&
2272 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2273 crc = crc16(crc, (__u8 *)gdp + offset,
2274 le16_to_cpu(sbi->s_es->s_desc_size) -
2275 offset);
2277 out:
2278 return cpu_to_le16(crc);
2281 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2282 struct ext4_group_desc *gdp)
2284 if (ext4_has_group_desc_csum(sb) &&
2285 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2286 return 0;
2288 return 1;
2291 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2292 struct ext4_group_desc *gdp)
2294 if (!ext4_has_group_desc_csum(sb))
2295 return;
2296 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2299 /* Called at mount-time, super-block is locked */
2300 static int ext4_check_descriptors(struct super_block *sb,
2301 ext4_fsblk_t sb_block,
2302 ext4_group_t *first_not_zeroed)
2304 struct ext4_sb_info *sbi = EXT4_SB(sb);
2305 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2306 ext4_fsblk_t last_block;
2307 ext4_fsblk_t block_bitmap;
2308 ext4_fsblk_t inode_bitmap;
2309 ext4_fsblk_t inode_table;
2310 int flexbg_flag = 0;
2311 ext4_group_t i, grp = sbi->s_groups_count;
2313 if (ext4_has_feature_flex_bg(sb))
2314 flexbg_flag = 1;
2316 ext4_debug("Checking group descriptors");
2318 for (i = 0; i < sbi->s_groups_count; i++) {
2319 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2321 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2322 last_block = ext4_blocks_count(sbi->s_es) - 1;
2323 else
2324 last_block = first_block +
2325 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2327 if ((grp == sbi->s_groups_count) &&
2328 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2329 grp = i;
2331 block_bitmap = ext4_block_bitmap(sb, gdp);
2332 if (block_bitmap == sb_block) {
2333 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2334 "Block bitmap for group %u overlaps "
2335 "superblock", i);
2337 if (block_bitmap < first_block || block_bitmap > last_block) {
2338 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2339 "Block bitmap for group %u not in group "
2340 "(block %llu)!", i, block_bitmap);
2341 return 0;
2343 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2344 if (inode_bitmap == sb_block) {
2345 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2346 "Inode bitmap for group %u overlaps "
2347 "superblock", i);
2349 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2350 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2351 "Inode bitmap for group %u not in group "
2352 "(block %llu)!", i, inode_bitmap);
2353 return 0;
2355 inode_table = ext4_inode_table(sb, gdp);
2356 if (inode_table == sb_block) {
2357 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2358 "Inode table for group %u overlaps "
2359 "superblock", i);
2361 if (inode_table < first_block ||
2362 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2363 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2364 "Inode table for group %u not in group "
2365 "(block %llu)!", i, inode_table);
2366 return 0;
2368 ext4_lock_group(sb, i);
2369 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2370 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2371 "Checksum for group %u failed (%u!=%u)",
2372 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2373 gdp)), le16_to_cpu(gdp->bg_checksum));
2374 if (!sb_rdonly(sb)) {
2375 ext4_unlock_group(sb, i);
2376 return 0;
2379 ext4_unlock_group(sb, i);
2380 if (!flexbg_flag)
2381 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2383 if (NULL != first_not_zeroed)
2384 *first_not_zeroed = grp;
2385 return 1;
2388 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2389 * the superblock) which were deleted from all directories, but held open by
2390 * a process at the time of a crash. We walk the list and try to delete these
2391 * inodes at recovery time (only with a read-write filesystem).
2393 * In order to keep the orphan inode chain consistent during traversal (in
2394 * case of crash during recovery), we link each inode into the superblock
2395 * orphan list_head and handle it the same way as an inode deletion during
2396 * normal operation (which journals the operations for us).
2398 * We only do an iget() and an iput() on each inode, which is very safe if we
2399 * accidentally point at an in-use or already deleted inode. The worst that
2400 * can happen in this case is that we get a "bit already cleared" message from
2401 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2402 * e2fsck was run on this filesystem, and it must have already done the orphan
2403 * inode cleanup for us, so we can safely abort without any further action.
2405 static void ext4_orphan_cleanup(struct super_block *sb,
2406 struct ext4_super_block *es)
2408 unsigned int s_flags = sb->s_flags;
2409 int ret, nr_orphans = 0, nr_truncates = 0;
2410 #ifdef CONFIG_QUOTA
2411 int quota_update = 0;
2412 int i;
2413 #endif
2414 if (!es->s_last_orphan) {
2415 jbd_debug(4, "no orphan inodes to clean up\n");
2416 return;
2419 if (bdev_read_only(sb->s_bdev)) {
2420 ext4_msg(sb, KERN_ERR, "write access "
2421 "unavailable, skipping orphan cleanup");
2422 return;
2425 /* Check if feature set would not allow a r/w mount */
2426 if (!ext4_feature_set_ok(sb, 0)) {
2427 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2428 "unknown ROCOMPAT features");
2429 return;
2432 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2433 /* don't clear list on RO mount w/ errors */
2434 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2435 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2436 "clearing orphan list.\n");
2437 es->s_last_orphan = 0;
2439 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2440 return;
2443 if (s_flags & SB_RDONLY) {
2444 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2445 sb->s_flags &= ~SB_RDONLY;
2447 #ifdef CONFIG_QUOTA
2448 /* Needed for iput() to work correctly and not trash data */
2449 sb->s_flags |= SB_ACTIVE;
2452 * Turn on quotas which were not enabled for read-only mounts if
2453 * filesystem has quota feature, so that they are updated correctly.
2455 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2456 int ret = ext4_enable_quotas(sb);
2458 if (!ret)
2459 quota_update = 1;
2460 else
2461 ext4_msg(sb, KERN_ERR,
2462 "Cannot turn on quotas: error %d", ret);
2465 /* Turn on journaled quotas used for old sytle */
2466 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2467 if (EXT4_SB(sb)->s_qf_names[i]) {
2468 int ret = ext4_quota_on_mount(sb, i);
2470 if (!ret)
2471 quota_update = 1;
2472 else
2473 ext4_msg(sb, KERN_ERR,
2474 "Cannot turn on journaled "
2475 "quota: type %d: error %d", i, ret);
2478 #endif
2480 while (es->s_last_orphan) {
2481 struct inode *inode;
2484 * We may have encountered an error during cleanup; if
2485 * so, skip the rest.
2487 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2488 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2489 es->s_last_orphan = 0;
2490 break;
2493 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2494 if (IS_ERR(inode)) {
2495 es->s_last_orphan = 0;
2496 break;
2499 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2500 dquot_initialize(inode);
2501 if (inode->i_nlink) {
2502 if (test_opt(sb, DEBUG))
2503 ext4_msg(sb, KERN_DEBUG,
2504 "%s: truncating inode %lu to %lld bytes",
2505 __func__, inode->i_ino, inode->i_size);
2506 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2507 inode->i_ino, inode->i_size);
2508 inode_lock(inode);
2509 truncate_inode_pages(inode->i_mapping, inode->i_size);
2510 ret = ext4_truncate(inode);
2511 if (ret)
2512 ext4_std_error(inode->i_sb, ret);
2513 inode_unlock(inode);
2514 nr_truncates++;
2515 } else {
2516 if (test_opt(sb, DEBUG))
2517 ext4_msg(sb, KERN_DEBUG,
2518 "%s: deleting unreferenced inode %lu",
2519 __func__, inode->i_ino);
2520 jbd_debug(2, "deleting unreferenced inode %lu\n",
2521 inode->i_ino);
2522 nr_orphans++;
2524 iput(inode); /* The delete magic happens here! */
2527 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2529 if (nr_orphans)
2530 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2531 PLURAL(nr_orphans));
2532 if (nr_truncates)
2533 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2534 PLURAL(nr_truncates));
2535 #ifdef CONFIG_QUOTA
2536 /* Turn off quotas if they were enabled for orphan cleanup */
2537 if (quota_update) {
2538 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2539 if (sb_dqopt(sb)->files[i])
2540 dquot_quota_off(sb, i);
2543 #endif
2544 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2548 * Maximal extent format file size.
2549 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2550 * extent format containers, within a sector_t, and within i_blocks
2551 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2552 * so that won't be a limiting factor.
2554 * However there is other limiting factor. We do store extents in the form
2555 * of starting block and length, hence the resulting length of the extent
2556 * covering maximum file size must fit into on-disk format containers as
2557 * well. Given that length is always by 1 unit bigger than max unit (because
2558 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2560 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2562 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2564 loff_t res;
2565 loff_t upper_limit = MAX_LFS_FILESIZE;
2567 /* small i_blocks in vfs inode? */
2568 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2570 * CONFIG_LBDAF is not enabled implies the inode
2571 * i_block represent total blocks in 512 bytes
2572 * 32 == size of vfs inode i_blocks * 8
2574 upper_limit = (1LL << 32) - 1;
2576 /* total blocks in file system block size */
2577 upper_limit >>= (blkbits - 9);
2578 upper_limit <<= blkbits;
2582 * 32-bit extent-start container, ee_block. We lower the maxbytes
2583 * by one fs block, so ee_len can cover the extent of maximum file
2584 * size
2586 res = (1LL << 32) - 1;
2587 res <<= blkbits;
2589 /* Sanity check against vm- & vfs- imposed limits */
2590 if (res > upper_limit)
2591 res = upper_limit;
2593 return res;
2597 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2598 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2599 * We need to be 1 filesystem block less than the 2^48 sector limit.
2601 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2603 loff_t res = EXT4_NDIR_BLOCKS;
2604 int meta_blocks;
2605 loff_t upper_limit;
2606 /* This is calculated to be the largest file size for a dense, block
2607 * mapped file such that the file's total number of 512-byte sectors,
2608 * including data and all indirect blocks, does not exceed (2^48 - 1).
2610 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2611 * number of 512-byte sectors of the file.
2614 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2616 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2617 * the inode i_block field represents total file blocks in
2618 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2620 upper_limit = (1LL << 32) - 1;
2622 /* total blocks in file system block size */
2623 upper_limit >>= (bits - 9);
2625 } else {
2627 * We use 48 bit ext4_inode i_blocks
2628 * With EXT4_HUGE_FILE_FL set the i_blocks
2629 * represent total number of blocks in
2630 * file system block size
2632 upper_limit = (1LL << 48) - 1;
2636 /* indirect blocks */
2637 meta_blocks = 1;
2638 /* double indirect blocks */
2639 meta_blocks += 1 + (1LL << (bits-2));
2640 /* tripple indirect blocks */
2641 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2643 upper_limit -= meta_blocks;
2644 upper_limit <<= bits;
2646 res += 1LL << (bits-2);
2647 res += 1LL << (2*(bits-2));
2648 res += 1LL << (3*(bits-2));
2649 res <<= bits;
2650 if (res > upper_limit)
2651 res = upper_limit;
2653 if (res > MAX_LFS_FILESIZE)
2654 res = MAX_LFS_FILESIZE;
2656 return res;
2659 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2660 ext4_fsblk_t logical_sb_block, int nr)
2662 struct ext4_sb_info *sbi = EXT4_SB(sb);
2663 ext4_group_t bg, first_meta_bg;
2664 int has_super = 0;
2666 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2668 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2669 return logical_sb_block + nr + 1;
2670 bg = sbi->s_desc_per_block * nr;
2671 if (ext4_bg_has_super(sb, bg))
2672 has_super = 1;
2675 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2676 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2677 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2678 * compensate.
2680 if (sb->s_blocksize == 1024 && nr == 0 &&
2681 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2682 has_super++;
2684 return (has_super + ext4_group_first_block_no(sb, bg));
2688 * ext4_get_stripe_size: Get the stripe size.
2689 * @sbi: In memory super block info
2691 * If we have specified it via mount option, then
2692 * use the mount option value. If the value specified at mount time is
2693 * greater than the blocks per group use the super block value.
2694 * If the super block value is greater than blocks per group return 0.
2695 * Allocator needs it be less than blocks per group.
2698 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2700 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2701 unsigned long stripe_width =
2702 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2703 int ret;
2705 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2706 ret = sbi->s_stripe;
2707 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2708 ret = stripe_width;
2709 else if (stride && stride <= sbi->s_blocks_per_group)
2710 ret = stride;
2711 else
2712 ret = 0;
2715 * If the stripe width is 1, this makes no sense and
2716 * we set it to 0 to turn off stripe handling code.
2718 if (ret <= 1)
2719 ret = 0;
2721 return ret;
2725 * Check whether this filesystem can be mounted based on
2726 * the features present and the RDONLY/RDWR mount requested.
2727 * Returns 1 if this filesystem can be mounted as requested,
2728 * 0 if it cannot be.
