xtensa: fix high memory/reserved memory collision
[cris-mirror.git] / fs / fs-writeback.c
blobd4d04fee568ac13329abf91bc8ab803a4808afcc
1 /*
2 * fs/fs-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
34 * 4MB minimal write chunk size
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
38 struct wb_completion {
39 atomic_t cnt;
43 * Passed into wb_writeback(), essentially a subset of writeback_control
45 struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 unsigned long *older_than_this;
49 enum writeback_sync_modes sync_mode;
50 unsigned int tagged_writepages:1;
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free:1; /* free on completion */
56 enum wb_reason reason; /* why was writeback initiated? */
58 struct list_head list; /* pending work list */
59 struct wb_completion *done; /* set if the caller waits */
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
87 static inline struct inode *wb_inode(struct list_head *head)
89 return list_entry(head, struct inode, i_io_list);
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
111 return true;
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 clear_bit(WB_has_dirty_io, &wb->state);
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
135 static bool inode_io_list_move_locked(struct inode *inode,
136 struct bdi_writeback *wb,
137 struct list_head *head)
139 assert_spin_locked(&wb->list_lock);
141 list_move(&inode->i_io_list, head);
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
147 wb_io_lists_depopulated(wb);
148 return false;
152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
159 static void inode_io_list_del_locked(struct inode *inode,
160 struct bdi_writeback *wb)
162 assert_spin_locked(&wb->list_lock);
164 list_del_init(&inode->i_io_list);
165 wb_io_lists_depopulated(wb);
168 static void wb_wakeup(struct bdi_writeback *wb)
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
176 static void finish_writeback_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
179 struct wb_completion *done = work->done;
181 if (work->auto_free)
182 kfree(work);
183 if (done && atomic_dec_and_test(&done->cnt))
184 wake_up_all(&wb->bdi->wb_waitq);
187 static void wb_queue_work(struct bdi_writeback *wb,
188 struct wb_writeback_work *work)
190 trace_writeback_queue(wb, work);
192 if (work->done)
193 atomic_inc(&work->done->cnt);
195 spin_lock_bh(&wb->work_lock);
197 if (test_bit(WB_registered, &wb->state)) {
198 list_add_tail(&work->list, &wb->work_list);
199 mod_delayed_work(bdi_wq, &wb->dwork, 0);
200 } else
201 finish_writeback_work(wb, work);
203 spin_unlock_bh(&wb->work_lock);
207 * wb_wait_for_completion - wait for completion of bdi_writeback_works
208 * @bdi: bdi work items were issued to
209 * @done: target wb_completion
211 * Wait for one or more work items issued to @bdi with their ->done field
212 * set to @done, which should have been defined with
213 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
214 * work items are completed. Work items which are waited upon aren't freed
215 * automatically on completion.
217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218 struct wb_completion *done)
220 atomic_dec(&done->cnt); /* put down the initial count */
221 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
224 #ifdef CONFIG_CGROUP_WRITEBACK
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
232 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234 /* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
236 /* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238 /* one round can affect upto 5 slots */
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
243 void __inode_attach_wb(struct inode *inode, struct page *page)
245 struct backing_dev_info *bdi = inode_to_bdi(inode);
246 struct bdi_writeback *wb = NULL;
248 if (inode_cgwb_enabled(inode)) {
249 struct cgroup_subsys_state *memcg_css;
251 if (page) {
252 memcg_css = mem_cgroup_css_from_page(page);
253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 } else {
255 /* must pin memcg_css, see wb_get_create() */
256 memcg_css = task_get_css(current, memory_cgrp_id);
257 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258 css_put(memcg_css);
262 if (!wb)
263 wb = &bdi->wb;
266 * There may be multiple instances of this function racing to
267 * update the same inode. Use cmpxchg() to tell the winner.
269 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270 wb_put(wb);
274 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275 * @inode: inode of interest with i_lock held
277 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
278 * held on entry and is released on return. The returned wb is guaranteed
279 * to stay @inode's associated wb until its list_lock is released.
281 static struct bdi_writeback *
282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283 __releases(&inode->i_lock)
284 __acquires(&wb->list_lock)
286 while (true) {
287 struct bdi_writeback *wb = inode_to_wb(inode);
290 * inode_to_wb() association is protected by both
291 * @inode->i_lock and @wb->list_lock but list_lock nests
292 * outside i_lock. Drop i_lock and verify that the
293 * association hasn't changed after acquiring list_lock.
295 wb_get(wb);
296 spin_unlock(&inode->i_lock);
297 spin_lock(&wb->list_lock);
299 /* i_wb may have changed inbetween, can't use inode_to_wb() */
300 if (likely(wb == inode->i_wb)) {
301 wb_put(wb); /* @inode already has ref */
302 return wb;
305 spin_unlock(&wb->list_lock);
306 wb_put(wb);
307 cpu_relax();
308 spin_lock(&inode->i_lock);
313 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314 * @inode: inode of interest
316 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317 * on entry.
319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320 __acquires(&wb->list_lock)
322 spin_lock(&inode->i_lock);
323 return locked_inode_to_wb_and_lock_list(inode);
326 struct inode_switch_wbs_context {
327 struct inode *inode;
328 struct bdi_writeback *new_wb;
330 struct rcu_head rcu_head;
331 struct work_struct work;
334 static void inode_switch_wbs_work_fn(struct work_struct *work)
336 struct inode_switch_wbs_context *isw =
337 container_of(work, struct inode_switch_wbs_context, work);
338 struct inode *inode = isw->inode;
339 struct address_space *mapping = inode->i_mapping;
340 struct bdi_writeback *old_wb = inode->i_wb;
341 struct bdi_writeback *new_wb = isw->new_wb;
342 struct radix_tree_iter iter;
343 bool switched = false;
344 void **slot;
347 * By the time control reaches here, RCU grace period has passed
348 * since I_WB_SWITCH assertion and all wb stat update transactions
349 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
350 * synchronizing against mapping->tree_lock.
352 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
353 * gives us exclusion against all wb related operations on @inode
354 * including IO list manipulations and stat updates.
356 if (old_wb < new_wb) {
357 spin_lock(&old_wb->list_lock);
358 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
359 } else {
360 spin_lock(&new_wb->list_lock);
361 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
363 spin_lock(&inode->i_lock);
364 spin_lock_irq(&mapping->tree_lock);
367 * Once I_FREEING is visible under i_lock, the eviction path owns
368 * the inode and we shouldn't modify ->i_io_list.
370 if (unlikely(inode->i_state & I_FREEING))
371 goto skip_switch;
374 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
375 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
376 * pages actually under underwriteback.
378 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
379 PAGECACHE_TAG_DIRTY) {
380 struct page *page = radix_tree_deref_slot_protected(slot,
381 &mapping->tree_lock);
382 if (likely(page) && PageDirty(page)) {
383 dec_wb_stat(old_wb, WB_RECLAIMABLE);
384 inc_wb_stat(new_wb, WB_RECLAIMABLE);
388 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
389 PAGECACHE_TAG_WRITEBACK) {
390 struct page *page = radix_tree_deref_slot_protected(slot,
391 &mapping->tree_lock);
392 if (likely(page)) {
393 WARN_ON_ONCE(!PageWriteback(page));
394 dec_wb_stat(old_wb, WB_WRITEBACK);
395 inc_wb_stat(new_wb, WB_WRITEBACK);
399 wb_get(new_wb);
402 * Transfer to @new_wb's IO list if necessary. The specific list
403 * @inode was on is ignored and the inode is put on ->b_dirty which
404 * is always correct including from ->b_dirty_time. The transfer
405 * preserves @inode->dirtied_when ordering.
407 if (!list_empty(&inode->i_io_list)) {
408 struct inode *pos;
410 inode_io_list_del_locked(inode, old_wb);
411 inode->i_wb = new_wb;
412 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
413 if (time_after_eq(inode->dirtied_when,
414 pos->dirtied_when))
415 break;
416 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
417 } else {
418 inode->i_wb = new_wb;
421 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
422 inode->i_wb_frn_winner = 0;
423 inode->i_wb_frn_avg_time = 0;
424 inode->i_wb_frn_history = 0;
425 switched = true;
426 skip_switch:
428 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
429 * ensures that the new wb is visible if they see !I_WB_SWITCH.