2730 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2732 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2733 ext4_msg(sb, KERN_ERR,
2734 "Couldn't mount because of "
2735 "unsupported optional features (%x)",
2736 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2737 ~EXT4_FEATURE_INCOMPAT_SUPP));
2738 return 0;
2741 if (readonly)
2742 return 1;
2744 if (ext4_has_feature_readonly(sb)) {
2745 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2746 sb->s_flags |= SB_RDONLY;
2747 return 1;
2750 /* Check that feature set is OK for a read-write mount */
2751 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2752 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2753 "unsupported optional features (%x)",
2754 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2755 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2756 return 0;
2759 * Large file size enabled file system can only be mounted
2760 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2762 if (ext4_has_feature_huge_file(sb)) {
2763 if (sizeof(blkcnt_t) < sizeof(u64)) {
2764 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2765 "cannot be mounted RDWR without "
2766 "CONFIG_LBDAF");
2767 return 0;
2770 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2771 ext4_msg(sb, KERN_ERR,
2772 "Can't support bigalloc feature without "
2773 "extents feature\n");
2774 return 0;
2777 #ifndef CONFIG_QUOTA
2778 if (ext4_has_feature_quota(sb) && !readonly) {
2779 ext4_msg(sb, KERN_ERR,
2780 "Filesystem with quota feature cannot be mounted RDWR "
2781 "without CONFIG_QUOTA");
2782 return 0;
2784 if (ext4_has_feature_project(sb) && !readonly) {
2785 ext4_msg(sb, KERN_ERR,
2786 "Filesystem with project quota feature cannot be mounted RDWR "
2787 "without CONFIG_QUOTA");
2788 return 0;
2790 #endif /* CONFIG_QUOTA */
2791 return 1;
2795 * This function is called once a day if we have errors logged
2796 * on the file system
2798 static void print_daily_error_info(struct timer_list *t)
2800 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2801 struct super_block *sb = sbi->s_sb;
2802 struct ext4_super_block *es = sbi->s_es;
2804 if (es->s_error_count)
2805 /* fsck newer than v1.41.13 is needed to clean this condition. */
2806 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2807 le32_to_cpu(es->s_error_count));
2808 if (es->s_first_error_time) {
2809 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2810 sb->s_id, le32_to_cpu(es->s_first_error_time),
2811 (int) sizeof(es->s_first_error_func),
2812 es->s_first_error_func,
2813 le32_to_cpu(es->s_first_error_line));
2814 if (es->s_first_error_ino)
2815 printk(KERN_CONT ": inode %u",
2816 le32_to_cpu(es->s_first_error_ino));
2817 if (es->s_first_error_block)
2818 printk(KERN_CONT ": block %llu", (unsigned long long)
2819 le64_to_cpu(es->s_first_error_block));
2820 printk(KERN_CONT "\n");
2822 if (es->s_last_error_time) {
2823 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2824 sb->s_id, le32_to_cpu(es->s_last_error_time),
2825 (int) sizeof(es->s_last_error_func),
2826 es->s_last_error_func,
2827 le32_to_cpu(es->s_last_error_line));
2828 if (es->s_last_error_ino)
2829 printk(KERN_CONT ": inode %u",
2830 le32_to_cpu(es->s_last_error_ino));
2831 if (es->s_last_error_block)
2832 printk(KERN_CONT ": block %llu", (unsigned long long)
2833 le64_to_cpu(es->s_last_error_block));
2834 printk(KERN_CONT "\n");
2836 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2839 /* Find next suitable group and run ext4_init_inode_table */
2840 static int ext4_run_li_request(struct ext4_li_request *elr)
2842 struct ext4_group_desc *gdp = NULL;
2843 ext4_group_t group, ngroups;
2844 struct super_block *sb;
2845 unsigned long timeout = 0;
2846 int ret = 0;
2848 sb = elr->lr_super;
2849 ngroups = EXT4_SB(sb)->s_groups_count;
2851 for (group = elr->lr_next_group; group < ngroups; group++) {
2852 gdp = ext4_get_group_desc(sb, group, NULL);
2853 if (!gdp) {
2854 ret = 1;
2855 break;
2858 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2859 break;
2862 if (group >= ngroups)
2863 ret = 1;
2865 if (!ret) {
2866 timeout = jiffies;
2867 ret = ext4_init_inode_table(sb, group,
2868 elr->lr_timeout ? 0 : 1);
2869 if (elr->lr_timeout == 0) {
2870 timeout = (jiffies - timeout) *
2871 elr->lr_sbi->s_li_wait_mult;
2872 elr->lr_timeout = timeout;
2874 elr->lr_next_sched = jiffies + elr->lr_timeout;
2875 elr->lr_next_group = group + 1;
2877 return ret;
2881 * Remove lr_request from the list_request and free the
2882 * request structure. Should be called with li_list_mtx held
2884 static void ext4_remove_li_request(struct ext4_li_request *elr)
2886 struct ext4_sb_info *sbi;
2888 if (!elr)
2889 return;
2891 sbi = elr->lr_sbi;
2893 list_del(&elr->lr_request);
2894 sbi->s_li_request = NULL;
2895 kfree(elr);
2898 static void ext4_unregister_li_request(struct super_block *sb)
2900 mutex_lock(&ext4_li_mtx);
2901 if (!ext4_li_info) {
2902 mutex_unlock(&ext4_li_mtx);
2903 return;
2906 mutex_lock(&ext4_li_info->li_list_mtx);
2907 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2908 mutex_unlock(&ext4_li_info->li_list_mtx);
2909 mutex_unlock(&ext4_li_mtx);
2912 static struct task_struct *ext4_lazyinit_task;
2915 * This is the function where ext4lazyinit thread lives. It walks
2916 * through the request list searching for next scheduled filesystem.
2917 * When such a fs is found, run the lazy initialization request
2918 * (ext4_rn_li_request) and keep track of the time spend in this
2919 * function. Based on that time we compute next schedule time of
2920 * the request. When walking through the list is complete, compute
2921 * next waking time and put itself into sleep.
2923 static int ext4_lazyinit_thread(void *arg)
2925 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2926 struct list_head *pos, *n;
2927 struct ext4_li_request *elr;
2928 unsigned long next_wakeup, cur;
2930 BUG_ON(NULL == eli);
2932 cont_thread:
2933 while (true) {
2934 next_wakeup = MAX_JIFFY_OFFSET;
2936 mutex_lock(&eli->li_list_mtx);
2937 if (list_empty(&eli->li_request_list)) {
2938 mutex_unlock(&eli->li_list_mtx);
2939 goto exit_thread;
2941 list_for_each_safe(pos, n, &eli->li_request_list) {
2942 int err = 0;
2943 int progress = 0;
2944 elr = list_entry(pos, struct ext4_li_request,
2945 lr_request);
2947 if (time_before(jiffies, elr->lr_next_sched)) {
2948 if (time_before(elr->lr_next_sched, next_wakeup))
2949 next_wakeup = elr->lr_next_sched;
2950 continue;
2952 if (down_read_trylock(&elr->lr_super->s_umount)) {
2953 if (sb_start_write_trylock(elr->lr_super)) {
2954 progress = 1;
2956 * We hold sb->s_umount, sb can not
2957 * be removed from the list, it is
2958 * now safe to drop li_list_mtx
2960 mutex_unlock(&eli->li_list_mtx);
2961 err = ext4_run_li_request(elr);
2962 sb_end_write(elr->lr_super);
2963 mutex_lock(&eli->li_list_mtx);
2964 n = pos->next;
2966 up_read((&elr->lr_super->s_umount));
2968 /* error, remove the lazy_init job */
2969 if (err) {
2970 ext4_remove_li_request(elr);
2971 continue;
2973 if (!progress) {
2974 elr->lr_next_sched = jiffies +
2975 (prandom_u32()
2976 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2978 if (time_before(elr->lr_next_sched, next_wakeup))
2979 next_wakeup = elr->lr_next_sched;
2981 mutex_unlock(&eli->li_list_mtx);
2983 try_to_freeze();
2985 cur = jiffies;
2986 if ((time_after_eq(cur, next_wakeup)) ||
2987 (MAX_JIFFY_OFFSET == next_wakeup)) {
2988 cond_resched();
2989 continue;
2992 schedule_timeout_interruptible(next_wakeup - cur);
2994 if (kthread_should_stop()) {
2995 ext4_clear_request_list();
2996 goto exit_thread;
3000 exit_thread:
3002 * It looks like the request list is empty, but we need
3003 * to check it under the li_list_mtx lock, to prevent any
3004 * additions into it, and of course we should lock ext4_li_mtx
3005 * to atomically free the list and ext4_li_info, because at
3006 * this point another ext4 filesystem could be registering
3007 * new one.
3009 mutex_lock(&ext4_li_mtx);
3010 mutex_lock(&eli->li_list_mtx);
3011 if (!list_empty(&eli->li_request_list)) {
3012 mutex_unlock(&eli->li_list_mtx);
3013 mutex_unlock(&ext4_li_mtx);
3014 goto cont_thread;
3016 mutex_unlock(&eli->li_list_mtx);
3017 kfree(ext4_li_info);
3018 ext4_li_info = NULL;
3019 mutex_unlock(&ext4_li_mtx);
3021 return 0;
3024 static void ext4_clear_request_list(void)
3026 struct list_head *pos, *n;
3027 struct ext4_li_request *elr;
3029 mutex_lock(&ext4_li_info->li_list_mtx);
3030 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3031 elr = list_entry(pos, struct ext4_li_request,
3032 lr_request);
3033 ext4_remove_li_request(elr);
3035 mutex_unlock(&ext4_li_info->li_list_mtx);
3038 static int ext4_run_lazyinit_thread(void)
3040 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3041 ext4_li_info, "ext4lazyinit");
3042 if (IS_ERR(ext4_lazyinit_task)) {
3043 int err = PTR_ERR(ext4_lazyinit_task);
3044 ext4_clear_request_list();
3045 kfree(ext4_li_info);
3046 ext4_li_info = NULL;
3047 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3048 "initialization thread\n",
3049 err);
3050 return err;
3052 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3053 return 0;
3057 * Check whether it make sense to run itable init. thread or not.
3058 * If there is at least one uninitialized inode table, return
3059 * corresponding group number, else the loop goes through all
3060 * groups and return total number of groups.
3062 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3064 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3065 struct ext4_group_desc *gdp = NULL;
3067 for (group = 0; group < ngroups; group++) {
3068 gdp = ext4_get_group_desc(sb, group, NULL);
3069 if (!gdp)
3070 continue;
3072 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3073 break;
3076 return group;
3079 static int ext4_li_info_new(void)
3081 struct ext4_lazy_init *eli = NULL;
3083 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3084 if (!eli)
3085 return -ENOMEM;
3087 INIT_LIST_HEAD(&eli->li_request_list);
3088 mutex_init(&eli->li_list_mtx);
3090 eli->li_state |= EXT4_LAZYINIT_QUIT;
3092 ext4_li_info = eli;
3094 return 0;
3097 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3098 ext4_group_t start)
3100 struct ext4_sb_info *sbi = EXT4_SB(sb);
3101 struct ext4_li_request *elr;
3103 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3104 if (!elr)
3105 return NULL;
3107 elr->lr_super = sb;
3108 elr->lr_sbi = sbi;
3109 elr->lr_next_group = start;
3112 * Randomize first schedule time of the request to
3113 * spread the inode table initialization requests
3114 * better.
3116 elr->lr_next_sched = jiffies + (prandom_u32() %
3117 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3118 return elr;
3121 int ext4_register_li_request(struct super_block *sb,
3122 ext4_group_t first_not_zeroed)
3124 struct ext4_sb_info *sbi = EXT4_SB(sb);
3125 struct ext4_li_request *elr = NULL;
3126 ext4_group_t ngroups = sbi->s_groups_count;
3127 int ret = 0;
3129 mutex_lock(&ext4_li_mtx);
3130 if (sbi->s_li_request != NULL) {
3132 * Reset timeout so it can be computed again, because
3133 * s_li_wait_mult might have changed.
3135 sbi->s_li_request->lr_timeout = 0;
3136 goto out;
3139 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3140 !test_opt(sb, INIT_INODE_TABLE))
3141 goto out;
3143 elr = ext4_li_request_new(sb, first_not_zeroed);
3144 if (!elr) {
3145 ret = -ENOMEM;
3146 goto out;
3149 if (NULL == ext4_li_info) {
3150 ret = ext4_li_info_new();
3151 if (ret)
3152 goto out;
3155 mutex_lock(&ext4_li_info->li_list_mtx);
3156 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3157 mutex_unlock(&ext4_li_info->li_list_mtx);
3159 sbi->s_li_request = elr;
3161 * set elr to NULL here since it has been inserted to
3162 * the request_list and the removal and free of it is
3163 * handled by ext4_clear_request_list from now on.
3165 elr = NULL;
3167 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3168 ret = ext4_run_lazyinit_thread();
3169 if (ret)
3170 goto out;
3172 out:
3173 mutex_unlock(&ext4_li_mtx);
3174 if (ret)
3175 kfree(elr);
3176 return ret;
3180 * We do not need to lock anything since this is called on
3181 * module unload.
3183 static void ext4_destroy_lazyinit_thread(void)
3186 * If thread exited earlier
3187 * there's nothing to be done.
3189 if (!ext4_li_info || !ext4_lazyinit_task)
3190 return;
3192 kthread_stop(ext4_lazyinit_task);
3195 static int set_journal_csum_feature_set(struct super_block *sb)
3197 int ret = 1;
3198 int compat, incompat;
3199 struct ext4_sb_info *sbi = EXT4_SB(sb);
3201 if (ext4_has_metadata_csum(sb)) {
3202 /* journal checksum v3 */
3203 compat = 0;
3204 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3205 } else {
3206 /* journal checksum v1 */
3207 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3208 incompat = 0;
3211 jbd2_journal_clear_features(sbi->s_journal,
3212 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3213 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3214 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3215 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3216 ret = jbd2_journal_set_features(sbi->s_journal,
3217 compat, 0,
3218 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3219 incompat);
3220 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3221 ret = jbd2_journal_set_features(sbi->s_journal,
3222 compat, 0,
3223 incompat);
3224 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3225 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3226 } else {
3227 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3228 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3231 return ret;
3235 * Note: calculating the overhead so we can be compatible with
3236 * historical BSD practice is quite difficult in the face of
3237 * clusters/bigalloc. This is because multiple metadata blocks from
3238 * different block group can end up in the same allocation cluster.
3239 * Calculating the exact overhead in the face of clustered allocation
3240 * requires either O(all block bitmaps) in memory or O(number of block
3241 * groups**2) in time. We will still calculate the superblock for
3242 * older file systems --- and if we come across with a bigalloc file
3243 * system with zero in s_overhead_clusters the estimate will be close to
3244 * correct especially for very large cluster sizes --- but for newer
3245 * file systems, it's better to calculate this figure once at mkfs
3246 * time, and store it in the superblock. If the superblock value is
3247 * present (even for non-bigalloc file systems), we will use it.
3249 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3250 char *buf)
3252 struct ext4_sb_info *sbi = EXT4_SB(sb);
3253 struct ext4_group_desc *gdp;
3254 ext4_fsblk_t first_block, last_block, b;
3255 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3256 int s, j, count = 0;
3258 if (!ext4_has_feature_bigalloc(sb))
3259 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3260 sbi->s_itb_per_group + 2);
3262 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3263 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3264 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3265 for (i = 0; i < ngroups; i++) {
3266 gdp = ext4_get_group_desc(sb, i, NULL);
3267 b = ext4_block_bitmap(sb, gdp);
3268 if (b >= first_block && b <= last_block) {
3269 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3270 count++;
3272 b = ext4_inode_bitmap(sb, gdp);
3273 if (b >= first_block && b <= last_block) {
3274 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3275 count++;
3277 b = ext4_inode_table(sb, gdp);
3278 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3279 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3280 int c = EXT4_B2C(sbi, b - first_block);
3281 ext4_set_bit(c, buf);
3282 count++;
3284 if (i != grp)
3285 continue;
3286 s = 0;
3287 if (ext4_bg_has_super(sb, grp)) {
3288 ext4_set_bit(s++, buf);
3289 count++;
3291 j = ext4_bg_num_gdb(sb, grp);
3292 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3293 ext4_error(sb, "Invalid number of block group "
3294 "descriptor blocks: %d", j);
3295 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3297 count += j;
3298 for (; j > 0; j--)
3299 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3301 if (!count)
3302 return 0;
3303 return EXT4_CLUSTERS_PER_GROUP(sb) -
3304 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3308 * Compute the overhead and stash it in sbi->s_overhead
3310 int ext4_calculate_overhead(struct super_block *sb)
3312 struct ext4_sb_info *sbi = EXT4_SB(sb);
3313 struct ext4_super_block *es = sbi->s_es;
3314 struct inode *j_inode;
3315 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3316 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3317 ext4_fsblk_t overhead = 0;
3318 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3320 if (!buf)
3321 return -ENOMEM;
3324 * Compute the overhead (FS structures). This is constant
3325 * for a given filesystem unless the number of block groups
3326 * changes so we cache the previous value until it does.
3330 * All of the blocks before first_data_block are overhead
3332 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3335 * Add the overhead found in each block group
3337 for (i = 0; i < ngroups; i++) {
3338 int blks;
3340 blks = count_overhead(sb, i, buf);
3341 overhead += blks;
3342 if (blks)
3343 memset(buf, 0, PAGE_SIZE);
3344 cond_resched();
3348 * Add the internal journal blocks whether the journal has been
3349 * loaded or not
3351 if (sbi->s_journal && !sbi->journal_bdev)
3352 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3353 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3354 j_inode = ext4_get_journal_inode(sb, j_inum);
3355 if (j_inode) {
3356 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3357 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3358 iput(j_inode);
3359 } else {
3360 ext4_msg(sb, KERN_ERR, "can't get journal size");
3363 sbi->s_overhead = overhead;
3364 smp_wmb();
3365 free_page((unsigned long) buf);
3366 return 0;
3369 static void ext4_set_resv_clusters(struct super_block *sb)
3371 ext4_fsblk_t resv_clusters;
3372 struct ext4_sb_info *sbi = EXT4_SB(sb);
3375 * There's no need to reserve anything when we aren't using extents.
3376 * The space estimates are exact, there are no unwritten extents,
3377 * hole punching doesn't need new metadata... This is needed especially
3378 * to keep ext2/3 backward compatibility.
3380 if (!ext4_has_feature_extents(sb))
3381 return;
3383 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3384 * This should cover the situations where we can not afford to run
3385 * out of space like for example punch hole, or converting
3386 * unwritten extents in delalloc path. In most cases such
3387 * allocation would require 1, or 2 blocks, higher numbers are
3388 * very rare.
3390 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3391 sbi->s_cluster_bits);
3393 do_div(resv_clusters, 50);
3394 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3396 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3399 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3401 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3402 char *orig_data = kstrdup(data, GFP_KERNEL);
3403 struct buffer_head *bh;
3404 struct ext4_super_block *es = NULL;
3405 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3406 ext4_fsblk_t block;
3407 ext4_fsblk_t sb_block = get_sb_block(&data);
3408 ext4_fsblk_t logical_sb_block;
3409 unsigned long offset = 0;
3410 unsigned long journal_devnum = 0;
3411 unsigned long def_mount_opts;
3412 struct inode *root;
3413 const char *descr;
3414 int ret = -ENOMEM;
3415 int blocksize, clustersize;
3416 unsigned int db_count;
3417 unsigned int i;
3418 int needs_recovery, has_huge_files, has_bigalloc;
3419 __u64 blocks_count;
3420 int err = 0;
3421 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3422 ext4_group_t first_not_zeroed;
3424 if ((data && !orig_data) || !sbi)
3425 goto out_free_base;
3427 sbi->s_daxdev = dax_dev;
3428 sbi->s_blockgroup_lock =
3429 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3430 if (!sbi->s_blockgroup_lock)
3431 goto out_free_base;
3433 sb->s_fs_info = sbi;
3434 sbi->s_sb = sb;
3435 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3436 sbi->s_sb_block = sb_block;
3437 if (sb->s_bdev->bd_part)
3438 sbi->s_sectors_written_start =
3439 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3441 /* Cleanup superblock name */
3442 strreplace(sb->s_id, '/', '!');
3444 /* -EINVAL is default */
3445 ret = -EINVAL;
3446 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3447 if (!blocksize) {
3448 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3449 goto out_fail;
3453 * The ext4 superblock will not be buffer aligned for other than 1kB
3454 * block sizes. We need to calculate the offset from buffer start.
3456 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3457 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3458 offset = do_div(logical_sb_block, blocksize);
3459 } else {
3460 logical_sb_block = sb_block;
3463 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3464 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3465 goto out_fail;
3468 * Note: s_es must be initialized as soon as possible because
3469 * some ext4 macro-instructions depend on its value
3471 es = (struct ext4_super_block *) (bh->b_data + offset);
3472 sbi->s_es = es;
3473 sb->s_magic = le16_to_cpu(es->s_magic);
3474 if (sb->s_magic != EXT4_SUPER_MAGIC)
3475 goto cantfind_ext4;
3476 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3478 /* Warn if metadata_csum and gdt_csum are both set. */
3479 if (ext4_has_feature_metadata_csum(sb) &&
3480 ext4_has_feature_gdt_csum(sb))
3481 ext4_warning(sb, "metadata_csum and uninit_bg are "
3482 "redundant flags; please run fsck.");
3484 /* Check for a known checksum algorithm */
3485 if (!ext4_verify_csum_type(sb, es)) {
3486 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3487 "unknown checksum algorithm.");
3488 silent = 1;
3489 goto cantfind_ext4;
3492 /* Load the checksum driver */
3493 if (ext4_has_feature_metadata_csum(sb) ||
3494 ext4_has_feature_ea_inode(sb)) {
3495 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3496 if (IS_ERR(sbi->s_chksum_driver)) {
3497 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3498 ret = PTR_ERR(sbi->s_chksum_driver);
3499 sbi->s_chksum_driver = NULL;
3500 goto failed_mount;
3504 /* Check superblock checksum */
3505 if (!ext4_superblock_csum_verify(sb, es)) {
3506 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3507 "invalid superblock checksum. Run e2fsck?");
3508 silent = 1;
3509 ret = -EFSBADCRC;
3510 goto cantfind_ext4;
3513 /* Precompute checksum seed for all metadata */
3514 if (ext4_has_feature_csum_seed(sb))
3515 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3516 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3517 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3518 sizeof(es->s_uuid));
3520 /* Set defaults before we parse the mount options */
3521 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3522 set_opt(sb, INIT_INODE_TABLE);
3523 if (def_mount_opts & EXT4_DEFM_DEBUG)
3524 set_opt(sb, DEBUG);
3525 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3526 set_opt(sb, GRPID);
3527 if (def_mount_opts & EXT4_DEFM_UID16)
3528 set_opt(sb, NO_UID32);
3529 /* xattr user namespace & acls are now defaulted on */
3530 set_opt(sb, XATTR_USER);
3531 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3532 set_opt(sb, POSIX_ACL);
3533 #endif
3534 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3535 if (ext4_has_metadata_csum(sb))
3536 set_opt(sb, JOURNAL_CHECKSUM);
3538 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3539 set_opt(sb, JOURNAL_DATA);
3540 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3541 set_opt(sb, ORDERED_DATA);
3542 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3543 set_opt(sb, WRITEBACK_DATA);
3545 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3546 set_opt(sb, ERRORS_PANIC);
3547 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3548 set_opt(sb, ERRORS_CONT);
3549 else
3550 set_opt(sb, ERRORS_RO);
3551 /* block_validity enabled by default; disable with noblock_validity */
3552 set_opt(sb, BLOCK_VALIDITY);
3553 if (def_mount_opts & EXT4_DEFM_DISCARD)
3554 set_opt(sb, DISCARD);
3556 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3557 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3558 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3559 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3560 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3562 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3563 set_opt(sb, BARRIER);
3566 * enable delayed allocation by default
3567 * Use -o nodelalloc to turn it off
3569 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3570 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3571 set_opt(sb, DELALLOC);
3574 * set default s_li_wait_mult for lazyinit, for the case there is
3575 * no mount option specified.
3577 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3579 if (sbi->s_es->s_mount_opts[0]) {
3580 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3581 sizeof(sbi->s_es->s_mount_opts),
3582 GFP_KERNEL);
3583 if (!s_mount_opts)
3584 goto failed_mount;
3585 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3586 &journal_ioprio, 0)) {
3587 ext4_msg(sb, KERN_WARNING,
3588 "failed to parse options in superblock: %s",
3589 s_mount_opts);
3591 kfree(s_mount_opts);
3593 sbi->s_def_mount_opt = sbi->s_mount_opt;
3594 if (!parse_options((char *) data, sb, &journal_devnum,
3595 &journal_ioprio, 0))
3596 goto failed_mount;
3598 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3599 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3600 "with data=journal disables delayed "
3601 "allocation and O_DIRECT support!\n");
3602 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3603 ext4_msg(sb, KERN_ERR, "can't mount with "
3604 "both data=journal and delalloc");
3605 goto failed_mount;
3607 if (test_opt(sb, DIOREAD_NOLOCK)) {
3608 ext4_msg(sb, KERN_ERR, "can't mount with "
3609 "both data=journal and dioread_nolock");
3610 goto failed_mount;
3612 if (test_opt(sb, DAX)) {
3613 ext4_msg(sb, KERN_ERR, "can't mount with "
3614 "both data=journal and dax");
3615 goto failed_mount;
3617 if (ext4_has_feature_encrypt(sb)) {
3618 ext4_msg(sb, KERN_WARNING,
3619 "encrypted files will use data=ordered "
3620 "instead of data journaling mode");
3622 if (test_opt(sb, DELALLOC))
3623 clear_opt(sb, DELALLOC);
3624 } else {
3625 sb->s_iflags |= SB_I_CGROUPWB;
3628 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3629 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3631 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3632 (ext4_has_compat_features(sb) ||
3633 ext4_has_ro_compat_features(sb) ||
3634 ext4_has_incompat_features(sb)))
3635 ext4_msg(sb, KERN_WARNING,
3636 "feature flags set on rev 0 fs, "
3637 "running e2fsck is recommended");
3639 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3640 set_opt2(sb, HURD_COMPAT);
3641 if (ext4_has_feature_64bit(sb)) {
3642 ext4_msg(sb, KERN_ERR,
3643 "The Hurd can't support 64-bit file systems");
3644 goto failed_mount;
3648 * ea_inode feature uses l_i_version field which is not
3649 * available in HURD_COMPAT mode.