431 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
433 spin_unlock_irq(&mapping->tree_lock);
434 spin_unlock(&inode->i_lock);
435 spin_unlock(&new_wb->list_lock);
436 spin_unlock(&old_wb->list_lock);
438 if (switched) {
439 wb_wakeup(new_wb);
440 wb_put(old_wb);
442 wb_put(new_wb);
444 iput(inode);
445 kfree(isw);
447 atomic_dec(&isw_nr_in_flight);
450 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
452 struct inode_switch_wbs_context *isw = container_of(rcu_head,
453 struct inode_switch_wbs_context, rcu_head);
455 /* needs to grab bh-unsafe locks, bounce to work item */
456 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
457 queue_work(isw_wq, &isw->work);
461 * inode_switch_wbs - change the wb association of an inode
462 * @inode: target inode
463 * @new_wb_id: ID of the new wb
465 * Switch @inode's wb association to the wb identified by @new_wb_id. The
466 * switching is performed asynchronously and may fail silently.
468 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
470 struct backing_dev_info *bdi = inode_to_bdi(inode);
471 struct cgroup_subsys_state *memcg_css;
472 struct inode_switch_wbs_context *isw;
474 /* noop if seems to be already in progress */
475 if (inode->i_state & I_WB_SWITCH)
476 return;
478 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
479 if (!isw)
480 return;
482 /* find and pin the new wb */
483 rcu_read_lock();
484 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
485 if (memcg_css)
486 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
487 rcu_read_unlock();
488 if (!isw->new_wb)
489 goto out_free;
491 /* while holding I_WB_SWITCH, no one else can update the association */
492 spin_lock(&inode->i_lock);
493 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
494 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
495 inode_to_wb(inode) == isw->new_wb) {
496 spin_unlock(&inode->i_lock);
497 goto out_free;
499 inode->i_state |= I_WB_SWITCH;
500 __iget(inode);
501 spin_unlock(&inode->i_lock);
503 isw->inode = inode;
505 atomic_inc(&isw_nr_in_flight);
508 * In addition to synchronizing among switchers, I_WB_SWITCH tells
509 * the RCU protected stat update paths to grab the mapping's
510 * tree_lock so that stat transfer can synchronize against them.
511 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
513 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
514 return;
516 out_free:
517 if (isw->new_wb)
518 wb_put(isw->new_wb);
519 kfree(isw);
523 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
524 * @wbc: writeback_control of interest
525 * @inode: target inode
527 * @inode is locked and about to be written back under the control of @wbc.
528 * Record @inode's writeback context into @wbc and unlock the i_lock. On
529 * writeback completion, wbc_detach_inode() should be called. This is used
530 * to track the cgroup writeback context.
532 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
533 struct inode *inode)
535 if (!inode_cgwb_enabled(inode)) {
536 spin_unlock(&inode->i_lock);
537 return;
540 wbc->wb = inode_to_wb(inode);
541 wbc->inode = inode;
543 wbc->wb_id = wbc->wb->memcg_css->id;
544 wbc->wb_lcand_id = inode->i_wb_frn_winner;
545 wbc->wb_tcand_id = 0;
546 wbc->wb_bytes = 0;
547 wbc->wb_lcand_bytes = 0;
548 wbc->wb_tcand_bytes = 0;
550 wb_get(wbc->wb);
551 spin_unlock(&inode->i_lock);
554 * A dying wb indicates that the memcg-blkcg mapping has changed
555 * and a new wb is already serving the memcg. Switch immediately.
557 if (unlikely(wb_dying(wbc->wb)))
558 inode_switch_wbs(inode, wbc->wb_id);
562 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
563 * @wbc: writeback_control of the just finished writeback
565 * To be called after a writeback attempt of an inode finishes and undoes
566 * wbc_attach_and_unlock_inode(). Can be called under any context.
568 * As concurrent write sharing of an inode is expected to be very rare and
569 * memcg only tracks page ownership on first-use basis severely confining
570 * the usefulness of such sharing, cgroup writeback tracks ownership
571 * per-inode. While the support for concurrent write sharing of an inode
572 * is deemed unnecessary, an inode being written to by different cgroups at
573 * different points in time is a lot more common, and, more importantly,
574 * charging only by first-use can too readily lead to grossly incorrect
575 * behaviors (single foreign page can lead to gigabytes of writeback to be
576 * incorrectly attributed).
578 * To resolve this issue, cgroup writeback detects the majority dirtier of
579 * an inode and transfers the ownership to it. To avoid unnnecessary
580 * oscillation, the detection mechanism keeps track of history and gives
581 * out the switch verdict only if the foreign usage pattern is stable over
582 * a certain amount of time and/or writeback attempts.
584 * On each writeback attempt, @wbc tries to detect the majority writer
585 * using Boyer-Moore majority vote algorithm. In addition to the byte
586 * count from the majority voting, it also counts the bytes written for the
587 * current wb and the last round's winner wb (max of last round's current
588 * wb, the winner from two rounds ago, and the last round's majority
589 * candidate). Keeping track of the historical winner helps the algorithm
590 * to semi-reliably detect the most active writer even when it's not the
591 * absolute majority.
593 * Once the winner of the round is determined, whether the winner is
594 * foreign or not and how much IO time the round consumed is recorded in
595 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
596 * over a certain threshold, the switch verdict is given.
598 void wbc_detach_inode(struct writeback_control *wbc)
600 struct bdi_writeback *wb = wbc->wb;
601 struct inode *inode = wbc->inode;
602 unsigned long avg_time, max_bytes, max_time;
603 u16 history;
604 int max_id;
606 if (!wb)
607 return;
609 history = inode->i_wb_frn_history;
610 avg_time = inode->i_wb_frn_avg_time;
612 /* pick the winner of this round */
613 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
614 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
615 max_id = wbc->wb_id;
616 max_bytes = wbc->wb_bytes;
617 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
618 max_id = wbc->wb_lcand_id;
619 max_bytes = wbc->wb_lcand_bytes;
620 } else {
621 max_id = wbc->wb_tcand_id;
622 max_bytes = wbc->wb_tcand_bytes;
626 * Calculate the amount of IO time the winner consumed and fold it
627 * into the running average kept per inode. If the consumed IO
628 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
629 * deciding whether to switch or not. This is to prevent one-off
630 * small dirtiers from skewing the verdict.
632 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
633 wb->avg_write_bandwidth);
634 if (avg_time)
635 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
636 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
637 else
638 avg_time = max_time; /* immediate catch up on first run */
640 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
641 int slots;
644 * The switch verdict is reached if foreign wb's consume
645 * more than a certain proportion of IO time in a
646 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
647 * history mask where each bit represents one sixteenth of
648 * the period. Determine the number of slots to shift into
649 * history from @max_time.
651 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
652 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
653 history <<= slots;
654 if (wbc->wb_id != max_id)
655 history |= (1U << slots) - 1;
658 * Switch if the current wb isn't the consistent winner.
659 * If there are multiple closely competing dirtiers, the
660 * inode may switch across them repeatedly over time, which
661 * is okay. The main goal is avoiding keeping an inode on
662 * the wrong wb for an extended period of time.
664 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
665 inode_switch_wbs(inode, max_id);
669 * Multiple instances of this function may race to update the
670 * following fields but we don't mind occassional inaccuracies.
672 inode->i_wb_frn_winner = max_id;
673 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
674 inode->i_wb_frn_history = history;
676 wb_put(wbc->wb);
677 wbc->wb = NULL;
681 * wbc_account_io - account IO issued during writeback
682 * @wbc: writeback_control of the writeback in progress
683 * @page: page being written out
684 * @bytes: number of bytes being written out
686 * @bytes from @page are about to written out during the writeback
687 * controlled by @wbc. Keep the book for foreign inode detection. See
688 * wbc_detach_inode().
690 void wbc_account_io(struct writeback_control *wbc, struct page *page,
691 size_t bytes)
693 int id;
696 * pageout() path doesn't attach @wbc to the inode being written
697 * out. This is intentional as we don't want the function to block
698 * behind a slow cgroup. Ultimately, we want pageout() to kick off
699 * regular writeback instead of writing things out itself.