3651 if (ext4_has_feature_ea_inode(sb)) {
3652 ext4_msg(sb, KERN_ERR,
3653 "ea_inode feature is not supported for Hurd");
3654 goto failed_mount;
3658 if (IS_EXT2_SB(sb)) {
3659 if (ext2_feature_set_ok(sb))
3660 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3661 "using the ext4 subsystem");
3662 else {
3663 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3664 "to feature incompatibilities");
3665 goto failed_mount;
3669 if (IS_EXT3_SB(sb)) {
3670 if (ext3_feature_set_ok(sb))
3671 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3672 "using the ext4 subsystem");
3673 else {
3674 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3675 "to feature incompatibilities");
3676 goto failed_mount;
3681 * Check feature flags regardless of the revision level, since we
3682 * previously didn't change the revision level when setting the flags,
3683 * so there is a chance incompat flags are set on a rev 0 filesystem.
3685 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3686 goto failed_mount;
3688 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3689 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3690 blocksize > EXT4_MAX_BLOCK_SIZE) {
3691 ext4_msg(sb, KERN_ERR,
3692 "Unsupported filesystem blocksize %d (%d log_block_size)",
3693 blocksize, le32_to_cpu(es->s_log_block_size));
3694 goto failed_mount;
3696 if (le32_to_cpu(es->s_log_block_size) >
3697 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3698 ext4_msg(sb, KERN_ERR,
3699 "Invalid log block size: %u",
3700 le32_to_cpu(es->s_log_block_size));
3701 goto failed_mount;
3704 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3705 ext4_msg(sb, KERN_ERR,
3706 "Number of reserved GDT blocks insanely large: %d",
3707 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3708 goto failed_mount;
3711 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3712 if (ext4_has_feature_inline_data(sb)) {
3713 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3714 " that may contain inline data");
3715 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3717 err = bdev_dax_supported(sb, blocksize);
3718 if (err) {
3719 ext4_msg(sb, KERN_ERR,
3720 "DAX unsupported by block device. Turning off DAX.");
3721 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3725 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3726 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3727 es->s_encryption_level);
3728 goto failed_mount;
3731 if (sb->s_blocksize != blocksize) {
3732 /* Validate the filesystem blocksize */
3733 if (!sb_set_blocksize(sb, blocksize)) {
3734 ext4_msg(sb, KERN_ERR, "bad block size %d",
3735 blocksize);
3736 goto failed_mount;
3739 brelse(bh);
3740 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3741 offset = do_div(logical_sb_block, blocksize);
3742 bh = sb_bread_unmovable(sb, logical_sb_block);
3743 if (!bh) {
3744 ext4_msg(sb, KERN_ERR,
3745 "Can't read superblock on 2nd try");
3746 goto failed_mount;
3748 es = (struct ext4_super_block *)(bh->b_data + offset);
3749 sbi->s_es = es;
3750 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3751 ext4_msg(sb, KERN_ERR,
3752 "Magic mismatch, very weird!");
3753 goto failed_mount;
3757 has_huge_files = ext4_has_feature_huge_file(sb);
3758 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3759 has_huge_files);
3760 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3762 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3763 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3764 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3765 } else {
3766 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3767 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3768 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3769 (!is_power_of_2(sbi->s_inode_size)) ||
3770 (sbi->s_inode_size > blocksize)) {
3771 ext4_msg(sb, KERN_ERR,
3772 "unsupported inode size: %d",
3773 sbi->s_inode_size);
3774 goto failed_mount;
3776 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3777 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3780 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3781 if (ext4_has_feature_64bit(sb)) {
3782 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3783 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3784 !is_power_of_2(sbi->s_desc_size)) {
3785 ext4_msg(sb, KERN_ERR,
3786 "unsupported descriptor size %lu",
3787 sbi->s_desc_size);
3788 goto failed_mount;
3790 } else
3791 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3793 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3794 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3796 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3797 if (sbi->s_inodes_per_block == 0)
3798 goto cantfind_ext4;
3799 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3800 sbi->s_inodes_per_group > blocksize * 8) {
3801 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3802 sbi->s_blocks_per_group);
3803 goto failed_mount;
3805 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3806 sbi->s_inodes_per_block;
3807 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3808 sbi->s_sbh = bh;
3809 sbi->s_mount_state = le16_to_cpu(es->s_state);
3810 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3811 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3813 for (i = 0; i < 4; i++)
3814 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3815 sbi->s_def_hash_version = es->s_def_hash_version;
3816 if (ext4_has_feature_dir_index(sb)) {
3817 i = le32_to_cpu(es->s_flags);
3818 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3819 sbi->s_hash_unsigned = 3;
3820 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3821 #ifdef __CHAR_UNSIGNED__
3822 if (!sb_rdonly(sb))
3823 es->s_flags |=
3824 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3825 sbi->s_hash_unsigned = 3;
3826 #else
3827 if (!sb_rdonly(sb))
3828 es->s_flags |=
3829 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3830 #endif
3834 /* Handle clustersize */
3835 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3836 has_bigalloc = ext4_has_feature_bigalloc(sb);
3837 if (has_bigalloc) {
3838 if (clustersize < blocksize) {
3839 ext4_msg(sb, KERN_ERR,
3840 "cluster size (%d) smaller than "
3841 "block size (%d)", clustersize, blocksize);
3842 goto failed_mount;
3844 if (le32_to_cpu(es->s_log_cluster_size) >
3845 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3846 ext4_msg(sb, KERN_ERR,
3847 "Invalid log cluster size: %u",
3848 le32_to_cpu(es->s_log_cluster_size));
3849 goto failed_mount;
3851 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3852 le32_to_cpu(es->s_log_block_size);
3853 sbi->s_clusters_per_group =
3854 le32_to_cpu(es->s_clusters_per_group);
3855 if (sbi->s_clusters_per_group > blocksize * 8) {
3856 ext4_msg(sb, KERN_ERR,
3857 "#clusters per group too big: %lu",
3858 sbi->s_clusters_per_group);
3859 goto failed_mount;
3861 if (sbi->s_blocks_per_group !=
3862 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3863 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3864 "clusters per group (%lu) inconsistent",
3865 sbi->s_blocks_per_group,
3866 sbi->s_clusters_per_group);
3867 goto failed_mount;
3869 } else {
3870 if (clustersize != blocksize) {
3871 ext4_warning(sb, "fragment/cluster size (%d) != "
3872 "block size (%d)", clustersize,
3873 blocksize);
3874 clustersize = blocksize;
3876 if (sbi->s_blocks_per_group > blocksize * 8) {
3877 ext4_msg(sb, KERN_ERR,
3878 "#blocks per group too big: %lu",
3879 sbi->s_blocks_per_group);
3880 goto failed_mount;
3882 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3883 sbi->s_cluster_bits = 0;
3885 sbi->s_cluster_ratio = clustersize / blocksize;
3887 /* Do we have standard group size of clustersize * 8 blocks ? */
3888 if (sbi->s_blocks_per_group == clustersize << 3)
3889 set_opt2(sb, STD_GROUP_SIZE);
3892 * Test whether we have more sectors than will fit in sector_t,
3893 * and whether the max offset is addressable by the page cache.
3895 err = generic_check_addressable(sb->s_blocksize_bits,
3896 ext4_blocks_count(es));
3897 if (err) {
3898 ext4_msg(sb, KERN_ERR, "filesystem"
3899 " too large to mount safely on this system");
3900 if (sizeof(sector_t) < 8)
3901 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3902 goto failed_mount;
3905 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3906 goto cantfind_ext4;
3908 /* check blocks count against device size */
3909 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3910 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3911 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3912 "exceeds size of device (%llu blocks)",
3913 ext4_blocks_count(es), blocks_count);
3914 goto failed_mount;
3918 * It makes no sense for the first data block to be beyond the end
3919 * of the filesystem.
3921 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3922 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3923 "block %u is beyond end of filesystem (%llu)",
3924 le32_to_cpu(es->s_first_data_block),
3925 ext4_blocks_count(es));
3926 goto failed_mount;
3928 blocks_count = (ext4_blocks_count(es) -
3929 le32_to_cpu(es->s_first_data_block) +
3930 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3931 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3932 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3933 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3934 "(block count %llu, first data block %u, "
3935 "blocks per group %lu)", sbi->s_groups_count,
3936 ext4_blocks_count(es),
3937 le32_to_cpu(es->s_first_data_block),
3938 EXT4_BLOCKS_PER_GROUP(sb));
3939 goto failed_mount;
3941 sbi->s_groups_count = blocks_count;
3942 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3943 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3944 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3945 EXT4_DESC_PER_BLOCK(sb);
3946 if (ext4_has_feature_meta_bg(sb)) {
3947 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3948 ext4_msg(sb, KERN_WARNING,
3949 "first meta block group too large: %u "
3950 "(group descriptor block count %u)",
3951 le32_to_cpu(es->s_first_meta_bg), db_count);
3952 goto failed_mount;
3955 sbi->s_group_desc = kvmalloc(db_count *
3956 sizeof(struct buffer_head *),
3957 GFP_KERNEL);
3958 if (sbi->s_group_desc == NULL) {
3959 ext4_msg(sb, KERN_ERR, "not enough memory");
3960 ret = -ENOMEM;
3961 goto failed_mount;
3964 bgl_lock_init(sbi->s_blockgroup_lock);
3966 /* Pre-read the descriptors into the buffer cache */
3967 for (i = 0; i < db_count; i++) {
3968 block = descriptor_loc(sb, logical_sb_block, i);
3969 sb_breadahead(sb, block);
3972 for (i = 0; i < db_count; i++) {
3973 block = descriptor_loc(sb, logical_sb_block, i);
3974 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3975 if (!sbi->s_group_desc[i]) {
3976 ext4_msg(sb, KERN_ERR,
3977 "can't read group descriptor %d", i);
3978 db_count = i;
3979 goto failed_mount2;
3982 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3983 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3984 ret = -EFSCORRUPTED;
3985 goto failed_mount2;
3988 sbi->s_gdb_count = db_count;
3990 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
3992 /* Register extent status tree shrinker */
3993 if (ext4_es_register_shrinker(sbi))
3994 goto failed_mount3;
3996 sbi->s_stripe = ext4_get_stripe_size(sbi);
3997 sbi->s_extent_max_zeroout_kb = 32;
4000 * set up enough so that it can read an inode
4002 sb->s_op = &ext4_sops;
4003 sb->s_export_op = &ext4_export_ops;
4004 sb->s_xattr = ext4_xattr_handlers;
4005 #ifdef CONFIG_EXT4_FS_ENCRYPTION
4006 sb->s_cop = &ext4_cryptops;
4007 #endif
4008 #ifdef CONFIG_QUOTA
4009 sb->dq_op = &ext4_quota_operations;
4010 if (ext4_has_feature_quota(sb))
4011 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4012 else
4013 sb->s_qcop = &ext4_qctl_operations;
4014 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4015 #endif
4016 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4018 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4019 mutex_init(&sbi->s_orphan_lock);
4021 sb->s_root = NULL;
4023 needs_recovery = (es->s_last_orphan != 0 ||
4024 ext4_has_feature_journal_needs_recovery(sb));
4026 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4027 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4028 goto failed_mount3a;
4031 * The first inode we look at is the journal inode. Don't try
4032 * root first: it may be modified in the journal!