701 if (!wbc->wb)
702 return;
704 id = mem_cgroup_css_from_page(page)->id;
706 if (id == wbc->wb_id) {
707 wbc->wb_bytes += bytes;
708 return;
711 if (id == wbc->wb_lcand_id)
712 wbc->wb_lcand_bytes += bytes;
714 /* Boyer-Moore majority vote algorithm */
715 if (!wbc->wb_tcand_bytes)
716 wbc->wb_tcand_id = id;
717 if (id == wbc->wb_tcand_id)
718 wbc->wb_tcand_bytes += bytes;
719 else
720 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
722 EXPORT_SYMBOL_GPL(wbc_account_io);
725 * inode_congested - test whether an inode is congested
726 * @inode: inode to test for congestion (may be NULL)
727 * @cong_bits: mask of WB_[a]sync_congested bits to test
729 * Tests whether @inode is congested. @cong_bits is the mask of congestion
730 * bits to test and the return value is the mask of set bits.
732 * If cgroup writeback is enabled for @inode, the congestion state is
733 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
734 * associated with @inode is congested; otherwise, the root wb's congestion
735 * state is used.
737 * @inode is allowed to be NULL as this function is often called on
738 * mapping->host which is NULL for the swapper space.
740 int inode_congested(struct inode *inode, int cong_bits)
743 * Once set, ->i_wb never becomes NULL while the inode is alive.
744 * Start transaction iff ->i_wb is visible.
746 if (inode && inode_to_wb_is_valid(inode)) {
747 struct bdi_writeback *wb;
748 bool locked, congested;
750 wb = unlocked_inode_to_wb_begin(inode, &locked);
751 congested = wb_congested(wb, cong_bits);
752 unlocked_inode_to_wb_end(inode, locked);
753 return congested;
756 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
758 EXPORT_SYMBOL_GPL(inode_congested);
761 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
762 * @wb: target bdi_writeback to split @nr_pages to
763 * @nr_pages: number of pages to write for the whole bdi
765 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
766 * relation to the total write bandwidth of all wb's w/ dirty inodes on
767 * @wb->bdi.
769 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
771 unsigned long this_bw = wb->avg_write_bandwidth;
772 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
774 if (nr_pages == LONG_MAX)
775 return LONG_MAX;
778 * This may be called on clean wb's and proportional distribution
779 * may not make sense, just use the original @nr_pages in those
780 * cases. In general, we wanna err on the side of writing more.
782 if (!tot_bw || this_bw >= tot_bw)
783 return nr_pages;
784 else
785 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
789 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
790 * @bdi: target backing_dev_info
791 * @base_work: wb_writeback_work to issue
792 * @skip_if_busy: skip wb's which already have writeback in progress
794 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
795 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
796 * distributed to the busy wbs according to each wb's proportion in the
797 * total active write bandwidth of @bdi.
799 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
800 struct wb_writeback_work *base_work,
801 bool skip_if_busy)
803 struct bdi_writeback *last_wb = NULL;
804 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
805 struct bdi_writeback, bdi_node);
807 might_sleep();
808 restart:
809 rcu_read_lock();
810 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
811 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
812 struct wb_writeback_work fallback_work;
813 struct wb_writeback_work *work;
814 long nr_pages;
816 if (last_wb) {
817 wb_put(last_wb);
818 last_wb = NULL;
821 /* SYNC_ALL writes out I_DIRTY_TIME too */
822 if (!wb_has_dirty_io(wb) &&
823 (base_work->sync_mode == WB_SYNC_NONE ||
824 list_empty(&wb->b_dirty_time)))
825 continue;
826 if (skip_if_busy && writeback_in_progress(wb))
827 continue;
829 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
831 work = kmalloc(sizeof(*work), GFP_ATOMIC);
832 if (work) {
833 *work = *base_work;
834 work->nr_pages = nr_pages;
835 work->auto_free = 1;
836 wb_queue_work(wb, work);
837 continue;
840 /* alloc failed, execute synchronously using on-stack fallback */
841 work = &fallback_work;
842 *work = *base_work;
843 work->nr_pages = nr_pages;
844 work->auto_free = 0;
845 work->done = &fallback_work_done;
847 wb_queue_work(wb, work);
850 * Pin @wb so that it stays on @bdi->wb_list. This allows
851 * continuing iteration from @wb after dropping and
852 * regrabbing rcu read lock.
854 wb_get(wb);
855 last_wb = wb;
857 rcu_read_unlock();
858 wb_wait_for_completion(bdi, &fallback_work_done);
859 goto restart;
861 rcu_read_unlock();
863 if (last_wb)
864 wb_put(last_wb);
868 * cgroup_writeback_umount - flush inode wb switches for umount
870 * This function is called when a super_block is about to be destroyed and
871 * flushes in-flight inode wb switches. An inode wb switch goes through
872 * RCU and then workqueue, so the two need to be flushed in order to ensure
873 * that all previously scheduled switches are finished. As wb switches are
874 * rare occurrences and synchronize_rcu() can take a while, perform
875 * flushing iff wb switches are in flight.
877 void cgroup_writeback_umount(void)
879 if (atomic_read(&isw_nr_in_flight)) {
880 synchronize_rcu();
881 flush_workqueue(isw_wq);
885 static int __init cgroup_writeback_init(void)
887 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
888 if (!isw_wq)
889 return -ENOMEM;
890 return 0;
892 fs_initcall(cgroup_writeback_init);
894 #else /* CONFIG_CGROUP_WRITEBACK */
896 static struct bdi_writeback *
897 locked_inode_to_wb_and_lock_list(struct inode *inode)
898 __releases(&inode->i_lock)
899 __acquires(&wb->list_lock)
901 struct bdi_writeback *wb = inode_to_wb(inode);
903 spin_unlock(&inode->i_lock);
904 spin_lock(&wb->list_lock);
905 return wb;
908 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
909 __acquires(&wb->list_lock)
911 struct bdi_writeback *wb = inode_to_wb(inode);
913 spin_lock(&wb->list_lock);
914 return wb;
917 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
919 return nr_pages;
922 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
923 struct wb_writeback_work *base_work,
924 bool skip_if_busy)
926 might_sleep();
928 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
929 base_work->auto_free = 0;
930 wb_queue_work(&bdi->wb, base_work);
934 #endif /* CONFIG_CGROUP_WRITEBACK */
937 * Add in the number of potentially dirty inodes, because each inode
938 * write can dirty pagecache in the underlying blockdev.
940 static unsigned long get_nr_dirty_pages(void)
942 return global_node_page_state(NR_FILE_DIRTY) +
943 global_node_page_state(NR_UNSTABLE_NFS) +
944 get_nr_dirty_inodes();
947 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
949 if (!wb_has_dirty_io(wb))
950 return;
953 * All callers of this function want to start writeback of all
954 * dirty pages. Places like vmscan can call this at a very
955 * high frequency, causing pointless allocations of tons of
956 * work items and keeping the flusher threads busy retrieving
957 * that work. Ensure that we only allow one of them pending and
958 * inflight at the time.
960 if (test_bit(WB_start_all, &wb->state) ||
961 test_and_set_bit(WB_start_all, &wb->state))
962 return;
964 wb->start_all_reason = reason;
965 wb_wakeup(wb);
969 * wb_start_background_writeback - start background writeback
970 * @wb: bdi_writback to write from
972 * Description:
973 * This makes sure WB_SYNC_NONE background writeback happens. When
974 * this function returns, it is only guaranteed that for given wb
975 * some IO is happening if we are over background dirty threshold.
976 * Caller need not hold sb s_umount semaphore.
978 void wb_start_background_writeback(struct bdi_writeback *wb)
981 * We just wake up the flusher thread. It will perform background
982 * writeback as soon as there is no other work to do.
984 trace_writeback_wake_background(wb);
985 wb_wakeup(wb);
989 * Remove the inode from the writeback list it is on.
991 void inode_io_list_del(struct inode *inode)
993 struct bdi_writeback *wb;
995 wb = inode_to_wb_and_lock_list(inode);
996 inode_io_list_del_locked(inode, wb);
997 spin_unlock(&wb->list_lock);
1001 * mark an inode as under writeback on the sb
1003 void sb_mark_inode_writeback(struct inode *inode)
1005 struct super_block *sb = inode->i_sb;
1006 unsigned long flags;
1008 if (list_empty(&inode->i_wb_list)) {
1009 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1010 if (list_empty(&inode->i_wb_list)) {
1011 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1012 trace_sb_mark_inode_writeback(inode);
1014 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1019 * clear an inode as under writeback on the sb
1021 void sb_clear_inode_writeback(struct inode *inode)
1023 struct super_block *sb = inode->i_sb;
1024 unsigned long flags;
1026 if (!list_empty(&inode->i_wb_list)) {
1027 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1028 if (!list_empty(&inode->i_wb_list)) {
1029 list_del_init(&inode->i_wb_list);
1030 trace_sb_clear_inode_writeback(inode);
1032 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1037 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1038 * furthest end of its superblock's dirty-inode list.
1040 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1041 * already the most-recently-dirtied inode on the b_dirty list. If that is
1042 * the case then the inode must have been redirtied while it was being written
1043 * out and we don't reset its dirtied_when.
1045 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1047 if (!list_empty(&wb->b_dirty)) {
1048 struct inode *tail;
1050 tail = wb_inode(wb->b_dirty.next);
1051 if (time_before(inode->dirtied_when, tail->dirtied_when))
1052 inode->dirtied_when = jiffies;
1054 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1058 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1060 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1062 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1065 static void inode_sync_complete(struct inode *inode)
1067 inode->i_state &= ~I_SYNC;
1068 /* If inode is clean an unused, put it into LRU now... */
1069 inode_add_lru(inode);
1070 /* Waiters must see I_SYNC cleared before being woken up */
1071 smp_mb();
1072 wake_up_bit(&inode->i_state, __I_SYNC);
1075 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1077 bool ret = time_after(inode->dirtied_when, t);
1078 #ifndef CONFIG_64BIT
1080 * For inodes being constantly redirtied, dirtied_when can get stuck.
1081 * It _appears_ to be in the future, but is actually in distant past.
1082 * This test is necessary to prevent such wrapped-around relative times
1083 * from permanently stopping the whole bdi writeback.
1085 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1086 #endif
1087 return ret;
1090 #define EXPIRE_DIRTY_ATIME 0x0001
1093 * Move expired (dirtied before work->older_than_this) dirty inodes from
1094 * @delaying_queue to @dispatch_queue.
1096 static int move_expired_inodes(struct list_head *delaying_queue,
1097 struct list_head *dispatch_queue,
1098 int flags,
1099 struct wb_writeback_work *work)
1101 unsigned long *older_than_this = NULL;
1102 unsigned long expire_time;
1103 LIST_HEAD(tmp);
1104 struct list_head *pos, *node;
1105 struct super_block *sb = NULL;
1106 struct inode *inode;
1107 int do_sb_sort = 0;
1108 int moved = 0;
1110 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1111 older_than_this = work->older_than_this;
1112 else if (!work->for_sync) {
1113 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1114 older_than_this = &expire_time;
1116 while (!list_empty(delaying_queue)) {
1117 inode = wb_inode(delaying_queue->prev);
1118 if (older_than_this &&
1119 inode_dirtied_after(inode, *older_than_this))
1120 break;
1121 list_move(&inode->i_io_list, &tmp);
1122 moved++;
1123 if (flags & EXPIRE_DIRTY_ATIME)
1124 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1125 if (sb_is_blkdev_sb(inode->i_sb))
1126 continue;
1127 if (sb && sb != inode->i_sb)
1128 do_sb_sort = 1;
1129 sb = inode->i_sb;
1132 /* just one sb in list, splice to dispatch_queue and we're done */
1133 if (!do_sb_sort) {
1134 list_splice(&tmp, dispatch_queue);
1135 goto out;
1138 /* Move inodes from one superblock together */
1139 while (!list_empty(&tmp)) {
1140 sb = wb_inode(tmp.prev)->i_sb;
1141 list_for_each_prev_safe(pos, node, &tmp) {
1142 inode = wb_inode(pos);
1143 if (inode->i_sb == sb)
1144 list_move(&inode->i_io_list, dispatch_queue);
1147 out:
1148 return moved;
1152 * Queue all expired dirty inodes for io, eldest first.
1153 * Before
1154 * newly dirtied b_dirty b_io b_more_io
1155 * =============> gf edc BA
1156 * After
1157 * newly dirtied b_dirty b_io b_more_io
1158 * =============> g fBAedc
1160 * +--> dequeue for IO
1162 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1164 int moved;
1166 assert_spin_locked(&wb->list_lock);
1167 list_splice_init(&wb->b_more_io, &wb->b_io);
1168 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1169 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1170 EXPIRE_DIRTY_ATIME, work);
1171 if (moved)
1172 wb_io_lists_populated(wb);
1173 trace_writeback_queue_io(wb, work, moved);
1176 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1178 int ret;
1180 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1181 trace_writeback_write_inode_start(inode, wbc);
1182 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1183 trace_writeback_write_inode(inode, wbc);
1184 return ret;
1186 return 0;
1190 * Wait for writeback on an inode to complete. Called with i_lock held.
1191 * Caller must make sure inode cannot go away when we drop i_lock.
1193 static void __inode_wait_for_writeback(struct inode *inode)
1194 __releases(inode->i_lock)
1195 __acquires(inode->i_lock)
1197 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1198 wait_queue_head_t *wqh;
1200 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1201 while (inode->i_state & I_SYNC) {
1202 spin_unlock(&inode->i_lock);
1203 __wait_on_bit(wqh, &wq, bit_wait,
1204 TASK_UNINTERRUPTIBLE);
1205 spin_lock(&inode->i_lock);
1210 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1212 void inode_wait_for_writeback(struct inode *inode)
1214 spin_lock(&inode->i_lock);
1215 __inode_wait_for_writeback(inode);
1216 spin_unlock(&inode->i_lock);
1220 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1221 * held and drops it. It is aimed for callers not holding any inode reference
1222 * so once i_lock is dropped, inode can go away.
1224 static void inode_sleep_on_writeback(struct inode *inode)
1225 __releases(inode->i_lock)
1227 DEFINE_WAIT(wait);
1228 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1229 int sleep;
1231 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1232 sleep = inode->i_state & I_SYNC;
1233 spin_unlock(&inode->i_lock);
1234 if (sleep)
1235 schedule();
1236 finish_wait(wqh, &wait);
1240 * Find proper writeback list for the inode depending on its current state and
1241 * possibly also change of its state while we were doing writeback. Here we
1242 * handle things such as livelock prevention or fairness of writeback among
1243 * inodes. This function can be called only by flusher thread - noone else
1244 * processes all inodes in writeback lists and requeueing inodes behind flusher
1245 * thread's back can have unexpected consequences.
1247 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1248 struct writeback_control *wbc)
1250 if (inode->i_state & I_FREEING)
1251 return;
1254 * Sync livelock prevention. Each inode is tagged and synced in one
1255 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1256 * the dirty time to prevent enqueue and sync it again.
1258 if ((inode->i_state & I_DIRTY) &&
1259 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1260 inode->dirtied_when = jiffies;
1262 if (wbc->pages_skipped) {
1264 * writeback is not making progress due to locked
1265 * buffers. Skip this inode for now.
1267 redirty_tail(inode, wb);
1268 return;
1271 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1273 * We didn't write back all the pages. nfs_writepages()
1274 * sometimes bales out without doing anything.
1276 if (wbc->nr_to_write <= 0) {
1277 /* Slice used up. Queue for next turn. */
1278 requeue_io(inode, wb);
1279 } else {
1281 * Writeback blocked by something other than
1282 * congestion. Delay the inode for some time to
1283 * avoid spinning on the CPU (100% iowait)
1284 * retrying writeback of the dirty page/inode
1285 * that cannot be performed immediately.
1287 redirty_tail(inode, wb);
1289 } else if (inode->i_state & I_DIRTY) {
1291 * Filesystems can dirty the inode during writeback operations,
1292 * such as delayed allocation during submission or metadata
1293 * updates after data IO completion.
1295 redirty_tail(inode, wb);
1296 } else if (inode->i_state & I_DIRTY_TIME) {
1297 inode->dirtied_when = jiffies;
1298 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1299 } else {
1300 /* The inode is clean. Remove from writeback lists. */
1301 inode_io_list_del_locked(inode, wb);
1306 * Write out an inode and its dirty pages. Do not update the writeback list
1307 * linkage. That is left to the caller. The caller is also responsible for
1308 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1310 static int
1311 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1313 struct address_space *mapping = inode->i_mapping;
1314 long nr_to_write = wbc->nr_to_write;
1315 unsigned dirty;
1316 int ret;
1318 WARN_ON(!(inode->i_state & I_SYNC));
1320 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1322 ret = do_writepages(mapping, wbc);
1325 * Make sure to wait on the data before writing out the metadata.
1326 * This is important for filesystems that modify metadata on data
1327 * I/O completion. We don't do it for sync(2) writeback because it has a
1328 * separate, external IO completion path and ->sync_fs for guaranteeing
1329 * inode metadata is written back correctly.