4034 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4035 err = ext4_load_journal(sb, es, journal_devnum);
4036 if (err)
4037 goto failed_mount3a;
4038 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4039 ext4_has_feature_journal_needs_recovery(sb)) {
4040 ext4_msg(sb, KERN_ERR, "required journal recovery "
4041 "suppressed and not mounted read-only");
4042 goto failed_mount_wq;
4043 } else {
4044 /* Nojournal mode, all journal mount options are illegal */
4045 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4046 ext4_msg(sb, KERN_ERR, "can't mount with "
4047 "journal_checksum, fs mounted w/o journal");
4048 goto failed_mount_wq;
4050 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4051 ext4_msg(sb, KERN_ERR, "can't mount with "
4052 "journal_async_commit, fs mounted w/o journal");
4053 goto failed_mount_wq;
4055 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4056 ext4_msg(sb, KERN_ERR, "can't mount with "
4057 "commit=%lu, fs mounted w/o journal",
4058 sbi->s_commit_interval / HZ);
4059 goto failed_mount_wq;
4061 if (EXT4_MOUNT_DATA_FLAGS &
4062 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4063 ext4_msg(sb, KERN_ERR, "can't mount with "
4064 "data=, fs mounted w/o journal");
4065 goto failed_mount_wq;
4067 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4068 clear_opt(sb, JOURNAL_CHECKSUM);
4069 clear_opt(sb, DATA_FLAGS);
4070 sbi->s_journal = NULL;
4071 needs_recovery = 0;
4072 goto no_journal;
4075 if (ext4_has_feature_64bit(sb) &&
4076 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4077 JBD2_FEATURE_INCOMPAT_64BIT)) {
4078 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4079 goto failed_mount_wq;
4082 if (!set_journal_csum_feature_set(sb)) {
4083 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4084 "feature set");
4085 goto failed_mount_wq;
4088 /* We have now updated the journal if required, so we can
4089 * validate the data journaling mode. */
4090 switch (test_opt(sb, DATA_FLAGS)) {
4091 case 0:
4092 /* No mode set, assume a default based on the journal
4093 * capabilities: ORDERED_DATA if the journal can
4094 * cope, else JOURNAL_DATA
4096 if (jbd2_journal_check_available_features
4097 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4098 set_opt(sb, ORDERED_DATA);
4099 else
4100 set_opt(sb, JOURNAL_DATA);
4101 break;
4103 case EXT4_MOUNT_ORDERED_DATA:
4104 case EXT4_MOUNT_WRITEBACK_DATA:
4105 if (!jbd2_journal_check_available_features
4106 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4107 ext4_msg(sb, KERN_ERR, "Journal does not support "
4108 "requested data journaling mode");
4109 goto failed_mount_wq;
4111 default:
4112 break;
4115 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4116 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4117 ext4_msg(sb, KERN_ERR, "can't mount with "
4118 "journal_async_commit in data=ordered mode");
4119 goto failed_mount_wq;
4122 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4124 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4126 no_journal:
4127 if (!test_opt(sb, NO_MBCACHE)) {
4128 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4129 if (!sbi->s_ea_block_cache) {
4130 ext4_msg(sb, KERN_ERR,
4131 "Failed to create ea_block_cache");
4132 goto failed_mount_wq;
4135 if (ext4_has_feature_ea_inode(sb)) {
4136 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4137 if (!sbi->s_ea_inode_cache) {
4138 ext4_msg(sb, KERN_ERR,
4139 "Failed to create ea_inode_cache");
4140 goto failed_mount_wq;
4145 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4146 (blocksize != PAGE_SIZE)) {
4147 ext4_msg(sb, KERN_ERR,
4148 "Unsupported blocksize for fs encryption");
4149 goto failed_mount_wq;
4152 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4153 !ext4_has_feature_encrypt(sb)) {
4154 ext4_set_feature_encrypt(sb);
4155 ext4_commit_super(sb, 1);
4159 * Get the # of file system overhead blocks from the
4160 * superblock if present.
4162 if (es->s_overhead_clusters)
4163 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4164 else {
4165 err = ext4_calculate_overhead(sb);
4166 if (err)
4167 goto failed_mount_wq;
4171 * The maximum number of concurrent works can be high and
4172 * concurrency isn't really necessary. Limit it to 1.
4174 EXT4_SB(sb)->rsv_conversion_wq =
4175 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4176 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4177 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4178 ret = -ENOMEM;
4179 goto failed_mount4;
4183 * The jbd2_journal_load will have done any necessary log recovery,
4184 * so we can safely mount the rest of the filesystem now.
4187 root = ext4_iget(sb, EXT4_ROOT_INO);
4188 if (IS_ERR(root)) {
4189 ext4_msg(sb, KERN_ERR, "get root inode failed");
4190 ret = PTR_ERR(root);
4191 root = NULL;
4192 goto failed_mount4;
4194 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4195 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4196 iput(root);
4197 goto failed_mount4;
4199 sb->s_root = d_make_root(root);
4200 if (!sb->s_root) {
4201 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4202 ret = -ENOMEM;
4203 goto failed_mount4;
4206 if (ext4_setup_super(sb, es, sb_rdonly(sb)))
4207 sb->s_flags |= SB_RDONLY;
4209 /* determine the minimum size of new large inodes, if present */
4210 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4211 sbi->s_want_extra_isize == 0) {
4212 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4213 EXT4_GOOD_OLD_INODE_SIZE;
4214 if (ext4_has_feature_extra_isize(sb)) {
4215 if (sbi->s_want_extra_isize <
4216 le16_to_cpu(es->s_want_extra_isize))
4217 sbi->s_want_extra_isize =
4218 le16_to_cpu(es->s_want_extra_isize);
4219 if (sbi->s_want_extra_isize <
4220 le16_to_cpu(es->s_min_extra_isize))
4221 sbi->s_want_extra_isize =
4222 le16_to_cpu(es->s_min_extra_isize);
4225 /* Check if enough inode space is available */
4226 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4227 sbi->s_inode_size) {
4228 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4229 EXT4_GOOD_OLD_INODE_SIZE;
4230 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4231 "available");
4234 ext4_set_resv_clusters(sb);
4236 err = ext4_setup_system_zone(sb);
4237 if (err) {
4238 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4239 "zone (%d)", err);
4240 goto failed_mount4a;
4243 ext4_ext_init(sb);
4244 err = ext4_mb_init(sb);
4245 if (err) {
4246 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4247 err);
4248 goto failed_mount5;
4251 block = ext4_count_free_clusters(sb);
4252 ext4_free_blocks_count_set(sbi->s_es,
4253 EXT4_C2B(sbi, block));
4254 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4255 GFP_KERNEL);
4256 if (!err) {
4257 unsigned long freei = ext4_count_free_inodes(sb);
4258 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4259 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4260 GFP_KERNEL);
4262 if (!err)
4263 err = percpu_counter_init(&sbi->s_dirs_counter,
4264 ext4_count_dirs(sb), GFP_KERNEL);
4265 if (!err)
4266 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4267 GFP_KERNEL);
4268 if (!err)
4269 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4271 if (err) {
4272 ext4_msg(sb, KERN_ERR, "insufficient memory");
4273 goto failed_mount6;
4276 if (ext4_has_feature_flex_bg(sb))
4277 if (!ext4_fill_flex_info(sb)) {
4278 ext4_msg(sb, KERN_ERR,
4279 "unable to initialize "
4280 "flex_bg meta info!");
4281 goto failed_mount6;
4284 err = ext4_register_li_request(sb, first_not_zeroed);
4285 if (err)
4286 goto failed_mount6;
4288 err = ext4_register_sysfs(sb);
4289 if (err)
4290 goto failed_mount7;
4292 #ifdef CONFIG_QUOTA
4293 /* Enable quota usage during mount. */
4294 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4295 err = ext4_enable_quotas(sb);
4296 if (err)
4297 goto failed_mount8;
4299 #endif /* CONFIG_QUOTA */
4301 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4302 ext4_orphan_cleanup(sb, es);
4303 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4304 if (needs_recovery) {
4305 ext4_msg(sb, KERN_INFO, "recovery complete");
4306 ext4_mark_recovery_complete(sb, es);
4308 if (EXT4_SB(sb)->s_journal) {
4309 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4310 descr = " journalled data mode";
4311 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4312 descr = " ordered data mode";
4313 else
4314 descr = " writeback data mode";
4315 } else
4316 descr = "out journal";
4318 if (test_opt(sb, DISCARD)) {
4319 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4320 if (!blk_queue_discard(q))
4321 ext4_msg(sb, KERN_WARNING,
4322 "mounting with \"discard\" option, but "
4323 "the device does not support discard");
4326 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4327 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4328 "Opts: %.*s%s%s", descr,
4329 (int) sizeof(sbi->s_es->s_mount_opts),
4330 sbi->s_es->s_mount_opts,
4331 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4333 if (es->s_error_count)
4334 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4336 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4337 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4338 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4339 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4341 kfree(orig_data);
4342 return 0;
4344 cantfind_ext4:
4345 if (!silent)
4346 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4347 goto failed_mount;
4349 #ifdef CONFIG_QUOTA
4350 failed_mount8:
4351 ext4_unregister_sysfs(sb);
4352 #endif
4353 failed_mount7:
4354 ext4_unregister_li_request(sb);
4355 failed_mount6:
4356 ext4_mb_release(sb);
4357 if (sbi->s_flex_groups)
4358 kvfree(sbi->s_flex_groups);
4359 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4360 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4361 percpu_counter_destroy(&sbi->s_dirs_counter);
4362 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4363 failed_mount5:
4364 ext4_ext_release(sb);
4365 ext4_release_system_zone(sb);
4366 failed_mount4a:
4367 dput(sb->s_root);
4368 sb->s_root = NULL;
4369 failed_mount4:
4370 ext4_msg(sb, KERN_ERR, "mount failed");
4371 if (EXT4_SB(sb)->rsv_conversion_wq)
4372 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4373 failed_mount_wq:
4374 if (sbi->s_ea_inode_cache) {
4375 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4376 sbi->s_ea_inode_cache = NULL;
4378 if (sbi->s_ea_block_cache) {
4379 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4380 sbi->s_ea_block_cache = NULL;
4382 if (sbi->s_journal) {
4383 jbd2_journal_destroy(sbi->s_journal);
4384 sbi->s_journal = NULL;
4386 failed_mount3a:
4387 ext4_es_unregister_shrinker(sbi);
4388 failed_mount3:
4389 del_timer_sync(&sbi->s_err_report);
4390 if (sbi->s_mmp_tsk)
4391 kthread_stop(sbi->s_mmp_tsk);
4392 failed_mount2:
4393 for (i = 0; i < db_count; i++)
4394 brelse(sbi->s_group_desc[i]);
4395 kvfree(sbi->s_group_desc);
4396 failed_mount:
4397 if (sbi->s_chksum_driver)
4398 crypto_free_shash(sbi->s_chksum_driver);
4399 #ifdef CONFIG_QUOTA
4400 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4401 kfree(sbi->s_qf_names[i]);
4402 #endif
4403 ext4_blkdev_remove(sbi);
4404 brelse(bh);
4405 out_fail:
4406 sb->s_fs_info = NULL;
4407 kfree(sbi->s_blockgroup_lock);
4408 out_free_base:
4409 kfree(sbi);
4410 kfree(orig_data);
4411 fs_put_dax(dax_dev);
4412 return err ? err : ret;
4416 * Setup any per-fs journal parameters now. We'll do this both on
4417 * initial mount, once the journal has been initialised but before we've
4418 * done any recovery; and again on any subsequent remount.
4420 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4422 struct ext4_sb_info *sbi = EXT4_SB(sb);
4424 journal->j_commit_interval = sbi->s_commit_interval;
4425 journal->j_min_batch_time = sbi->s_min_batch_time;
4426 journal->j_max_batch_time = sbi->s_max_batch_time;
4428 write_lock(&journal->j_state_lock);
4429 if (test_opt(sb, BARRIER))
4430 journal->j_flags |= JBD2_BARRIER;
4431 else
4432 journal->j_flags &= ~JBD2_BARRIER;
4433 if (test_opt(sb, DATA_ERR_ABORT))
4434 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4435 else
4436 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4437 write_unlock(&journal->j_state_lock);
4440 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4441 unsigned int journal_inum)
4443 struct inode *journal_inode;
4446 * Test for the existence of a valid inode on disk. Bad things
4447 * happen if we iget() an unused inode, as the subsequent iput()
4448 * will try to delete it.