1331 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1332 int err = filemap_fdatawait(mapping);
1333 if (ret == 0)
1334 ret = err;
1338 * Some filesystems may redirty the inode during the writeback
1339 * due to delalloc, clear dirty metadata flags right before
1340 * write_inode()
1342 spin_lock(&inode->i_lock);
1344 dirty = inode->i_state & I_DIRTY;
1345 if (inode->i_state & I_DIRTY_TIME) {
1346 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1347 wbc->sync_mode == WB_SYNC_ALL ||
1348 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1349 unlikely(time_after(jiffies,
1350 (inode->dirtied_time_when +
1351 dirtytime_expire_interval * HZ)))) {
1352 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1353 trace_writeback_lazytime(inode);
1355 } else
1356 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1357 inode->i_state &= ~dirty;
1360 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1361 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1362 * either they see the I_DIRTY bits cleared or we see the dirtied
1363 * inode.
1365 * I_DIRTY_PAGES is always cleared together above even if @mapping
1366 * still has dirty pages. The flag is reinstated after smp_mb() if
1367 * necessary. This guarantees that either __mark_inode_dirty()
1368 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1370 smp_mb();
1372 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1373 inode->i_state |= I_DIRTY_PAGES;
1375 spin_unlock(&inode->i_lock);
1377 if (dirty & I_DIRTY_TIME)
1378 mark_inode_dirty_sync(inode);
1379 /* Don't write the inode if only I_DIRTY_PAGES was set */
1380 if (dirty & ~I_DIRTY_PAGES) {
1381 int err = write_inode(inode, wbc);
1382 if (ret == 0)
1383 ret = err;
1385 trace_writeback_single_inode(inode, wbc, nr_to_write);
1386 return ret;
1390 * Write out an inode's dirty pages. Either the caller has an active reference
1391 * on the inode or the inode has I_WILL_FREE set.
1393 * This function is designed to be called for writing back one inode which
1394 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1395 * and does more profound writeback list handling in writeback_sb_inodes().
1397 static int writeback_single_inode(struct inode *inode,
1398 struct writeback_control *wbc)
1400 struct bdi_writeback *wb;
1401 int ret = 0;
1403 spin_lock(&inode->i_lock);
1404 if (!atomic_read(&inode->i_count))
1405 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1406 else
1407 WARN_ON(inode->i_state & I_WILL_FREE);
1409 if (inode->i_state & I_SYNC) {
1410 if (wbc->sync_mode != WB_SYNC_ALL)
1411 goto out;
1413 * It's a data-integrity sync. We must wait. Since callers hold
1414 * inode reference or inode has I_WILL_FREE set, it cannot go
1415 * away under us.
1417 __inode_wait_for_writeback(inode);
1419 WARN_ON(inode->i_state & I_SYNC);
1421 * Skip inode if it is clean and we have no outstanding writeback in
1422 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1423 * function since flusher thread may be doing for example sync in
1424 * parallel and if we move the inode, it could get skipped. So here we
1425 * make sure inode is on some writeback list and leave it there unless
1426 * we have completely cleaned the inode.
1428 if (!(inode->i_state & I_DIRTY_ALL) &&
1429 (wbc->sync_mode != WB_SYNC_ALL ||
1430 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1431 goto out;
1432 inode->i_state |= I_SYNC;
1433 wbc_attach_and_unlock_inode(wbc, inode);
1435 ret = __writeback_single_inode(inode, wbc);
1437 wbc_detach_inode(wbc);
1439 wb = inode_to_wb_and_lock_list(inode);
1440 spin_lock(&inode->i_lock);
1442 * If inode is clean, remove it from writeback lists. Otherwise don't
1443 * touch it. See comment above for explanation.
1445 if (!(inode->i_state & I_DIRTY_ALL))
1446 inode_io_list_del_locked(inode, wb);
1447 spin_unlock(&wb->list_lock);
1448 inode_sync_complete(inode);
1449 out:
1450 spin_unlock(&inode->i_lock);
1451 return ret;
1454 static long writeback_chunk_size(struct bdi_writeback *wb,
1455 struct wb_writeback_work *work)
1457 long pages;
1460 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1461 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1462 * here avoids calling into writeback_inodes_wb() more than once.
1464 * The intended call sequence for WB_SYNC_ALL writeback is:
1466 * wb_writeback()
1467 * writeback_sb_inodes() <== called only once
1468 * write_cache_pages() <== called once for each inode
1469 * (quickly) tag currently dirty pages
1470 * (maybe slowly) sync all tagged pages
1472 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1473 pages = LONG_MAX;
1474 else {
1475 pages = min(wb->avg_write_bandwidth / 2,
1476 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1477 pages = min(pages, work->nr_pages);
1478 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1479 MIN_WRITEBACK_PAGES);
1482 return pages;
1486 * Write a portion of b_io inodes which belong to @sb.
1488 * Return the number of pages and/or inodes written.
1490 * NOTE! This is called with wb->list_lock held, and will
1491 * unlock and relock that for each inode it ends up doing
1492 * IO for.
1494 static long writeback_sb_inodes(struct super_block *sb,
1495 struct bdi_writeback *wb,
1496 struct wb_writeback_work *work)
1498 struct writeback_control wbc = {
1499 .sync_mode = work->sync_mode,
1500 .tagged_writepages = work->tagged_writepages,
1501 .for_kupdate = work->for_kupdate,
1502 .for_background = work->for_background,
1503 .for_sync = work->for_sync,
1504 .range_cyclic = work->range_cyclic,
1505 .range_start = 0,
1506 .range_end = LLONG_MAX,
1508 unsigned long start_time = jiffies;
1509 long write_chunk;
1510 long wrote = 0; /* count both pages and inodes */
1512 while (!list_empty(&wb->b_io)) {
1513 struct inode *inode = wb_inode(wb->b_io.prev);
1514 struct bdi_writeback *tmp_wb;
1516 if (inode->i_sb != sb) {
1517 if (work->sb) {
1519 * We only want to write back data for this
1520 * superblock, move all inodes not belonging
1521 * to it back onto the dirty list.
1523 redirty_tail(inode, wb);
1524 continue;
1528 * The inode belongs to a different superblock.
1529 * Bounce back to the caller to unpin this and
1530 * pin the next superblock.
1532 break;
1536 * Don't bother with new inodes or inodes being freed, first
1537 * kind does not need periodic writeout yet, and for the latter
1538 * kind writeout is handled by the freer.
1540 spin_lock(&inode->i_lock);
1541 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1542 spin_unlock(&inode->i_lock);
1543 redirty_tail(inode, wb);
1544 continue;
1546 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1548 * If this inode is locked for writeback and we are not
1549 * doing writeback-for-data-integrity, move it to
1550 * b_more_io so that writeback can proceed with the
1551 * other inodes on s_io.
1553 * We'll have another go at writing back this inode
1554 * when we completed a full scan of b_io.
1556 spin_unlock(&inode->i_lock);
1557 requeue_io(inode, wb);
1558 trace_writeback_sb_inodes_requeue(inode);
1559 continue;
1561 spin_unlock(&wb->list_lock);
1564 * We already requeued the inode if it had I_SYNC set and we
1565 * are doing WB_SYNC_NONE writeback. So this catches only the
1566 * WB_SYNC_ALL case.
1568 if (inode->i_state & I_SYNC) {
1569 /* Wait for I_SYNC. This function drops i_lock... */
1570 inode_sleep_on_writeback(inode);
1571 /* Inode may be gone, start again */
1572 spin_lock(&wb->list_lock);
1573 continue;
1575 inode->i_state |= I_SYNC;
1576 wbc_attach_and_unlock_inode(&wbc, inode);
1578 write_chunk = writeback_chunk_size(wb, work);
1579 wbc.nr_to_write = write_chunk;
1580 wbc.pages_skipped = 0;
1583 * We use I_SYNC to pin the inode in memory. While it is set
1584 * evict_inode() will wait so the inode cannot be freed.
1586 __writeback_single_inode(inode, &wbc);
1588 wbc_detach_inode(&wbc);
1589 work->nr_pages -= write_chunk - wbc.nr_to_write;
1590 wrote += write_chunk - wbc.nr_to_write;
1592 if (need_resched()) {
1594 * We're trying to balance between building up a nice
1595 * long list of IOs to improve our merge rate, and
1596 * getting those IOs out quickly for anyone throttling
1597 * in balance_dirty_pages(). cond_resched() doesn't
1598 * unplug, so get our IOs out the door before we
1599 * give up the CPU.
1601 blk_flush_plug(current);
1602 cond_resched();
1606 * Requeue @inode if still dirty. Be careful as @inode may
1607 * have been switched to another wb in the meantime.
1609 tmp_wb = inode_to_wb_and_lock_list(inode);
1610 spin_lock(&inode->i_lock);
1611 if (!(inode->i_state & I_DIRTY_ALL))
1612 wrote++;
1613 requeue_inode(inode, tmp_wb, &wbc);
1614 inode_sync_complete(inode);
1615 spin_unlock(&inode->i_lock);
1617 if (unlikely(tmp_wb != wb)) {
1618 spin_unlock(&tmp_wb->list_lock);
1619 spin_lock(&wb->list_lock);
1623 * bail out to wb_writeback() often enough to check
1624 * background threshold and other termination conditions.
1626 if (wrote) {
1627 if (time_is_before_jiffies(start_time + HZ / 10UL))
1628 break;
1629 if (work->nr_pages <= 0)
1630 break;
1633 return wrote;
1636 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1637 struct wb_writeback_work *work)
1639 unsigned long start_time = jiffies;
1640 long wrote = 0;
1642 while (!list_empty(&wb->b_io)) {
1643 struct inode *inode = wb_inode(wb->b_io.prev);
1644 struct super_block *sb = inode->i_sb;
1646 if (!trylock_super(sb)) {
1648 * trylock_super() may fail consistently due to
1649 * s_umount being grabbed by someone else. Don't use
1650 * requeue_io() to avoid busy retrying the inode/sb.
1652 redirty_tail(inode, wb);
1653 continue;
1655 wrote += writeback_sb_inodes(sb, wb, work);
1656 up_read(&sb->s_umount);
1658 /* refer to the same tests at the end of writeback_sb_inodes */
1659 if (wrote) {
1660 if (time_is_before_jiffies(start_time + HZ / 10UL))
1661 break;
1662 if (work->nr_pages <= 0)
1663 break;
1666 /* Leave any unwritten inodes on b_io */
1667 return wrote;
1670 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1671 enum wb_reason reason)
1673 struct wb_writeback_work work = {
1674 .nr_pages = nr_pages,
1675 .sync_mode = WB_SYNC_NONE,
1676 .range_cyclic = 1,
1677 .reason = reason,
1679 struct blk_plug plug;
1681 blk_start_plug(&plug);
1682 spin_lock(&wb->list_lock);
1683 if (list_empty(&wb->b_io))
1684 queue_io(wb, &work);
1685 __writeback_inodes_wb(wb, &work);
1686 spin_unlock(&wb->list_lock);
1687 blk_finish_plug(&plug);
1689 return nr_pages - work.nr_pages;
1693 * Explicit flushing or periodic writeback of "old" data.
1695 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1696 * dirtying-time in the inode's address_space. So this periodic writeback code
1697 * just walks the superblock inode list, writing back any inodes which are
1698 * older than a specific point in time.
1700 * Try to run once per dirty_writeback_interval. But if a writeback event
1701 * takes longer than a dirty_writeback_interval interval, then leave a
1702 * one-second gap.
1704 * older_than_this takes precedence over nr_to_write. So we'll only write back
1705 * all dirty pages if they are all attached to "old" mappings.
1707 static long wb_writeback(struct bdi_writeback *wb,
1708 struct wb_writeback_work *work)
1710 unsigned long wb_start = jiffies;
1711 long nr_pages = work->nr_pages;
1712 unsigned long oldest_jif;
1713 struct inode *inode;
1714 long progress;
1715 struct blk_plug plug;
1717 oldest_jif = jiffies;
1718 work->older_than_this = &oldest_jif;
1720 blk_start_plug(&plug);
1721 spin_lock(&wb->list_lock);
1722 for (;;) {
1724 * Stop writeback when nr_pages has been consumed
1726 if (work->nr_pages <= 0)
1727 break;
1730 * Background writeout and kupdate-style writeback may
1731 * run forever. Stop them if there is other work to do
1732 * so that e.g. sync can proceed. They'll be restarted
1733 * after the other works are all done.
1735 if ((work->for_background || work->for_kupdate) &&
1736 !list_empty(&wb->work_list))
1737 break;
1740 * For background writeout, stop when we are below the
1741 * background dirty threshold
1743 if (work->for_background && !wb_over_bg_thresh(wb))
1744 break;
1747 * Kupdate and background works are special and we want to
1748 * include all inodes that need writing. Livelock avoidance is
1749 * handled by these works yielding to any other work so we are
1750 * safe.
1752 if (work->for_kupdate) {
1753 oldest_jif = jiffies -
1754 msecs_to_jiffies(dirty_expire_interval * 10);
1755 } else if (work->for_background)
1756 oldest_jif = jiffies;
1758 trace_writeback_start(wb, work);
1759 if (list_empty(&wb->b_io))
1760 queue_io(wb, work);
1761 if (work->sb)
1762 progress = writeback_sb_inodes(work->sb, wb, work);
1763 else
1764 progress = __writeback_inodes_wb(wb, work);
1765 trace_writeback_written(wb, work);
1767 wb_update_bandwidth(wb, wb_start);
1770 * Did we write something? Try for more
1772 * Dirty inodes are moved to b_io for writeback in batches.
1773 * The completion of the current batch does not necessarily
1774 * mean the overall work is done. So we keep looping as long
1775 * as made some progress on cleaning pages or inodes.
1777 if (progress)
1778 continue;
1780 * No more inodes for IO, bail
1782 if (list_empty(&wb->b_more_io))
1783 break;
1785 * Nothing written. Wait for some inode to
1786 * become available for writeback. Otherwise
1787 * we'll just busyloop.
1789 trace_writeback_wait(wb, work);
1790 inode = wb_inode(wb->b_more_io.prev);
1791 spin_lock(&inode->i_lock);
1792 spin_unlock(&wb->list_lock);
1793 /* This function drops i_lock... */
1794 inode_sleep_on_writeback(inode);
1795 spin_lock(&wb->list_lock);
1797 spin_unlock(&wb->list_lock);
1798 blk_finish_plug(&plug);
1800 return nr_pages - work->nr_pages;
1804 * Return the next wb_writeback_work struct that hasn't been processed yet.
1806 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1808 struct wb_writeback_work *work = NULL;
1810 spin_lock_bh(&wb->work_lock);
1811 if (!list_empty(&wb->work_list)) {
1812 work = list_entry(wb->work_list.next,
1813 struct wb_writeback_work, list);
1814 list_del_init(&work->list);
1816 spin_unlock_bh(&wb->work_lock);
1817 return work;
1820 static long wb_check_background_flush(struct bdi_writeback *wb)
1822 if (wb_over_bg_thresh(wb)) {
1824 struct wb_writeback_work work = {
1825 .nr_pages = LONG_MAX,
1826 .sync_mode = WB_SYNC_NONE,
1827 .for_background = 1,
1828 .range_cyclic = 1,
1829 .reason = WB_REASON_BACKGROUND,
1832 return wb_writeback(wb, &work);
1835 return 0;
1838 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1840 unsigned long expired;
1841 long nr_pages;
1844 * When set to zero, disable periodic writeback
1846 if (!dirty_writeback_interval)
1847 return 0;
1849 expired = wb->last_old_flush +
1850 msecs_to_jiffies(dirty_writeback_interval * 10);
1851 if (time_before(jiffies, expired))
1852 return 0;
1854 wb->last_old_flush = jiffies;
1855 nr_pages = get_nr_dirty_pages();
1857 if (nr_pages) {
1858 struct wb_writeback_work work = {
1859 .nr_pages = nr_pages,
1860 .sync_mode = WB_SYNC_NONE,
1861 .for_kupdate = 1,
1862 .range_cyclic = 1,
1863 .reason = WB_REASON_PERIODIC,
1866 return wb_writeback(wb, &work);
1869 return 0;
1872 static long wb_check_start_all(struct bdi_writeback *wb)
1874 long nr_pages;
1876 if (!test_bit(WB_start_all, &wb->state))
1877 return 0;
1879 nr_pages = get_nr_dirty_pages();
1880 if (nr_pages) {
1881 struct wb_writeback_work work = {
1882 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
1883 .sync_mode = WB_SYNC_NONE,
1884 .range_cyclic = 1,
1885 .reason = wb->start_all_reason,
1888 nr_pages = wb_writeback(wb, &work);
1891 clear_bit(WB_start_all, &wb->state);
1892 return nr_pages;
1897 * Retrieve work items and do the writeback they describe
1899 static long wb_do_writeback(struct bdi_writeback *wb)
1901 struct wb_writeback_work *work;
1902 long wrote = 0;
1904 set_bit(WB_writeback_running, &wb->state);
1905 while ((work = get_next_work_item(wb)) != NULL) {
1906 trace_writeback_exec(wb, work);
1907 wrote += wb_writeback(wb, work);
1908 finish_writeback_work(wb, work);
1912 * Check for a flush-everything request
1914 wrote += wb_check_start_all(wb);
1917 * Check for periodic writeback, kupdated() style
1919 wrote += wb_check_old_data_flush(wb);
1920 wrote += wb_check_background_flush(wb);
1921 clear_bit(WB_writeback_running, &wb->state);
1923 return wrote;
1927 * Handle writeback of dirty data for the device backed by this bdi. Also
1928 * reschedules periodically and does kupdated style flushing.