4450 journal_inode = ext4_iget(sb, journal_inum);
4451 if (IS_ERR(journal_inode)) {
4452 ext4_msg(sb, KERN_ERR, "no journal found");
4453 return NULL;
4455 if (!journal_inode->i_nlink) {
4456 make_bad_inode(journal_inode);
4457 iput(journal_inode);
4458 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4459 return NULL;
4462 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4463 journal_inode, journal_inode->i_size);
4464 if (!S_ISREG(journal_inode->i_mode)) {
4465 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4466 iput(journal_inode);
4467 return NULL;
4469 return journal_inode;
4472 static journal_t *ext4_get_journal(struct super_block *sb,
4473 unsigned int journal_inum)
4475 struct inode *journal_inode;
4476 journal_t *journal;
4478 BUG_ON(!ext4_has_feature_journal(sb));
4480 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4481 if (!journal_inode)
4482 return NULL;
4484 journal = jbd2_journal_init_inode(journal_inode);
4485 if (!journal) {
4486 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4487 iput(journal_inode);
4488 return NULL;
4490 journal->j_private = sb;
4491 ext4_init_journal_params(sb, journal);
4492 return journal;
4495 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4496 dev_t j_dev)
4498 struct buffer_head *bh;
4499 journal_t *journal;
4500 ext4_fsblk_t start;
4501 ext4_fsblk_t len;
4502 int hblock, blocksize;
4503 ext4_fsblk_t sb_block;
4504 unsigned long offset;
4505 struct ext4_super_block *es;
4506 struct block_device *bdev;
4508 BUG_ON(!ext4_has_feature_journal(sb));
4510 bdev = ext4_blkdev_get(j_dev, sb);
4511 if (bdev == NULL)
4512 return NULL;
4514 blocksize = sb->s_blocksize;
4515 hblock = bdev_logical_block_size(bdev);
4516 if (blocksize < hblock) {
4517 ext4_msg(sb, KERN_ERR,
4518 "blocksize too small for journal device");
4519 goto out_bdev;
4522 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4523 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4524 set_blocksize(bdev, blocksize);
4525 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4526 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4527 "external journal");
4528 goto out_bdev;
4531 es = (struct ext4_super_block *) (bh->b_data + offset);
4532 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4533 !(le32_to_cpu(es->s_feature_incompat) &
4534 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4535 ext4_msg(sb, KERN_ERR, "external journal has "
4536 "bad superblock");
4537 brelse(bh);
4538 goto out_bdev;
4541 if ((le32_to_cpu(es->s_feature_ro_compat) &
4542 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4543 es->s_checksum != ext4_superblock_csum(sb, es)) {
4544 ext4_msg(sb, KERN_ERR, "external journal has "
4545 "corrupt superblock");
4546 brelse(bh);
4547 goto out_bdev;
4550 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4551 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4552 brelse(bh);
4553 goto out_bdev;
4556 len = ext4_blocks_count(es);
4557 start = sb_block + 1;
4558 brelse(bh); /* we're done with the superblock */
4560 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4561 start, len, blocksize);
4562 if (!journal) {
4563 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4564 goto out_bdev;
4566 journal->j_private = sb;
4567 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4568 wait_on_buffer(journal->j_sb_buffer);
4569 if (!buffer_uptodate(journal->j_sb_buffer)) {
4570 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4571 goto out_journal;
4573 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4574 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4575 "user (unsupported) - %d",
4576 be32_to_cpu(journal->j_superblock->s_nr_users));
4577 goto out_journal;
4579 EXT4_SB(sb)->journal_bdev = bdev;
4580 ext4_init_journal_params(sb, journal);
4581 return journal;
4583 out_journal:
4584 jbd2_journal_destroy(journal);
4585 out_bdev:
4586 ext4_blkdev_put(bdev);
4587 return NULL;
4590 static int ext4_load_journal(struct super_block *sb,
4591 struct ext4_super_block *es,
4592 unsigned long journal_devnum)
4594 journal_t *journal;
4595 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4596 dev_t journal_dev;
4597 int err = 0;
4598 int really_read_only;
4600 BUG_ON(!ext4_has_feature_journal(sb));
4602 if (journal_devnum &&
4603 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4604 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4605 "numbers have changed");
4606 journal_dev = new_decode_dev(journal_devnum);
4607 } else
4608 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4610 really_read_only = bdev_read_only(sb->s_bdev);
4613 * Are we loading a blank journal or performing recovery after a
4614 * crash? For recovery, we need to check in advance whether we
4615 * can get read-write access to the device.
4617 if (ext4_has_feature_journal_needs_recovery(sb)) {
4618 if (sb_rdonly(sb)) {
4619 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4620 "required on readonly filesystem");
4621 if (really_read_only) {
4622 ext4_msg(sb, KERN_ERR, "write access "
4623 "unavailable, cannot proceed "
4624 "(try mounting with noload)");
4625 return -EROFS;
4627 ext4_msg(sb, KERN_INFO, "write access will "
4628 "be enabled during recovery");
4632 if (journal_inum && journal_dev) {
4633 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4634 "and inode journals!");
4635 return -EINVAL;
4638 if (journal_inum) {
4639 if (!(journal = ext4_get_journal(sb, journal_inum)))
4640 return -EINVAL;
4641 } else {
4642 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4643 return -EINVAL;
4646 if (!(journal->j_flags & JBD2_BARRIER))
4647 ext4_msg(sb, KERN_INFO, "barriers disabled");
4649 if (!ext4_has_feature_journal_needs_recovery(sb))
4650 err = jbd2_journal_wipe(journal, !really_read_only);
4651 if (!err) {
4652 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4653 if (save)
4654 memcpy(save, ((char *) es) +
4655 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4656 err = jbd2_journal_load(journal);
4657 if (save)
4658 memcpy(((char *) es) + EXT4_S_ERR_START,
4659 save, EXT4_S_ERR_LEN);
4660 kfree(save);
4663 if (err) {
4664 ext4_msg(sb, KERN_ERR, "error loading journal");
4665 jbd2_journal_destroy(journal);
4666 return err;
4669 EXT4_SB(sb)->s_journal = journal;
4670 ext4_clear_journal_err(sb, es);
4672 if (!really_read_only && journal_devnum &&
4673 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4674 es->s_journal_dev = cpu_to_le32(journal_devnum);
4676 /* Make sure we flush the recovery flag to disk. */
4677 ext4_commit_super(sb, 1);
4680 return 0;
4683 static int ext4_commit_super(struct super_block *sb, int sync)
4685 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4686 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4687 int error = 0;
4689 if (!sbh || block_device_ejected(sb))
4690 return error;
4692 * If the file system is mounted read-only, don't update the
4693 * superblock write time. This avoids updating the superblock
4694 * write time when we are mounting the root file system
4695 * read/only but we need to replay the journal; at that point,
4696 * for people who are east of GMT and who make their clock
4697 * tick in localtime for Windows bug-for-bug compatibility,
4698 * the clock is set in the future, and this will cause e2fsck
4699 * to complain and force a full file system check.
4701 if (!(sb->s_flags & SB_RDONLY))
4702 es->s_wtime = cpu_to_le32(get_seconds());
4703 if (sb->s_bdev->bd_part)
4704 es->s_kbytes_written =
4705 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4706 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4707 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4708 else
4709 es->s_kbytes_written =
4710 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4711 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4712 ext4_free_blocks_count_set(es,
4713 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4714 &EXT4_SB(sb)->s_freeclusters_counter)));
4715 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4716 es->s_free_inodes_count =
4717 cpu_to_le32(percpu_counter_sum_positive(
4718 &EXT4_SB(sb)->s_freeinodes_counter));
4719 BUFFER_TRACE(sbh, "marking dirty");
4720 ext4_superblock_csum_set(sb);
4721 if (sync)
4722 lock_buffer(sbh);
4723 if (buffer_write_io_error(sbh)) {
4725 * Oh, dear. A previous attempt to write the
4726 * superblock failed. This could happen because the
4727 * USB device was yanked out. Or it could happen to
4728 * be a transient write error and maybe the block will
4729 * be remapped. Nothing we can do but to retry the
4730 * write and hope for the best.
4732 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4733 "superblock detected");
4734 clear_buffer_write_io_error(sbh);
4735 set_buffer_uptodate(sbh);
4737 mark_buffer_dirty(sbh);
4738 if (sync) {
4739 unlock_buffer(sbh);
4740 error = __sync_dirty_buffer(sbh,
4741 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4742 if (error)
4743 return error;
4745 error = buffer_write_io_error(sbh);
4746 if (error) {
4747 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4748 "superblock");
4749 clear_buffer_write_io_error(sbh);
4750 set_buffer_uptodate(sbh);
4753 return error;
4757 * Have we just finished recovery? If so, and if we are mounting (or
4758 * remounting) the filesystem readonly, then we will end up with a
4759 * consistent fs on disk. Record that fact.
4761 static void ext4_mark_recovery_complete(struct super_block *sb,
4762 struct ext4_super_block *es)
4764 journal_t *journal = EXT4_SB(sb)->s_journal;
4766 if (!ext4_has_feature_journal(sb)) {
4767 BUG_ON(journal != NULL);
4768 return;
4770 jbd2_journal_lock_updates(journal);
4771 if (jbd2_journal_flush(journal) < 0)
4772 goto out;
4774 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
4775 ext4_clear_feature_journal_needs_recovery(sb);
4776 ext4_commit_super(sb, 1);
4779 out:
4780 jbd2_journal_unlock_updates(journal);
4784 * If we are mounting (or read-write remounting) a filesystem whose journal
4785 * has recorded an error from a previous lifetime, move that error to the
4786 * main filesystem now.
4788 static void ext4_clear_journal_err(struct super_block *sb,
4789 struct ext4_super_block *es)
4791 journal_t *journal;
4792 int j_errno;
4793 const char *errstr;
4795 BUG_ON(!ext4_has_feature_journal(sb));
4797 journal = EXT4_SB(sb)->s_journal;
4800 * Now check for any error status which may have been recorded in the
4801 * journal by a prior ext4_error() or ext4_abort()
4804 j_errno = jbd2_journal_errno(journal);
4805 if (j_errno) {
4806 char nbuf[16];
4808 errstr = ext4_decode_error(sb, j_errno, nbuf);
4809 ext4_warning(sb, "Filesystem error recorded "
4810 "from previous mount: %s", errstr);
4811 ext4_warning(sb, "Marking fs in need of filesystem check.");
4813 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4814 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4815 ext4_commit_super(sb, 1);
4817 jbd2_journal_clear_err(journal);
4818 jbd2_journal_update_sb_errno(journal);
4823 * Force the running and committing transactions to commit,
4824 * and wait on the commit.
4826 int ext4_force_commit(struct super_block *sb)
4828 journal_t *journal;
4830 if (sb_rdonly(sb))
4831 return 0;
4833 journal = EXT4_SB(sb)->s_journal;
4834 return ext4_journal_force_commit(journal);
4837 static int ext4_sync_fs(struct super_block *sb, int wait)
4839 int ret = 0;
4840 tid_t target;
4841 bool needs_barrier = false;
4842 struct ext4_sb_info *sbi = EXT4_SB(sb);
4844 if (unlikely(ext4_forced_shutdown(sbi)))
4845 return 0;
4847 trace_ext4_sync_fs(sb, wait);
4848 flush_workqueue(sbi->rsv_conversion_wq);
4850 * Writeback quota in non-journalled quota case - journalled quota has
4851 * no dirty dquots
4853 dquot_writeback_dquots(sb, -1);
4855 * Data writeback is possible w/o journal transaction, so barrier must
4856 * being sent at the end of the function. But we can skip it if
4857 * transaction_commit will do it for us.
4859 if (sbi->s_journal) {
4860 target = jbd2_get_latest_transaction(sbi->s_journal);
4861 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4862 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4863 needs_barrier = true;
4865 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4866 if (wait)
4867 ret = jbd2_log_wait_commit(sbi->s_journal,
4868 target);
4870 } else if (wait && test_opt(sb, BARRIER))
4871 needs_barrier = true;
4872 if (needs_barrier) {
4873 int err;
4874 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4875 if (!ret)
4876 ret = err;
4879 return ret;
4883 * LVM calls this function before a (read-only) snapshot is created. This
4884 * gives us a chance to flush the journal completely and mark the fs clean.
4886 * Note that only this function cannot bring a filesystem to be in a clean
4887 * state independently. It relies on upper layer to stop all data & metadata
4888 * modifications.
4890 static int ext4_freeze(struct super_block *sb)
4892 int error = 0;
4893 journal_t *journal;
4895 if (sb_rdonly(sb))
4896 return 0;
4898 journal = EXT4_SB(sb)->s_journal;
4900 if (journal) {
4901 /* Now we set up the journal barrier. */
4902 jbd2_journal_lock_updates(journal);
4905 * Don't clear the needs_recovery flag if we failed to
4906 * flush the journal.
4908 error = jbd2_journal_flush(journal);
4909 if (error < 0)
4910 goto out;
4912 /* Journal blocked and flushed, clear needs_recovery flag. */
4913 ext4_clear_feature_journal_needs_recovery(sb);
4916 error = ext4_commit_super(sb, 1);
4917 out:
4918 if (journal)
4919 /* we rely on upper layer to stop further updates */
4920 jbd2_journal_unlock_updates(journal);
4921 return error;
4925 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4926 * flag here, even though the filesystem is not technically dirty yet.