1930 void wb_workfn(struct work_struct *work)
1932 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1933 struct bdi_writeback, dwork);
1934 long pages_written;
1936 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1937 current->flags |= PF_SWAPWRITE;
1939 if (likely(!current_is_workqueue_rescuer() ||
1940 !test_bit(WB_registered, &wb->state))) {
1942 * The normal path. Keep writing back @wb until its
1943 * work_list is empty. Note that this path is also taken
1944 * if @wb is shutting down even when we're running off the
1945 * rescuer as work_list needs to be drained.
1947 do {
1948 pages_written = wb_do_writeback(wb);
1949 trace_writeback_pages_written(pages_written);
1950 } while (!list_empty(&wb->work_list));
1951 } else {
1953 * bdi_wq can't get enough workers and we're running off
1954 * the emergency worker. Don't hog it. Hopefully, 1024 is
1955 * enough for efficient IO.
1957 pages_written = writeback_inodes_wb(wb, 1024,
1958 WB_REASON_FORKER_THREAD);
1959 trace_writeback_pages_written(pages_written);
1962 if (!list_empty(&wb->work_list))
1963 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1964 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1965 wb_wakeup_delayed(wb);
1967 current->flags &= ~PF_SWAPWRITE;
1971 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
1972 * write back the whole world.
1974 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
1975 enum wb_reason reason)
1977 struct bdi_writeback *wb;
1979 if (!bdi_has_dirty_io(bdi))
1980 return;
1982 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1983 wb_start_writeback(wb, reason);
1986 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
1987 enum wb_reason reason)
1989 rcu_read_lock();
1990 __wakeup_flusher_threads_bdi(bdi, reason);
1991 rcu_read_unlock();
1995 * Wakeup the flusher threads to start writeback of all currently dirty pages
1997 void wakeup_flusher_threads(enum wb_reason reason)
1999 struct backing_dev_info *bdi;
2002 * If we are expecting writeback progress we must submit plugged IO.
2004 if (blk_needs_flush_plug(current))
2005 blk_schedule_flush_plug(current);
2007 rcu_read_lock();
2008 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2009 __wakeup_flusher_threads_bdi(bdi, reason);
2010 rcu_read_unlock();
2014 * Wake up bdi's periodically to make sure dirtytime inodes gets
2015 * written back periodically. We deliberately do *not* check the
2016 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2017 * kernel to be constantly waking up once there are any dirtytime
2018 * inodes on the system. So instead we define a separate delayed work
2019 * function which gets called much more rarely. (By default, only
2020 * once every 12 hours.)
2022 * If there is any other write activity going on in the file system,
2023 * this function won't be necessary. But if the only thing that has
2024 * happened on the file system is a dirtytime inode caused by an atime
2025 * update, we need this infrastructure below to make sure that inode
2026 * eventually gets pushed out to disk.
2028 static void wakeup_dirtytime_writeback(struct work_struct *w);
2029 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2031 static void wakeup_dirtytime_writeback(struct work_struct *w)
2033 struct backing_dev_info *bdi;
2035 rcu_read_lock();
2036 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2037 struct bdi_writeback *wb;
2039 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2040 if (!list_empty(&wb->b_dirty_time))
2041 wb_wakeup(wb);
2043 rcu_read_unlock();
2044 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2047 static int __init start_dirtytime_writeback(void)
2049 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2050 return 0;
2052 __initcall(start_dirtytime_writeback);
2054 int dirtytime_interval_handler(struct ctl_table *table, int write,
2055 void __user *buffer, size_t *lenp, loff_t *ppos)
2057 int ret;
2059 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2060 if (ret == 0 && write)
2061 mod_delayed_work(system_wq, &dirtytime_work, 0);
2062 return ret;
2065 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2067 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2068 struct dentry *dentry;
2069 const char *name = "?";
2071 dentry = d_find_alias(inode);
2072 if (dentry) {
2073 spin_lock(&dentry->d_lock);
2074 name = (const char *) dentry->d_name.name;
2076 printk(KERN_DEBUG
2077 "%s(%d): dirtied inode %lu (%s) on %s\n",
2078 current->comm, task_pid_nr(current), inode->i_ino,
2079 name, inode->i_sb->s_id);
2080 if (dentry) {
2081 spin_unlock(&dentry->d_lock);
2082 dput(dentry);
2088 * __mark_inode_dirty - internal function
2090 * @inode: inode to mark
2091 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2093 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2094 * mark_inode_dirty_sync.
2096 * Put the inode on the super block's dirty list.
2098 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2099 * dirty list only if it is hashed or if it refers to a blockdev.
2100 * If it was not hashed, it will never be added to the dirty list
2101 * even if it is later hashed, as it will have been marked dirty already.
2103 * In short, make sure you hash any inodes _before_ you start marking
2104 * them dirty.
2106 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2107 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2108 * the kernel-internal blockdev inode represents the dirtying time of the
2109 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2110 * page->mapping->host, so the page-dirtying time is recorded in the internal
2111 * blockdev inode.
2113 void __mark_inode_dirty(struct inode *inode, int flags)
2115 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2116 struct super_block *sb = inode->i_sb;
2117 int dirtytime;
2119 trace_writeback_mark_inode_dirty(inode, flags);
2122 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2123 * dirty the inode itself
2125 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2126 trace_writeback_dirty_inode_start(inode, flags);
2128 if (sb->s_op->dirty_inode)
2129 sb->s_op->dirty_inode(inode, flags);
2131 trace_writeback_dirty_inode(inode, flags);
2133 if (flags & I_DIRTY_INODE)
2134 flags &= ~I_DIRTY_TIME;
2135 dirtytime = flags & I_DIRTY_TIME;
2138 * Paired with smp_mb() in __writeback_single_inode() for the
2139 * following lockless i_state test. See there for details.
2141 smp_mb();
2143 if (((inode->i_state & flags) == flags) ||
2144 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2145 return;
2147 if (unlikely(block_dump))
2148 block_dump___mark_inode_dirty(inode);
2150 spin_lock(&inode->i_lock);
2151 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2152 goto out_unlock_inode;
2153 if ((inode->i_state & flags) != flags) {
2154 const int was_dirty = inode->i_state & I_DIRTY;
2156 inode_attach_wb(inode, NULL);
2158 if (flags & I_DIRTY_INODE)
2159 inode->i_state &= ~I_DIRTY_TIME;
2160 inode->i_state |= flags;
2163 * If the inode is being synced, just update its dirty state.
2164 * The unlocker will place the inode on the appropriate
2165 * superblock list, based upon its state.
2167 if (inode->i_state & I_SYNC)
2168 goto out_unlock_inode;
2171 * Only add valid (hashed) inodes to the superblock's
2172 * dirty list. Add blockdev inodes as well.
2174 if (!S_ISBLK(inode->i_mode)) {
2175 if (inode_unhashed(inode))
2176 goto out_unlock_inode;
2178 if (inode->i_state & I_FREEING)
2179 goto out_unlock_inode;
2182 * If the inode was already on b_dirty/b_io/b_more_io, don't
2183 * reposition it (that would break b_dirty time-ordering).