4928 static int ext4_unfreeze(struct super_block *sb)
4930 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
4931 return 0;
4933 if (EXT4_SB(sb)->s_journal) {
4934 /* Reset the needs_recovery flag before the fs is unlocked. */
4935 ext4_set_feature_journal_needs_recovery(sb);
4938 ext4_commit_super(sb, 1);
4939 return 0;
4943 * Structure to save mount options for ext4_remount's benefit
4945 struct ext4_mount_options {
4946 unsigned long s_mount_opt;
4947 unsigned long s_mount_opt2;
4948 kuid_t s_resuid;
4949 kgid_t s_resgid;
4950 unsigned long s_commit_interval;
4951 u32 s_min_batch_time, s_max_batch_time;
4952 #ifdef CONFIG_QUOTA
4953 int s_jquota_fmt;
4954 char *s_qf_names[EXT4_MAXQUOTAS];
4955 #endif
4958 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4960 struct ext4_super_block *es;
4961 struct ext4_sb_info *sbi = EXT4_SB(sb);
4962 unsigned long old_sb_flags;
4963 struct ext4_mount_options old_opts;
4964 int enable_quota = 0;
4965 ext4_group_t g;
4966 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4967 int err = 0;
4968 #ifdef CONFIG_QUOTA
4969 int i, j;
4970 #endif
4971 char *orig_data = kstrdup(data, GFP_KERNEL);
4973 /* Store the original options */
4974 old_sb_flags = sb->s_flags;
4975 old_opts.s_mount_opt = sbi->s_mount_opt;
4976 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4977 old_opts.s_resuid = sbi->s_resuid;
4978 old_opts.s_resgid = sbi->s_resgid;
4979 old_opts.s_commit_interval = sbi->s_commit_interval;
4980 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4981 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4982 #ifdef CONFIG_QUOTA
4983 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4984 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4985 if (sbi->s_qf_names[i]) {
4986 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4987 GFP_KERNEL);
4988 if (!old_opts.s_qf_names[i]) {
4989 for (j = 0; j < i; j++)
4990 kfree(old_opts.s_qf_names[j]);
4991 kfree(orig_data);
4992 return -ENOMEM;
4994 } else
4995 old_opts.s_qf_names[i] = NULL;
4996 #endif
4997 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4998 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5000 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5001 err = -EINVAL;
5002 goto restore_opts;
5005 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5006 test_opt(sb, JOURNAL_CHECKSUM)) {
5007 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5008 "during remount not supported; ignoring");
5009 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5012 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5013 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5014 ext4_msg(sb, KERN_ERR, "can't mount with "
5015 "both data=journal and delalloc");
5016 err = -EINVAL;
5017 goto restore_opts;
5019 if (test_opt(sb, DIOREAD_NOLOCK)) {
5020 ext4_msg(sb, KERN_ERR, "can't mount with "
5021 "both data=journal and dioread_nolock");
5022 err = -EINVAL;
5023 goto restore_opts;
5025 if (test_opt(sb, DAX)) {
5026 ext4_msg(sb, KERN_ERR, "can't mount with "
5027 "both data=journal and dax");
5028 err = -EINVAL;
5029 goto restore_opts;
5031 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5032 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5033 ext4_msg(sb, KERN_ERR, "can't mount with "
5034 "journal_async_commit in data=ordered mode");
5035 err = -EINVAL;
5036 goto restore_opts;
5040 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5041 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5042 err = -EINVAL;
5043 goto restore_opts;
5046 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5047 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5048 "dax flag with busy inodes while remounting");
5049 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5052 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5053 ext4_abort(sb, "Abort forced by user");
5055 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5056 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5058 es = sbi->s_es;
5060 if (sbi->s_journal) {
5061 ext4_init_journal_params(sb, sbi->s_journal);
5062 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5065 if (*flags & SB_LAZYTIME)
5066 sb->s_flags |= SB_LAZYTIME;
5068 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5069 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5070 err = -EROFS;
5071 goto restore_opts;
5074 if (*flags & SB_RDONLY) {
5075 err = sync_filesystem(sb);
5076 if (err < 0)
5077 goto restore_opts;
5078 err = dquot_suspend(sb, -1);
5079 if (err < 0)
5080 goto restore_opts;
5083 * First of all, the unconditional stuff we have to do
5084 * to disable replay of the journal when we next remount
5086 sb->s_flags |= SB_RDONLY;
5089 * OK, test if we are remounting a valid rw partition
5090 * readonly, and if so set the rdonly flag and then
5091 * mark the partition as valid again.
5093 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5094 (sbi->s_mount_state & EXT4_VALID_FS))
5095 es->s_state = cpu_to_le16(sbi->s_mount_state);
5097 if (sbi->s_journal)
5098 ext4_mark_recovery_complete(sb, es);
5099 } else {
5100 /* Make sure we can mount this feature set readwrite */
5101 if (ext4_has_feature_readonly(sb) ||
5102 !ext4_feature_set_ok(sb, 0)) {
5103 err = -EROFS;
5104 goto restore_opts;
5107 * Make sure the group descriptor checksums
5108 * are sane. If they aren't, refuse to remount r/w.
5110 for (g = 0; g < sbi->s_groups_count; g++) {
5111 struct ext4_group_desc *gdp =
5112 ext4_get_group_desc(sb, g, NULL);
5114 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5115 ext4_msg(sb, KERN_ERR,
5116 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5117 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5118 le16_to_cpu(gdp->bg_checksum));
5119 err = -EFSBADCRC;
5120 goto restore_opts;
5125 * If we have an unprocessed orphan list hanging
5126 * around from a previously readonly bdev mount,
5127 * require a full umount/remount for now.
5129 if (es->s_last_orphan) {
5130 ext4_msg(sb, KERN_WARNING, "Couldn't "
5131 "remount RDWR because of unprocessed "
5132 "orphan inode list. Please "
5133 "umount/remount instead");
5134 err = -EINVAL;
5135 goto restore_opts;
5139 * Mounting a RDONLY partition read-write, so reread
5140 * and store the current valid flag. (It may have
5141 * been changed by e2fsck since we originally mounted
5142 * the partition.)
5144 if (sbi->s_journal)
5145 ext4_clear_journal_err(sb, es);
5146 sbi->s_mount_state = le16_to_cpu(es->s_state);
5147 if (!ext4_setup_super(sb, es, 0))
5148 sb->s_flags &= ~SB_RDONLY;
5149 if (ext4_has_feature_mmp(sb))
5150 if (ext4_multi_mount_protect(sb,
5151 le64_to_cpu(es->s_mmp_block))) {
5152 err = -EROFS;
5153 goto restore_opts;
5155 enable_quota = 1;
5160 * Reinitialize lazy itable initialization thread based on
5161 * current settings
5163 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5164 ext4_unregister_li_request(sb);
5165 else {
5166 ext4_group_t first_not_zeroed;
5167 first_not_zeroed = ext4_has_uninit_itable(sb);
5168 ext4_register_li_request(sb, first_not_zeroed);
5171 ext4_setup_system_zone(sb);
5172 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY))
5173 ext4_commit_super(sb, 1);
5175 #ifdef CONFIG_QUOTA
5176 /* Release old quota file names */
5177 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5178 kfree(old_opts.s_qf_names[i]);
5179 if (enable_quota) {
5180 if (sb_any_quota_suspended(sb))
5181 dquot_resume(sb, -1);
5182 else if (ext4_has_feature_quota(sb)) {
5183 err = ext4_enable_quotas(sb);
5184 if (err)
5185 goto restore_opts;
5188 #endif
5190 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5191 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5192 kfree(orig_data);
5193 return 0;
5195 restore_opts:
5196 sb->s_flags = old_sb_flags;
5197 sbi->s_mount_opt = old_opts.s_mount_opt;
5198 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5199 sbi->s_resuid = old_opts.s_resuid;
5200 sbi->s_resgid = old_opts.s_resgid;
5201 sbi->s_commit_interval = old_opts.s_commit_interval;
5202 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5203 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5204 #ifdef CONFIG_QUOTA
5205 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5206 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5207 kfree(sbi->s_qf_names[i]);
5208 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5210 #endif
5211 kfree(orig_data);
5212 return err;
5215 #ifdef CONFIG_QUOTA
5216 static int ext4_statfs_project(struct super_block *sb,
5217 kprojid_t projid, struct kstatfs *buf)
5219 struct kqid qid;
5220 struct dquot *dquot;
5221 u64 limit;
5222 u64 curblock;
5224 qid = make_kqid_projid(projid);
5225 dquot = dqget(sb, qid);
5226 if (IS_ERR(dquot))
5227 return PTR_ERR(dquot);
5228 spin_lock(&dquot->dq_dqb_lock);
5230 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5231 dquot->dq_dqb.dqb_bsoftlimit :
5232 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5233 if (limit && buf->f_blocks > limit) {
5234 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5235 buf->f_blocks = limit;
5236 buf->f_bfree = buf->f_bavail =
5237 (buf->f_blocks > curblock) ?
5238 (buf->f_blocks - curblock) : 0;
5241 limit = dquot->dq_dqb.dqb_isoftlimit ?
5242 dquot->dq_dqb.dqb_isoftlimit :
5243 dquot->dq_dqb.dqb_ihardlimit;
5244 if (limit && buf->f_files > limit) {
5245 buf->f_files = limit;
5246 buf->f_ffree =
5247 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5248 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5251 spin_unlock(&dquot->dq_dqb_lock);
5252 dqput(dquot);
5253 return 0;
5255 #endif
5257 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5259 struct super_block *sb = dentry->d_sb;
5260 struct ext4_sb_info *sbi = EXT4_SB(sb);
5261 struct ext4_super_block *es = sbi->s_es;
5262 ext4_fsblk_t overhead = 0, resv_blocks;
5263 u64 fsid;
5264 s64 bfree;
5265 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5267 if (!test_opt(sb, MINIX_DF))
5268 overhead = sbi->s_overhead;
5270 buf->f_type = EXT4_SUPER_MAGIC;
5271 buf->f_bsize = sb->s_blocksize;
5272 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5273 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5274 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5275 /* prevent underflow in case that few free space is available */
5276 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5277 buf->f_bavail = buf->f_bfree -
5278 (ext4_r_blocks_count(es) + resv_blocks);
5279 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5280 buf->f_bavail = 0;
5281 buf->f_files = le32_to_cpu(es->s_inodes_count);
5282 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5283 buf->f_namelen = EXT4_NAME_LEN;
5284 fsid = le64_to_cpup((void *)es->s_uuid) ^
5285 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5286 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5287 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5289 #ifdef CONFIG_QUOTA
5290 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5291 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5292 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5293 #endif
5294 return 0;
5298 #ifdef CONFIG_QUOTA
5301 * Helper functions so that transaction is started before we acquire dqio_sem
5302 * to keep correct lock ordering of transaction > dqio_sem
5304 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5306 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5309 static int ext4_write_dquot(struct dquot *dquot)
5311 int ret, err;
5312 handle_t *handle;
5313 struct inode *inode;
5315 inode = dquot_to_inode(dquot);
5316 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5317 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5318 if (IS_ERR(handle))
5319 return PTR_ERR(handle);
5320 ret = dquot_commit(dquot);
5321 err = ext4_journal_stop(handle);
5322 if (!ret)
5323 ret = err;
5324 return ret;
5327 static int ext4_acquire_dquot(struct dquot *dquot)
5329 int ret, err;
5330 handle_t *handle;
5332 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5333 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5334 if (IS_ERR(handle))
5335 return PTR_ERR(handle);
5336 ret = dquot_acquire(dquot);
5337 err = ext4_journal_stop(handle);
5338 if (!ret)
5339 ret = err;
5340 return ret;
5343 static int ext4_release_dquot(struct dquot *dquot)
5345 int ret, err;
5346 handle_t *handle;
5348 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5349 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5350 if (IS_ERR(handle)) {
5351 /* Release dquot anyway to avoid endless cycle in dqput() */
5352 dquot_release(dquot);
5353 return PTR_ERR(handle);
5355 ret = dquot_release(dquot);
5356 err = ext4_journal_stop(handle);
5357 if (!ret)
5358 ret = err;
5359 return ret;
5362 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5364 struct super_block *sb = dquot->dq_sb;
5365 struct ext4_sb_info *sbi = EXT4_SB(sb);
5367 /* Are we journaling quotas? */
5368 if (ext4_has_feature_quota(sb) ||
5369 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5370 dquot_mark_dquot_dirty(dquot);
5371 return ext4_write_dquot(dquot);
5372 } else {
5373 return dquot_mark_dquot_dirty(dquot);
5377 static int ext4_write_info(struct super_block *sb, int type)
5379 int ret, err;
5380 handle_t *handle;
5382 /* Data block + inode block */
5383 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5384 if (IS_ERR(handle))
5385 return PTR_ERR(handle);
5386 ret = dquot_commit_info(sb, type);
5387 err = ext4_journal_stop(handle);
5388 if (!ret)
5389 ret = err;
5390 return ret;
5394 * Turn on quotas during mount time - we need to find
5395 * the quota file and such...