2185 if (!was_dirty) {
2186 struct bdi_writeback *wb;
2187 struct list_head *dirty_list;
2188 bool wakeup_bdi = false;
2190 wb = locked_inode_to_wb_and_lock_list(inode);
2192 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2193 !test_bit(WB_registered, &wb->state),
2194 "bdi-%s not registered\n", wb->bdi->name);
2196 inode->dirtied_when = jiffies;
2197 if (dirtytime)
2198 inode->dirtied_time_when = jiffies;
2200 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2201 dirty_list = &wb->b_dirty;
2202 else
2203 dirty_list = &wb->b_dirty_time;
2205 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2206 dirty_list);
2208 spin_unlock(&wb->list_lock);
2209 trace_writeback_dirty_inode_enqueue(inode);
2212 * If this is the first dirty inode for this bdi,
2213 * we have to wake-up the corresponding bdi thread
2214 * to make sure background write-back happens
2215 * later.
2217 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2218 wb_wakeup_delayed(wb);
2219 return;
2222 out_unlock_inode:
2223 spin_unlock(&inode->i_lock);
2225 #undef I_DIRTY_INODE
2227 EXPORT_SYMBOL(__mark_inode_dirty);
2230 * The @s_sync_lock is used to serialise concurrent sync operations
2231 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2232 * Concurrent callers will block on the s_sync_lock rather than doing contending
2233 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2234 * has been issued up to the time this function is enter is guaranteed to be
2235 * completed by the time we have gained the lock and waited for all IO that is
2236 * in progress regardless of the order callers are granted the lock.
2238 static void wait_sb_inodes(struct super_block *sb)
2240 LIST_HEAD(sync_list);
2243 * We need to be protected against the filesystem going from
2244 * r/o to r/w or vice versa.
2246 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2248 mutex_lock(&sb->s_sync_lock);
2251 * Splice the writeback list onto a temporary list to avoid waiting on
2252 * inodes that have started writeback after this point.
2254 * Use rcu_read_lock() to keep the inodes around until we have a
2255 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2256 * the local list because inodes can be dropped from either by writeback
2257 * completion.
2259 rcu_read_lock();
2260 spin_lock_irq(&sb->s_inode_wblist_lock);
2261 list_splice_init(&sb->s_inodes_wb, &sync_list);
2264 * Data integrity sync. Must wait for all pages under writeback, because
2265 * there may have been pages dirtied before our sync call, but which had
2266 * writeout started before we write it out. In which case, the inode
2267 * may not be on the dirty list, but we still have to wait for that
2268 * writeout.
2270 while (!list_empty(&sync_list)) {
2271 struct inode *inode = list_first_entry(&sync_list, struct inode,
2272 i_wb_list);
2273 struct address_space *mapping = inode->i_mapping;
2276 * Move each inode back to the wb list before we drop the lock
2277 * to preserve consistency between i_wb_list and the mapping
2278 * writeback tag. Writeback completion is responsible to remove
2279 * the inode from either list once the writeback tag is cleared.
2281 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2284 * The mapping can appear untagged while still on-list since we
2285 * do not have the mapping lock. Skip it here, wb completion
2286 * will remove it.
2288 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2289 continue;
2291 spin_unlock_irq(&sb->s_inode_wblist_lock);
2293 spin_lock(&inode->i_lock);
2294 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2295 spin_unlock(&inode->i_lock);
2297 spin_lock_irq(&sb->s_inode_wblist_lock);
2298 continue;
2300 __iget(inode);
2301 spin_unlock(&inode->i_lock);
2302 rcu_read_unlock();
2305 * We keep the error status of individual mapping so that
2306 * applications can catch the writeback error using fsync(2).
2307 * See filemap_fdatawait_keep_errors() for details.
2309 filemap_fdatawait_keep_errors(mapping);
2311 cond_resched();
2313 iput(inode);
2315 rcu_read_lock();
2316 spin_lock_irq(&sb->s_inode_wblist_lock);
2318 spin_unlock_irq(&sb->s_inode_wblist_lock);
2319 rcu_read_unlock();
2320 mutex_unlock(&sb->s_sync_lock);
2323 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2324 enum wb_reason reason, bool skip_if_busy)
2326 DEFINE_WB_COMPLETION_ONSTACK(done);
2327 struct wb_writeback_work work = {
2328 .sb = sb,
2329 .sync_mode = WB_SYNC_NONE,
2330 .tagged_writepages = 1,
2331 .done = &done,
2332 .nr_pages = nr,
2333 .reason = reason,
2335 struct backing_dev_info *bdi = sb->s_bdi;
2337 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2338 return;
2339 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2341 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2342 wb_wait_for_completion(bdi, &done);
2346 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2347 * @sb: the superblock
2348 * @nr: the number of pages to write
2349 * @reason: reason why some writeback work initiated
2351 * Start writeback on some inodes on this super_block. No guarantees are made
2352 * on how many (if any) will be written, and this function does not wait
2353 * for IO completion of submitted IO.
2355 void writeback_inodes_sb_nr(struct super_block *sb,
2356 unsigned long nr,
2357 enum wb_reason reason)
2359 __writeback_inodes_sb_nr(sb, nr, reason, false);
2361 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2364 * writeback_inodes_sb - writeback dirty inodes from given super_block
2365 * @sb: the superblock
2366 * @reason: reason why some writeback work was initiated
2368 * Start writeback on some inodes on this super_block. No guarantees are made
2369 * on how many (if any) will be written, and this function does not wait
2370 * for IO completion of submitted IO.
2372 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2374 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2376 EXPORT_SYMBOL(writeback_inodes_sb);
2379 * try_to_writeback_inodes_sb - try to start writeback if none underway
2380 * @sb: the superblock
2381 * @reason: reason why some writeback work was initiated
2383 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2385 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2387 if (!down_read_trylock(&sb->s_umount))
2388 return;
2390 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2391 up_read(&sb->s_umount);
2393 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2396 * sync_inodes_sb - sync sb inode pages
2397 * @sb: the superblock
2399 * This function writes and waits on any dirty inode belonging to this
2400 * super_block.
2402 void sync_inodes_sb(struct super_block *sb)
2404 DEFINE_WB_COMPLETION_ONSTACK(done);
2405 struct wb_writeback_work work = {
2406 .sb = sb,
2407 .sync_mode = WB_SYNC_ALL,
2408 .nr_pages = LONG_MAX,
2409 .range_cyclic = 0,
2410 .done = &done,
2411 .reason = WB_REASON_SYNC,
2412 .for_sync = 1,
2414 struct backing_dev_info *bdi = sb->s_bdi;
2417 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2418 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2419 * bdi_has_dirty() need to be written out too.
2421 if (bdi == &noop_backing_dev_info)
2422 return;
2423 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2425 bdi_split_work_to_wbs(bdi, &work, false);
2426 wb_wait_for_completion(bdi, &done);
2428 wait_sb_inodes(sb);
2430 EXPORT_SYMBOL(sync_inodes_sb);
2433 * write_inode_now - write an inode to disk
2434 * @inode: inode to write to disk
2435 * @sync: whether the write should be synchronous or not
2437 * This function commits an inode to disk immediately if it is dirty. This is
2438 * primarily needed by knfsd.
2440 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2442 int write_inode_now(struct inode *inode, int sync)
2444 struct writeback_control wbc = {
2445 .nr_to_write = LONG_MAX,
2446 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2447 .range_start = 0,
2448 .range_end = LLONG_MAX,
2451 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2452 wbc.nr_to_write = 0;
2454 might_sleep();
2455 return writeback_single_inode(inode, &wbc);
2457 EXPORT_SYMBOL(write_inode_now);
2460 * sync_inode - write an inode and its pages to disk.
2461 * @inode: the inode to sync
2462 * @wbc: controls the writeback mode
2464 * sync_inode() will write an inode and its pages to disk. It will also
2465 * correctly update the inode on its superblock's dirty inode lists and will
2466 * update inode->i_state.
2468 * The caller must have a ref on the inode.
2470 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2472 return writeback_single_inode(inode, wbc);
2474 EXPORT_SYMBOL(sync_inode);
2477 * sync_inode_metadata - write an inode to disk
2478 * @inode: the inode to sync
2479 * @wait: wait for I/O to complete.
2481 * Write an inode to disk and adjust its dirty state after completion.
2483 * Note: only writes the actual inode, no associated data or other metadata.
2485 int sync_inode_metadata(struct inode *inode, int wait)
2487 struct writeback_control wbc = {
2488 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2489 .nr_to_write = 0, /* metadata-only */
2492 return sync_inode(inode, &wbc);
2494 EXPORT_SYMBOL(sync_inode_metadata);