5397 static int ext4_quota_on_mount(struct super_block *sb, int type)
5399 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5400 EXT4_SB(sb)->s_jquota_fmt, type);
5403 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5405 struct ext4_inode_info *ei = EXT4_I(inode);
5407 /* The first argument of lockdep_set_subclass has to be
5408 * *exactly* the same as the argument to init_rwsem() --- in
5409 * this case, in init_once() --- or lockdep gets unhappy
5410 * because the name of the lock is set using the
5411 * stringification of the argument to init_rwsem().
5413 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5414 lockdep_set_subclass(&ei->i_data_sem, subclass);
5418 * Standard function to be called on quota_on
5420 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5421 const struct path *path)
5423 int err;
5425 if (!test_opt(sb, QUOTA))
5426 return -EINVAL;
5428 /* Quotafile not on the same filesystem? */
5429 if (path->dentry->d_sb != sb)
5430 return -EXDEV;
5431 /* Journaling quota? */
5432 if (EXT4_SB(sb)->s_qf_names[type]) {
5433 /* Quotafile not in fs root? */
5434 if (path->dentry->d_parent != sb->s_root)
5435 ext4_msg(sb, KERN_WARNING,
5436 "Quota file not on filesystem root. "
5437 "Journaled quota will not work");
5438 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5439 } else {
5441 * Clear the flag just in case mount options changed since
5442 * last time.
5444 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5448 * When we journal data on quota file, we have to flush journal to see
5449 * all updates to the file when we bypass pagecache...
5451 if (EXT4_SB(sb)->s_journal &&
5452 ext4_should_journal_data(d_inode(path->dentry))) {
5454 * We don't need to lock updates but journal_flush() could
5455 * otherwise be livelocked...
5457 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5458 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5459 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5460 if (err)
5461 return err;
5464 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5465 err = dquot_quota_on(sb, type, format_id, path);
5466 if (err) {
5467 lockdep_set_quota_inode(path->dentry->d_inode,
5468 I_DATA_SEM_NORMAL);
5469 } else {
5470 struct inode *inode = d_inode(path->dentry);
5471 handle_t *handle;
5474 * Set inode flags to prevent userspace from messing with quota
5475 * files. If this fails, we return success anyway since quotas
5476 * are already enabled and this is not a hard failure.
5478 inode_lock(inode);
5479 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5480 if (IS_ERR(handle))
5481 goto unlock_inode;
5482 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5483 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5484 S_NOATIME | S_IMMUTABLE);
5485 ext4_mark_inode_dirty(handle, inode);
5486 ext4_journal_stop(handle);
5487 unlock_inode:
5488 inode_unlock(inode);
5490 return err;
5493 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5494 unsigned int flags)
5496 int err;
5497 struct inode *qf_inode;
5498 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5499 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5500 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5501 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5504 BUG_ON(!ext4_has_feature_quota(sb));
5506 if (!qf_inums[type])
5507 return -EPERM;
5509 qf_inode = ext4_iget(sb, qf_inums[type]);
5510 if (IS_ERR(qf_inode)) {
5511 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5512 return PTR_ERR(qf_inode);
5515 /* Don't account quota for quota files to avoid recursion */
5516 qf_inode->i_flags |= S_NOQUOTA;
5517 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5518 err = dquot_enable(qf_inode, type, format_id, flags);
5519 iput(qf_inode);
5520 if (err)
5521 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5523 return err;
5526 /* Enable usage tracking for all quota types. */
5527 static int ext4_enable_quotas(struct super_block *sb)
5529 int type, err = 0;
5530 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5531 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5532 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5533 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5535 bool quota_mopt[EXT4_MAXQUOTAS] = {
5536 test_opt(sb, USRQUOTA),
5537 test_opt(sb, GRPQUOTA),
5538 test_opt(sb, PRJQUOTA),
5541 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5542 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5543 if (qf_inums[type]) {
5544 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5545 DQUOT_USAGE_ENABLED |
5546 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5547 if (err) {
5548 for (type--; type >= 0; type--)
5549 dquot_quota_off(sb, type);
5551 ext4_warning(sb,
5552 "Failed to enable quota tracking "
5553 "(type=%d, err=%d). Please run "
5554 "e2fsck to fix.", type, err);
5555 return err;
5559 return 0;
5562 static int ext4_quota_off(struct super_block *sb, int type)
5564 struct inode *inode = sb_dqopt(sb)->files[type];
5565 handle_t *handle;
5566 int err;
5568 /* Force all delayed allocation blocks to be allocated.
5569 * Caller already holds s_umount sem */
5570 if (test_opt(sb, DELALLOC))
5571 sync_filesystem(sb);
5573 if (!inode || !igrab(inode))
5574 goto out;
5576 err = dquot_quota_off(sb, type);
5577 if (err || ext4_has_feature_quota(sb))
5578 goto out_put;
5580 inode_lock(inode);
5582 * Update modification times of quota files when userspace can
5583 * start looking at them. If we fail, we return success anyway since
5584 * this is not a hard failure and quotas are already disabled.
5586 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5587 if (IS_ERR(handle))
5588 goto out_unlock;
5589 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5590 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5591 inode->i_mtime = inode->i_ctime = current_time(inode);
5592 ext4_mark_inode_dirty(handle, inode);
5593 ext4_journal_stop(handle);
5594 out_unlock:
5595 inode_unlock(inode);
5596 out_put:
5597 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5598 iput(inode);
5599 return err;
5600 out:
5601 return dquot_quota_off(sb, type);
5604 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5605 * acquiring the locks... As quota files are never truncated and quota code
5606 * itself serializes the operations (and no one else should touch the files)
5607 * we don't have to be afraid of races */
5608 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5609 size_t len, loff_t off)
5611 struct inode *inode = sb_dqopt(sb)->files[type];
5612 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5613 int offset = off & (sb->s_blocksize - 1);
5614 int tocopy;
5615 size_t toread;
5616 struct buffer_head *bh;
5617 loff_t i_size = i_size_read(inode);
5619 if (off > i_size)
5620 return 0;
5621 if (off+len > i_size)
5622 len = i_size-off;
5623 toread = len;
5624 while (toread > 0) {
5625 tocopy = sb->s_blocksize - offset < toread ?
5626 sb->s_blocksize - offset : toread;
5627 bh = ext4_bread(NULL, inode, blk, 0);
5628 if (IS_ERR(bh))
5629 return PTR_ERR(bh);
5630 if (!bh) /* A hole? */
5631 memset(data, 0, tocopy);
5632 else
5633 memcpy(data, bh->b_data+offset, tocopy);
5634 brelse(bh);
5635 offset = 0;
5636 toread -= tocopy;
5637 data += tocopy;
5638 blk++;
5640 return len;
5643 /* Write to quotafile (we know the transaction is already started and has
5644 * enough credits) */
5645 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5646 const char *data, size_t len, loff_t off)
5648 struct inode *inode = sb_dqopt(sb)->files[type];
5649 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5650 int err, offset = off & (sb->s_blocksize - 1);
5651 int retries = 0;
5652 struct buffer_head *bh;
5653 handle_t *handle = journal_current_handle();
5655 if (EXT4_SB(sb)->s_journal && !handle) {
5656 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5657 " cancelled because transaction is not started",
5658 (unsigned long long)off, (unsigned long long)len);
5659 return -EIO;
5662 * Since we account only one data block in transaction credits,
5663 * then it is impossible to cross a block boundary.
5665 if (sb->s_blocksize - offset < len) {
5666 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5667 " cancelled because not block aligned",
5668 (unsigned long long)off, (unsigned long long)len);
5669 return -EIO;
5672 do {
5673 bh = ext4_bread(handle, inode, blk,
5674 EXT4_GET_BLOCKS_CREATE |
5675 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5676 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5677 ext4_should_retry_alloc(inode->i_sb, &retries));
5678 if (IS_ERR(bh))
5679 return PTR_ERR(bh);
5680 if (!bh)
5681 goto out;
5682 BUFFER_TRACE(bh, "get write access");
5683 err = ext4_journal_get_write_access(handle, bh);
5684 if (err) {
5685 brelse(bh);
5686 return err;
5688 lock_buffer(bh);
5689 memcpy(bh->b_data+offset, data, len);
5690 flush_dcache_page(bh->b_page);
5691 unlock_buffer(bh);
5692 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5693 brelse(bh);
5694 out:
5695 if (inode->i_size < off + len) {
5696 i_size_write(inode, off + len);
5697 EXT4_I(inode)->i_disksize = inode->i_size;
5698 ext4_mark_inode_dirty(handle, inode);
5700 return len;
5703 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5705 const struct quota_format_ops *ops;
5707 if (!sb_has_quota_loaded(sb, qid->type))
5708 return -ESRCH;
5709 ops = sb_dqopt(sb)->ops[qid->type];
5710 if (!ops || !ops->get_next_id)
5711 return -ENOSYS;
5712 return dquot_get_next_id(sb, qid);
5714 #endif
5716 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5717 const char *dev_name, void *data)
5719 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5722 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5723 static inline void register_as_ext2(void)
5725 int err = register_filesystem(&ext2_fs_type);
5726 if (err)
5727 printk(KERN_WARNING
5728 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5731 static inline void unregister_as_ext2(void)
5733 unregister_filesystem(&ext2_fs_type);
5736 static inline int ext2_feature_set_ok(struct super_block *sb)
5738 if (ext4_has_unknown_ext2_incompat_features(sb))
5739 return 0;
5740 if (sb_rdonly(sb))
5741 return 1;
5742 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5743 return 0;
5744 return 1;
5746 #else
5747 static inline void register_as_ext2(void) { }
5748 static inline void unregister_as_ext2(void) { }
5749 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5750 #endif
5752 static inline void register_as_ext3(void)
5754 int err = register_filesystem(&ext3_fs_type);
5755 if (err)
5756 printk(KERN_WARNING
5757 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5760 static inline void unregister_as_ext3(void)
5762 unregister_filesystem(&ext3_fs_type);
5765 static inline int ext3_feature_set_ok(struct super_block *sb)
5767 if (ext4_has_unknown_ext3_incompat_features(sb))
5768 return 0;
5769 if (!ext4_has_feature_journal(sb))
5770 return 0;
5771 if (sb_rdonly(sb))
5772 return 1;
5773 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5774 return 0;
5775 return 1;
5778 static struct file_system_type ext4_fs_type = {
5779 .owner = THIS_MODULE,
5780 .name = "ext4",
5781 .mount = ext4_mount,
5782 .kill_sb = kill_block_super,
5783 .fs_flags = FS_REQUIRES_DEV,
5785 MODULE_ALIAS_FS("ext4");
5787 /* Shared across all ext4 file systems */
5788 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5790 static int __init ext4_init_fs(void)
5792 int i, err;
5794 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5795 ext4_li_info = NULL;
5796 mutex_init(&ext4_li_mtx);
5798 /* Build-time check for flags consistency */
5799 ext4_check_flag_values();
5801 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5802 init_waitqueue_head(&ext4__ioend_wq[i]);
5804 err = ext4_init_es();
5805 if (err)
5806 return err;
5808 err = ext4_init_pageio();
5809 if (err)
5810 goto out5;
5812 err = ext4_init_system_zone();
5813 if (err)
5814 goto out4;
5816 err = ext4_init_sysfs();
5817 if (err)
5818 goto out3;
5820 err = ext4_init_mballoc();
5821 if (err)
5822 goto out2;
5823 err = init_inodecache();
5824 if (err)
5825 goto out1;
5826 register_as_ext3();
5827 register_as_ext2();
5828 err = register_filesystem(&ext4_fs_type);
5829 if (err)
5830 goto out;
5832 return 0;
5833 out:
5834 unregister_as_ext2();
5835 unregister_as_ext3();
5836 destroy_inodecache();
5837 out1:
5838 ext4_exit_mballoc();
5839 out2:
5840 ext4_exit_sysfs();
5841 out3:
5842 ext4_exit_system_zone();
5843 out4:
5844 ext4_exit_pageio();
5845 out5:
5846 ext4_exit_es();
5848 return err;
5851 static void __exit ext4_exit_fs(void)
5853 ext4_destroy_lazyinit_thread();
5854 unregister_as_ext2();
5855 unregister_as_ext3();
5856 unregister_filesystem(&ext4_fs_type);
5857 destroy_inodecache();
5858 ext4_exit_mballoc();
5859 ext4_exit_sysfs();
5860 ext4_exit_system_zone();
5861 ext4_exit_pageio();
5862 ext4_exit_es();
5865 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5866 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5867 MODULE_LICENSE("GPL");
5868 module_init(ext4_init_fs)
5869 module_exit(ext4_exit_fs)